
The Pennsylvania State University

The Graduate School

A HYBRID STOCHASTIC MOTION PLANNING ALGORITHM FOR SAFE AND

EFFICIENT, CLOSE PROXIMITY, AUTONOMOUS SPACECRAFT MISSIONS

A Thesis in

Aerospace Engineering

by

Lawrence Joseph DiGirolamo

 2014 Lawrence Joseph DiGirolamo

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2014

The thesis of Lawrence Joseph DiGirolamo was reviewed and approved* by the following:

David B. Spencer

Professor of Aerospace Engineering

Thesis Advisor

Robert G. Melton

Professor of Aerospace Engineering

George A. Lesieutre

Professor of Aerospace Engineering

Head of the Department of Aerospace Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

 As the International Space Station and Earth orbiting satellites age well past their

originally planned operational lifespan, improved monitoring of these spacecraft’s integrity will

be critical to the safety of any crew on board and continued functionality. A small autonomous

free flying spacecraft could have the ability to monitor for structural instabilities without the need

for astronaut intervention.

 This thesis develops a hybrid offline motion planner that determines a fuel efficient

trajectory between user specified waypoints for an inspection spacecraft, while avoiding thruster

impingement with the target spacecraft. The planner requires the inspection vehicle’s dynamics

model, a thruster model and the obstacle field within which inspection vehicle operates. The

algorithm is shown to find trajectories superior to its predecessor.

 The algorithm is a merging of the Optimal Rapidly Exploring Random Tree algorithm,

the Covariance Matrix Adaptation Evolutionary Strategy, and the Hill-Clohessy-Wiltshire

equations. The Optimal Rapidly Exploring Random Tree algorithm is a directed tree search

algorithm with a theoretical basis in random graph theory that acts as the main search framework.

The Covariance Matrix Adaptation Evolutionary algorithm is used as a local optimizer which

directs search to low cost solutions. Finally, the Hill-Clohessy-Wiltshire equations are used to

find dynamically feasible trajectories through the search space.

 Simulations are performed for flights around a simple model resembling the International

Space Station, with several start and goal points, and several combinations of algorithm

parameters. Results obtained from the stand-alone Optimal Rapidly Exploring Random Tree

algorithm are compared to results obtained from the hybrid algorithm developed in this thesis.

 The hybrid algorithm shows improved performance over the stand-alone Optimal Rapidly

Exploring Random Tree algorithm. The hybrid algorithm on average is able to find trajectories

iv

which require less propellant and less flight time, however the hybrid algorithm tends to require

more computation time. In addition, planned trajectories that do not require impingement

prevention require less propellant and shorter flight times. As such, cold gas thrusters may prove

to be more appropriate for close proximity spacecraft missions, despite their lower efficiency as

compared to their counterparts which utilize more volatile propellants. Finally, the propellant use

and time of flight of a particular trajectory can be effectively tuned by the user through algorithm

parameter modification.

v

TABLE OF CONTENTS

List of Figures .. vii

List of Tables ... x

Acknowledgements .. xii

Chapter 1 Introduction ... 1

1.1 Motivation .. 2
1.2 Related Work Review .. 4
1.3 Outline .. 6

Chapter 2 Algorithm Introduction and Analysis .. 7

2.1 Problem Definition ... 7
2.2 RRT* .. 8

2.2.1 Notation ... 8
2.2.2 Theory ... 9
2.2.3 Algorithm .. 16

2.3 CMA-ES... 20
2.3.1 Theory ... 22
2.3.2 Algorithm .. 24

2.4 The Hill-Clohessy-Wiltshire Equations ... 26
2.4.1 Nonlinear Equations .. 26
2.4.2 Linearization.. 28
2.4.3 HCW Equations... 28

Chapter 3 The Hill-Clohessy-Wiltshire RRT* Evolutionary Strategy Algorithm 31

3.1 RRT* Integration ... 31
3.2 CMA-ES Integration .. 34

3.2.1 CMA-ES Parameters ... 35
3.2.2 CMA-ES Population Requirements .. 36

3.3 HCW Steering Function ... 37
3.3.1 HCWSteer Function .. 38
3.3.2 Adherence to Optimality Conditions ... 42
3.3.3 Impulsive Maneuver Accuracy ... 44

3.4 Impingement Prevention .. 45

Chapter 4 Simulations .. 46

4.1 International Space Station Model ... 46
4.2 Free-Flying Vehicle Model .. 47
4.3 Experimental Setup .. 48

vi

Chapter 5 Results and Discussion .. 55

5.1 Graphical Results ... 55
5.2 Data Tables .. 59
5.3 Cost Comparison .. 61
5.4 Convergence Index .. 68
5.5 Total ΔV ... 70
5.6 Time of Flight .. 74
5.7 Computational Run Time ... 76

Chapter 6 Conclusions and Future Work ... 80

6.1 Conclusions .. 80
6.2 Future Work ... 82

 CMA-ES Strategy Parameters ... 85

 RRT* ... 86

 RRT*-ES ... 88

 Data Figures .. 91

Bibliography .. 117

vii

LIST OF FIGURES
Figure 1-1 AERCam Sprint in operation (courtesy NASA) .. 3

Figure 2-1 A directed graph, G .. 9

Figure 2-2 The 𝜹-interior of 𝑿𝒇𝒓𝒆𝒆 [17] ... 10

Figure 2-3 Path 𝜹-clearance [17] ... 12

Figure 2-4 A path which does not exhibit weak 𝜹-clearance [17] ... 12

Figure 2-5 The 𝝐-ball centered at 𝒛 .. 14

Figure 2-6 Weakened local controllability at 𝒛 .. 15

Figure 2-7 A 𝝐-collision-free approximate trajectory [16] .. 16

Figure 2-8 RRT* procedure ... 19

Figure 2-9 CMA-ES evolution over six generations (Wikimedia Commons) 21

Figure 2-10 HCW reference frame [6] ... 27

Figure 3-1 GoalConnect and GoalRewire procedure ... 34

Figure 3-2 Control input bound considerations ... 39

Figure 3-3 HCWSteerRewire control input bound considerations .. 42

Figure 4-1 ISS MATLAB model ... 47

Figure 4-2 Vehicle thruster configuration [2] .. 48

Figure 4-3 Goal and start state combination A .. 50

Figure 4-4 Goal and start state combination B .. 51

Figure 4-5 Goal and start state combination C .. 51

Figure 5-1 Search characteristics of HCW RRT* and HCW CMA-ES RRT* 57

Figure 5-2 Optimal trajectory with impingement prevention .. 58

Figure 5-3 Optimal trajectory without impingement prevention ... 59

Figure 5-4 Run sets with Impingement Prevention off vs. Impingement Prevention on 64

Figure 5-5 Cost vs. number of iterations, impingement prevention on ... 67

viii

Figure 5-6 Cost vs. number of iterations, impingement prevention off ... 67

Figure 5-7 Simulation B with Impingement Prevention isometric and side view 72

Figure 5-8 Simulation B run comparison based on scaling factor ... 73

Figure B-1 RRT* pseudocode ... 87

Figure C-1 RRT*-ES pseudocode ... 89

Figure C-2 GoallConnect pseudocode ... 90

Figure C-3 GoalRewire pseudocode .. 90

Figure D-1 Run set 1 .. 93

Figure D-2 Run set 1 .. 94

Figure D-3 Run set 3 .. 95

Figure D-4 Run set 4 .. 96

Figure D-5 Run set 5 .. 97

Figure D-6 Run set 6 .. 98

Figure D-7 Run set 7 .. 99

Figure D-8 Run set 8 .. 100

Figure D-9 Run set 9 .. 101

Figure D-10 Run set 10 .. 102

Figure D-11 Run set 11 .. 103

Figure D-12 Run set 12 .. 104

Figure D-13 Run set 13 .. 105

Figure D-14 Run set 14 .. 106

Figure D-15 Run set 15 .. 107

Figure D-16 Run set 16 .. 108

Figure D-17 Run set 17 .. 109

ix

Figure D-18 Run set 18 .. 110

Figure D-19 Run set 19 .. 111

Figure D-20 Run set 20 .. 112

Figure D-21 Run set 21 .. 113

Figure D-22 Run set 22 .. 114

Figure D-23 Run set 23 .. 115

Figure D-24 Run set 24 .. 116

x

LIST OF TABLES
Table 4-1. Simulation start and goal states .. 50

Table 4-2. Simulation bounds .. 52

Table 4-3. NearVertices scale factors .. 53

Table 5-1. Example average table .. 60

Table 5-2. Example ANOVA table .. 61

Table 5-3. Average cost and 95% confidence interval (A) .. 62

Table 5-4. Average cost and 95% confidence interval (B) .. 62

Table 5-5. Average cost and 95% confidence interval (C) .. 62

Table 5-6. ANOVA test on cost and 95% confidence interval .. 62

Table 5-7. Average cost coefficient of variation (A) ... 65

Table 5-8. Average cost coefficient of variation (B) ... 65

Table 5-9. Average cost coefficient of variation (C) ... 66

Table 5-10. Average convergence index and 95% confidence interval (A) 69

Table 5-11. Average convergence index and 95% confidence interval (B)................................... 69

Table 5-12. Average convergence index and 95% confidence interval (C)................................... 69

Table 5-13. ANOVA test on convergence index and 95% confidence interval 69

Table 5-14. ANOVA test on ΔV and 95% confidence interval ... 70

Table 5-15. Average ΔV and 95% confidence interval (A) ... 71

Table 5-16. Average ΔV and 95% confidence interval (B) ... 71

Table 5-17. Average ΔV and 95% confidence interval (C) ... 71

Table 5-18. Average TOF(s) and 95% confidence interval (A) ... 75

Table 5-19. Average TOF(s) and 95% confidence interval (B) ... 75

Table 5-20. Average TOF(s) and 95% confidence interval (C) ... 76

Table 5-21. ANOVA test on TOF(s) and 95% confidence interval ... 76

xi

Table 5-22. Average run time (s) and 95% confidence interval (A) .. 78

Table 5-23. Average run time (s) and 95% confidence interval (B) .. 78

Table 5-24. Average run time (s) and 95% confidence interval (C) .. 78

Table 5-25. ANOVA test on run time (s) and 95% confidence interval .. 79

Table A-1 CMA-ES strategy parameters ... 85

Table D-1 Run set number and associated parameter settings ... 92

xii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help and support of many

individuals. It has been quite the exploratory learning experience, which without proper guidance

at crucial times could have slipped into the realm of trivial meandering.

My parents have always been crucial to my education. My family’s constant

encouragement and enthusiasm about schooling has instilled in me a passion for learning. I would

like to thank my mom in particular for removing my undergraduate financial burden, allowing me

to pursue a graduate degree with initially uncertain funding. Without this help, my prospects at

this time would be considerably different.

My advisor Dr. David Spencer has been integral to many of my achievements over the

last couple of years. From helping me achieve an early acceptance to Penn State’s graduate

program which directly lead to my assistantship at ARL, to pushing me to present my work at the

AIAA Space Conference; his help and guidance has been much appreciated. Critically, he

encouraged me to take a quite daunting Evolutionary Computation class my first semester of grad

school. Although I may have questioned the idea at the time, the knowledge I gained in that class

became a foundation for this work.

I would like to thank Dr. Andrew Hoskins and Dr. Kurt Hacker for taking the chance on

hiring a fairly inexperienced Aerospace Engineering student, with a focus on space applications,

as a research assistant for undersea applications. Although I may have made a different decision

in their position, I am happy that it worked out so well. My growth as an engineer over the last

few years can largely be attributed to their guidance and confidence in my abilities. They struck a

great balance between redirecting me when necessary, while allowing me do my own stumbling

through the material that makes up this thesis. This lead to an exceptional learning experience. I

xiii

would like to also extend this thank you to everyone I have had the pleasure of working with at

ARL. It has been a terrific opportunity.

I would like to thank Dr. Robert Melton for reviewing this thesis, and for reinforcing my

excitement for Aerospace engineering throughout undergraduate and graduate courses. He was

also great company on the conference trip this summer, however next time we are in San Diego

we will have to search out better fish tacos.

Last but certainly not least, I would like to thank my friends, and particularly Giulia for

always being there to give me a much needed break from engineering mode. Thank you for your

patience and excitement in listening to my rambling explanations of my research, and for your

constant support. Although I have often found myself working late into the night, you were

always up later in your studio or apartment, and happy to have a visitor. For that I am grateful.

Chapter 1

Introduction

Autonomous systems have the potential to provide currently unrealizable capabilities

while decreasing cost and human risk. This is particularly true for inspection operations of

spacecraft. This thesis presents work on an offline motion planning framework for International

Space Station and satellite monitoring missions in Circular Low Earth Orbit. The framework uses

a variation of the Optimal Rapidly Exploring Random Tree algorithm (RRT*)17 and the

Covariance Matrix Adaptation Evolutionary Strategy algorithm (CMA-ES)12 as its basis. The

goal for the missions is to provide sensor coverage of user designated areas of a spacecraft with

no need for human-in-the-loop vehicle control.

At the core of this work is an algorithm that plans a trajectory between user specified six

degree of freedom waypoints for the purpose of inspection given the autonomous vehicle’s

dynamics model, a thruster model, and an obstacle field where operations are taking place. In the

context of the current effort, obstacles consist of either the International Space Station or some

other satellite in a near-circular orbit about Earth, and the inspection vehicle’s trajectory adheres

to the Hill-Clohessy-Wiltshire (HCW) equations of motion during planning. In addition, the

planner takes into consideration the effect of rocket plumes, trajectory time of flight, as well as

propellant use.

A hybrid algorithm has been developed for this purpose by combining the RRT* search

algorithm with a constrained input, fixed final state steering function, and the CMA-ES

algorithm. RRT* is an incremental tree search algorithm that expands stochastically from an

initial point and guarantees asymptotic optimality for any system with controllable linear

dynamics. It is also able to maintain a computational complexity within a constant factor of its

2

non-asymptotically optimal predecessor RRT17, 19. The steering function used solves the control

problem according to the Hill-Clohessy-Wiltshire equations assuming the spacecraft can perform

an impulsive change of velocity. The steering function is used to connect nodes within the RRT*

search tree. CMA-ES is a stochastic method for real-parameter optimization of non-linear, non-

convex functions14, which is used as a local optimizer in this work.

The Hill-Clohessy-Wiltshire equations for relative motion of two objects in a circular

orbit are used within the steering function to plan dynamically feasible optimal trajectories. The

use of these equations increases search complexity, but also helps to ensure that the trajectory

found by the offline planner is indeed feasible for the spacecraft to execute.

Given that the free flying inspection craft will likely need to use chemical rockets to

maneuver in close proximity to delicate satellite and International Space Station equipment, the

effect of the inspection craft thruster plume must be taken into consideration. To avoid damage to

target craft equipment, a thruster model which designates the plume length of a firing thruster as a

keep out zone is used. This length is then fed into the planner’s collision detection algorithm and

a trajectory that results in plume impingement is deemed infeasible.

Finally, with all constraints on the inspection vehicle satisfied, the planner minimizes two

trajectory components. First, propellant use on the trajectory is minimized so as to extend its

mission duration, and second, the time of flight is minimized so as to maintain realistic mission

scenarios. The user may specify the desired relationship between these two objectives.

1.1 Motivation

 Unlike previous large-scale engineering endeavors whose operational lives exceeded

their original engineered life, spacecraft lack the benefit of thorough hands-on inspection.

3

Spacewalks are both costly and dangerous, robotic arms have limited range and maneuverability,

and complex structural engineering calculations cannot always predict the true state of a system.

As the capabilities of autonomous systems continue to advance, these systems can fill the health

monitoring and repair role which is currently unmet for most space assets.

 NASA’s operational AERCam Sprint (Figure 1-1), along with its proposed successor,

Mini AERCam, strongly motivated the work in this thesis. Both vehicles were designed to be

free flying spacecraft for remote inspection of manned spacecraft. Although AERCam sprint was

successfully flown in 1997, it required remote operation by an astronaut for the entire duration of

its flight2.

Figure 1-1 AERCam Sprint in operation (courtesy NASA)

This work helps to increase the capabilities of free flyer missions by removing the

astronaut from the mission requirements. Autonomous motion planning not only frees up

astronauts to perform other tasks, but also enhances the planned trajectories by minimizing time

of flight and fuel use while maximizing safety through obstacle avoidance and impingement

4

prevention. Given the complex and non-intuitive dynamic environment of relative motion in a

circular low Earth orbit, a human pilot is not as capable of optimizing these flight parameters.

1.2 Related Work Review

To date, research into the area of close proximity spacecraft operations has produced

some impressive results. Richards et. al.22 developed an optimal trajectory planner for close

proximity spacecraft operations using mixed integer linear program. Their formulation adheres to

the Hill-Clohessy-Wiltshire equations and finds a minimum fuel path between two poses which

avoids obstacles and satisfies rocket plume constraints using bang-off-bang control. Although this

method is promising and appears to be computationally tractable, it requires an a priori

knowledge of the time required to complete the path. This inherently limits the optimality of the

given path, and if the time is set incorrectly, could result in a dynamically infeasible path.

McInnes20 developed a planner which uses ellipse of safety transfers and potential field

method to plan a safe obstacle free path for a spacecraft performing close proximity maneuvers

with the ISS. The ellipse of safety transfers developed are a novel way to limit the risk to the ISS

in the case of thruster failure, but are only useful in getting the spacecraft close to the desired

observation point. From there a potential field method is used to plan the rest of the trajectory.

The method makes no mention of path optimality however, and potential field methods are often

plagued with local minima and oscillatory problems especially in the presence of complex

obstacle fields18.

Breger and How3 developed an optimal planner that guarantees safe trajectories in the

presence of a guidance and control failure using mixed integer linear programming. Although the

safety guarantee provided is very important to close proximity missions, the formulation once

5

again require an a priori flight time. This leads to limited optimality or the need to run an already

computationally intensive algorithm many times to find the optimal flight time.

