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ABSTRACT 
 

 As the International Space Station and Earth orbiting satellites age well past their 

originally planned operational lifespan, improved monitoring of these spacecraft’s integrity will 

be critical to the safety of any crew on board and continued functionality. A small autonomous 

free flying spacecraft could have the ability to monitor for structural instabilities without the need 

for astronaut intervention.  

 This thesis develops a hybrid offline motion planner that determines a fuel efficient 

trajectory between user specified waypoints for an inspection spacecraft, while avoiding thruster 

impingement with the target spacecraft. The planner requires the inspection vehicle’s dynamics 

model, a thruster model and the obstacle field within which inspection vehicle operates. The 

algorithm is shown to find trajectories superior to its predecessor. 

 The algorithm is a merging of the Optimal Rapidly Exploring Random Tree algorithm, 

the Covariance Matrix Adaptation Evolutionary Strategy, and the Hill-Clohessy-Wiltshire 

equations. The Optimal Rapidly Exploring Random Tree algorithm is a directed tree search 

algorithm with a theoretical basis in random graph theory that acts as the main search framework. 

The Covariance Matrix Adaptation Evolutionary algorithm is used as a local optimizer which 

directs search to low cost solutions. Finally, the Hill-Clohessy-Wiltshire equations are used to 

find dynamically feasible trajectories through the search space. 

 Simulations are performed for flights around a simple model resembling the International 

Space Station, with several start and goal points, and several combinations of algorithm 

parameters. Results obtained from the stand-alone Optimal Rapidly Exploring Random Tree 

algorithm are compared to results obtained from the hybrid algorithm developed in this thesis.  

 The hybrid algorithm shows improved performance over the stand-alone Optimal Rapidly 

Exploring Random Tree algorithm. The hybrid algorithm on average is able to find trajectories 
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which require less propellant and less flight time, however the hybrid algorithm tends to require 

more computation time. In addition, planned trajectories that do not require impingement 

prevention require less propellant and shorter flight times. As such, cold gas thrusters may prove 

to be more appropriate for close proximity spacecraft missions, despite their lower efficiency as 

compared to their counterparts which utilize more volatile propellants. Finally, the propellant use 

and time of flight of a particular trajectory can be effectively tuned by the user through algorithm 

parameter modification. 
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Chapter 1 

 

Introduction 

Autonomous systems have the potential to provide currently unrealizable capabilities 

while decreasing cost and human risk. This is particularly true for inspection operations of 

spacecraft. This thesis presents work on an offline motion planning framework for International 

Space Station and satellite monitoring missions in Circular Low Earth Orbit. The framework uses 

a variation of the Optimal Rapidly Exploring Random Tree algorithm (RRT*)17 and the 

Covariance Matrix Adaptation Evolutionary Strategy algorithm (CMA-ES)12 as its basis. The 

goal for the missions is to provide sensor coverage of user designated areas of a spacecraft with 

no need for human-in-the-loop vehicle control. 

At the core of this work is an algorithm that plans a trajectory between user specified six 

degree of freedom waypoints for the purpose of inspection given the autonomous vehicle’s 

dynamics model, a thruster model, and an obstacle field where operations are taking place. In the 

context of the current effort, obstacles consist of either the International Space Station or some 

other satellite in a near-circular orbit about Earth, and the inspection vehicle’s trajectory adheres 

to the Hill-Clohessy-Wiltshire (HCW) equations of motion during planning. In addition, the 

planner takes into consideration the effect of rocket plumes, trajectory time of flight, as well as 

propellant use.  

A hybrid algorithm has been developed for this purpose by combining the RRT* search 

algorithm with a constrained input, fixed final state steering function, and the CMA-ES 

algorithm. RRT* is an incremental tree search algorithm that expands stochastically from an 

initial point and guarantees asymptotic optimality for any system with controllable linear 

dynamics. It is also able to maintain a computational complexity within a constant factor of its 
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non-asymptotically optimal predecessor RRT17, 19. The steering function used solves the control 

problem according to the Hill-Clohessy-Wiltshire equations assuming the spacecraft can perform 

an impulsive change of velocity. The steering function is used to connect nodes within the RRT* 

search tree. CMA-ES is a stochastic method for real-parameter optimization of non-linear, non-

convex functions14, which is used as a local optimizer in this work.  

The Hill-Clohessy-Wiltshire equations for relative motion of two objects in a circular 

orbit are used within the steering function to plan dynamically feasible optimal trajectories. The 

use of these equations increases search complexity, but also helps to ensure that the trajectory 

found by the offline planner is indeed feasible for the spacecraft to execute. 

Given that the free flying inspection craft will likely need to use chemical rockets to 

maneuver in close proximity to delicate satellite and International Space Station equipment, the 

effect of the inspection craft thruster plume must be taken into consideration. To avoid damage to 

target craft equipment, a thruster model which designates the plume length of a firing thruster as a 

keep out zone is used. This length is then fed into the planner’s collision detection algorithm and 

a trajectory that results in plume impingement is deemed infeasible.  

Finally, with all constraints on the inspection vehicle satisfied, the planner minimizes two 

trajectory components. First, propellant use on the trajectory is minimized so as to extend its 

mission duration, and second, the time of flight is minimized so as to maintain realistic mission 

scenarios. The user may specify the desired relationship between these two objectives. 

1.1 Motivation 

 Unlike previous large-scale engineering endeavors whose operational lives exceeded 

their original engineered life, spacecraft lack the benefit of thorough hands-on inspection. 
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Spacewalks are both costly and dangerous, robotic arms have limited range and maneuverability, 

and complex structural engineering calculations cannot always predict the true state of a system.  

As the capabilities of autonomous systems continue to advance, these systems can fill the health 

monitoring and repair role which is currently unmet for most space assets.  

 NASA’s operational AERCam Sprint (Figure 1-1), along with its proposed successor, 

Mini AERCam, strongly motivated the work in this thesis.  Both vehicles were designed to be 

free flying spacecraft for remote inspection of manned spacecraft. Although AERCam sprint was 

successfully flown in 1997, it required remote operation by an astronaut for the entire duration of 

its flight2.  

 

Figure 1-1 AERCam Sprint in operation (courtesy NASA) 

 

This work helps to increase the capabilities of free flyer missions by removing the 

astronaut from the mission requirements. Autonomous motion planning not only frees up 

astronauts to perform other tasks, but also enhances the planned trajectories by minimizing time 

of flight and fuel use while maximizing safety through obstacle avoidance and impingement 
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prevention. Given the complex and non-intuitive dynamic environment of relative motion in a 

circular low Earth orbit, a human pilot is not as capable of optimizing these flight parameters. 

1.2 Related Work Review 

To date, research into the area of close proximity spacecraft operations has produced 

some impressive results. Richards et. al.22 developed an optimal trajectory planner for close 

proximity spacecraft operations using mixed integer linear program. Their formulation adheres to 

the Hill-Clohessy-Wiltshire equations and finds a minimum fuel path between two poses which 

avoids obstacles and satisfies rocket plume constraints using bang-off-bang control. Although this 

method is promising and appears to be computationally tractable, it requires an a priori 

knowledge of the time required to complete the path. This inherently limits the optimality of the 

given path, and if the time is set incorrectly, could result in a dynamically infeasible path. 

McInnes20 developed a planner which uses ellipse of safety transfers and potential field 

method to plan a safe obstacle free path for a spacecraft performing close proximity maneuvers 

with the ISS. The ellipse of safety transfers developed are a novel way to limit the risk to the ISS 

in the case of thruster failure, but are only useful in getting the spacecraft close to the desired 

observation point. From there a potential field method is used to plan the rest of the trajectory. 

The method makes no mention of path optimality however, and potential field methods are often 

plagued with local minima and oscillatory problems especially in the presence of complex 

obstacle fields18. 

Breger and How3 developed an optimal planner that guarantees safe trajectories in the 

presence of a guidance and control failure using mixed integer linear programming. Although the 

safety guarantee provided is very important to close proximity missions, the formulation once 
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again require an a priori flight time. This leads to limited optimality or the need to run an already 

computationally intensive algorithm many times to find the optimal flight time. 

Outside of the algorithms mentioned above there are several grid search based methods 

that show promise for path planning and obstacle avoidance. They are members of the A*21, and 

D*24 family of algorithms. Both algorithms perform grid searches and rely on a cost function and 

a heuristic for estimating the cost to arrive to the goal from their current state. A* assumes a prior 

knowledge of the environment, while D* is designed to be an efficient replanner when the 

environment changes. The problems that arise with these algorithms are a function of the 

heuristic required and their grid search basis. Although in low dimension grid search makes these 

algorithms fast and efficient planners, when dimensions start to lose a lot of their computational 

efficiency. In addition, it is difficult to capture vehicle dynamics with a grid search. As such, 

these planners excel when the obstacle field is relatively sparse and the distances traveled are 

relatively large. When distances are small, it is difficult to ensure that the path being planned is 

actually achievable by the vehicle. Finally, the effectiveness of the planner relies heavily on the 

heuristic used to estimate the cost from the current state to the goal state. In the case of an orbital 

mission in the presence of large obstacles as presented in this thesis, it becomes difficult to 

develop an accurate heuristic function. 

The algorithm formulation posed in this work attempts to address some of the drawbacks 

of the aforementioned algorithms. The algorithm finds an optimized obstacle free trajectory 

between a given start and end vehicle state with no requirements for an a priori flight time. The 

optimized trajectory found avoids plume impingement on the target vehicle and adheres to the 

dynamics of the orbital system. In addition, a sub-optimal obstacle free trajectory is first found, 

and then improved as computation time allows, making this an anytime algorithm. 
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1.3 Outline 

 The contributions made in this thesis are presented over several chapters. Chapter 2 

introduces the algorithmic components that make up the motion planner, along with the 

theoretical support for their functionality. These components include the RRT* algorithm, the 

CMA-ES algorithm, and the Hill-Clohessy-Wiltshire equations. Chapter 3 details the integration 

of the component algorithms into the hybrid algorithm, along with modifications made to the 

component algorithms to address the orbital relative motion trajectory planning problem. Chapter 

3 also discusses the adherence of the new hybrid algorithm to RRT* asymptotic optimality 

requirements, and vehicle dynamic constraints. Chapter 4 introduces the simulation environment 

developed to test the hybrid algorithm. Chapter 5 presents the simulation results, and analysis. 

Finally, Chapter 6 makes conclusions based on these results, and provides suggestions for future 

work. 
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Chapter 2 

 

Algorithm Introduction and Analysis 

The motion planning algorithm presented in this thesis derives its capabilities from three 

component algorithms:  RRT*, CMA-ES, and a Hill-Clohessy-Wiltshire steering function. The 

following sections describe the motion planning problem in more rigorous mathematical terms, 

followed by the theory and functionality of the hybrid algorithm components. 

2.1 Problem Definition 

Prior to introducing the algorithms utilized to solve the motion planning problem, a more 

formal definition of the motion planning problem is required. Let 𝑋 ⊆ ℝ𝑛define the state space 

and 𝑈 ⊆ ℝ𝑚 the control input space of the system. There is a given obstacle region 𝑋𝑜𝑏𝑠 ⊂ 𝑋, 

start state 𝑥⃗𝑠𝑡𝑎𝑟𝑡 and goal state 𝑥⃗𝑔𝑜𝑎𝑙, and system dynamics 

 𝑥̇⃗ = 𝑓(𝑥⃗(𝑡), 𝑢⃗⃗(𝑡), 𝑡) (1) 

 

where , 𝑥⃗(𝑡) ∈ 𝑋 is the state of the vehicle at time t, and 𝑢⃗⃗(𝑡) ∈ 𝑈 is the required input at time t.  

 The goal of the optimal motion planning problem is to find the trajectory 𝜋 =

[ 𝑥⃗( ), 𝑢⃗⃗( ), 𝑇], which connects the start state and goal state while remaining in the obstacle 

free region  𝑋𝑓𝑟𝑒𝑒 = (𝑋\𝑋𝑜𝑏𝑠), adhering to the system dynamics, and optimizing the cost 

function:  

 𝑐(𝜋) = ∫ (1 + 𝑅⃗⃗‖𝑢⃗⃗(𝑡)‖)𝑑𝑡
𝑇

0
  (2) 

 

where T is the trajectory duration, and 𝑅⃗⃗ ∈ ℝ𝑚 is positive-definite, constant, and given, and 

weights the cost of the control inputs relative to each other and to the duration of the trajectory. 

The cost function penalizes for both the amount of control input used as well as the time required 

to complete the trajectory.  
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2.2 RRT* 

The RRT* algorithm was first proposed by Karaman and Frazzoli17 as a provably 

asymptotically optimal, probabilistically complete, and computationally efficient motion planning 

algorithm. It is a tree search algorithm that lends itself to motion planning problems with 

differential constraints17. Extensions for differential constraints were added to RRT* in [8], [16], 

and [25]. These extensions build on Karaman and Frazzoli’s original work, providing conditions 

for asymptotic optimality and probabilistic completeness for kinodynamic systems in [17] and 

[11], and extending RRT* to include a fixed-final-state-free-final-time optimal controller in [25]. 

In this section the theory behind the asymptotic optimality and probabilistic completeness of the 

RRT* algorithm is presented, along with the algorithm itself. 