Outside of the algorithms mentioned above there are several grid search based methods

that show promise for path planning and obstacle avoidance. They are members of the A*21, and

D*24 family of algorithms. Both algorithms perform grid searches and rely on a cost function and

a heuristic for estimating the cost to arrive to the goal from their current state. A* assumes a prior

knowledge of the environment, while D* is designed to be an efficient replanner when the

environment changes. The problems that arise with these algorithms are a function of the

heuristic required and their grid search basis. Although in low dimension grid search makes these

algorithms fast and efficient planners, when dimensions start to lose a lot of their computational

efficiency. In addition, it is difficult to capture vehicle dynamics with a grid search. As such,

these planners excel when the obstacle field is relatively sparse and the distances traveled are

relatively large. When distances are small, it is difficult to ensure that the path being planned is

actually achievable by the vehicle. Finally, the effectiveness of the planner relies heavily on the

heuristic used to estimate the cost from the current state to the goal state. In the case of an orbital

mission in the presence of large obstacles as presented in this thesis, it becomes difficult to

develop an accurate heuristic function.

The algorithm formulation posed in this work attempts to address some of the drawbacks

of the aforementioned algorithms. The algorithm finds an optimized obstacle free trajectory

between a given start and end vehicle state with no requirements for an a priori flight time. The

optimized trajectory found avoids plume impingement on the target vehicle and adheres to the

dynamics of the orbital system. In addition, a sub-optimal obstacle free trajectory is first found,

and then improved as computation time allows, making this an anytime algorithm.

6

1.3 Outline

 The contributions made in this thesis are presented over several chapters. Chapter 2

introduces the algorithmic components that make up the motion planner, along with the

theoretical support for their functionality. These components include the RRT* algorithm, the

CMA-ES algorithm, and the Hill-Clohessy-Wiltshire equations. Chapter 3 details the integration

of the component algorithms into the hybrid algorithm, along with modifications made to the

component algorithms to address the orbital relative motion trajectory planning problem. Chapter

3 also discusses the adherence of the new hybrid algorithm to RRT* asymptotic optimality

requirements, and vehicle dynamic constraints. Chapter 4 introduces the simulation environment

developed to test the hybrid algorithm. Chapter 5 presents the simulation results, and analysis.

Finally, Chapter 6 makes conclusions based on these results, and provides suggestions for future

work.

7

Chapter 2

Algorithm Introduction and Analysis

The motion planning algorithm presented in this thesis derives its capabilities from three

component algorithms: RRT*, CMA-ES, and a Hill-Clohessy-Wiltshire steering function. The

following sections describe the motion planning problem in more rigorous mathematical terms,

followed by the theory and functionality of the hybrid algorithm components.

2.1 Problem Definition

Prior to introducing the algorithms utilized to solve the motion planning problem, a more

formal definition of the motion planning problem is required. Let 𝑋 ⊆ ℝ𝑛define the state space

and 𝑈 ⊆ ℝ𝑚 the control input space of the system. There is a given obstacle region 𝑋𝑜𝑏𝑠 ⊂ 𝑋,

start state 𝑥⃗𝑠𝑡𝑎𝑟𝑡 and goal state 𝑥⃗𝑔𝑜𝑎𝑙, and system dynamics

 𝑥̇⃗ = 𝑓(𝑥⃗(𝑡), 𝑢⃗⃗(𝑡), 𝑡) (1)

where , 𝑥⃗(𝑡) ∈ 𝑋 is the state of the vehicle at time t, and 𝑢⃗⃗(𝑡) ∈ 𝑈 is the required input at time t.

 The goal of the optimal motion planning problem is to find the trajectory 𝜋 =

[𝑥⃗(), 𝑢⃗⃗(), 𝑇], which connects the start state and goal state while remaining in the obstacle

free region 𝑋𝑓𝑟𝑒𝑒 = (𝑋\𝑋𝑜𝑏𝑠), adhering to the system dynamics, and optimizing the cost

function:

 𝑐(𝜋) = ∫ (1 + 𝑅⃗⃗‖𝑢⃗⃗(𝑡)‖)𝑑𝑡
𝑇

0
 (2)

where T is the trajectory duration, and 𝑅⃗⃗ ∈ ℝ𝑚 is positive-definite, constant, and given, and

weights the cost of the control inputs relative to each other and to the duration of the trajectory.

The cost function penalizes for both the amount of control input used as well as the time required

to complete the trajectory.

8

2.2 RRT*

The RRT* algorithm was first proposed by Karaman and Frazzoli17 as a provably

asymptotically optimal, probabilistically complete, and computationally efficient motion planning

algorithm. It is a tree search algorithm that lends itself to motion planning problems with

differential constraints17. Extensions for differential constraints were added to RRT* in [8], [16],

and [25]. These extensions build on Karaman and Frazzoli’s original work, providing conditions

for asymptotic optimality and probabilistic completeness for kinodynamic systems in [17] and

[11], and extending RRT* to include a fixed-final-state-free-final-time optimal controller in [25].

In this section the theory behind the asymptotic optimality and probabilistic completeness of the

RRT* algorithm is presented, along with the algorithm itself.

2.2.1 Notation

 The notation used here in relation to RRT* is analogous to the notation used in the

original RRT* paper [17]. A directed graph 𝐺 = (𝑉, 𝐸) on 𝑋 consists of a set of vertices 𝑉 which

is a finite subset of X, and a set of edges E which is a subset of 𝑉𝑥𝑉. A directed path, σ𝑛, on the

directed graph G is a sequence of vertices (𝑧1, 𝑧2, … , 𝑧𝑛) such that 𝑥𝑖+1 = (𝑧𝑖 , 𝑧𝑖+1) ∈ 𝐸 for all

1 ≤ 𝑖 ≤ 𝑛 − 1 and Σ is the set of all paths through the space. An example directed graph can be

seen in Figure 2-1. RRT* is a directed tree, which is a type of directed graph where every vertex

has one unique incoming parent vertex, except for the start vertex which has no parent. A vertex

in RRT* is equivalent to a state of the system and is also called a node. For clarity, in this work a

vertex will refer to a state that has already been added to the search tree, and a node will refer to a

state that is a candidate to be added to the search tree. An edge in RRT* is a path or trajectory that

connects two vertices.

9

Figure 2-1 A directed graph, G

2.2.2 Theory

There are two main characteristics of RRT* and its kinodynamic variants that will be

presented in this section. RRT* has been shown to be both probabilistically complete and

asymptotically optimal17. For a probabilistically complete algorithm, the probability of finding a

solution to the problem if one exists goes to one as the number of iterations of the algorithm go to

infinity. Asymptotic optimality refers to the ability of the cost of the trajectory returned to almost

surely converge to the optimum as iterations go to infinity17.

10

2.2.2.1 Probabilistic Completeness

Before a formal definition of probabilistic completeness can be presented, the definition

of robust feasibility must be understood. The following definitions are taken from Karman and

Fazzoli’s work in reference [17].

For a state 𝑧 ∈ 𝑋𝑓𝑟𝑒𝑒 and some real valued 𝛿 > 0, the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 is the set of all

states that are at least a distance 𝛿 away from any point in the obstacle set. In Figure 2-2, 𝑧1 is in

the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 , and 𝑧2 is not in the 𝛿-interior. A collision-free path has strong 𝛿-

clearance if the entirety of the path lies within the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 (Figure 2-3). Finally, a path

planning problem (𝑋𝑓𝑟𝑒𝑒 , 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑔𝑜𝑎𝑙) is robustly feasible if there exists a solution path with

strong 𝛿-clearance.

Figure 2-2 The 𝜹-interior of 𝑿𝒇𝒓𝒆𝒆 [17]

 A formal definition of probabilistic completeness as presented by Karaman and

Frazzoli17 proceeds as follows:

An algorithm ALG is probabilistically complete, if, for any robustly feasible path

planning problem (𝑋𝑓𝑟𝑒𝑒 , 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑔𝑜𝑎𝑙),

11

 lim
𝑛→∞

inf ℙ({∃𝑧 ∈ 𝑉𝑛
𝐴𝐿𝐺 = 𝑧𝑔𝑜𝑎𝑙 𝑠. 𝑡. 𝑧𝑠𝑡𝑎𝑟𝑡 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑧𝑔𝑜𝑎𝑙𝑖𝑛 𝐺𝑛

𝐴𝐿𝐺}) = 1 (3)

That is, the probability that a vertex in the algorithm’s search tree is the goal vertex, and the

search graph connects the start vertex and the goal vertex goes to one as the number of vertices in

the graph goes to infinity. However, this limit is equal to zero if the problem is not robustly

feasible for any sampling based algorithm, including probabilistically complete ones17.

 The proof of the probabilistic completeness of the RRT algorithm was developed by

Lavalle and Kuffner in [19]. The conditions are extended to RRT* by Karman and Frazzoli in

[17], where:

For any robustly feasible path planning problem (𝑋𝑓𝑟𝑒𝑒 , 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑔𝑜𝑎𝑙), there exist

constants 𝑎 > 0 and 𝑛0 ∈ ℕ, both dependent only on 𝑋𝑓𝑟𝑒𝑒 and 𝑧𝑔𝑜𝑎𝑙 such that

 ℙ({∃𝑧 ∈ 𝑉𝑛
𝑅𝑅𝑇∗ = 𝑧𝑔𝑜𝑎𝑙}) > 1 − 𝑒−𝑎𝑛, ∀𝑛 > 𝑛0 (4)

That is, the probability that a vertex in the RRT* search graph is the goal vertex approaches one

as the number of vertices in the search graph goes to infinity.

2.2.2.2 Asymptotic Optimality

Again, prior to providing a formal definition of asymptotic optimality and sufficient

conditions to guarantee asymptotic optimality of RRT*, the definition of a robustly optimal

solution must be understood. The following definitions are taken from Karman and Fazzoli’s

work in [17].

Let 𝜎1, 𝜎2 ∈ Σ𝑓𝑟𝑒𝑒 be two collision-free paths with the same end points. A path 𝜎1 is

considered to be homotopic to 𝜎2 if it can be continuously transformed to 𝜎2 through 𝑋𝑓𝑟𝑒𝑒. In

Figure 2-3, path 𝜎1 is homotopic to 𝜎2. A collision free path 𝜎 is said to have weak 𝛿-clearance if

it is homotopic to a path 𝜎′ which exhibits strong 𝛿-clearance, and there exists 𝛿𝛼 > 0 such that

all paths along the transform from 𝜎 to 𝜎′ exhibit strong 𝛿𝛼-clearance. In Figure 2-3, 𝜎2 exhibits

12

strong 𝛿-clearance, while 𝜎1 exhibits weak 𝛿-clearance. A path that does not exhibit weak 𝛿-

clearance can be seen in Figure 2-4.

Figure 2-3 Path 𝜹-clearance [17]

Figure 2-4 A path which does not exhibit weak 𝜹-clearance [17]

Now given that the set of all paths with bounded length is a normal space, which allows

us to take the limit of a sequence of a path17, the definition of a robustly optimal solution is as

13

follows. A minimum cost feasible path 𝜎∗ ∈ 𝑋𝑓𝑟𝑒𝑒is a robustly optimal solution if it is has weak

𝛿-clearance and, for any sequence of collision-free paths {𝜎𝑛}𝑛∈ℕ, 𝜎𝑛 ∈ 𝑋𝑓𝑟𝑒𝑒 , ∀𝑛 ∈ ℕ, such that

lim
𝑛→∞

𝜎𝑛 = 𝜎∗, and lim
𝑛→∞

𝑐(𝜎𝑛) = 𝑐(𝜎∗). 17 This means that the path is optimal if the sequence of

collision free paths converges to it and that this optimal path is surrounded by enough collision

free space, so that convergence may occur. The definition of asymptotic optimality is then:

An algorithm ALG is asymptotically optimal, if, for any robustly feasible path planning

problem (𝑋𝑓𝑟𝑒𝑒 , 𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙) and cost function 𝑐: 𝛴 → ℝ≥0 that admit a robustly optimal

solution with finite cost c*,

 ℙ ({ lim
n→∞

𝑠𝑢𝑝𝑌𝑛
𝐴𝐿𝐺 = 𝑐∗}) = 0 (5)

where Yn
𝐴𝐿𝐺 is the variable that stores the lowest cost solution found by ALG after n iterations. It

should be noted that if an algorithm exhibits asymptotic optimality, it is required to also exhibit

probabilistic completeness. For this reason, necessary conditions for only asymptotic optimality

are presented in the following paragraphs for kinodynamic systems.

Karaman and Frazzoli extend their RRT* algorithm to kinodynamic systems and give

conditions for asymptotic optimality in reference [16]. There are three conditions presented in this

work. First, the Steer procedure must connect nodes in a locally optimal manner. In addition, the

cost procedure to determine the near and nearest nodes must correspond to the optimal cost to

reach those nodes.

The second condition is Weakened Local Controllability. Prior to defining Weakened

Local Controllability, there is some additional notation which must be explained. Let 𝛽𝜖(𝑧) =

{𝑧′ ∈ 𝑋|‖𝑧′ − 𝑧‖ ≤ 𝜖} be the closed 𝜖-ball centered at 𝑧. Now, given a state 𝑧 ∈ 𝑋 and a constant

𝜖 ∈ ℝ>0, let ℛ𝜖(𝑧) be the set of all states in X that are reachable from 𝑧 with a trajectory x that

does not leave the 𝜖-ball centered at 𝑧. ℛ𝜖(𝑧) is referred to as the 𝜖–reachable set of a state z, and

any state within ℛ𝜖(𝑧) is referred to as 𝜖–reachable. Figure 2-5 depicts the 𝜖-ball centered at 𝑧, as

14

well as a state 𝑧′ which is a member of ℛ𝜖(𝑧). Weakened Local Controllability can now be

defined as follows (Figure 2-6):

There exist constants 𝛼, 𝜖̅ ∈ ℝ>0, 𝑝 ∈ ℕ, such that for any 𝜖 ∈ (0, 𝜖)̅, and any state 𝑧 ∈

𝑋, the set ℛ𝜖(𝑧) of all states that can be reached from z with a path that lies entirely

inside the 𝜖-ball centered at z, contains a ball of radius 𝛼𝜖𝑝.16

Weakened local controllability holds true for locally controllable systems, which includes

controllable linear systems.

Figure 2-5 The 𝝐-ball centered at 𝒛

15

Figure 2-6 Weakened local controllability at 𝒛

The third condition for asymptotic optimality is that there exists an optimal trajectory

with enough space around it to allow almost-sure convergence16. This is referred to as a 𝜖-

collision-free approximate trajectory. A trajectory is considered to be 𝜖-collision-free, if the 𝜖-ball

around every state along the trajectory is within 𝑋𝑓𝑟𝑒𝑒 . This is analogous to a path that exhibits

strong 𝛿-clearance where the necessary separation distance is centered at each state along the

trajectory, rather than the obstacle. The definition of a 𝜖-collision-free approximate trajectory is

as follows (Figure 2-7):

There exists an optimal feasible trajectory 𝑥∗: [0, 𝑇∗] → 𝑋𝑓𝑟𝑒𝑒, constants 𝛼, 𝜖̅ ∈ ℝ>0, 𝑝 ∈

ℕ, and a continuous function 𝑞:ℝ>0 → 𝑋 with 𝑙𝑖𝑚
𝜖↓0

𝑞(𝜖) = 𝑥∗such that for all 𝜖 ∈ (0, 𝜖)̅

the following hold for the path 𝑥𝜖 = 𝑞(𝜖): [0, 𝑇𝜖] → 𝑋𝑓𝑟𝑒𝑒:

 𝑥𝜖 is an 𝜖-collision-free path that starts from 𝑧𝑖𝑛𝑖𝑡 and reaches the goal,

 for any 𝑡1 < 𝑡2, let 𝑧1 = 𝑥𝜖(𝑡1) and 𝑧2 = 𝑥𝜖(𝑡2), then the ball of radius

𝛼‖𝑧1 − 𝑧2‖
𝑝 centered at 𝑧2 is 𝜖-reachable from 𝑧1.

16

Figure 2-7 A 𝝐-collision-free approximate trajectory [16]

Goretkin et. al. 11 extend these conditions to include time into the state of the system. The

conditions require that the tree will be able to make local connections with trajectories that

remain in an obstacle-free neighborhood, and that the optimal trajectory through the obstacle field

is continuously surrounded by a neighborhood of approximately optimal solutions which are

collision free. These conditions are satisfied for a system that cannot go backward in time 11. The

systems within the simulations performed for this thesis, do, in fact, adhere to RRT*’s sufficient

conditions, as will be presented in Chapter 3.

2.2.3 Algorithm

 The variation of RRT* created in this thesis is a combination of several variations of

RRT* developed since its inception. For clarity, this section will present the original RRT*

algorithm in detail, and then discuss the modifications made for kinodynamic systems. The

complete algorithm used in this thesis is presented in Chapter 3.

17

2.2.3.1 Primitives

The basic primitive procedures, functions that in conjunction form the behavior of the

RRT* algorithm, are as follows17:

 SampleFree: The SampleFree procedure returns uniformly distributed independent

sample nodes from the obstacle-free space 𝑋𝑓𝑟𝑒𝑒.

 NearestVertex: The NearestVertex procedure returns the nearest vertex V in the tree G

to a given state z based on an application specific cost function

 NearVertices: The NearVertices procedures returns the vertices V in the tree G that

are within a ball of size 𝑟 = 𝛾 (
log(𝑛)

𝑛
)
𝑑

from a given state z. Here d is the dimension of

the problem, n is the size of V at the current iteration and 𝛾 is an appropriate scaling

constant.

 Steer: Given two points x and y the Steer procedure returns a point 𝑧 ∈ 𝑋 such that z is

closer to y than x based on an application specific cost function.

 CollisionFree: The CollisionFree procedure returns true if the given edge x

connecting two states is entirely collision free, and false otherwise.

2.2.3.2 RRT*

One full iteration of the RRT* algorithm after several iterations have occurred is outlined

in visual form in Figure 2-8. Path directions are not drawn in Figure 2-8 because they can be

easily deduced given that RRT* is a directed tree. The algorithm begins with the initialization of

the search graph G through the addition of vertex 𝑉 = {𝑧𝑠𝑡𝑎𝑟𝑡} and an empty set of edges, 𝐸 = 0/ .