2.2.1 Notation 

 The notation used here in relation to RRT* is analogous to the notation used in the 

original RRT* paper [17]. A directed graph 𝐺 = (𝑉, 𝐸) on 𝑋 consists of a set of vertices 𝑉 which 

is a finite subset of X, and a set of edges E which is a subset of 𝑉𝑥𝑉. A directed path, σ𝑛, on the 

directed graph G is a sequence of vertices (𝑧1, 𝑧2, … , 𝑧𝑛) such that 𝑥𝑖+1 = (𝑧𝑖 , 𝑧𝑖+1) ∈ 𝐸 for all 

1 ≤ 𝑖 ≤ 𝑛 − 1 and Σ is the set of all paths through the space. An example directed graph can be 

seen in Figure 2-1. RRT* is a directed tree, which is a type of directed graph where every vertex 

has one unique incoming parent vertex, except for the start vertex which has no parent. A vertex 

in RRT* is equivalent to a state of the system and is also called a node. For clarity, in this work a 

vertex will refer to a state that has already been added to the search tree, and a node will refer to a 

state that is a candidate to be added to the search tree. An edge in RRT* is a path or trajectory that 

connects two vertices. 
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Figure 2-1 A directed graph, G 

2.2.2 Theory 

There are two main characteristics of RRT* and its kinodynamic variants that will be 

presented in this section. RRT* has been shown to be both probabilistically complete and 

asymptotically optimal17. For a probabilistically complete algorithm, the probability of finding a 

solution to the problem if one exists goes to one as the number of iterations of the algorithm go to 

infinity. Asymptotic optimality refers to the ability of the cost of the trajectory returned to almost 

surely converge to the optimum as iterations go to infinity17. 
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2.2.2.1 Probabilistic Completeness 

Before a formal definition of probabilistic completeness can be presented, the definition 

of robust feasibility must be understood. The following definitions are taken from Karman and 

Fazzoli’s work in reference [17]. 

For a state 𝑧 ∈ 𝑋𝑓𝑟𝑒𝑒 and some real valued 𝛿 > 0, the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 is the set of all 

states that are at least a distance 𝛿 away from any point in the obstacle set. In Figure 2-2, 𝑧1 is in 

the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 , and 𝑧2 is not in the 𝛿-interior.  A collision-free path has strong 𝛿-

clearance if the entirety of the path lies within the 𝛿-interior of 𝑋𝑓𝑟𝑒𝑒 (Figure 2-3). Finally, a path 

planning problem (𝑋𝑓𝑟𝑒𝑒 , 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑔𝑜𝑎𝑙) is robustly feasible if there exists a solution path with 

strong 𝛿-clearance. 

 

Figure 2-2 The 𝜹-interior of 𝑿𝒇𝒓𝒆𝒆 [17] 

 

 A formal definition of probabilistic completeness as presented by Karaman and 

Frazzoli17 proceeds as follows: 

An algorithm ALG is probabilistically complete, if, for any robustly feasible path 

planning problem (𝑋𝑓𝑟𝑒𝑒 , 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑔𝑜𝑎𝑙), 
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 lim 
𝑛→∞

inf ℙ({∃𝑧 ∈ 𝑉𝑛
𝐴𝐿𝐺 = 𝑧𝑔𝑜𝑎𝑙  𝑠. 𝑡. 𝑧𝑠𝑡𝑎𝑟𝑡  𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑧𝑔𝑜𝑎𝑙𝑖𝑛 𝐺𝑛

𝐴𝐿𝐺}) = 1 (3) 

 

That is, the probability that a vertex in the algorithm’s search tree is the goal vertex, and the 

search graph connects the start vertex and the goal vertex goes to one as the number of vertices in 

the graph goes to infinity. However, this limit is equal to zero if the problem is not robustly 

feasible for any sampling based algorithm, including probabilistically complete ones17. 

 The proof of the probabilistic completeness of the RRT algorithm was developed by 

Lavalle and Kuffner in [19]. The conditions are extended to RRT* by Karman and Frazzoli in 

[17], where:  

For any robustly feasible path planning problem (𝑋𝑓𝑟𝑒𝑒 , 𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑔𝑜𝑎𝑙), there exist 

constants 𝑎 > 0 and 𝑛0 ∈ ℕ, both dependent only on 𝑋𝑓𝑟𝑒𝑒 and 𝑧𝑔𝑜𝑎𝑙 such that 

 ℙ({∃𝑧 ∈ 𝑉𝑛
𝑅𝑅𝑇∗ = 𝑧𝑔𝑜𝑎𝑙}) > 1 − 𝑒−𝑎𝑛, ∀𝑛 > 𝑛0 (4) 

 

That is, the probability that a vertex in the RRT* search graph is the goal vertex approaches one 

as the number of vertices in the search graph goes to infinity. 

2.2.2.2 Asymptotic Optimality 

Again, prior to providing a formal definition of asymptotic optimality and sufficient 

conditions to guarantee asymptotic optimality of RRT*, the definition of a robustly optimal 

solution must be understood. The following definitions are taken from Karman and Fazzoli’s 

work in [17]. 

Let 𝜎1, 𝜎2 ∈ Σ𝑓𝑟𝑒𝑒 be two collision-free paths with the same end points. A path 𝜎1 is 

considered to be homotopic to 𝜎2 if it can be continuously transformed to 𝜎2 through 𝑋𝑓𝑟𝑒𝑒. In 

Figure 2-3, path 𝜎1 is homotopic to 𝜎2. A collision free path 𝜎 is said to have weak 𝛿-clearance if 

it is homotopic to a path 𝜎′ which exhibits strong 𝛿-clearance, and there exists 𝛿𝛼 > 0 such that 

all paths along the transform from 𝜎 to 𝜎′ exhibit strong 𝛿𝛼-clearance. In Figure 2-3, 𝜎2 exhibits 
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strong 𝛿-clearance, while 𝜎1 exhibits weak 𝛿-clearance. A path that does not exhibit weak 𝛿-

clearance can be seen in Figure 2-4.  

 

Figure 2-3 Path 𝜹-clearance [17] 

 

 

Figure 2-4 A path which does not exhibit weak 𝜹-clearance [17] 

 

Now given that the set of all paths with bounded length is a normal space, which allows 

us to take the limit of a sequence of a path17, the definition of a robustly optimal solution is as 



13 

 

follows. A minimum cost feasible path 𝜎∗ ∈ 𝑋𝑓𝑟𝑒𝑒is a robustly optimal solution if it is has weak 

𝛿-clearance and, for any sequence of collision-free paths {𝜎𝑛}𝑛∈ℕ, 𝜎𝑛 ∈ 𝑋𝑓𝑟𝑒𝑒 , ∀𝑛 ∈ ℕ, such that 

lim
𝑛→∞

𝜎𝑛 = 𝜎∗, and lim
𝑛→∞

𝑐(𝜎𝑛) = 𝑐(𝜎∗). 17 This means that the path is optimal if the sequence of 

collision free paths converges to it and that this optimal path is surrounded by enough collision 

free space, so that convergence may occur. The definition of asymptotic optimality is then:  

An algorithm ALG is asymptotically optimal, if, for any robustly feasible path planning 

problem (𝑋𝑓𝑟𝑒𝑒 , 𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑔𝑜𝑎𝑙) and cost function 𝑐: 𝛴 → ℝ≥0 that admit a robustly optimal 

solution with finite cost c*, 

  ℙ ({ lim
n→∞

𝑠𝑢𝑝𝑌𝑛
𝐴𝐿𝐺 = 𝑐∗}) = 0 (5) 

 

where Yn
𝐴𝐿𝐺 is the variable that stores the lowest cost solution found by ALG after n iterations. It 

should be noted that if an algorithm exhibits asymptotic optimality, it is required to also exhibit 

probabilistic completeness. For this reason, necessary conditions for only asymptotic optimality 

are presented in the following paragraphs for kinodynamic systems. 

Karaman and Frazzoli extend their RRT* algorithm to kinodynamic systems and give 

conditions for asymptotic optimality in reference [16]. There are three conditions presented in this 

work. First, the Steer procedure must connect nodes in a locally optimal manner. In addition, the 

cost procedure to determine the near and nearest nodes must correspond to the optimal cost to 

reach those nodes. 

The second condition is Weakened Local Controllability. Prior to defining Weakened 

Local Controllability, there is some additional notation which must be explained. Let 𝛽𝜖(𝑧) =

{𝑧′ ∈ 𝑋|‖𝑧′ − 𝑧‖ ≤ 𝜖} be the closed 𝜖-ball centered at 𝑧. Now, given a state 𝑧 ∈ 𝑋 and a constant 

𝜖 ∈ ℝ>0, let ℛ𝜖(𝑧) be the set of all states in X that are reachable from 𝑧 with a trajectory x that 

does not leave the 𝜖-ball centered at 𝑧. ℛ𝜖(𝑧) is referred to as the 𝜖–reachable set of a state z, and 

any state within ℛ𝜖(𝑧) is referred to as 𝜖–reachable. Figure 2-5 depicts the 𝜖-ball centered at 𝑧, as 
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well as a state 𝑧′ which is a member of  ℛ𝜖(𝑧). Weakened Local Controllability can now be 

defined as follows (Figure 2-6): 

There exist constants 𝛼, 𝜖̅ ∈ ℝ>0, 𝑝 ∈ ℕ, such that for any 𝜖 ∈ (0, 𝜖)̅, and any state 𝑧 ∈

𝑋, the set ℛ𝜖(𝑧) of all states that can be reached from z with a path that lies entirely 

inside the 𝜖-ball centered at z, contains a ball of radius 𝛼𝜖𝑝.16   

 

Weakened local controllability holds true for locally controllable systems, which includes 

controllable linear systems.  

  

Figure 2-5 The 𝝐-ball centered at 𝒛 
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Figure 2-6 Weakened local controllability at 𝒛 

 

The third condition for asymptotic optimality is that there exists an optimal trajectory 

with enough space around it to allow almost-sure convergence16. This is referred to as a 𝜖-

collision-free approximate trajectory. A trajectory is considered to be 𝜖-collision-free, if the 𝜖-ball 

around every state along the trajectory is within 𝑋𝑓𝑟𝑒𝑒 . This is analogous to a path that exhibits 

strong 𝛿-clearance where the necessary separation distance is centered at each state along the 

trajectory, rather than the obstacle. The definition of a 𝜖-collision-free approximate trajectory is 

as follows (Figure 2-7): 

There exists an optimal feasible trajectory 𝑥∗: [0, 𝑇∗] → 𝑋𝑓𝑟𝑒𝑒, constants 𝛼, 𝜖̅ ∈ ℝ>0, 𝑝 ∈

ℕ, and a continuous function 𝑞:ℝ>0 → 𝑋 with 𝑙𝑖𝑚
𝜖↓0

𝑞(𝜖) = 𝑥∗such that for all 𝜖 ∈ (0, 𝜖)̅ 

the following hold for the path 𝑥𝜖 = 𝑞(𝜖): [0, 𝑇𝜖] → 𝑋𝑓𝑟𝑒𝑒: 

 𝑥𝜖 is an 𝜖-collision-free path that starts from 𝑧𝑖𝑛𝑖𝑡 and reaches the goal, 

 for any 𝑡1 < 𝑡2, let 𝑧1 = 𝑥𝜖(𝑡1) and 𝑧2 = 𝑥𝜖(𝑡2), then the ball of radius 

𝛼‖𝑧1 − 𝑧2‖
𝑝 centered at 𝑧2 is 𝜖-reachable from 𝑧1. 
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Figure 2-7 A 𝝐-collision-free approximate trajectory [16] 

 

Goretkin et. al. 11  extend these conditions to include time into the state of the system. The 

conditions require that the tree will be able to make local connections with trajectories that 

remain in an obstacle-free neighborhood, and that the optimal trajectory through the obstacle field 

is continuously surrounded by a neighborhood of approximately optimal solutions which are 

collision free. These conditions are satisfied for a system that cannot go backward in time 11. The 

systems within the simulations performed for this thesis, do, in fact, adhere to RRT*’s sufficient 

conditions, as will be presented in Chapter 3.   

2.2.3 Algorithm 

 The variation of RRT* created in this thesis is a combination of several variations of 

RRT* developed since its inception. For clarity, this section will present the original RRT* 

algorithm in detail, and then discuss the modifications made for kinodynamic systems. The 

complete algorithm used in this thesis is presented in Chapter 3. 
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2.2.3.1 Primitives 

The basic primitive procedures, functions that in conjunction form the behavior of the 

RRT* algorithm, are as follows17: 

 SampleFree: The SampleFree procedure returns uniformly distributed independent 

sample nodes from the obstacle-free space 𝑋𝑓𝑟𝑒𝑒. 

 NearestVertex: The NearestVertex procedure returns the nearest vertex V in the tree G 

to a given state z based on an application specific cost function 

 NearVertices: The NearVertices procedures returns the vertices V in the tree G that 

are within a ball of size 𝑟 = 𝛾 (
log(𝑛)

𝑛
)
𝑑

from a given state z. Here d is the dimension of 

the problem, n is the size of V at the current iteration and 𝛾 is an appropriate scaling 

constant. 

 Steer: Given two points x and y the Steer procedure returns a point 𝑧 ∈ 𝑋 such that z is 

closer to y than x based on an application specific cost function. 

 CollisionFree: The CollisionFree procedure returns true if the given edge x 

connecting two states is entirely collision free, and false otherwise.  

2.2.3.2 RRT* 

One full iteration of the RRT* algorithm after several iterations have occurred is outlined 

in visual form in Figure 2-8. Path directions are not drawn in Figure 2-8 because they can be 

easily deduced given that RRT* is a directed tree. The algorithm begins with the initialization of 

the search graph G through the addition of vertex 𝑉 = {𝑧𝑠𝑡𝑎𝑟𝑡} and an empty set of edges, 𝐸 = 0/ . 