An iteration of RRT* begins with SampleFree, where a random node in free space is returned

18

(image 1). RRT* then proceeds to extend from the nearest vertex in the search tree toward 𝑧𝑟𝑎𝑛𝑑

using Steer (image 2). If the path is collision free, the point in the space that Steer reaches is

dubbed 𝑧𝑛𝑒𝑤 and added to the search tree with parent 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 (image 3). Next the near vertices to

𝑧𝑛𝑒𝑤 are found using NearVertices (image 4). A connection is attempted from each near vertex

in the tree to 𝑧𝑛𝑒𝑤, and the connection that results in the lowest cumulative cost to arrive at 𝑧𝑛𝑒𝑤

is kept (image 5 and 6). Finally a connection is attempted from 𝑧𝑛𝑒𝑤 to each 𝑧𝑛𝑒𝑎𝑟 and 𝑧𝑛𝑒𝑤 is

made the parent to each 𝑧𝑛𝑒𝑎𝑟 for which the cumulative cost of the path through 𝑧𝑛𝑒𝑤 is lower

than the cost of the current path to 𝑧𝑛𝑒𝑎𝑟 (image 7 and 8). This ends one iteration of RRT*.

Iterations of the algorithm repeat as computation time allows.

19

Figure 2-8 RRT* procedure

2.2.3.3 Extensions

 Karaman and Frazzoli were the first to extend RRT* to handle differential constraints16.

In their work they provide a set of sufficient conditions to guarantee asymptotic optimality of

RRT* for systems with differential constraints. Webb and Berg extend RRT* by using a fixed-

final-state-free-final-time controller that exactly and optimally connects any pair of states for

systems with linear differential constraints25. This Kinodynamic RRT* algorithm differs from the

original RRT* presented above primarily in its steering function. While RRT* only extends in the

20

direction of the randomly sampled state 𝑧𝑟𝑎𝑛𝑑, Kinodynamic RRT* steers exactly to 𝑧𝑟𝑎𝑛𝑑 using

an optimal controller. In addition, Kinodynamic RRT* attempts a connection from 𝑧𝑛𝑒𝑤 to 𝑧𝑔𝑜𝑎𝑙

at every iteration if a collision free connection has already been made to 𝑧𝑛𝑒𝑤. Finally, Goretkin

et. al. 11 modified RRT* to use LQR control to connect vertices in the search tree, and adds time

to the search space in which the tree grows. This means that connections can only be made when

𝑧𝑖+1 is located at a time greater than 𝑧𝑖, but also improves near vertex calculations. Additionally

these authors provided conditions for optimality when state-time is added to the search space.

2.3 CMA-ES

In the world of optimization, Evolutionary Algorithms (EAs) excel where exhaustive and

deterministic search are infeasible, and naïve random search takes too long1. An evolutionary

algorithm begins with an initial random population, which is also called the first generation. Each

generation, the fitness or cost of each member of the generation is evaluated and sorted. The

algorithm then searches the decision space in the next generation probabilistically based on the

performance of members of the previous generation, mimicking biological evolution, as seen in

Figure 2-9. This procedure leads to an algorithm that can perform a global search on a wide

variety of objective functions.

Figure 2-9 will be referred to throughout this section as a good visual representation of

how the CMA-ES equations adapt search over several generations. In the figure, the bright white

circle is the global optimum and the concentric circles represent lines of constant cost. The black

dots represent candidate solutions, and the orange circle represents the search distribution. In

generation one, search begins in an infeasible region of the space, however there are some lower

cost outliers which direct search in generation two. Through the generations, the covariance and

21

the mean of the search distribution update to increase the likelihood of previous low cost

solutions, until the distribution converges onto the global optimum.

CMA-ES is a stochastic method for real-parameter optimization of non-linear, non-

convex functions14. It is an adaptive evolutionary strategy that chooses, according to a

multivariate normal distribution, new search points.

Figure 2-9 CMA-ES evolution over six generations (Wikimedia Commons)

22

2.3.1 Theory

There are three main components of CMA-ES that govern search. They are the search

mean, covariance, and step size. Each are adapted according to the equations presented in Section

2.3.2. The following sections will discuss in more detail the significance of these parameters,

however a full treatment can be found in [12], [13], and [14].

2.3.1.1 Mean Update

The first component of candidate solution selection in Eq. 8 is the mean of the search

distribution. The mean update can be seen in Figure 2-9 by looking at the change in the location

of the center of the orange search ellipse. The adaptation of the mean of the search takes the

characteristics of the most traditional evolutionary strategy. Within the mean adaptation, Eq. 9,

selection and recombination occurs. Selection is where the algorithm chooses the individuals with

the best fitness from each generation to become the parents of the next generation.

Recombination is where the algorithm uses the parent solutions to create candidate solutions for

the next generation. CMA-ES uses non-elitist selection and truncation selection. Non-elitist

selection means the next generation does not explicitly contain members from the previous

generation. Truncation selection means that only a percentage of the highest fitness solutions

from a generation is used to determine the search criteria for the next generation. In Eq. 9,

selection occurs by taking 𝜇 < 𝜆 solutions for recombination, and recombination occurs as a

weighted sum of the 𝜇 individuals, where 𝜆 is the number of candidate solutions from the

previous generation13.

23

2.3.1.2 Covariance Update

The second component of the candidate solution selection in Eq. 8 is the product of the

step size, or standard deviation, and a multivariate normal distribution with zero mean and

covariance matrix C. This covariance matrix determines the search distribution, and the desire is

to adapt the covariance matrix so search is directed along the contour lines of the objective

function to be minimized13. The covariance update can be seen in Figure 2-9 by looking at the

change in shape of the orange search ellipse. There are two main components to the covariance

matrix update in Eq. 15, the rank-µ update (Eq. 6) and the rank-one update (Eq. 7).

 𝑪
(𝑔+1)

= (1 − 𝑐𝜇)𝑪
(𝑔)

+ 𝑐𝜇 ∑ 𝑤𝑖𝑦𝑖:𝜆
(𝑔+1)

(𝑦𝑖:𝜆
(𝑔+1)

)
𝑇

𝜇
𝑖=1 (6)

 𝑪
(𝑔+1)

= (1 − 𝑐1)𝑪
(𝑔)

+ 𝑐1𝑝⃗𝑐
(𝑔+1)

𝑝𝑐
(𝑔+1)𝑇

 (7)

The rank-µ update uses the information within the population of the current generation to

estimate the distribution of successful steps, or steps in which lower cost solutions are found13.

The information from the current generation is balanced with information from the previous

generations with 𝑐𝜇 ≤ 1. The rank-µ update is most effective with large population sizes because

there are enough candidate solutions in each generation for a good approximation of the

distribution of the generation’s successful steps.

The rank-one update utilizes the evolution path to estimate the distribution of successful

steps13. The evolution path is the sequence of steps the evolutionary strategy takes over some

number of generations. Essentially, rank-one update uses cumulative information over a number

of generations to direct search. The evolution path at generation g is described by Eq. 14. This

evolution path is able to capture and exploit the correlations between consecutive steps,

improving search capabilities when the population size is small and cannot give a good

approximation of successful steps in a single generation.

24

2.3.1.3 Step Size Update

The step size or standard deviation, 𝜎, is the final component of the selection in Eq. 8. It

directs how quickly the search distribution can travel to promising areas of the search space. The

step size update can be seen Figure 2-9 by looking at the distance between search means from one

generation to the next. Although the adaptation of the covariance matrix will inherently change

the step size of the search, this change occurs too slowly for good step length adaptation13. Step

size, like the rank-one covariance matrix, is updated based on the evolution path. If the evolution

path is larger than expected, that means the individual search steps are proceeding in the same

direction and the step size should be increased to move to the promising search area quicker. If

the evolution path is shorter than expected, this means that single steps are cancelling each other

out and step-size should be shortened. If the evolution path is the expected length, this means the

single steps are uncorrelated, which is the desired result13.

 The problem is that the evolution path 𝑝𝑐’s length depends on its direction, so instead

CMA-ES utilizes the conjugate of the evolution path, Eq. 12, who’s length is independent of its

length13. The length of 𝑝𝜎 is compared to its expected length, 𝐸‖𝒩(0, 𝑰)‖ 13, and the step-size

procedure is followed in Eq. 13.

2.3.2 Algorithm

CMA-ES searches the space by choosing new search points according to a multivariate

normal distribution, shown in Eq. 8.

 𝑥⃗𝑘
(𝑔+1)

 ~ 𝑚⃗⃗⃗(𝑔) + 𝜎(𝑔)𝒩(0⃗⃗, 𝑪(𝑔)) for 𝑘 = 1,… , 𝜆 (8)

where 𝒩(𝟎, 𝑪(𝑔)) is a multivariate normal distribution with zero mean and covariance matrix

𝑪(𝑔), 𝜆 is the child population size, or the search population. The mean vector 𝑚⃗⃗⃗⃗
(𝑔)

 ∈ ℝ𝑛 is the

25

mean value of the search distribution at generation g, where n is the number of decision variables.

The step size 𝜎(𝑔) 𝜖 ℝ+ is the overall standard deviation at generation g. Finally 𝑪(𝑔)𝜖 ℝ𝑛 x 𝑛 is

the covariance matrix which determines the shape of the distribution ellipsoid14.

After a new population is created, the mean vector is updated according to Eq. 9 and Eq.

10. This new mean is a weighted average of 𝜇 selected points. 𝜇 ≤ 𝜆 is the parent population size.

The parent population consists of the top 𝜇 fitness evaluated members of the child population.

𝜇𝑒𝑓𝑓 is referred to as the variance effective selection mass, and is used frequently in the following

equations.

 𝑚⃗⃗⃗(𝑔+1) = ∑ 𝑤𝑖𝑥⃗𝑖:𝜆
(𝑔+1)𝜇

𝑖+1 (9)

 ∑ 𝑤𝑖 = 1, 𝑤1 ≥ 𝑤2 ≥
𝜇
𝑖=1 … ≥ 𝑤𝜇 > 0 (10)

 𝜇𝑒𝑓𝑓 = (∑ 𝑤𝑖
2𝜇

𝑖=1)
−1

 (11)

Here, 𝑤𝑖=1…𝜇 is a positive real weight coefficient for recombination. 𝑥⃗⃗⃗𝑖:𝜆
(𝑔+1)

is the i-th best ranked

individual from the parent population. The step size is updated dynamically according to Eq. 12

and Eq. 13.

 𝑝𝜎
(𝑔+1)

= (1 − 𝑐𝜎)𝑝𝜎
(𝑔)

+ √𝑐𝜎(2 − 𝑐𝜎)𝜇𝑒𝑓𝑓 (𝑪
(𝑔)−

1

2) (
𝒎⃗⃗⃗⃗(𝑔+1)−𝒎⃗⃗⃗⃗(𝑔)

𝜎(𝑔)) (12)

 𝜎(𝑔+1) = 𝜎(𝑔)exp(
𝐶𝜎

𝑑𝜎
(

‖𝑷⃗⃗⃗𝜎
(𝑔+1)

‖

𝐸‖𝒩(0,𝑰)‖
) − 1) (13)

The Covariance Matrix is updated dynamically according to Eq. 14 and Eq. 15.

 𝑝𝑐
(𝑔+1)

= (1 − 𝑐𝑐)𝑝𝑐
(𝑔)

+ √𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓 (
𝑚⃗⃗⃗⃗(𝑔+1)−𝑚⃗⃗⃗⃗(𝑔)

𝜎(𝑔)) (14)

 𝑪
(𝑔+1)

= (1 − 𝑐1 − 𝑐𝜇)𝑪
(𝑔)

+ 𝑐1𝑝𝑐
(𝑔+1)

𝑝⃗𝑐
(𝑔+1)𝑇

+ 𝑐𝜇 ∑ 𝑤𝑖𝑦𝑖:𝜆
(𝑔+1)

(𝑦𝑖:𝜆
(𝑔+1)

)
𝑇

𝜇
𝑖=1 (15)

 𝑦𝑖:𝜆
(𝑔+1)

=
(𝑥𝑖:𝜆

(𝑔+1)
−𝑚⃗⃗⃗⃗(𝑔))

𝜎(𝑔) (16)

26

There are additional default strategy parameters that govern the above adaptations. They can be

found in Appendix A.

2.4 The Hill-Clohessy-Wiltshire Equations

The planner developed in this thesis is proposed for missions where a chase vehicle is

navigating in close proximity to a target vehicle in a circular orbit. The Hill-Clohessy-Wiltshire

(HCW) Equations govern the dynamics of this system5. These equations are a linearized version

of the non-linear equations governing relative motion in orbit and have a closed form solution.

Thus the HCW equations lend themselves well to implementation within RRT*’s steering

function. The development of these equations will follow the methodology put forward by Curtis

in [6].

2.4.1 Nonlinear Equations

Prior to developing the equations of motion for this system, a frame of reference must be

developed. With the origin at the target spacecraft, 𝑖 ̂in the radial direction, 𝑗̂ in the in-track

direction of the orbit, and 𝑘̂ normal to the orbital plane, this frame is seen in Figure 2-10. Here 𝑣𝑡

is the target vehicle and frame origin, 𝑣𝑐 is the chase vehicle, 𝑟𝑡 is the orbital position of the target

vehicle, 𝑟𝑐 is the orbital position of the chase vehicle and 𝛿𝑟 is the position of the chase vehicle

relative to the target vehicle.

27

Figure 2-10 HCW reference frame [6]

 Given the above notation, it is easy to see

 𝑟⃗𝑐 = 𝑟⃗𝑡 + 𝛿𝑟⃗ (17)

where

 𝛿𝑟 = 𝛿𝑥𝑖̂ + 𝛿𝑦𝑗̂ + 𝛿𝑧𝑘̂ (18)

For the systems addressed in this thesis and in the HCW Equations, in Eq. 17 the magnitude of 𝛿𝑟

is much smaller than 𝑟⃗𝑡, or

𝛿𝑟

𝑟𝑡
≪ 1 (19)

where 𝛿𝑟 = ‖𝛿𝑟‖, and 𝑟𝑡 = ‖𝑟⃗𝑡‖. Treating the system of the Earth and a satellite as a two-body

system, we have the equations of motion of an Earth orbiting satellite in the inertial geocentric

equatorial frame given by

 𝑟̈⃗ = −𝜇
𝑟⃗

𝑟3
 (20)

where 𝑟 = ‖𝑟‖. To obtain the nonlinear equations of motion of 𝑣𝑐 relative to 𝑣𝑡, Equation 17 is

substituted into Eq. 20, to obtain Eq. 21, where 𝑟𝑐 = ‖𝑟⃗𝑐‖ = ‖𝑟⃗𝑡 + 𝛿𝑟⃗‖.

28

 𝛿𝑟̈ = −𝑟̈𝑡 − 𝜇
𝑟𝑡+𝛿𝑟

𝑟𝑐
3 (21)

2.4.2 Linearization

Linearization of Eq. 21 occurs through use of Eq. 19. The goal is to remove the nonlinear

term 𝑟𝑐
−3. This is done in [6] by utilizing Eq. 19 and the fact that any term with

𝛿𝑟

𝑟𝑡
 raised to a

power greater than one goes to zero. The linearized equations of motion governing a chaser with

respect to a target are then given in Eq. 22.

 𝛿𝑟̈ = −
𝜇

𝑟𝑡
3 [𝛿𝑟 −

3

𝑟𝑡
2 (𝑟𝑡 ∙ 𝛿𝑟)𝑟𝑡] (22)

The linearized equations of motions in the frame presented in Figure 2-10 are as follows

 𝛿𝑥̈ − (
2𝜇

𝑟𝑡
3 +

ℎ2

𝑟𝑡
4) 𝛿𝑥 +

2(𝑟̇𝑡∙𝑟𝑡)ℎ

𝑟𝑡
4 𝛿𝑦 − 2

ℎ

𝑟𝑡
2 𝛿𝑦̇ = 0 (23)

 𝛿𝑦̈ + (
𝜇

𝑟𝑡
3 −

ℎ2

𝑟𝑡
4) 𝛿𝑦 −

2(𝑟̇𝑡∙𝑟𝑡)ℎ

𝑟𝑡
4 𝛿𝑥 + 2

ℎ

𝑟𝑡
2 𝛿𝑥̇ = 0 (24)

 𝛿𝑧̈ +
𝜇

𝑅3 𝛿𝑧 = 0 (25)

where ℎ = ‖𝑟𝑡⃗⃗ ⃗ × 𝑟𝑡⃗⃗ ⃗̇‖. A complete derivation of these equations can be found in [6].

2.4.3 HCW Equations

Hill and Clohessy took Eqs. 23-25 and applied them to a system with a target vehicle in a

circular orbit. In this case, 𝑟̇𝑡 ∙ 𝑟𝑡 = 0, ℎ = √𝜇𝑟𝑡, and the mean motion of the orbit, 𝑛 = √
𝜇

𝑟𝑡
3.