An iteration of RRT* begins with SampleFree, where a random node in free space is returned 
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(image 1). RRT* then proceeds to extend from the nearest vertex in the search tree toward 𝑧𝑟𝑎𝑛𝑑 

using Steer (image 2). If the path is collision free, the point in the space that Steer reaches is 

dubbed 𝑧𝑛𝑒𝑤 and added to the search tree with parent 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 (image 3). Next the near vertices to 

𝑧𝑛𝑒𝑤 are found using NearVertices (image 4). A connection is attempted from each near vertex 

in the tree to 𝑧𝑛𝑒𝑤, and the connection that results in the lowest cumulative cost to arrive at 𝑧𝑛𝑒𝑤 

is kept (image 5 and 6). Finally a connection is attempted from 𝑧𝑛𝑒𝑤 to each 𝑧𝑛𝑒𝑎𝑟 and 𝑧𝑛𝑒𝑤 is 

made the parent to each 𝑧𝑛𝑒𝑎𝑟 for which the cumulative cost of the path through 𝑧𝑛𝑒𝑤 is lower 

than the cost of the current path to 𝑧𝑛𝑒𝑎𝑟 (image 7 and 8). This ends one iteration of RRT*. 

Iterations of the algorithm repeat as computation time allows. 

 



19 

 

 
Figure 2-8 RRT* procedure 

2.2.3.3 Extensions 

 Karaman and Frazzoli were the first to extend RRT* to handle differential constraints16. 

In their work they provide a set of sufficient conditions to guarantee asymptotic optimality of 

RRT* for systems with differential constraints. Webb and Berg extend RRT* by using a fixed-

final-state-free-final-time controller that exactly and optimally connects any pair of states for 

systems with linear differential constraints25. This Kinodynamic RRT* algorithm differs from the 

original RRT* presented above primarily in its steering function. While RRT* only extends in the 
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direction of the randomly sampled state 𝑧𝑟𝑎𝑛𝑑, Kinodynamic RRT* steers exactly to 𝑧𝑟𝑎𝑛𝑑 using 

an optimal controller. In addition, Kinodynamic RRT* attempts a connection from 𝑧𝑛𝑒𝑤 to 𝑧𝑔𝑜𝑎𝑙 

at every iteration if a collision free connection has already been made to 𝑧𝑛𝑒𝑤. Finally, Goretkin 

et. al. 11 modified RRT* to use LQR control to connect vertices in the search tree, and adds time 

to the search space in which the tree grows. This means that connections can only be made when 

𝑧𝑖+1 is located at a time greater than 𝑧𝑖, but also improves near vertex calculations. Additionally 

these authors provided conditions for optimality when state-time is added to the search space. 

2.3 CMA-ES 

In the world of optimization, Evolutionary Algorithms (EAs) excel where exhaustive and 

deterministic search are infeasible, and naïve random search takes too long1. An evolutionary 

algorithm begins with an initial random population, which is also called the first generation. Each 

generation, the fitness or cost of each member of the generation is evaluated and sorted. The 

algorithm then searches the decision space in the next generation probabilistically based on the 

performance of members of the previous generation, mimicking biological evolution, as seen in 

Figure 2-9. This procedure leads to an algorithm that can perform a global search on a wide 

variety of objective functions. 

Figure 2-9 will be referred to throughout this section as a good visual representation of 

how the CMA-ES equations adapt search over several generations. In the figure, the bright white 

circle is the global optimum and the concentric circles represent lines of constant cost. The black 

dots represent candidate solutions, and the orange circle represents the search distribution. In 

generation one, search begins in an infeasible region of the space, however there are some lower 

cost outliers which direct search in generation two. Through the generations, the covariance and 
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the mean of the search distribution update to increase the likelihood of previous low cost 

solutions, until the distribution converges onto the global optimum. 

CMA-ES is a stochastic method for real-parameter optimization of non-linear, non-

convex functions14. It is an adaptive evolutionary strategy that chooses, according to a 

multivariate normal distribution, new search points. 

 

Figure 2-9 CMA-ES evolution over six generations (Wikimedia Commons) 
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2.3.1 Theory 

There are three main components of CMA-ES that govern search. They are the search 

mean, covariance, and step size. Each are adapted according to the equations presented in Section 

2.3.2. The following sections will discuss in more detail the significance of these parameters, 

however a full treatment can be found in [12], [13], and [14]. 

2.3.1.1 Mean Update 

The first component of candidate solution selection in Eq. 8 is the mean of the search 

distribution. The mean update can be seen in Figure 2-9 by looking at the change in the location 

of the center of the orange search ellipse. The adaptation of the mean of the search takes the 

characteristics of the most traditional evolutionary strategy. Within the mean adaptation, Eq. 9, 

selection and recombination occurs. Selection is where the algorithm chooses the individuals with 

the best fitness from each generation to become the parents of the next generation. 

Recombination is where the algorithm uses the parent solutions to create candidate solutions for 

the next generation. CMA-ES uses non-elitist selection and truncation selection. Non-elitist 

selection means the next generation does not explicitly contain members from the previous 

generation. Truncation selection means that only a percentage of the highest fitness solutions 

from a generation is used to determine the search criteria for the next generation. In Eq. 9, 

selection occurs by taking 𝜇 < 𝜆 solutions for recombination, and recombination occurs as a 

weighted sum of the 𝜇 individuals, where 𝜆 is the number of candidate solutions from the 

previous generation13.  
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2.3.1.2 Covariance Update 

The second component of the candidate solution selection in Eq. 8 is the product of the 

step size, or standard deviation, and a multivariate normal distribution with zero mean and 

covariance matrix C. This covariance matrix determines the search distribution, and the desire is 

to adapt the covariance matrix so search is directed along the contour lines of the objective 

function to be minimized13. The covariance update can be seen in Figure 2-9 by looking at the 

change in shape of the orange search ellipse. There are two main components to the covariance 

matrix update in Eq. 15, the rank-µ update (Eq. 6) and the rank-one update (Eq. 7). 

 𝑪
(𝑔+1)

= (1 − 𝑐𝜇)𝑪
(𝑔)

+ 𝑐𝜇 ∑ 𝑤𝑖𝑦𝑖:𝜆
(𝑔+1)

(𝑦𝑖:𝜆
(𝑔+1)

)
𝑇

𝜇
𝑖=1  (6) 

 

 𝑪
(𝑔+1)

= (1 − 𝑐1)𝑪
(𝑔)

+ 𝑐1𝑝⃗𝑐
(𝑔+1)

𝑝𝑐
(𝑔+1)𝑇

 (7) 

 

The rank-µ update uses the information within the population of the current generation to 

estimate the distribution of successful steps, or steps in which lower cost solutions are found13. 

The information from the current generation is balanced with information from the previous 

generations with 𝑐𝜇 ≤ 1. The rank-µ update is most effective with large population sizes because 

there are enough candidate solutions in each generation for a good approximation of the 

distribution of the generation’s successful steps. 