Making these substitutions results in the Hill-Clohessy-Wiltshire Equations,

 𝛿𝑥̈ − 3𝑛2𝛿𝑥 − 2𝑛𝛿𝑦̇ = 0 (26)

 𝛿𝑦̈ + 2𝑛𝛿𝑥̇ = 0 (27)

 𝛿𝑧̈ + 𝑛2𝛿𝑧 = 0 (28)

29

The HCW equations exhibit a closed form solution which is fully developed in [6] by

solving the above differential equations with initial conditions

𝛿𝑥(0) = 𝛿𝑥0, 𝛿𝑦(0) = 𝛿𝑦0, 𝛿𝑧(0) = 𝛿𝑧0

 𝛿𝑥̇(0) = 𝛿𝑥̇0, 𝛿𝑦̇(0) = 𝛿𝑦̇0, 𝛿𝑧̇(0) = 𝛿𝑧̇0 (29)

The solution to the HCW equation is as follows, letting 𝛿𝑥̇ = 𝛿𝑢, 𝛿𝑦̇ = 𝛿𝑣, and 𝛿𝑧̇ = 𝛿𝑤, and

transitioning to matrix form where

 {𝛿𝑟} = {
𝛿𝑥
𝛿𝑦
𝛿𝑧

} , {𝛿𝑣⃗} = {
𝛿𝑢
𝛿𝑣
𝛿𝑤

} (30)

 {𝛿𝑟(𝑡)} = [𝚽𝑟𝑟(𝑡)]{𝛿𝑟0} + [𝚽𝑟𝑣(𝑡)]{𝛿𝑣⃗0} (31)

 {𝛿𝑣⃗(𝑡)} = [𝚽𝑣𝑟(𝑡)]{𝛿𝑟0} + [𝚽𝑣𝑣(𝑡)]{𝛿𝑣⃗0} (32)

The matrices that appear in the compact form of the HCW equations are as follows

 𝚽𝑟𝑟(𝑡) = [
4 − 3 cos 𝑛𝑡 0 0

6(sin𝑛𝑡 − 𝑛𝑡) 1 0
0 0 cos 𝑛𝑡

] (33)

 𝚽𝑟𝑣(𝑡) =

[

1

𝑛
sin 𝑛𝑡

2

𝑛
(1 − cos 𝑛𝑡) 0

2

𝑛
(cos 𝑛𝑡 − 1)

1

𝑛
(4sin𝑛𝑡 − 3𝑛𝑡) 0

0 0
1

𝑛
sin𝑛𝑡]

 (34)

 𝚽𝑣𝑟(𝑡) = [
3𝑛 sin𝑛𝑡 0 0

6𝑛(cos 𝑛𝑡 − 1) 0 0
0 0 −𝑛 sin𝑛𝑡

] (35)

 𝚽𝑣𝑣(𝑡) = [
cos 𝑛𝑡 2 sin𝑛𝑡 0

−2 sin𝑛𝑡 4 cos𝑛𝑡 − 3 0
0 0 cos 𝑛𝑡

] (36)

Given a travel time, t, an initial chase vehicle state, 𝛿𝑥⃗0, and final vehicle chase vehicle

state, 𝛿𝑥⃗𝑓 = 𝛿𝑥⃗(𝑡), Eqs. 31 and 32 will be used to determine the changes in velocity required to

travel exactly between 𝛿𝑥⃗0 and 𝛿𝑥⃗𝑓 in time t.

30

The components of the hybrid algorithm developed in this thesis have now been

established. The next chapter will explain how the components are combined to solve the motion

planning problem outlined in Section 2.1 in a novel and effective way.

31

Chapter 3

The Hill-Clohessy-Wiltshire RRT* Evolutionary Strategy Algorithm

The main contribution of this thesis is the combination of the algorithms described in

Chapter 2 and their application to close proximity spacecraft motion planning. The algorithm is

called HCW RRT*-ES and pseudocode for the algorithm is provided in Appendix C. At a high

level the algorithm functions with RRT* as the main trajectory planner. Within RRT*, CMA-ES

evaluates vertices previously explored by RRT* and directs search in promising directions in the

space. The HCW equations are used within the steering function to determine the control input

required to connect vertices in RRT* in a dynamically feasible way. For the remainder of this

work, the hybrid HCW RRT*-ES algorithm will be referred to as RRT*-ES, while the HCW

RRT* algorithm which does not use CMA-ES will simply be referred to as RRT*.

To initialize the algorithm the user inputs the desired start and goal state of the vehicle,

the bounds on the states, and the bounds on the control input, along with a vehicle model, thruster

model, and obstacle model.

3.1 RRT* Integration

The RRT* portion of the hybrid algorithm acts as the main search framework. It

investigates candidate trajectories and attempts to find the lowest cost trajectory from the start to

the goal. The version of RRT* used in this work takes elements from [11] and [25], along with

additions to specifically address the spacecraft relative motion problem.

The algorithm plans in seven degrees of freedom, adding time to the state space as in

[11]. The chase vehicle state takes the form

 𝑥⃗ = [𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿𝑢 𝛿𝑣 𝛿𝑤 𝑡] 𝑇 (37)

32

The addition of time to the state space make the collision free cost calculation between states

computationally efficient and accurate, which is a necessary condition for asymptotic optimality

of the RRT* algorithm. A version of the algorithm without time in the state space was presented

by the author in [8].

 The chase vehicle is assumed to have thrusters pointing in the positive and negative 𝑥, 𝑦,

and 𝑧 directions of the vehicle body frame. The control input takes the form of the impulsive

change in velocity, or Δ𝑉⃗⃗ required to connect two states in the time difference between the two

states, according to the HCW equations. A control input takes the form

 𝑢⃗⃗ = Δ𝑉⃗⃗ = [Δ𝑉𝛿𝑥 Δ𝑉𝛿𝑦 Δ𝑉𝛿𝑧]𝑇 (38)

Currently the body frame of the inspection vehicle is assumed to be irrotational with respect to

the HCW frame. This simplifies computation while still allowing for the planning of dynamically

feasible paths. Theoretically, the Δ𝑉⃗⃗′𝑠 given by this algorithm could be mapped into any thruster

configuration that exhibits full controllability in the δx, δy, and δz directions.

Since states can be connected exactly using impulsive maneuvers based on the solution to

the HCW equations, whenever a state is added to the search tree a connection is attempted

between the new state and the goal state as in [25]. Figure 3-1 outlines the process for attempting

to connect to the goal state as implemented in HCW RRT*-ES in visual form. Figure 3-1 begins

in image 1 with an already developed tree, where a connection has been made from a tree vertex

to the new node. A connection is attempted between the new node, now dubbed 𝑧𝑚 and the goal

state in Figure 3-1, image 2. If this is the lowest cost connection to the goal, the new state is made

the parent to the goal state. This is accomplished using the GoalConnect function.

If the connection between the new state and the goal state is successful, but not the lowest

cost connection to the goal, the connection and state are nonetheless stored in a goal parent

structure (Figure 3-1, image 3). Whenever a rewire occurs, this goal structure is revisited. A

33

rewire has occurred Figure 3-1, image 4. Note that image 4 and 5 occur at some iteration after the

iteration when where image 1, 2, and 3 occur. The goal structure revisit occurs within the

GoalRewire function, and is necessary because a rewire could lower the cost of a previous found

trajectory from start to goal. If a member of the goal parent structure is in fact a member of the

lowest cost trajectory to the goal vertex after a rewire, it becomes the unique parent to the goal

vertex (Figure 3-1, image 5).

34

Figure 3-1 GoalConnect and GoalRewire procedure

3.2 CMA-ES Integration

One of the main contributions of this work is the integration of the CMA-ES algorithm

into RRT* to improve search characteristics. CMA-ES is implemented to act as a local optimizer,

converging on low cost areas of the search tree to find the lowest cost node in a region. CMA-ES

35

based sampling replaces the random sampling of the standard RRT*, and adaptation of CMA-ES

parameters occurs based on a separate adaptation procedure within the algorithm.

3.2.1 CMA-ES Parameters

The goal of the CMA-ES integration with RRT* is to exploit areas where RRT* finds

low cost nodes. To achieve this goal, CMA-ES must quickly explore promising areas while

allowing the hybrid algorithm to maintain strong search characteristics. Three parameters to the

CMA-ES algorithm are set to encourage this behavior. They are the child population size, the

initial step size, and the parent population size.

To achieve local optimization, a small adaptation population is utilized. The use of a

small child population size leads to fast convergence, and encourages convergence on local

optima.14 This is the desired result in this work, but must be accounted for because an optimal

trajectory may require multiple vertices. If convergence is not accounted for, the hybrid algorithm

would only identify the trajectory containing the vertex that it first converges upon. To overcome

pre-convergence and maintain search, when convergence occurs the CMA-ES parameters are

reset to their original values. Convergence is detected by the step size, or standard deviation

value, as well as the change in the search mean.

The initial step size is set to be half the size of the search space, with all states scaled

appropriately. This is a fairly large value for the initial step size, but it allows for a thorough

search of the space each time CMA-ES is reset. Step size then adapts to optimize search, and

eventually shrinks as CMA-ES converges. Once it reaches a small enough size, the step size is

reset to its original value. If the step size becomes too small, and there has been no significant

change in mean since the last adaptation, then all CMA-ES parameters reset to their original

values.

36

The parent population is set to be only the top fitness individual of the previous

generation. This is known as a (1,λ)-ES, where 1 is the parent population size, and λ is the child

population size. It results in fast search that again tends toward pre-convergence, a trait that is

actually desired in this work. Recall also that CMA-ES uses information from previous

generations when performing covariance and step size updates, so evolution is not happening in a

bubble each generation. This means a small parent population size can still result in a good search

of the space.

3.2.2 CMA-ES Population Requirements

To perform the local optimization task that CMA-ES is enlisted for in this work, it

requires a population of evaluated solutions. As the standard RRT* search occurs, the nodes that

have been searched and their associated cost are added to the CMA-ES data structure, or

population, under certain conditions. Note that the CMA-ES population is a separate data

structure from the RRT* search tree, and is used only to evolve the selection criteria for candidate

nodes. The criteria for a node to be added to the CMA-ES population are looser than the criteria

for a node to be added to the RRT* search tree because even nodes that are infeasible under

certain conditions still contain useful adaptation information.

The CMA-ES population consists of the seven degree of freedom node states and an

associated cost which determines the probability a future node will be chosen from a similar

region in the space. A node is added to the population if it satisfies the following two conditions:

1. The node is reachable with a feasible amount of thrust from a current vertex in the search

tree.

2. The goal is reachable with a feasible amount of thrust from the node.

37

If a node can satisfy both 1 and 2, and both of these connections are collision free, the node is

added to the population with a cost equivalent to the cumulative cost to arrive at the node, plus

the cost to reach the goal

 𝑐𝐶𝑀𝐴𝐸𝑆(𝑧) = 𝐶𝑜𝑠𝑡(𝑧𝑝𝑎𝑟𝑒𝑛𝑡) + 𝑐 (𝑥𝑧𝑝𝑎𝑟𝑒𝑛𝑡,𝑧) + 𝑐(𝑥𝑧,𝑧𝑔𝑜𝑎𝑙
) (39)

where 𝑧𝑝𝑎𝑟𝑒𝑛𝑡 is the parent vertex to 𝑧 in the search tree, 𝑥𝑧𝑝𝑎𝑟𝑒𝑛𝑡,𝑧 is the trajectory connecting

𝑧𝑝𝑎𝑟𝑒𝑛𝑡 to 𝑧, and 𝑥𝑧,𝑧𝑔𝑜𝑎𝑙
 is the trajectory connecting 𝑧, to 𝑧𝑔𝑜𝑎𝑙. If a collision occurs during the

execution of 1 or 2, the cost of the node in the population, calculated in Eq. 39, is doubled. If a

node cannot satisfy both 1 and 2, it is not added to the adaptation population.

3.3 HCW Steering Function

 Within the RRT* algorithm, a steering function is required to determine the optimal

connection trajectory between vertices. Due to the nature of the controller utilized in this effort,

HCW RRT*-ES implements three variations of the basic steering function. HCWSteer is for

standard connections, HCWSteerGoal is for connections to the goal, and HCWSteerRewire is for

rewiring the tree’s connections. The steering functions in this effort utilize the impulsive ∆𝑉

solution to the HCW equations. This method is computationally efficient for both trajectory

computation and impingement prevention calculations. This method also adheres to the

conditions for asymptotic optimality of RRT*.

 In this section the HCWSteer function will be developed first, as it serves as a basis for the

other two steering functions. This development is followed by the development of HCWSteerGoal

and HCWSteerRewire. Then the impulsive ∆𝑉 is validated as accurate, and finally the steering

functions will be shown to adhere to the requirements for asymptotic optimality.

38

3.3.1 HCWSteer Function

The HCWSteer functions implement the closed form solution of the HCW equations

presented in Chapter 2. When HCWSteer is called inside of RRT* it takes in an initial vertex 𝑧𝑖,

and a final vertex 𝑧𝑓 to be connected by a dynamically feasible trajectory. It then computes the

impulsive ∆𝑉⃗⃗ maneuvers to move the vehicle exactly from the initial vertex to the final vertex.

Recall that each vertex consists of the position, velocity, and a time when that vertex is visited.

Thus, HCWSteer takes in:

 𝑧𝑖 = [𝛿𝑥𝑖, 𝛿𝑦𝑖 , 𝛿𝑧𝑖 , 𝛿𝑢𝑖, 𝛿𝑣𝑖, 𝛿𝑤𝑖, 𝑡𝑖]
𝑇 (40)

 𝑧𝑓 = [𝛿𝑥𝑓 , 𝛿𝑦𝑓 , 𝛿𝑧𝑓 , 𝛿𝑢𝑓 , 𝛿𝑣𝑓 , 𝛿𝑤𝑓 , 𝑡𝑓]
𝑇
 (41)

Let 𝑟𝑖 and 𝑣⃗𝑖
− be the position and velocity components at 𝑧𝑖 respectively, and 𝑟𝑓 and 𝑣⃗𝑓

+ be the

position and velocity components at 𝑧𝑓 respectively. Two impulsive ∆𝑉⃗⃗ maneuvers are required

to transfer the vehicle from 𝑧𝑖 to 𝑧𝑓 in the time between the two states, ∆𝑡 = 𝑡𝑓 − 𝑡𝑖. To travel

from 𝑟𝑖 to 𝑟𝑓 in time ∆𝑡, the required velocity at 𝑟𝑖 is given by

 {𝑣⃗𝑖
+} = [𝚽𝑟𝑣(∆𝑡)]−1({𝑟𝑓} − [𝚽𝑟𝑟(∆𝑡)]{𝑟𝑖}) (42)

which is a rearrangement of Eq. 31. The first ∆𝑉⃗⃗ which must be performed at 𝑟𝑖 is then given by

 ∆𝑉⃗⃗𝑖 = 𝑣⃗𝑖
+ − 𝑣⃗𝑖

− (43)

The resultant velocity at 𝑟𝑓 is given by

 {𝑣⃗𝑓
−} = [𝚽𝑣𝑟(∆𝑡)]{𝑟𝑖} + [𝚽𝑣𝑣(∆𝑡)]{𝑣⃗𝑖

+} (44)

which is Eq. 32, using the syntax and variables developed in the current section. The second ∆𝑉⃗⃗

which must be performed at 𝑟𝑓 is then given by

 ∆𝑉⃗⃗𝑖 = 𝑣⃗𝑓
+ − 𝑣⃗𝑓

− (45)

39

Now the required control inputs are known given the two vertices which must be connected

within RRT*, however there are some constraints on these control inputs.

The first constraint is trivial, however must be addressed. Given that every vertex has

time as part of its state, a vertex can only connect to a state which has a time that is greater than

its own time.

The other constraints are control input constraints on the vehicle. The thrusters of the

chase spacecraft will only be capable of providing a finite amount of thrust, and therefore the

amount of ∆𝑉⃗⃗ which can be achieved at a given vertex is bound. The bound check equation is

given for a connection between vertices 𝑧𝑖 and 𝑧𝑓 as

 ∆𝑉⃗⃗𝑚𝑖𝑛 ≤ {∆𝑉⃗⃗𝑖
− + ∆𝑉⃗⃗𝑖⋀∆𝑉⃗⃗𝑓} ≤ ∆𝑉⃗⃗𝑚𝑎𝑥 (46)

where ∆𝑉⃗⃗𝑖 and 𝑉⃗⃗𝑓 are as above, and ∆𝑉⃗⃗𝑖
− is the ∆𝑉⃗⃗𝑓 required to connect from 𝑧𝑖’s parent, to 𝑧𝑖.

The impulsive maneuvers considered in the bound check are illustrated in Figure 3-2. ∆𝑉⃗⃗𝑖
− must

be considered, because both ∆𝑉⃗⃗𝑖
− and ∆𝑉⃗⃗𝑖 occur at 𝑧𝑖 at time 𝑡𝑖. To maintain the accuracy of the

impulsive approximation and the bounds, they must be considered as one impulsive maneuver.

Figure 3-2 Control input bound considerations

40

If the above constraints hold true, then the steering function assigns a cost to the

successful connection. The cost is given by

 𝑐𝑜𝑠𝑡 = ∆𝑡 + 𝑅|∆𝑉⃗⃗𝑖
− + ∆𝑉⃗⃗𝑖| (47)

where R is a user defined scaling variable to balance the cost associated with time of flight versus

propellant use. It should be noted that ∆𝑉⃗⃗𝑓 is not included in the cost function because it does not

represent the entire maneuver occurring at 𝑧𝑓, following the reasoning given for the Bound Check

Equation (Eq. 46) .

 The HCWSteer function outputs the cost, time, and ∆𝑉′𝑠 required to travel between two

vertices. If there is not a feasible connection between these two vertices, then the function returns

infinity for the cost.

3.3.1.1 HCWSteerGoal Function

First, let 𝑧𝑔𝑜𝑎𝑙 be the goal node, and 𝑧𝑖 be the vertex in the search tree for which a

connection to 𝑧𝑔𝑜𝑎𝑙 is attempted. Since one of the parameters that the algorithm is attempting to

minimize is time of flight, the time to reach the goal node, 𝑡𝑔𝑜𝑎𝑙, is unknown a priori. This means

the HCWSteerGoal function must also solve for the time of flight between 𝑧𝑖 and 𝑧𝑔𝑜𝑎𝑙 to

minimize the cost function.

The minimization occurs by iterating through the time of flight between 𝑧𝑖 and 𝑧𝑔𝑜𝑎𝑙. At

each time of flight, the cost of the trajectory is calculated, and the lowest cost is tracked. The

HCWSteerGoal function exits under two conditions:

 𝑐𝑜𝑠𝑡∗ < ∆𝑡 (48)

 OR

 𝑡𝑔𝑜𝑎𝑙 > 𝑡𝑚𝑎𝑥 (49)

 𝑡𝑔𝑜𝑎𝑙 = 𝑡𝑖 + ∆𝑡 (50)

41

In Eq. 48, 𝑐𝑜𝑠𝑡∗ is the lowest cost that has been found at the current iteration. This becomes an

exit condition because by Eq. 47, 𝑐𝑜𝑠𝑡 > ∆𝑡 for all ∆𝑡. Termination of the algorithm at 𝑐𝑜𝑠𝑡∗ <

∆𝑡 ensures the global minimum cost and arrival time are found. The second condition in Eq. 49

ensures that the time of flight from start to goal does not exceed the maximum time of flight set

by the user. The remainder of HCWSteerGoal behaves the same as HCWSteer.

3.3.1.2 HCWSteerRewire Function

The third steering function is required for when rewires are attempted. A rewire is when a

connection is attempted between two vertices which are already in the search tree (image 7 and 8

of Figure 2-8). Although each vertex can only have a single parent, each vertex can be the parent

to multiple child vertices. The consequence of this is that when a rewire occurs, 𝑧𝑓 could be the

parent to one or more vertices, so the control input constraint check must be augmented for a

bound check of ∆𝑉⃗⃗𝑓 in addition to ∆𝑉⃗⃗𝑖. The augmented control input constraint check becomes

 ∆𝑉⃗⃗𝑚𝑖𝑛 ≤ {∆𝑉⃗⃗𝑖
− + ∆𝑉⃗⃗𝑖⋀∆𝑉⃗⃗𝑓 + ∆𝑉⃗⃗𝑓,𝑛

+ } ≤ ∆𝑉⃗⃗𝑚𝑎𝑥, 𝑓𝑜𝑟 𝑛 = 1: 𝑛𝑢𝑚_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑧𝑓) (51)

where ∆𝑉⃗⃗𝑓,𝑛
+ is the ∆𝑉⃗⃗𝑖 required to traverse from 𝑧𝑓 to its 𝑛𝑡ℎ child vertex. Figure 3-3 illustrates a

situation where this extra bound check is required. A rewire is being attempted from 𝑧𝑖 to 𝑧𝑓,

however 𝑧𝑓 has two child vertices which have established ∆𝑉′𝑠 that must be considered in the

bound check.

42

Figure 3-3 HCWSteerRewire control input bound considerations

The remainder of the HCWSteerRewire function remains the same as in HCWSteer,

including the cost function. Although the information exists after a rewire to more fully develop

the cost of a trajectory between two vertices, to maintain consistency among all vertices in the

search tree Eq. 47 is still used to assess the cost of a trajectory resulting from a rewire.

3.3.2 Adherence to Optimality Conditions

In [16], four conditions are presented for asymptotic optimality of the RRT* algorithm.

The first condition is that the Steer function connects vertices in a locally optimal manner, and

that the procedure to determine the near and nearest tree vertices to a new node, must compute the

distance in a way that reflects the actual cost to traverse between the vertices and the node. These

two conditions are satisfied based on the HCW-based impulsive control developed for this work.

43

For HCWSteer and HCWSteerRewire, the control allows for one solution, which is then inherently

optimal. For HCWSteerGoal, the optimal trajectory is found using iterations over the time of flight

to minimize the cost function, as was presented in a previous section. In addition, the procedure

to determine the near and nearest tree vertices to a new node uses the HCWSteer function for its

distance computation. It then naturally follows that these distances reflect the actual cost to travel

from vertex to node.

 The third requirement is that the system fulfills the Weakened Local Controllability

condition, and the fourth requirement is that the system fulfills the 𝜖-Collision-Free Approximate

Trajectories condition. These requirement are fulfilled for any controllable system whose state is

not augmented by time.16 A vehicle whose dynamics are governed by the HCW equations is in

fact controllable. The HCW equations in state space form are given by:

 A=

[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3𝜇

𝑅3 0 0 0 2√
𝜇

𝑅3 0

0 0 0 −2√
𝜇

𝑅3 0 0

0 0
−𝜇

𝑅3 0 0 0]

 (52)

 B=

[

0 0 0
0 0 0
0 0 0
1

𝑚
0 0

0
1

𝑚
0

0 0
1

𝑚]

 (53)

[

𝛿𝑥̇
𝛿𝑦̇
𝛿𝑧̇
𝛿𝑥̈
𝛿𝑦̈
𝛿𝑧̈]

= 𝐴

[

𝛿𝑥
𝛿𝑦
𝛿𝑧
𝛿𝑥̇
𝛿𝑦̇
𝛿𝑧̇]

+ 𝐵 [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] (54)

with controllability matrix given by:

44

 𝐶 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵 𝐴4𝐵 𝐴5𝐵] (55)

The system is controllable if the matrix C has full row rank. For the case of the HCW equations,

C has a rank of 6, so the HCW equations are indeed controllable. It then follows that the control

scheme developed in this work, which uses the solution to the HCW equations also results in a

controllable system.

However, the fact that the state of the vehicle in this work is augmented by time must be

considered. Goretkin et. al. extend the above conditions to a system where the state of the vehicle

is augmented by time in [11]. Therefore, RRT* asymptotic optimality holds for the dynamic

system in this work.

3.3.3 Impulsive Maneuver Accuracy

The final portion of the steering functions to be addressed is the accuracy of the

impulsive maneuver approximation. The impulsive approximation is often used for planning

rendezvous maneuvers, but often these maneuvers occur at greater vehicle separation distances

than in the current work. Since separation distance is fairly small in this work, inaccuracies in the

impulsive maneuver approximation could directly correlate to collisions when the chase vehicle is

attempting to execute its planned trajectory.

The upper bound of the difference between the velocity change for an impulsive

maneuver, and the velocity change brought on by a thrust over some finite time is given in [23] as

 ∆𝑉𝑓 − ∆𝑉𝐼 ≤
1

24
(𝜔∆𝑡)2∆𝑉𝐼 (56)

where ∆𝑉𝑓 is the velocity change that occurs for a thruster fired over a finite time ∆𝑡, 𝜔 is the

Schuler frequency (√𝜇 𝑟3⁄), and ∆𝑉𝐼 is the impulsive velocity change approximation. For a

given ∆𝑡, the maximum finite ∆𝑉 is given by

45

 ∆𝑉𝑚𝑎𝑥 = (
𝑇ℎ𝑟𝑢𝑠𝑡𝑚𝑎𝑥

𝑚
)∆𝑡 (57)

where 𝑚 is the mass of the spacecraft. In Eq. 56, ∆𝑉𝑚𝑎𝑥 is substituted for ∆𝑉𝐼 on the right side of

the equation to give the error bound.

3.4 Impingement Prevention

Impingement prevention is a key component to the motion planning algorithm developed

in this thesis. For a trajectory to be free of rocket plume impingement:

 𝐿𝑖 = {𝑥⃗(𝑡) + 𝑠(𝑥⃗(𝑡) + 𝑃𝑖𝑢𝑖(𝑡) | 𝑠 ∈ [0,1])} ∈ 𝑋𝑓𝑟𝑒𝑒 (58)

where 𝐿𝑖 is the line segment extending from the position of the vehicle at the time of an impulsive

maneuver, to a point a distance away from the position of vehicle proportional to the control input

in the direction of the control input, and 𝑃𝑖 scales the thrust plume length according to the

thruster’s characteristics. As an example, if the vehicle is at point (1,1,1) and a ∆𝑉 is applied so as

to increase the vehicle’s velocity in the positive x direction, L would be the line segment from

(1,1,1) to (1+P∆𝑉,1,1) where 1+P∆𝑉 will be less than 1. If the user desires to have thruster

impingement taken into consideration, the test for impingement is called whenever a collision

check is called. If an impingement occurs, the maneuver is considered to be infeasible, just as if a

collision occurs.

Chapter 4 presents simulation which are used to analyze the effectiveness of the

algorithm developed in this work. The new RRT*-ES algorithm is compared with RRT*, and

algorithmic capabilities are assessed.

46

Chapter 4

Simulations

Trial runs with various algorithm parameter settings were performed to validate the

algorithm’s functionality. The simulations were all performed in MATLAB on Penn State’s

LionX computing clusters. These clusters consist of Intel Xeon X5675 Six-Core 3.06 GHz

processers. The MATLAB code structure, collision detection algorithm, and plotting functions in

this work are based on the RRT MATLAB code in [10].

4.1 International Space Station Model

The hybrid algorithm developed in Chapter 3 is applicable to a free-flying spacecraft

navigating with respect to a reference object or spacecraft in a circular orbit about a central body.

For the purpose of experimentation, the International Space Station was used as the target

spacecraft. The ISS not only offers a challenging obstacle environment for the motion planner,

but ISS operations would also benefit from the capabilities of an autonomous inspection vehicle.

For experimentation, a full-scale simplified model of the ISS was created in MATLAB.

The model is composed of rectangular planes which represent most of the Station’s modules and

features, as shown in Figure 4-1. Although details are missing, this model provides a structure

complicated enough for rigorous algorithm testing. In addition the ISS’s natural frequency of

0.0011 rad/s is used in the equations of motion.

47

Figure 4-1 ISS MATLAB model

4.2 Free-Flying Vehicle Model

The free-flying vehicle model implemented in these experiments takes its physical

parameters from NASA’s mini AERCam9 and SPHERES4 projects. The thruster configuration is

displayed in Figure 4-2. This configuration gives two thrusters pointing in the positive and

negative x, y, and z directions respectively. Given this thruster configuration, the vehicle will be

capable of achieving the trajectories planned by the motion planning algorithm developed in

Chapter 3. Each thruster is modeled as having a maximum thrust of 0.18 N, giving a maximum

thrust of 0.36 N in each direction. Finally, the vehicle is modeled as a point mass of 4.5 kg. The

point mass model is appropriate for motion planning because obstacles can simply be expanded

so as to account for the size of the free-flying vehicle.

48

Figure 4-2 Vehicle thruster configuration [2]

Now with the vehicle and thruster model established, the error introduced into the motion

planning algorithm by the impulsive maneuver approximation can be analyzed. Recalling Eq. 56

and Eq. 57, the vehicle mass, and the vehicle’s maximum thrust, a maximum finite thruster firing

time of 10 seconds per maneuver is allowed in these experiments. The maximum ∆𝑉 with these

parameters as given by Eq. 57 is 0.8 m/s. The maximum impulsive ∆𝑉 error is then computed to

be 4.0333x10-4 m/s, which is 0.05% of the maximum ∆𝑉 and therefore deemed an appropriate

approximation. However, the maximum thruster fire time was chosen somewhat arbitrarily in this

work and further analysis should be performed to find the acceptable error region. If a higher

error is acceptable, it would allow for a higher maximum ∆𝑉 and more maneuver intensive

trajectories.

4.3 Experimental Setup

The experiments were run on the LionX Linux computing clusters at Penn State. Due to

the stochastic nature of the algorithm, multiple runs had to be performed for each parameter

setting to confirm algorithm characteristics. For each parameter setting, the algorithm was run 11

49

times for a set number of iterations. Each group of 11 runs with the same parameter settings will

be referred to as a set of runs.

Three algorithm characteristics were experimented with during these runs. They were

impingement prevention, the propellant vs. time scale factor, and the use of RRT* or RRT*-ES.

When impingement prevention is turned off, any thruster impingement is ignored. This setting

would be acceptable for systems with cold-gas thrusters, or other thrusters which do not use a

volatile propellant. The propellant vs. time scale factor determines how much importance the

planner puts on propellant use and time of flight in the optimization procedure. This parameter

was set to either heavily weight propellant use, or heavily weight time of flight. If the mission

being planned is time critical, the user may heavily weight time of flight, however if the mission

requires the inspection of many areas of the target spacecraft, the user may heavily weight

propellant use. Finally, either the RRT* or RRT*-ES algorithm was used for planning. This was

done so as to enable an analysis of the effectiveness of the CMA-ES local optimizer in the hybrid

algorithm.

 All parameter combinations were used to plan a mission in proximity to the International

Space Station. The parameter combinations were used for three different start and goal

combinations. The start and goal state combinations can be found in Table 4-1, from here referred

to as simulations A, B, and C. Simulation A was run for 5,000 iterations, while simulation B and C

were run for 10,000 iterations. Each combination is shown in Figure 4-3, Figure 4-4, and Figure

4-5 respectively, where the start state is depicted as a red circle and the goal state is depicted as a

blue circle. Time is not included in Table 4-1, but the first state always starts at a time of 0, and

the goal state time is a variable as discussed in Chapter 3. The start and goal states were chosen to

mimic realistic planning situations, as well as to challenge the planner, particularly with

impingement prevention.

50

Table 4-1. Simulation start and goal states

Simulation x (m) y (m) z (m) u (m/s) v (m/s) w (m/s)

A

Start 0 14.85 13.7 0 0 0

Goal 1.8 -1.8 49 0 0 0

B

Start 0 14.85 13.7 0 0 0

Goal 0 -14.8 19.3 0 0 0

C

Start 1.8 -1.8 49 0 0 0

Goal -1.8 -1.8 -49 0 0 0

Figure 4-3 Goal and start state combination A

Start

Goal

51

Figure 4-4 Goal and start state combination B

Figure 4-5 Goal and start state combination C

Start

Goal

Start

Goal

52

 The bounds used for each start and goal combination can be found in Table 4-2. These

bounds were developed with several considerations in mind. First, given the non-intuitive nature

of the dynamics of the system considered in this work, the size and direction of the optimal

trajectory is difficult to predict. However, bounds must exist for efficient search to occur. For

these reason, the position bounds were made to be fairly large, and roughly centered at the

midway point of the line between the start and goal points. The velocity bounds were set so as to

reduce the risk of high speed impact with the target spacecraft if any of the inspection vehicle’s

systems fail. Finally, a maximum time of flight between the start and the goal state is set based on

user preferences for the flight characteristics. It allows the user to weight the cost function so as

to minimize propellant use, but do so with some time limit for the flight. In this work it was set to

1000 seconds after experimentation showed the trajectories found by the planner had times of

flight less than 1000 seconds.

Table 4-2. Simulation bounds

Simulation x

(m)

y

(m)

z

(m)

u

(m/s)

v

(m/s)

w

(m/s)

t

(s)

A

Minimum -40 -40 -10 -1 -1 -1 0

Maximum 40 50 70 1 1 1 1000

B

Minimum -40 -40 -50 -1 -1 -1 0

Maximum 40 50 70 1 1 1 1000

C

Minimum -50 -50 -70 -1 -1 -1 0

Maximum 50 50 70 1 1 1 1000

53

 As presented in Section 2.2.3, a scaling factor 𝛾 is required within RRT*’s

NearVertices function. It is required to scale the radius of the “ball” for which connections are

attempted between a given state and tree vertices. The 𝛾’s for simulations in this work were

determined experimentally. Short simulations were performed where the average connection cost

between vertices was determined for a particular Propellant vs. Time Scale Factor. The

NearVertices scale factor was then chosen in an attempt to achieve 15 to 20 connection attempts

per iteration.

 The NearVertices scale factors are presented in Table 4-3. The 𝛾’s were required to be

different for each Propellant vs. Time scale factor because the Propellant vs. Time scale factor

greatly influences the cost to travel between nodes. Recalling that the proximity of nodes is

determined by the cost to travel between them, it follows then that the NearVertices scale factor

must change when the Propellant vs. Time scale factor changes.

Table 4-3. NearVertices scale factors

Simulation Prop. vs. Time Scale Factor

1,000

Prop vs. Time Scale Factor

10,000

A 3,000 30,000

B 3,000 30,000

C 4,000 40,000

 The final set of parameters are for the CMA-ES adaptation. The general requirements for

these parameters were specified in Section 3.2.1. The parameters for the simulations performed in

this work were chosen after brief experimentation, and with an understanding of the underlying

functionality of CMA-ES. The child, or adaptation, population was set to 10 to encourage quick

54

search. The parent population was set to 1 to encourage quick search and convergence. As stated

in Section 3.2.1, the initial step size, or standard deviation, was set to be half the size of the search

space to help encourage thorough search. The initial mean was set to be the mean of the search

space bounds for each simulation. The initial covariance was set to be a diagonal matrix of ones,

with the covariance for the velocities scaled appropriately. Finally step size reset was set to occur

at a step size less than 5, and complete reset was set to occur at a step size less than 5 and

difference in population mean less than 10.

 This experimentation does not provide for an exhaustive parameter analysis, but does

allow for some conclusions on how the parameters impact the results. Chapter 5 presents the

experimental results and discusses their implications toward autonomous flight in the vicinity of

complex space structures.

55

Chapter 5

Results and Discussion

The experimentation performed for this thesis demonstrates the trade-offs between the

RRT* algorithm and the RRT*-ES algorithm, as well as the effect of the parameters outlined in

Chapter 4. The results are presented as averages over each set of runs, along with confidence

intervals. The confidence intervals presented are the 95% confidence interval over a normal

distribution. These confidence intervals are required for proper analysis due to the stochastic

nature of the algorithms. In addition Multifactor Analysis of Variance and Tukey’s procedure

were applied to the run data to obtain insight into the effect of a single parameter on algorithmic

properties. These statistical methods were taken from [7], and implemented via the MATLAB

functions “anovan,” and “multcompare.”

In the following sections, graphical results are presented first to help demonstrate the

general behavior of the algorithm when operating with different parameter combinations. Then

the trajectory cost, convergence index, ∆𝑉 requirements, time of flight, and computational run

time of the algorithms are compared. Comparisons are made between all parameter combinations,

and conclusions on the effectiveness of the algorithms are drawn.

5.1 Graphical Results

To facilitate the analysis performed while comparing trajectory properties, it is important

to have an understanding of the types of trajectories that are planned, and how search proceeds

with different parameter combinations. For these purposes, a selection of runs will be presented in

this section which best demonstrate algorithmic properties. The remainder of figures for the runs

are located in Appendix D.

56

Figure 5-1 is presented to demonstrate the difference in search characteristics between

RRT* and RRT*-ES. In image 1 and 2 of the figure, the lowest cost trajectories for a set of runs

holding all parameters equal except the algorithm type are depicted for simulation C. In image 3

and 4 of the figure, the location of every vertex in the search trees which found the lowest cost

trajectories of image 1 and 2 are depicted. The parameter settings for these trajectories are

Impingement Prevention on, and a Propellant vs. Time Scale Factor of 10,000.

Some of the characteristics of the search performed to find the trajectories in image 1 and

2 can be established from image 3 and 4. In image 4, when CMA-ES is not used, vertices are

dispersed through the search space evenly. However in image 3, when CMA-ES is used, there is a

concentration of tree vertices around the vertices of the optimal trajectory. This demonstrates

CMA-ES’s local optimization capabilities. The CMA-ES algorithm embedded within RRT*-ES

has located an area of the search space that contains low cost solutions, and therefore RRT*-ES

has thoroughly searched that space. The result is that the trajectory in image 1 is in fact a lower

cost trajectory than that of image 2.

57

RRT*-ES RRT*

1

2

3

4

Figure 5-1 Search characteristics of HCW RRT* and HCW CMA-ES RRT*

Although RRT*-ES finds lower cost trajectories than RRT*, it is inferior to RRT* in

other ways. Referring to Figure 5-1 again, remember RRT*-ES focuses search on areas of the

search space where low cost nodes have previously been found. As a result of this characteristic,

at every iteration there will be many tree vertices in proximity to the newly selected search node.