The rank-one update utilizes the evolution path to estimate the distribution of successful 

steps13. The evolution path is the sequence of steps the evolutionary strategy takes over some 

number of generations. Essentially, rank-one update uses cumulative information over a number 

of generations to direct search. The evolution path at generation g is described by Eq. 14. This 

evolution path is able to capture and exploit the correlations between consecutive steps, 

improving search capabilities when the population size is small and cannot give a good 

approximation of successful steps in a single generation. 
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2.3.1.3 Step Size Update 

The step size or standard deviation, 𝜎, is the final component of the selection in Eq. 8. It 

directs how quickly the search distribution can travel to promising areas of the search space.  The 

step size update can be seen Figure 2-9 by looking at the distance between search means from one 

generation to the next. Although the adaptation of the covariance matrix will inherently change 

the step size of the search, this change occurs too slowly for good step length adaptation13. Step 

size, like the rank-one covariance matrix, is updated based on the evolution path. If the evolution 

path is larger than expected, that means the individual search steps are proceeding in the same 

direction and the step size should be increased to move to the promising search area quicker. If 

the evolution path is shorter than expected, this means that single steps are cancelling each other 

out and step-size should be shortened. If the evolution path is the expected length, this means the 

single steps are uncorrelated, which is the desired result13. 

 The problem is that the evolution path 𝑝𝑐’s length depends on its direction, so instead 

CMA-ES utilizes the conjugate of the evolution path, Eq. 12, who’s length is independent of its 

length13. The length of 𝑝𝜎 is compared to its expected length, 𝐸‖𝒩(0, 𝑰)‖ 13, and the step-size 

procedure is followed in Eq. 13. 

2.3.2 Algorithm 

CMA-ES searches the space by choosing new search points according to a multivariate 

normal distribution, shown in Eq. 8.  

 𝑥⃗𝑘
(𝑔+1)

 ~ 𝑚⃗⃗⃗(𝑔) + 𝜎(𝑔)𝒩(0⃗⃗, 𝑪(𝑔))     for 𝑘 = 1,… , 𝜆 (8) 

 

where 𝒩(𝟎, 𝑪(𝑔)) is a multivariate normal distribution with zero mean and covariance matrix 

𝑪(𝑔), 𝜆 is the child population size, or the search population. The mean vector 𝑚⃗⃗⃗⃗
(𝑔)

 ∈  ℝ𝑛 is the 
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mean value of the search distribution at generation g, where n is the number of decision variables. 

The step size 𝜎(𝑔) 𝜖 ℝ+ is the overall standard deviation at generation g. Finally 𝑪(𝑔)𝜖 ℝ𝑛 x 𝑛 is 

the covariance matrix which determines the shape of the distribution ellipsoid14. 

After a new population is created, the mean vector is updated according to Eq. 9 and Eq. 

10. This new mean is a weighted average of 𝜇 selected points. 𝜇 ≤ 𝜆 is the parent population size. 

The parent population consists of the top 𝜇 fitness evaluated members of the child population. 

𝜇𝑒𝑓𝑓 is referred to as the variance effective selection mass, and is used frequently in the following 

equations. 

             𝑚⃗⃗⃗(𝑔+1) = ∑ 𝑤𝑖𝑥⃗𝑖:𝜆
(𝑔+1)𝜇

𝑖+1  (9) 

 

 ∑ 𝑤𝑖 = 1,           𝑤1 ≥ 𝑤2 ≥
𝜇
𝑖=1 … ≥ 𝑤𝜇 > 0 (10) 

 

 𝜇𝑒𝑓𝑓 = (∑ 𝑤𝑖
2𝜇

𝑖=1 )
−1

 (11) 

 

Here, 𝑤𝑖=1…𝜇 is a positive real weight coefficient for recombination. 𝑥⃗⃗⃗𝑖:𝜆
(𝑔+1)

is the i-th best ranked 

individual from the parent population. The step size is updated dynamically according to Eq. 12 

and Eq. 13. 

 𝑝𝜎
(𝑔+1)

= (1 − 𝑐𝜎)𝑝𝜎
(𝑔)

+ √𝑐𝜎(2 − 𝑐𝜎)𝜇𝑒𝑓𝑓 (𝑪
(𝑔)−

1

2) (
𝒎⃗⃗⃗⃗(𝑔+1)−𝒎⃗⃗⃗⃗(𝑔)

𝜎(𝑔) ) (12) 

 

 𝜎(𝑔+1) = 𝜎(𝑔)exp(
𝐶𝜎

𝑑𝜎
(

‖𝑷⃗⃗⃗𝜎
(𝑔+1)

‖

𝐸‖𝒩(0,𝑰)‖
) − 1) (13) 

 

The Covariance Matrix is updated dynamically according to Eq. 14 and Eq. 15. 

 𝑝𝑐
(𝑔+1)

= (1 − 𝑐𝑐)𝑝𝑐
(𝑔)

+ √𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓  (
𝑚⃗⃗⃗⃗(𝑔+1)−𝑚⃗⃗⃗⃗(𝑔)

𝜎(𝑔) ) (14) 

 

 𝑪
(𝑔+1)

= (1 − 𝑐1 − 𝑐𝜇)𝑪
(𝑔)

+ 𝑐1𝑝𝑐
(𝑔+1)

𝑝⃗𝑐
(𝑔+1)𝑇

+ 𝑐𝜇 ∑ 𝑤𝑖𝑦𝑖:𝜆
(𝑔+1)

(𝑦𝑖:𝜆
(𝑔+1)

)
𝑇

𝜇
𝑖=1  (15) 

 

 𝑦𝑖:𝜆
(𝑔+1)

=
(𝑥𝑖:𝜆

(𝑔+1)
−𝑚⃗⃗⃗⃗(𝑔))

𝜎(𝑔)  (16) 
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There are additional default strategy parameters that govern the above adaptations. They can be 

found in Appendix A. 

2.4 The Hill-Clohessy-Wiltshire Equations 

The planner developed in this thesis is proposed for missions where a chase vehicle is 

navigating in close proximity to a target vehicle in a circular orbit. The Hill-Clohessy-Wiltshire 

(HCW) Equations govern the dynamics of this system5. These equations are a linearized version 

of the non-linear equations governing relative motion in orbit and have a closed form solution. 

Thus the HCW equations lend themselves well to implementation within RRT*’s steering 

function. The development of these equations will follow the methodology put forward by Curtis 

in [6]. 