Therefore more connections are attempted within the algorithm, and more computation time is

required.

Figure 5-2 and Figure 5-3 depict optimal trajectories for simulation A keeping all

parameters constant except the use of impingement prevention. The algorithm used was RRT*-

ES, and the Propellant vs. Time Scale Factor was 10,000. It is immediately clear that an

58

impingement free trajectory requires a less direct path from start to goal. Notice in Figure 5-2 the

vehicle maneuvers in such a way as to leave its start position above a module without thrusting

into the module, and approaches the goal position next to the solar panel in such a way as to not

thrust into the solar panel. This difference is also reflected in the required propellant use and time

of flight of the trajectories. When impingement prevention is required, a large subset of feasible

trajectories from start to goal are no longer feasible, requiring more complex and costly

trajectories.

Now that a basic behavioral understanding of the algorithm has been developed, the

following sections will analyze performance based on numerical values.

Figure 5-2 Optimal trajectory with impingement prevention

Start

Goal

59

Figure 5-3 Optimal trajectory without impingement prevention

5.2 Data Tables

Data is presented in two types of tables. Table 5-1 is an example of the first type of data

table. In this type of table, the entries are the average values over 11 runs with the parameter

settings as presented in Table 5-1. In this case, “SF” is the Propellant vs. Time Scale Factor, “IP”

is the Impingement Prevention Setting, and “Alg” is the algorithm used to solve the problem. In

addition the 95% confidence interval of the average is provided in these tables.

Start

Goal

60

Table 5-1. Example average table

Propellant vs.

Time Scale

Factor

Impingement

Prevention
RRT*-ES RRT*

1000

On
SF = 1,000; IP = On;

Alg = RRT*-ES

SF = 1,000; IP = On;

Alg = RRT*

Off
SF = 1,000; IP = Off;

Alg = RRT*-ES

SF = 1,000; IP = Off;

Alg = RRT*

10000

On
SF = 10,000; IP = On;

Alg = RRT*-ES

SF = 10,000; IP = On;

Alg = RRT*

Off
SF = 10,000; IP = Off;

Alg = RRT*-ES

SF = 10,000; IP = Off;

Alg = RRT*

 Table 5-2 is an example of the second type of data table. This type of table was

assembled by applying a Multifactor Analysis of Variance (ANOVA) and Tukey’s procedure on

the run data. These tests were performed for a 95% confidence interval. Each row in Table 5-2

contains data comparisons when holding all parameter constant except for the parameter

presented in the associated row of the first column. The second column contains the difference in

the mean value of the two populations from the first column when going from the first setting to

the second setting. For example in the first row, the second column entry is

 𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆 − 𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗ (59)

The fourth and fifth columns contain the 95% confidence interval of the difference in means, and

the sixth column contains the percent difference between the means. Again, as an example the

percent difference of means in row one is calculated as

(𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆−𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗)

𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗
× 100 (60)

 If the confidence interval does not change sign in a given row, the difference between means is

statistically significant at a 95% confidence interval. If the difference in means does change sign

in a given row, the difference is not statistically significant.

61

Table 5-2. Example ANOVA table

"Old Value" to

"New Value"

Difference in

Mean
Confidence Interval % Difference in Mean

RRT* to RRT*-

ES
𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆

− 𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗

Confidence

interval

lower bound

Confidence

interval

upper bound

(𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆 − 𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗)

𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗

Scale Factor of

10,000 to Scale

Factor of 1,000

𝑀𝑒𝑎𝑛 1,000

− 𝑀𝑒𝑎𝑛10,000

Confidence

interval

lower bound

Confidence

interval

upper bound

(𝑀𝑒𝑎𝑛 1,000 − 𝑀𝑒𝑎𝑛10,000)

𝑀𝑒𝑎𝑛10,000

Impingement

Prevention Off

to Impingement

Prevention On

𝑀𝑒𝑎𝑛 𝐼𝑃 𝑂𝑛

− 𝑀𝑒𝑎𝑛𝐼𝑃 𝑂𝑓𝑓

Confidence

interval

lower bound

Confidence

interval

upper bound

(𝑀𝑒𝑎𝑛 𝐼𝑃 𝑂𝑛 − 𝑀𝑒𝑎𝑛𝐼𝑃 𝑂𝑓𝑓)

𝑀𝑒𝑎𝑛𝐼𝑃 𝑂𝑓𝑓

5.3 Cost Comparison

The minimum cost found by an optimization algorithm is one of the best ways to evaluate

its algorithmic success and capabilities. Regardless of the accuracy of the impulsive

approximation and the HCW equations, or the appropriateness of the scaling factor, the cost

achieved is still a good metric to compare the capabilities of RRT* and RRT*-ES.

The average cost for all parameter combinations of simulations A, B, and C are presented

in Table 5-3, Table 5-4, and Table 5-5 respectively. Each entry in these tables represents the

average cost over 11 runs. Table 5-6 presents the Analysis of Variance and Tukey’s procedure

results for the trajectory costs.

In analyzing Table 5-6, it can be seen that a change in each parameter results in a

statistically significant change in the cost of the algorithm. The first comparison that will be made

is between RRT*-ES and RRT*. RRT*-ES exhibits a 23% mean cost decrease as compared to

RRT* across parameter combinations. This demonstrates the improved optimization capabilities

of RRT*-ES. As shown in section 5.1, the CMA-ES addition to RRT* focuses search on

promising areas of the space, leading to local optimization behaviors and lower cost solutions.

62

 Table 5-3. Average cost and 95% confidence interval (A)

Propellant vs. Time Scale

Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 1,297.6 ± 57.6 1,476.6 ± 41.7

Off 960.3 ± 49.2 1,064.2 ± 90.6

10000
On 4,693.3 ± 301.2 6,148.2 ± 355.5

Off 2,358.9 ± 64.7 2,535.1 ± 64.5

Table 5-4. Average cost and 95% confidence interval (B)

Propellant vs. Time Scale

Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 1,301.3 ± 67.8 1,683.4 ± 143.8

Off 924.2 ± 71.8 1,363.5 ± 94.5

10000
On 8,265.1 ± 2,327.7 10,482.4 ± 2,362.1

Off 2,383.7 ± 76.4 2,795.8 ± 216.7

Table 5-5. Average cost and 95% confidence interval (C)

Propellant vs. Time Scale

Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 1,575.8 ± 67.0 2,087.5 ± 96.5

Off 1,422.0 ± 28.4 1,549.8 ± 37.5

10000
On 8,088.3 ± 609.8 13,081.5 ± 1,173.3

Off 5,503.0 ± 155.3 5,819.2 ± 167.0

Table 5-6. ANOVA test on cost and 95% confidence interval

Parameter
Difference

in Mean
Confidence Interval

% Difference

in Mean

RRT* to RRT*-ES -942.8 -1,242.48 -643.1 -23%

Scale Factor of 10,000 to Scale

Factor of 1,000
-4,620.7 -4,920.35 -4,321.0 -77%

Impingement Prevention Off to

Impingement Prevention On
2,625.1 2,325.43 2,924.8 110%

63

The use of impingement prevention within the algorithm also has a significant effect on

the cost of solutions. When impingement prevention is used, there is a 110% increase in cost

compared to when impingement prevention is not used. As stated previously, impingement

prevention imparts significant constraints on the planning algorithm, thus requiring higher cost

trajectories. This being said, the algorithm was indeed able to find trajectories avoid thruster

impingement on the target spacecraft in all cases.

Note that the effects of impingement prevention on the cost of a trajectory are also

dependent on the start and goal states for the inspection vehicle. In simulation A, and simulation

B, with a Propellant vs. Time Scale Factor of 10,000, impingement prevention more than doubles

the average trajectory cost in all cases. However for simulation C, the effect of impingement

prevention is less significant. Figure 5-4 displays the set of 11 runs for all simulations with

RRT*-ES, and a scale factor of 10,000. It compares the runs with Impingement Prevention off

versus Impingement Prevention On. What can be seen is that for simulations A and B, the planned

trajectories are required to change significantly when Impingement Prevention is on, however this

is not as true in simulation C. The required change is reflected in the trajectory costs.

64

Impingement Prevention Off Impingement Prevention On

Figure 5-4 Run sets with Impingement Prevention off vs. Impingement Prevention on

A
A

B
B

C C

65

It is also worthwhile to analyze the cost coefficient of variation for each set of runs. The

coefficient of variation gives a normalized value which can be used to compare convergence of

sets of runs. A lower coefficient of variation represents a more consistent algorithm. Table 5-7,

Table 5-8, and Table 5-9 display the coefficients of variation for simulations A, B, and C

respectively.

When Impingement Prevention is off, and the Propellant vs. Time Scale Factor is 10,000,

the coefficient of variation is consistently lower than when Impingement Prevention is on,

demonstrating better convergence. However when the Propellant vs. Time Scale Factor is 1,000,

the difference in Coefficient of Variation is more simulation dependent. This suggests that when

time of flight is more heavily weighted for a given trajectory, impingement prevention may not be

as significant of a factor in terms of convergence across runs, as compared to when ΔV is more

heavily weighted. In fact, in some cases it would seem that in decreasing the feasible areas of the

search space, impingement prevention encourages the algorithm to consistently converge to

similar cost trajectories.

Table 5-7. Average cost coefficient of variation (A)

Propellant vs. Time Scale Factor
Impingement

Prevention
RRT*-ES RRT*

1000
On 0.0661 0.0420

Off 0.0763 0.1267

10000
On 0.0955 0.0861

Off 0.0408 0.0379

Table 5-8. Average cost coefficient of variation (B)

Propellant vs. Time Scale Factor
Impingement

Prevention
RRT*-ES RRT*

1000
On 0.0776 0.1272

Off 0.1157 0.1031

10000
On 0.4192 0.3354

Off 0.0477 0.1154

66

Table 5-9. Average cost coefficient of variation (C)

Propellant vs. Time Scale Factor Impingement Prevention
RRT*-

ES
RRT*

1000
On 0.0633 0.0688

Off 0.0298 0.0360

10000
On 0.1122 0.1335

Off 0.0420 0.0427

The convergence result for a Propellant vs. Time Scale Factor of 10,000 is also reflected

in Figure 5-5 and Figure 5-6. These plots display the minimum cost history at each iteration for

the set of runs of RRT*-ES on simulation B, with a scale factor of 10,000. In Figure 5-5

Impingement Prevention was on, in Figure 5-6 Impingement Prevention was off. Again, the cause

for this behavior is the difficulty of the problem when impingement prevention is turned on and

ΔV is to be minimized.

 Across runs there is little difference in Cost Coefficient of Variation between RRT* and

RRT*-ES. This is a reasonable result since both algorithms rely on the core RRT* procedure. As

such, both should exhibit similar convergence behaviors. The difference is that RRT*-ES

converges to a lower cost solution due to its local optimization abilities.

67

Figure 5-5 Cost vs. number of iterations, impingement prevention on

Figure 5-6 Cost vs. number of iterations, impingement prevention off

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Iterations

C
o
s
t

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Iterations

C
o
s
t

68

5.4 Convergence Index

In this work, the convergence index is defined as the iteration at which the lowest cost

solution for a run was found. The optimal convergence index is hard to determine. Although a

lower convergence index may suggest a faster running algorithm, it could also signal pre-

convergence. This is when an optimization algorithm gets stuck in a local minimum which

hinders its ability to continue search for the global optimum. The stochastic nature of the

algorithms used in this experimentation should help to prevent search from getting stuck in a

local minimum. It should also be noted that a better metric of how “fast” the algorithm converges

on its best solution would be the number of calls to the steering functions. Unfortunately, this was

not tracked during simulations.

The average convergence index for simulations A, B, and C can be found in Table 5-10,

Table 5-11, and Table 5-12 respectively. The Analysis of Variance and Tukey’s procedure results

can be found in Table 5-13.

From Table 5-13, it can be seen that across all runs the only parameter setting that results

in a statistically significant difference in Convergence Index is the use of Impingement

Prevention. With Impingement Prevention on, there is a 39% increase in the Convergence Index

of the algorithms. Again, the added constraints impingement prevention imposes on the motion

planning problem result in a much more difficult problem for the algorithms to solve. As a result,

it takes more search iterations to find the optimal trajectories. Figure 5-5 and Figure 5-6 give a

strong visual representation of this behavior.

69

Table 5-10. Average convergence index and 95% confidence interval (A)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 3,735.8 ± 1,925.0 2,820.2 ± 1,297.9

Off 3,244.2 ± 1,969.9 3,102.6 ± 1,481.2

10000
On 4,010.9 ± 1,454.6 4,564.1 ± 1,562.9

Off 4,252.2 ± 1,458.7 2,552.4 ± 1,566.7

Table 5-11. Average convergence index and 95% confidence interval (B)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 4,746.2 ± 1,473.5 5,315.4 ± 1,658.3

Off 2,617.0 ± 1,686.3 1,980.9 ± 1,238.3

10000
On 4,888.9 ± 1,105.0 4,330.8 ± 1,706.9

Off 3,497.9 ± 1,432.9 4,322.4 ± 1,597.7

Table 5-12. Average convergence index and 95% confidence interval (C)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 4,979.9 ± 1,684.6 4,798.9 ± 1,549.2

Off 3,618.6 ± 1,432.6 4,034.4 ± 1,954.2

10000
On 5,595.1 ± 1,551.8 5,644.9 ± 1,163.1

Off 3,414.5 ± 1,987.1 3,293.9 ± 1,614.4

Table 5-13. ANOVA test on convergence index and 95% confidence interval

Parameter
Difference

in Mean

Confidence

Interval

% Difference

in Mean

RRT* to RRT*-ES 153.4 -416.81 723.5 4%
Scale Factor of 10,000 to Scale Factor of

1,000
-447.8 -1,017.99 122.4 -11%

Impingement Prevention Off to

Impingement Prevention On
1,291.7 721.51 1,861.9 39%

70

5.5 Total ΔV

In this work the total impulsive ΔV required for a particular trajectory is considered

analogous to the amount of propellant that is required for a particular trajectory. As such, it is one

of the two trajectory parameters minimized within the cost function. It is also important to recall

that the Impingement vs. Time Scale Factor is applied directly to ΔV in the cost function, Eq. 47.

The predicted behavior was that when the Impingement vs. Time Scale Factor increased, holding

all other parameters constant, the trajectory ΔV would decrease and the time of flight would

increase. On average across parameter combinations this result held true for trajectory ΔV.

Analysis of Variance and Tukey’s procedure results are displayed in Table 5-14. When the

Propellant vs. Time Scale Factor is reduced from 10,000 to 1,000, on average across runs the

trajectory ΔV increases by 51%.

Table 5-14. ANOVA test on ΔV and 95% confidence interval

Parameter
Difference

in Mean

Confidence

Interval

% Difference

in Mean

RRT* to RRT*-ES -0.17 -0.21 -0.13 -23%
Scale Factor of 10,000 to Scale Factor of

1,000
0.27 0.23 0.31 51%

Impingement Prevention Off to

Impingement Prevention On
0.40 0.36 0.44 89%

 However, under certain conditions, the scaling factor did not alter the trajectory

parameters as expected. The average ΔVs for each parameter combination are presented in Table

5-15, Table 5-16, and Table 5-17. In some cases when Impingement Prevention was turned on,

the increased Propellant vs. Time Scale Factor would result in a slight increase in the ΔV

required. The anomalies occurred in simulation B, as seen in Table 5-16. A thorough analysis of

this behavior is relegated to future work, however there is some evidence that the challenging

location of the start and goal point in simulation B for impingement prevention may have

71

hindered the capability of the algorithm to fully optimize trajectories in 8,000 iterations, with the

given search bounds.

Table 5-15. Average ΔV and 95% confidence interval (A)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 0.7390 ± 0.0545 0.9053 ± 0.0850

Off 0.4890 ± 0.0603 0.5754 ± 0.1144

10000
On 0.3835 ± 0.0383 0.5229 ± 0.0442

Off 0.1404 ± 0.0071 0.1568 ± 0.0053

Table 5-16. Average ΔV and 95% confidence interval (B)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 0.7064 ± 0.1065 0.9196 ± 0.1616

Off 0.4740 ± 0.0746 0.7241 ± 0.1402

10000
On 0.7808 ± 0.2693 0.9526 ± 0.2333

Off 0.1388 ± 0.0076 0.1799 ± 0.0217

Table 5-17. Average ΔV and 95% confidence interval (C)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 0.9367 ± 0.1268 1.3641 ± 0.1152

Off 0.7560 ± 0.0366 0.8476 ± 0.0702

10000
On 0.7942 ± 0.0820 1.2387 ± 0.1164

Off 0.4648 ± 0.0365 0.4835 ± 0.0158

The challenge arises because in simulation B, the goal state is on top of one of the Space

Stations solar panels, and the inspection vehicle is approaching from below. This situation

essentially requires the inspection vehicle to approach the goal state by traveling on the x-y plane

with no z velocity. The behavior can be seen in Figure 5-7 for a group of 11 runs, where the red

circle is the start state and the blue circle is the goal state. The approach requirements for

impingement prevention for this simulation causes extreme restrictions within the algorithm.

72

Simulation B

RRT*-ES

Impingement Prevention On

Scaling Factor: 1,000

Figure 5-7 Simulation B with Impingement Prevention isometric and side view

In Figure 5-8, the optimal trajectories for the RRT*-ES runs of simulation B for all

parameter combinations are presented. From these trajectories, some more insight can be gained

for the reasons behind the ineffectiveness of the Propellant vs. Time Scale factor when

Impingement Prevention is on. When the Propellant vs. Time Scale Factor is 10,000, there is

good algorithmic convergence when Impingement Prevention is off, so it is a logical conclusion

that these trajectories are near optimal in that image. However, these trajectories also result in

impingement. In order to avoid impingement, when the scaling factor is 10,000, the trajectories

are limited to trajectories similar to those with a scaling factor of 1,000. Thus, at both scaling

factors the trajectories require a similar amount of ΔV. This deficiency may be relieved by

opening the bounds of the search space, but further testing is required. Some further analysis of

these ΔV behaviors and how they are coupled with Time of Flight behaviors is performed in

Section 5.6.

73

Scaling

Factor

Impingement Prevention Off Impingement Prevention On

1,000

10,000

Figure 5-8 Simulation B run comparison based on scaling factor

Not only does the use of Impingement Prevention influence the effectiveness of the

Propellant vs. Time Scale Factor in some cases, but it also leads to a significant increase in

trajectory ΔV on average. When Impingement Prevention is turned on, there is an 89% increase in

ΔV across parameter combinations. Again, this is a result of the constraints put on the trajectories

due to Impingement Prevention. This result gives credence to further investigation on propellant

type for close proximity space missions. Although caustic propellants like hydrazine have a

higher ISP than do cold gas type propellants, the required ΔV to execute safe trajectories for

caustic propellants is also significantly higher. A trade must be performed when planning close

74

proximity missions to analyze if the added efficiency of caustic propellants outweighs the extra

maneuvering they would require.

Another result from ΔV comparisons is that RRT*-ES results in a 23% decrease in ΔV.

The explanation of this result follows that of the overall cost difference between RRT* and

RRT*-ES from Section 5.3.

5.6 Time of Flight

The time of flight of a trajectory is the second component to the cost function which is to

be minimized by the motion planning algorithm. This component to the cost function is required

for multiple reasons. Even if time of flight is not a critical mission parameter, in most cases some

human supervision over the mission will be required, which calls for a limited time of flight. In

other cases, the time that the inspection craft can spend completing its mission may be a critical

mission parameter, and thus the user is able to minimize time of flight with the correct Propellant

vs. Time of Flight Scaling Factor.

Table 5-18, Table 5-19, and Table 5-20 display the average time of flight and 95%

confidence interval for every parameter combination and each simulation. Table 5-21 displays the

Analysis of Variance and Tukey’s procedure results for time of flight across parameters. As

discussed in the previous section, the main parameter that should influence the trajectory Time of

Flight is the Propellant vs. Time Scale Factor. A high scale factor should result in longer flight

times than a lower scale factor. As can be seen in Table 5-21, this held true. A scale factor of

1,000 resulted in a 36% lower time of flight than a scale factor of 10,000 across all other

parameter combinations.

 Interestingly, the anomalies that were seen in trajectory ΔV were not seen in trajectory

time of flight. The response to Propellant vs Time Scale Factor was always as expected. This

75

result coupled with the ΔV anomalies again require further detailed investigation and

experimentation which was not performed in this thesis.

 From the experimentation that has been performed, it can be seen that the Impingement

Prevention setting and the algorithm type had much less of an effect on the trajectory time of

flight than they did on the trajectory ΔV. In the case of impingement prevention this makes sense

because impingement prevention is a constraint placed directly on when a ΔV can be applied to

the inspection vehicle. In the case of the algorithm used, this result suggests the cost improvement

between RRT* and RRT*-ES is being driven by the trajectory ΔV. This could be a result of

CMA-ES parameterization, but further experimentation is required.

 An important result is that at a Propellant vs. Time Scale Factor of 10,000, the average

trajectory time of flight approached the bound in all cases. It may be that for the algorithms to

optimize ΔV in simulation B at a Propellant vs. Time Scale Factor of 10,000, the time of flight

must be greater than 1,000 seconds. The convergence on seemingly non-optimal ΔVs in some of

these cases may be a direct result of this bound.

Table 5-18. Average TOF(s) and 95% confidence interval (A)

Propellant vs. Time Scale

Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 634.20 ± 59.15 591.07 ± 72.01

Off 471.31 ± 71.76 488.85 ± 63.01

10000
On 974.42 ± 29.10 975.59 ± 49.87

Off 955.18 ± 19.67 967.35 ± 25.08

Table 5-19. Average TOF(s) and 95% confidence interval (B)

Propellant vs. Time Scale

Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 594.97 ± 61.39 732.28 ± 136.07

Off 450.23 ± 46.40 639.34 ± 162.19

10000
On 942.91 ± 81.80 955.89 ± 56.60

Off 995.60 ± 3.69 996.29 ± 2.35

76

Table 5-20. Average TOF(s) and 95% confidence interval (C)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 661.93 ± 104.81 748.80 ± 101.52

Off 694.50 ± 35.14 712.81 ± 37.77

10000
On 914.97 ± 73.36 986.14 ± 17.83

Off 995.99 ± 1.97 984.17 ± 20.01

Table 5-21. ANOVA test on TOF(s) and 95% confidence interval

Parameter
Difference

in Mean
Confidence Interval

%

Difference

in Mean

RRT* to RRT*-ES -41.03 -66.09 -15.97 -5%
Scale Factor of 10,000 to Scale Factor of

1,000
-352.02 -377.07 -326.96 -36%

Impingement Prevention Off to

Impingement Prevention On
30.13 5.07 55.19 4%

5.7 Computational Run Time

This section presents the run time for the algorithms under all parameter combinations for

the completion of 8,000 iterations. This data gives some more insight into the computational

demands that the different algorithms and settings put on a system. However, it should be noted

that a stronger result would be the run time until convergence, but this data was unfortunately not

collected in this work.

Table 5-22, Table 5-23, and Table 5-24 display the average run time in seconds along

with the 95% confidence interval across all parameter settings and simulations. Table 5-25

displays the results of the Analysis of Variance and Tukey’s procedure on the data. It is

77

immediately clear that the choice of parameter settings has a strong effect on the computation run

time of the algorithms.

RRT*-ES requires 77% more computation time than RRT*. This results directly from the

way that the algorithms search the space. Remember RRT*-ES will converge search on an area of

low cost solutions. The consequence of this convergence is that when a new node is sampled

from the space, it is likely that there will be many tree vertices close by. As such, the

NearVertices function presented in Section 2.2.3.1 is likely to return a larger number of tree

vertices, which means there will be more calls to the steering functions and collision detection.

These are both among the more computationally costly functions in the algorithm. For RRT*,

sampling occurs more evenly through the search space, and thus there tend to be less near vertices

than for RRT*-ES. This means less calls to the steering functions and collision detection, and less

computation time.

Decreasing the Propellant vs. Time Scale factor resulted in a 60% decrease in average run

time. The likely cause of this decrease is parameterization within NearVertices. The

NearVertices function requires a scaling factor 𝛾 which determines how large the “ball” around

a node is for determining which vertices are considered to be near enough for connection

attempts. A large 𝛾 will attempt many connections around each node, theoretically resulting in

lower cost paths to a particular node, but also larger run times. A small 𝛾 will not attempt as

many connections around each node, theoretically resulting in higher cost paths to a particular

node, but also smaller run times. It is hard to say with certainty without further testing whether 𝛾

was appropriately sized for either Propellant vs. Time Scale Factor. However it seems clear from

the data that the 𝛾 for a Propellant vs. Time Scale Factor of 10,000 is larger in comparison to

average connection costs for that setting, than the 𝛾 for a Propellant vs. Time Scale Factor of

1,000.

78

Finally, the use of Impingement Prevention resulted in a 29% decrease in computation

time as compared with when Impingement Prevention was off. This is an interesting result

because all of the data that has been collected points to the use of Impingement Prevention

creating a more difficult problem to solve. However a longer run time with Impingement

Prevention off and a less difficult problem are not mutually exclusive. When Impingement

Prevention is off, there is more search space which is considered feasible because

maneuverability is less constrained. This means more vertices will be added to the search tree,

more attempted connections, and a longer run time

Table 5-22. Average run time (s) and 95% confidence interval (A)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 7,398.7 ± 323.6 3,163.9 ± 127.0

Off 7,712.4 ± 231.1 3,659.1 ± 107.5

10000
On 16,426.8 ± 1,270.9 8,722.6 ± 521.2

Off 18,095.1 ± 673.8 11,550.2 ± 482.6

Table 5-23. Average run time (s) and 95% confidence interval (B)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 7,056.3 ± 240.2 3,064.7 ± 207.3

Off 7,529.2 ± 265.9 3,466.5 ± 57.3

10000
On 16,790.0 ± 1,026.2 8,243.1 ± 268.4

Off 17,817.0 ± 1,094.2 10,897.3 ± 501.5

Table 5-24. Average run time (s) and 95% confidence interval (C)

Propellant vs. Time

Scale Factor

Impingement

Prevention
RRT*-ES RRT*

1000
On 18,555.8 ± 1,650.3 9,504.8 ± 1,497.8

Off 26,244.9 ± 1,313.7 13,438.2 ± 334.0

10000
On 40,978.7 ± 4,411.6 21,942.3 ± 3,332.8

Off 65,065.1 ± 2,705.4 43,703.2 ± 1,127.9

79

Table 5-25. ANOVA test on run time (s) and 95% confidence interval

Paramater
Difference

in Mean
Confidence Interval

%

Difference

in Mean

RRT* to RRT*-ES 9,026.2 8,307.27 9,745.1 77%
Scale Factor of 10,000 to Scale

Factor of 1,000
-14,119.7 -14,838.64 -13,400.8 -60%

Impingement Prevention Off to

Impingement Prevention On
-5,610.9 -6,329.77 -4,892.0 -29%

80

Chapter 6

Conclusions and Future Work

The results presented and analyzed in Chapter 5 give a good basis for conclusions to be

drawn about the capabilities of the RRT*-ES algorithm developed in this thesis, as well as the

effect of various user input parameters on the algorithm. With this being said, there are also

several areas where further analysis could result in a more in depth understanding of the

effectiveness of the algorithm.

6.1 Conclusions

In this thesis the RRT*-ES algorithm was developed as an offline algorithm which would

exhibit better performance than the traditional RRT* algorithm for close proximity spacecraft

motion planning. Toward this end, the RRT* algorithm was hybridized with the Covariance

Matrix Adaptation Evolutionary Strategy to improve local optimization behaviors. In addition,

the planned trajectories were governed by the Hill-Clohessy-Wiltshire Equations for relative

motion of a chase spacecraft in relation to a target spacecraft in a circular orbit. An impingement

prevention capability was also added to the motion planner for use when thruster plume

impingement could result in damage to the target spacecraft.

 Through experimentation, the effects of the algorithm used to perform the motion

planning task (RRT* or RRT*-ES), the Propellant vs. Time Scale Factor, and Impingement

Prevention were analyzed. For this analysis, trajectory cost, algorithmic convergence index,

required trajectory ΔV, required trajectory time of flight, and computational run time were

compared.

It was shown that RRT*-ES was consistently able to find lower cost trajectories than

RRT*, due to RRT*-ES’s embedded Evolutionary Strategy. RRT*-ES’s superior optimization

81

capabilities were also reflected in trajectory ΔV and time of flight. However, there was more

improvement in trajectory ΔV, suggesting RRT*-ES’s ability to optimize trajectory ΔV is the

source of RRT*-ES’s cost reduction. The downside of the RRT*-ES algorithm is that it requires

significantly more computation time to complete the same amount of iterations as RRT*. The

cause of this behavior was isolated to RRT*-ES’s convergence behavior which resulted in more

attempted vertex connections.

When averaged across all runs, the Propellant vs. Time Scale Factor behaved as expected.

When propellant use was more heavily weighted, ΔV use went down and time of flight went up.

When time of flight was more heavily weighted, ΔV use went up and time of flight went down.

However, there were some parameter settings that did not follow this behavior, possibly due to

boundary constraints placed on the planner. Run time was also significantly affected by the

Propellant vs. Time Scale Factor. However, it is believed this behavior stems from the scaling

factor within the NearVertices function, rather than the Propellant vs. Time Scale Factor.

Finally Impingement Prevention was found to be a powerful capability which also had a

significant effect on the cost of planned trajectories. In all cases when impingement prevention

was desired, the algorithms were both capable of finding and optimizing to some degree an

impingement free trajectory. That being said, the required ΔV for these impingement free

trajectories increased. This result could help motivate the designers of future close proximity

missions to consider propellants which do not require impingement prevention measures.

82

6.2 Future Work

Although the experimentation performed in this thesis has provided a good basis for

algorithmic comparisons, there are several areas where these experiments could have been

improved, and where the algorithm itself could be improved.

One of the most pressing and straightforward future efforts is a better analysis of the

computation required until the RRT* and RRT*-ES algorithms converge on their final solution.

Analysis was performed on the iteration at which the algorithms converge, and on the run time of

the algorithms, but each experiment was lacking in key areas. The iteration of convergence,

referred to as the convergence index in this work, overlooks the fact that the amount of

computation within each iteration differs significantly between algorithms, and between each

iteration. The run time analysis gives some estimate of the computation costs of the algorithm,

and inherently takes into consideration the amount of computation within each iteration, but data

was only collected for the run time after 8,000 iterations.

In the future the best way to compare the computational requirements of the different

algorithms would be to track the number of times the collision detection function was called, and

how many calls to this function were made before algorithmic convergence. Since the collision

detection function is one of the most computationally demanding functions within the algorithms,

it could give a better estimate of how much “computation” is required before convergence occurs.

This information could then also be used to better understand if some of RRT*-ES’s superiority is

a simple function of the number of connections attempted, rather than the intelligent location of

these attempted connections.

Another area of future work is a better analysis of how the Propellant vs. Time Scaling

Factor and user defined search bounds interact with each other. The data collected in this work

suggests that if search bounds are not chosen correctly, the Propellant vs. Time Scaling Factor

83

will not be effective in creating the balance between propellant use and time of flight that the user

desires. A methodology to relate these two user inputs could be useful.

Along these same lines, the scaling factor within the NearVertices function requires

further analysis. An inappropriate scaling factor results in either computationally inefficient

search, or ineffective search where few connections and rewires are attempted. The methodology

in this work to identify the scaling factor was to run some short experiments from which an

average trajectory cost for a particular simulation could be calculated. From there, the

NearVertices scaling factor was sized to achieve an average of 15 to 20 attempted connections

every iteration. However, experimental determination of this scaling factor was not thorough, and

data points to much more variety in the number of connections attempted each iteration. A

methodology to relate the NearVertices scaling factor, 𝛾, to the cost function and given

environment could also be useful.

Along with further analysis, some general algorithmic improvements could be made to

the planner. First of which could be the implementation of a more computationally efficient

collision detection algorithm. The collision detection algorithm used in this work models the

target spacecraft as a collection of planar obstacles, and trajectories are split up into short line

segments where each line segment in a trajectory is checked for collision with each planar

obstacle. This results in hundreds of millions of collision checks when running the algorithm for

8,000 iterations. As such, even small improvements in the computational complexity of the

collision detection algorithm could result in significant computational savings.

Another improvement would be to switch the steering function from an impulsive

maneuver steering function, to a continuous thrust steering function. In fact, an early version of

the RRT*-ES algorithm utilized a modified LQR steering function based on the work of Webb

and Berg25. The steering function and algorithm planned continuous thrust trajectories effectively,

84

however the continuous thrust trajectories planned did not lend themselves to efficient

impingement prevention calculations. That being said, if the collision detection algorithm is

improved, or impingement prevention is not a concern, continuous thrust trajectories could be

useful for certain types of inspection vehicles, such as electric propulsion vehicles.

A final improvement would be a more complete thruster plume model. For this work, the

thruster plume was simply modeled as a line segment originating at the vehicle and extending in

the direction of thrust. The size of the line was also chosen somewhat arbitrarily. This was done

to demonstrate that the algorithms could in fact handle this extra constraint. In the future it may

be useful to model the rocket plume more accurately in a cone shape which is proportional in size

to the amount of thrust being provided, and based on propulsion system data.

85

CMA-ES Strategy Parameters

Appendix A contains the formula for various internal strategy parameters of the

Covariance Matrix Adaptation Evolutionary Strategy. These internal parameters are functions of

user input parameters, as discussed in Section 2.3.

Table A-1 CMA-ES strategy parameters

Step Size Control
𝑐𝜎 =

𝜇𝑒𝑓𝑓 + 2

𝑛 + 𝜇𝑒𝑓𝑓 + 5

𝑑𝜎 = 1 + 2max(0,√
𝜇𝑒𝑓𝑓 − 1

𝑛 + 1
) + 𝑐𝜎

Covariance Matrix

Adaptation

𝑐𝑐 =
4 +

𝜇𝑒𝑓𝑓
𝑛⁄

𝑛 + 4 + 2
𝜇𝑒𝑓𝑓

𝑛⁄

𝑐1 =
2

(𝑛 + 1.3)2 + 𝜇𝑒𝑓𝑓

𝑐𝜇 = min (1 − 𝑐1)

𝛼𝜇

𝜇𝑒𝑓𝑓−2+1
𝜇𝑒𝑓𝑓⁄

(𝑛+2)2+𝛼𝜇
𝜇𝑒𝑓𝑓

2⁄
 with 𝛼𝜇 = 2

86

RRT*

The RRT* algorithm is outlined in pseudocode form in Figure B-1. The algorithm begins

with the initialization of the search graph G through the addition of vertex 𝑉 = {𝑧𝑠𝑡𝑎𝑟𝑡} and an

empty set of edges, 𝐸 = 0/ (line 1). The algorithm then samples a random node 𝑧𝑟𝑎𝑛𝑑 in 𝑋𝑓𝑟𝑒𝑒,

and the tree is extended from the nearest vertex, 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡, in tree G toward 𝑧𝑛𝑒𝑤 (Figure B-1,

lines 3 to 5). This trajectory that extends from G is denoted 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤, and the node that

terminates this extension is denoted 𝑧𝑛𝑒𝑤. If 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤 is collision free, 𝑧𝑛𝑒𝑤 is added to the

set of tree vertices, V, and the cost equal to the cumulative cost to arrive at 𝑧𝑛𝑒𝑤 through 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡

is stored, along with 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 as the minimum cost parent to 𝑧𝑛𝑒𝑤 found thus far (Figure B-1, line

6 to 8). Next NearVertices determines the set of vertices nearby 𝑧𝑛𝑒𝑤, called 𝑧𝑛𝑒𝑎𝑟 (Figure B-1,

line 9). Connection are attempted from all 𝑧𝑛𝑒𝑎𝑟 to 𝑧𝑛𝑒𝑤. If a connection from a 𝑧𝑛𝑒𝑎𝑟 to 𝑧𝑛𝑒𝑤 is

collision free and the cumulative cost of the connection is the lowest found thus far, the 𝑧𝑛𝑒𝑎𝑟 and

its cost are stored (Figure B-1, line 12 and 13). The connection that reaches 𝑧𝑛𝑒𝑤 with minimum

cost is stored in E (Figure B-1, line 14). This makes the vertex in the tree which results in the

lowest cost connection to 𝑧𝑛𝑒𝑤 the unique parent of 𝑧𝑛𝑒𝑤. Next a rewire attempts connections

from 𝑧𝑛𝑒𝑤 to all 𝑋𝑛𝑒𝑎𝑟. For all of the collision free connections that result in a lower cost member

of 𝑋𝑛𝑒𝑎𝑟, 𝑧𝑛𝑒𝑤 is made the parent, and the edge connecting 𝑧𝑛𝑒𝑤 to 𝑧𝑛𝑒𝑎𝑟 replaces the current

edge connecting from the tree to 𝑧𝑛𝑒𝑎𝑟 (Figure B-1, line 17 to 19). This sequence repeats until the

maximum number of iterations has bene reached.