2.4.1 Nonlinear Equations 

Prior to developing the equations of motion for this system, a frame of reference must be 

developed. With the origin at the target spacecraft, 𝑖 ̂in the radial direction, 𝑗̂ in the in-track 

direction of the orbit, and 𝑘̂ normal to the orbital plane, this frame is seen in Figure 2-10. Here 𝑣𝑡 

is the target vehicle and frame origin, 𝑣𝑐 is the chase vehicle, 𝑟𝑡 is the orbital position of the target 

vehicle, 𝑟𝑐 is the orbital position of the chase vehicle and 𝛿𝑟 is the position of the chase vehicle 

relative to the target vehicle. 
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Figure 2-10 HCW reference frame [6] 

 

 

 Given the above notation, it is easy to see 

 𝑟⃗𝑐 = 𝑟⃗𝑡 + 𝛿𝑟⃗ (17)  

 

where 

 𝛿𝑟 = 𝛿𝑥𝑖̂ + 𝛿𝑦𝑗̂ + 𝛿𝑧𝑘̂ (18) 

 

 

For the systems addressed in this thesis and in the HCW Equations, in Eq. 17 the magnitude of 𝛿𝑟 

is much smaller than 𝑟⃗𝑡, or   

 
𝛿𝑟

𝑟𝑡
≪ 1 (19) 

 

where 𝛿𝑟 = ‖𝛿𝑟‖, and 𝑟𝑡 = ‖𝑟⃗𝑡‖. Treating the system of the Earth and a satellite as a two-body 

system, we have the equations of motion of an Earth orbiting satellite in the inertial geocentric 

equatorial frame given by  

 𝑟̈⃗ = −𝜇
𝑟⃗

𝑟3
 (20) 

 

where 𝑟 = ‖𝑟‖. To obtain the nonlinear equations of motion of 𝑣𝑐 relative to 𝑣𝑡,  Equation 17 is 

substituted into Eq. 20, to obtain Eq. 21, where 𝑟𝑐 = ‖𝑟⃗𝑐‖ = ‖𝑟⃗𝑡 + 𝛿𝑟⃗‖. 
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 𝛿𝑟̈ = −𝑟̈𝑡 − 𝜇
𝑟𝑡+𝛿𝑟

𝑟𝑐
3  (21) 

2.4.2 Linearization 

Linearization of Eq. 21 occurs through use of Eq. 19. The goal is to remove the nonlinear 

term 𝑟𝑐
−3. This is done in [6] by utilizing Eq. 19 and the fact that any term with  

𝛿𝑟

𝑟𝑡
 raised to a 

power greater than one goes to zero. The linearized equations of motion governing a chaser with 

respect to a target are then given in Eq. 22.  

 𝛿𝑟̈ = −
𝜇

𝑟𝑡
3 [𝛿𝑟 −

3

𝑟𝑡
2 (𝑟𝑡 ∙ 𝛿𝑟)𝑟𝑡] (22) 

 

The linearized equations of motions in the frame presented in Figure 2-10 are as follows 

 𝛿𝑥̈ − (
2𝜇

𝑟𝑡
3 +

ℎ2

𝑟𝑡
4) 𝛿𝑥 +

2(𝑟̇𝑡∙𝑟𝑡)ℎ

𝑟𝑡
4 𝛿𝑦 − 2

ℎ

𝑟𝑡
2 𝛿𝑦̇ = 0 (23) 

 

 𝛿𝑦̈ + (
𝜇

𝑟𝑡
3 −

ℎ2

𝑟𝑡
4) 𝛿𝑦 −

2(𝑟̇𝑡∙𝑟𝑡)ℎ

𝑟𝑡
4 𝛿𝑥 + 2

ℎ

𝑟𝑡
2 𝛿𝑥̇ = 0 (24) 

 

 𝛿𝑧̈ +
𝜇

𝑅3 𝛿𝑧 = 0 (25) 

 

where ℎ = ‖𝑟𝑡⃗⃗ ⃗ × 𝑟𝑡⃗⃗ ⃗̇‖. A complete derivation of these equations can be found in [6]. 

2.4.3 HCW Equations 

Hill and Clohessy took Eqs. 23-25 and applied them to a system with a target vehicle in a 

circular orbit. In this case, 𝑟̇𝑡 ∙ 𝑟𝑡 = 0, ℎ = √𝜇𝑟𝑡, and the mean motion of the orbit, 𝑛 = √
𝜇

𝑟𝑡
3. 

Making these substitutions results in the Hill-Clohessy-Wiltshire Equations, 

 𝛿𝑥̈ − 3𝑛2𝛿𝑥 − 2𝑛𝛿𝑦̇ = 0 (26) 

 

 𝛿𝑦̈ + 2𝑛𝛿𝑥̇ = 0 (27) 

 

 𝛿𝑧̈ + 𝑛2𝛿𝑧 = 0 (28) 
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The HCW equations exhibit a closed form solution which is fully developed in [6] by 

solving the above differential equations with initial conditions 

𝛿𝑥(0) = 𝛿𝑥0, 𝛿𝑦(0) = 𝛿𝑦0, 𝛿𝑧(0) = 𝛿𝑧0 

  𝛿𝑥̇(0) = 𝛿𝑥̇0, 𝛿𝑦̇(0) = 𝛿𝑦̇0, 𝛿𝑧̇(0) = 𝛿𝑧̇0 (29) 

 

The solution to the HCW equation is as follows, letting 𝛿𝑥̇ = 𝛿𝑢, 𝛿𝑦̇ = 𝛿𝑣, and 𝛿𝑧̇ = 𝛿𝑤, and 

transitioning to matrix form where 

 {𝛿𝑟} = {
𝛿𝑥
𝛿𝑦
𝛿𝑧

} , {𝛿𝑣⃗} = {
𝛿𝑢
𝛿𝑣
𝛿𝑤

}   (30) 

 

 {𝛿𝑟(𝑡)} = [𝚽𝑟𝑟(𝑡)]{𝛿𝑟0} + [𝚽𝑟𝑣(𝑡)]{𝛿𝑣⃗0} (31) 

 

 {𝛿𝑣⃗(𝑡)} = [𝚽𝑣𝑟(𝑡)]{𝛿𝑟0} + [𝚽𝑣𝑣(𝑡)]{𝛿𝑣⃗0} (32) 

 

The matrices that appear in the compact form of the HCW equations are as follows 

 𝚽𝑟𝑟(𝑡) = [
4 − 3 cos 𝑛𝑡 0 0

6(sin𝑛𝑡 − 𝑛𝑡) 1 0
0 0 cos 𝑛𝑡

] (33) 

 

 𝚽𝑟𝑣(𝑡) =

[
 
 
 
 

1

𝑛
sin 𝑛𝑡

2

𝑛
(1 − cos 𝑛𝑡) 0

2

𝑛
(cos 𝑛𝑡 − 1)

1

𝑛
(4sin𝑛𝑡 − 3𝑛𝑡) 0

0 0
1

𝑛
sin𝑛𝑡]

 
 
 
 

 (34) 

 

 𝚽𝑣𝑟(𝑡) = [
3𝑛 sin𝑛𝑡 0 0

6𝑛(cos 𝑛𝑡 − 1) 0 0
0 0 −𝑛 sin𝑛𝑡

] (35) 

 