87

 Figure B-1 RRT* pseudocode

RRT*

1 𝑉 ← {𝑧𝑠𝑡𝑎𝑟𝑡}; 𝐸 ←{ };

2 for 𝑖 = 1,… , 𝑛 do

3 𝑧𝑟𝑎𝑛𝑑 ← SampleFreei;

4 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← NearestVertex(𝐺 = (𝑉, 𝐸), 𝑧𝑟𝑎𝑛𝑑);

5 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤 ← Steer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑧𝑟𝑎𝑛𝑑);

6 if CollisionFree(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤)then

7 𝑉 ← 𝑉⋃{𝑧𝑛𝑒𝑤};

8 𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ; 𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤);

9 𝑋𝑛𝑒𝑎𝑟 ← NearVertices(𝐺 = (𝑉, 𝐸), 𝑧𝑛𝑒𝑤 , min {𝛾𝑅𝑅𝑇∗ (
log(card(𝑉))

card(𝑉)
)
1/𝑑

, 𝜂});

10 foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do

11 𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤 ← Steer(𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑛𝑒𝑤);

12 if CollisionFree(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) ∧Cost(𝑧𝑛𝑒𝑎𝑟) + 𝑐(Line(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤)) < 𝑐𝑚𝑖𝑛then

13 𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟; 𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤);

14 𝐸 ← 𝐸⋃{(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤)};

15 foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do

16 𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟 ← Steer(𝑧𝑛𝑒𝑤 , 𝑧𝑛𝑒𝑎𝑟);

17 if CollisionFree(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) ∧Cost(𝑧𝑛𝑒𝑤) + 𝑐(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) <cost(𝑧𝑛𝑒𝑎𝑟)then

18 𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑛𝑒𝑎𝑟);

19 𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑒𝑎𝑟)})⋃{(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟)};

20 return 𝐺 = (𝑉, 𝐸);

88

RRT*-ES

The RRT*-ES algorithm is outlined in pseudocode form in Figure C-1, Figure C-2, and

Figure C-3. RRT*-ES has a structure very similar to RRT*. Only the differences between RRT*

and RRT*-ES will be addressed here. The first difference arise in line 5 of Figure C-1. Here the

CMA-ES parameters are updated according to the equations in Section 2.3.2, if the adaptation

population has reached a sufficient size.

The next change is the steering function implemented. On lines 8, 14, 22, and 26, the

steering functions developed in Section 3.3.

Another change occurs on lines 9, 15, and 23. Here the impingement detection function

ImpingementFree is called, in addition to the collision detection function CollisionFree.

The final change occurs with the addition of goal state connection functions, as discussed

in Section 3.1. On lines 26 and 27, if a connection has been made from the current search tree to

the new node, a connection is attempted with the goal via the HCWSteerGoal and GoalConnect

functions. The GoalConnect function’s pseudocode can be found in Figure C-2. This function

makes the new node the parent to the goal node if 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is feasible, and 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is a

member of the lowest cost trajectory from start to goal. If 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is feasible, but not a member

of the lowest cost trajectory from start to goal, 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 and 𝑧𝑛𝑒𝑤 are stored in a goal parent

structure, where 𝑧𝑛𝑒𝑤 is stored in 𝑉𝑔𝑜𝑎𝑙 and 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is stored in 𝐸𝑔𝑜𝑎𝑙. This is done for reasons

outlined in Section 3.1.

If in a future iteration a rewire occurs, the goal parent structure is revisited on line 29 of

Figure C-1 by the function GoalRewire. The GoalRewire function pseudocode can be found in

Figure C-3. GoalRewire functions by checking all members of the goal parent structure, and

89

making a member of the structure the unique parent to the goal node if the member of the

structure is now also a member of the lowest cost trajectory from start to goal due to a tree rewire.

Figure C-1 RRT*-ES pseudocode

RRT*-ES

1 𝑉 ← {𝑧𝑠𝑡𝑎𝑟𝑡}; 𝐸 ←{ }; 𝑉𝑔𝑜𝑎𝑙 ← { }; 𝐸𝑔𝑜𝑎𝑙 ←{ };

2 𝐶𝑀𝐴 ← {𝜆, 𝜎0, 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠}; 𝑃𝑜𝑝 ←{ };

3 for 𝑖 = 1,… , 𝑛 do

4 if Size(𝑃𝑜𝑝) ≥ 𝜆

5 𝐶𝑀𝐴 ← UpdateCMA-ES(𝑃𝑜𝑝)

6 𝑧𝑛𝑒𝑤 ← SampleCMA-ESi;

7 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← Nearest(𝐺 = (𝑉, 𝐸), 𝑧𝑟𝑎𝑛𝑑);

8 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤 ← HCWSteer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑧𝑛𝑒𝑤);

9 if CollisionFree(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤) ∧ImpingementFree(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤) then

10 𝑉 ← 𝑉⋃{𝑧𝑛𝑒𝑤};

11 𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡; 𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤);

12 𝑋𝑛𝑒𝑎𝑟 ← Near(𝐺 = (𝑉, 𝐸), 𝑧𝑛𝑒𝑤 ,min {𝛾𝑅𝑅𝑇∗ (
log(card(𝑉))

card(𝑉)
)
1/𝑑

, 𝜂});

13 foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do

14 𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤 ← HCWSteer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑧𝑛𝑒𝑤);

15 if CollisionFree(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) ∧ImpingementFree(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) ∧Cost(𝑧𝑛𝑒𝑎𝑟) + 𝑐(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) < 𝑐𝑚𝑖𝑛then

16 𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟; 𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤);

17 if 𝑧𝑛𝑒𝑤 ∉ 𝑉 then

18 𝑉 ← 𝑉⋃{𝑧𝑛𝑒𝑤};

19 𝐸 ← 𝐸⋃{(𝑧𝑚𝑖𝑛 , 𝑧𝑛𝑒𝑤)};

20 if 𝑧𝑛𝑒𝑤 ∈ 𝑉

21 foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do

22 𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟 ← HCWSteerRewire(𝑧𝑛𝑒𝑤 , 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡);

23 if CollisionFree(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) ∧ImpingementFree(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) ∧Cost(𝑧𝑛𝑒𝑤) + 𝑐(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) <Cost(𝑧𝑛𝑒𝑎𝑟)then

24 𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑛𝑒𝑎𝑟);

25 𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑒𝑎𝑟)})⋃{(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟)}; // Rewire

26 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 ← HCWSteerGoal(𝑧𝑛𝑒𝑤 , 𝑧𝑔𝑜𝑎𝑙);

27 (V,E, 𝑉𝑔𝑜𝑎𝑙, 𝐸𝑔𝑜𝑎𝑙)←GoalConnect(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 , 𝑧𝑛𝑒𝑤 , 𝑧𝑔𝑜𝑎𝑙)

28 if Rewire Occurred then

29 (V,E) ←GoalRewire(𝑉𝑔𝑜𝑎𝑙 , 𝐸𝑔𝑜𝑎𝑙)

38 return 𝐺 = (𝑉, 𝐸);

90

 Figure C-2 GoallConnect pseudocode

Figure C-3 GoalRewire pseudocode

GoalConnect

1 if CollisionFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) ∧ImpingementFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) ∧Cost(𝑧𝑛𝑒𝑤) + 𝑐(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) <Cost(𝑧𝑔𝑜𝑎𝑙) then

2 𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑔𝑜𝑎𝑙);

3 𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑔𝑜𝑎𝑙)})⋃{(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙)};

4 elseif CollisionFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) ∧ ImpingementFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙)

5 𝑉𝑔𝑜𝑎𝑙 ← 𝑉𝑔𝑜𝑎𝑙⋃{𝑧𝑛𝑒𝑤};

6 𝐸𝑔𝑜𝑎𝑙 ← 𝐸𝑔𝑜𝑎𝑙⋃{(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙)}

GoalRewire

1 foreach 𝑥𝑝𝑔 ∈ 𝐸𝑔𝑜𝑎𝑙

2 if Cost(𝑧𝑝𝑔) + 𝑐(𝑥𝑝𝑔) < Cost(𝑧𝑔𝑜𝑎𝑙) then

3 𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑝𝑔);

4 𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑔𝑜𝑎𝑙)})⋃{(𝑥𝑝𝑔,𝑔𝑜𝑎𝑙)};

91

Data Figures

 Appendix D contains the remaining figures produced from experiments performed in this

thesis. There were 24 sets of 11 runs performed, and for each set of runs four plots were created.

The four types of plots are costs plots, trajectories plots, lowest cost trajectory plots, and lowest

cost trajectory plots with vertices.

 For each set of runs, these four plots are put into one figure, as in Figure D-1. Each costs

plot shows the cost versus the algorithm iteration for all of the 11 runs with the same parameter

setting. Each trajectories plot shows all of the trajectories found by the 11 runs with the same

parameter setting. Each minimum cost trajectory plot shows the minimum cost trajectory found

out of the 11 runs with the same parameter setting. And finally, each minimum cost trajectory

plot shows the minimum cost trajectory found out of the 11 runs with the same parameter setting,

along with the vertices of the search tree that found that trajectory.

 For ease of understanding and labelling of the following figures in Appendix D, each set

of 11 runs which had the same parameter setting has been given a number. Table D-1 lists these

set numbers, along with their associated parameter settings. The following figures are labelled so

as to be associated with Table D-1.

92

Table D-1 Run set number and associated parameter settings

Set
Number

Simulation
Impingement

Prevention

Propellant
vs. Time

Scale Factor
Algorithm

1 A YES 1000 RRT*-ES

2 A YES 1000 RRT*

3 A YES 10000 RRT*-ES

4 A YES 10000 RRT*

5 A NO 1000 RRT*-ES

6 A NO 1000 RRT*

7 A NO 10000 RRT*-ES

8 A NO 10000 RRT*

9 B YES 1000 RRT*-ES

10 B YES 1000 RRT*

11 B YES 10000 RRT*-ES

12 B YES 10000 RRT*

13 B NO 1000 RRT*-ES

14 B NO 1000 RRT*

15 B NO 10000 RRT*-ES

16 B NO 10000 RRT*

17 C YES 1000 RRT*-ES

18 C YES 1000 RRT*

19 C YES 10000 RRT*-ES

20 C YES 10000 RRT*

21 C NO 1000 RRT*-ES

22 C NO 1000 RRT*

23 C NO 10000 RRT*-ES

24 C NO 10000 RRT*

93

Figure D-1 Run set 1

0 1000 2000 3000 4000 5000 6000 7000 8000
1200

1400

1600

1800

2000

2200

2400

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

94

Figure D-2 Run set 1

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

95

Figure D-3 Run set 3

0 1000 2000 3000 4000 5000 6000 7000 8000
2000

4000

6000

8000

10000

12000

14000

16000

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

96

Figure D-4 Run set 4

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

97

Figure D-5 Run set 5

0 1000 2000 3000 4000 5000 6000 7000 8000
500

1000

1500

2000

2500

3000

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

98

Figure D-6 Run set 6

0 1000 2000 3000 4000 5000 6000 7000 8000
500

1000

1500

2000

2500

3000

3500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

99

Figure D-7 Run set 7

0 1000 2000 3000 4000 5000 6000 7000 8000
2000

3000

4000

5000

6000

7000

8000

9000

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

100

Figure D-8 Run set 8

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

101

Figure D-9 Run set 9

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

102

Figure D-10 Run set 10

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

103

Figure D-11 Run set 11

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

104

Figure D-12 Run set 12

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

105

Figure D-13 Run set 13

0 1000 2000 3000 4000 5000 6000 7000 8000
500

1000

1500

2000

2500

3000

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

106

Figure D-14 Run set 14

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

107

Figure D-15 Run set 15

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

108

Figure D-16 Run set 16

0 1000 2000 3000 4000 5000 6000 7000 8000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

109

Figure D-17 Run set 17

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

110

Figure D-18 Run set 18

0 1000 2000 3000 4000 5000 6000 7000 8000
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

111

Figure D-19 Run set 19

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

112

Figure D-20 Run set 20

0 1000 2000 3000 4000 5000 6000 7000 8000
1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

113

Figure D-21 Run set 21

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

114

Figure D-22 Run set 22

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

115

Figure D-23 Run set 23

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

116

Figure D-24 Run set 24

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories

Lowest cost trajectory Lowest cost trajectory with tree vertices

117

Bibliography

1 Auger, A., and Hansen, N., “Tutorial CMA-ES: Evolution strategies and covariance

matrix adaptation,” The Genetic and Evolutionary Computation Conference (GECC)), 2012, pp.

827-848.

2 Bibby, J., and Necessary, Ryan, “Mini AERCam,” NASA, March 2009, [website],

URL: http://aercam.jsc.nasa.gov/sprint/ [cited 10 July 2014].

3 Breger, L. S., and How, J. P., “Safe Trajectories for Autonomous Rendezvous of

Spacecraft,” Journal of Guidance, Control, and Dynamics, vol. 31, 2008, pp. 1478–1489.

4 Chen, A., “Propulsion System Characterization for the Spheres Formation Flight and

Docking Testbed,” Master of Science, Massachusetts Institute of Technology, 2002.

5 Clohessy, W. H., and Wiltshire, R. S., “Terminal Guidance System for Satellite

Rendezvous,” Journal of the Aerospace Sciences, vol. 27, 1960, pp. 653–658.

6 Curtis, H., Orbital Mechanics for Engineering Students, Butterworth-Heinemann, 2013.

7 Devore, J. L., Probability and Statistics for Engineering and the Sciences, 5th ed.,

Brooks/Cole, Pacific Grove, CA, 2000, Chaps. 10, 11.

8 DiGirolamo, L.J., Hoskins, A.H., Hacker, K.A., and Spencer, D.B., “A Hybrid Motion

Planning Algorithm for Safe and Efficient Close Proximity, Autonomous Spacecraft Missions,”

2014 AIAA SPACE Conference, San Diego, CA, 2014.

9 Fredrickson, S. E., Abbott, L. W., Duran, S., Jochim, J. D., Studak, J. W., Wagenknecht,

J. D., and Williams, N. M., “Mini AERCam: development of a free-flying nanosatellite inspection

robot,” SPIE AEROSense 2003 Conference, Orlando, FL, 2003, pp. 97–111.

10 Gavin, Multiple Rapidly-exploring Random Tree (RRT), MATLAB Code, MATLAB

Central File Exchange, 15 Sep 2013.

11 Goretkin, G., Perez, A., Platt, R., and Konidaris, G., “Optimal sampling-based planning

for linear-quadratic kinodynamic systems,” 2013 IEEE International Conference on Robotics and

Automation (ICRA), 2013, pp. 2429–2436.

12 Hansen, N., and Ostermeier, A., “Completely Derandomized Self-Adaptation in

Evolution Strategies,” Evolutionary Computation, vol. 9, Jun. 2001, pp. 159–195.

13 Hansen, N., “The CMA Evolution Strategy: A Comparing Review,” Towards a New

Evolutionary Computation, J.A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, eds., Springer

Berlin Heidelberg, 2006, pp. 75–102

14 Hansen, N., “The CMA Evolution Strategy: A Tutorial,” Jun. 2011, [website], URL:

https://www.lri.fr/~hansen/cmatutorial.pdf [cited 20 July 2014].

118

15 Jastrebski, G. ., and Arnold, D. V., “Improving Evolution Strategies through Active

Covariance Matrix Adaptation,” IEEE Congress on Evolutionary Computation, 2006. CEC 2006,

2006, pp. 2814–2821.

16 Karaman, S., and Frazzoli, E., “Optimal kinodynamic motion planning using

incremental sampling-based methods,” 2010 49th IEEE Conference on Decision and Control

(CDC), 2010, pp. 7681–7687.

17 Karaman, S., and Frazzoli, E., “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, Jun. 2011, pp. 846–894.

18 Koren, Y., and Borenstein, J., “Potential field methods and their inherent limitations for

mobile robot navigation,” 1991 IEEE International Conference on Robotics and Automation,

Sacramento, CA: 1991, pp. 1398–1404 vol.2.

19 LaValle, S. M., and Kuffner, J. J., “Randomized Kinodynamic Planning,” The

International Journal of Robotics Research, vol. 20, May 2001, pp. 378–400.

20 McInnes, C. R., “Autonomous path planning for on-orbit servicing vehicles,” Journal

of the British Interplanetary Society, vol. 53, 2000, pp. 26–38.

21 Nilsson, N. J., Principles of Artificial Intelligence, Springer Science & Business Media,

1982.

22 Richards, A., Schouwenaars, T., How, J. P., and Feron, E., “Spacecraft Trajectory

Planning with Avoidance Constraints Using Mixed-Integer Linear Programming,” Journal of

Guidance, Control, and Dynamics, vol. 25, 2002, pp. 755–764.

23 Robbins, H. M., “An analytical study of the impulsive approximation,” AIAA Journal,

vol. 4, Aug. 1966, pp. 1417–1423.

24 Stentz, A., “Optimal and efficient path planning for partially-known environments,”

1994 IEEE International Conference on Robotics and Automation, 1994. Proceedings, 1994, pp.

3310–3317 vol.4.

25 Webb, D. J., and van den Berg, J., “Kinodynamic RRT*: Asymptotically optimal

motion planning for robots with linear dynamics,” 2013 IEEE International Conference on

Robotics and Automation (ICRA), 2013, pp. 5054–5061.