 𝚽𝑣𝑣(𝑡) = [
cos 𝑛𝑡 2 sin𝑛𝑡 0

−2 sin𝑛𝑡 4 cos𝑛𝑡 − 3 0
0 0 cos 𝑛𝑡

] (36) 

 

Given a travel time, t, an initial chase vehicle state, 𝛿𝑥⃗0, and final vehicle chase vehicle 

state, 𝛿𝑥⃗𝑓 = 𝛿𝑥⃗(𝑡), Eqs. 31 and 32 will be used to determine the changes in velocity required to 

travel exactly between 𝛿𝑥⃗0 and 𝛿𝑥⃗𝑓 in time t. 
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The components of the hybrid algorithm developed in this thesis have now been 

established. The next chapter will explain how the components are combined to solve the motion 

planning problem outlined in Section 2.1 in a novel and effective way. 
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Chapter 3 

 

The Hill-Clohessy-Wiltshire RRT* Evolutionary Strategy Algorithm 

The main contribution of this thesis is the combination of the algorithms described in 

Chapter 2 and their application to close proximity spacecraft motion planning. The algorithm is 

called HCW RRT*-ES and pseudocode for the algorithm is provided in Appendix C. At a high 

level the algorithm functions with RRT* as the main trajectory planner. Within RRT*, CMA-ES 

evaluates vertices previously explored by RRT* and directs search in promising directions in the 

space. The HCW equations are used within the steering function to determine the control input 

required to connect vertices in RRT* in a dynamically feasible way. For the remainder of this 

work, the hybrid HCW RRT*-ES algorithm will be referred to as RRT*-ES, while the HCW 

RRT* algorithm which does not use CMA-ES will simply be referred to as RRT*. 

To initialize the algorithm the user inputs the desired start and goal state of the vehicle, 

the bounds on the states, and the bounds on the control input, along with a vehicle model, thruster 

model, and obstacle model. 

3.1 RRT* Integration 

The RRT* portion of the hybrid algorithm acts as the main search framework. It 

investigates candidate trajectories and attempts to find the lowest cost trajectory from the start to 

the goal. The version of RRT* used in this work takes elements from [11] and [25], along with 

additions to specifically address the spacecraft relative motion problem. 

The algorithm plans in seven degrees of freedom, adding time to the state space as in 

[11]. The chase vehicle state takes the form  

 𝑥⃗ = [𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿𝑢 𝛿𝑣 𝛿𝑤 𝑡] 𝑇 (37) 
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The addition of time to the state space make the collision free cost calculation between states 

computationally efficient and accurate, which is a necessary condition for asymptotic optimality 

of the RRT* algorithm. A version of the algorithm without time in the state space was presented 

by the author in [8]. 

 The chase vehicle is assumed to have thrusters pointing in the positive and negative 𝑥, 𝑦, 

and 𝑧 directions of the vehicle body frame. The control input takes the form of the impulsive 

change in velocity, or Δ𝑉⃗⃗ required to connect two states in the time difference between the two 

states, according to the HCW equations. A control input takes the form 

 𝑢⃗⃗ = Δ𝑉⃗⃗ = [Δ𝑉𝛿𝑥 Δ𝑉𝛿𝑦 Δ𝑉𝛿𝑧]𝑇 (38) 

 

Currently the body frame of the inspection vehicle is assumed to be irrotational with respect to 

the HCW frame. This simplifies computation while still allowing for the planning of dynamically 

feasible paths. Theoretically, the Δ𝑉⃗⃗′𝑠 given by this algorithm could be mapped into any thruster 

configuration that exhibits full controllability in the δx, δy, and δz directions. 

Since states can be connected exactly using impulsive maneuvers based on the solution to 

the HCW equations, whenever a state is added to the search tree a connection is attempted 

between the new state and the goal state as in [25]. Figure 3-1 outlines the process for attempting 

to connect to the goal state as implemented in HCW RRT*-ES in visual form. Figure 3-1 begins 

in image 1 with an already developed tree, where a connection has been made from a tree vertex 

to the new node. A connection is attempted between the new node, now dubbed 𝑧𝑚 and the goal 

state in Figure 3-1, image 2. If this is the lowest cost connection to the goal, the new state is made 

the parent to the goal state. This is accomplished using the GoalConnect function.  

If the connection between the new state and the goal state is successful, but not the lowest 

cost connection to the goal, the connection and state are nonetheless stored in a goal parent 

structure (Figure 3-1, image 3). Whenever a rewire occurs, this goal structure is revisited. A 
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rewire has occurred Figure 3-1, image 4. Note that image 4 and 5 occur at some iteration after the 

iteration when where image 1, 2, and 3 occur. The goal structure revisit occurs within the 

GoalRewire function, and is necessary because a rewire could lower the cost of a previous found 

trajectory from start to goal. If a member of the goal parent structure is in fact a member of the 

lowest cost trajectory to the goal vertex after a rewire, it becomes the unique parent to the goal 

vertex (Figure 3-1, image 5).   
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Figure 3-1 GoalConnect and GoalRewire procedure 

3.2 CMA-ES Integration 

One of the main contributions of this work is the integration of the CMA-ES algorithm 

into RRT* to improve search characteristics. CMA-ES is implemented to act as a local optimizer, 

converging on low cost areas of the search tree to find the lowest cost node in a region. CMA-ES 



35 

 

based sampling replaces the random sampling of the standard RRT*, and adaptation of CMA-ES 

parameters occurs based on a separate adaptation procedure within the algorithm. 

3.2.1 CMA-ES Parameters 

The goal of the CMA-ES integration with RRT* is to exploit areas where RRT* finds 

low cost nodes. To achieve this goal, CMA-ES must quickly explore promising areas while 

allowing the hybrid algorithm to maintain strong search characteristics. Three parameters to the 

CMA-ES algorithm are set to encourage this behavior. They are the child population size, the 

initial step size, and the parent population size. 

To achieve local optimization, a small adaptation population is utilized. The use of a 

small child population size leads to fast convergence, and encourages convergence on local 

optima.14 This is the desired result in this work, but must be accounted for because an optimal 

trajectory may require multiple vertices. If convergence is not accounted for, the hybrid algorithm 

would only identify the trajectory containing the vertex that it first converges upon. To overcome 

pre-convergence and maintain search, when convergence occurs the CMA-ES parameters are 

reset to their original values. Convergence is detected by the step size, or standard deviation 

value, as well as the change in the search mean. 

The initial step size is set to be half the size of the search space, with all states scaled 

appropriately. This is a fairly large value for the initial step size, but it allows for a thorough 

search of the space each time CMA-ES is reset. Step size then adapts to optimize search, and 

eventually shrinks as CMA-ES converges. Once it reaches a small enough size, the step size is 

reset to its original value. If the step size becomes too small, and there has been no significant 

change in mean since the last adaptation, then all CMA-ES parameters reset to their original 

values. 
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The parent population is set to be only the top fitness individual of the previous 

generation. This is known as a (1,λ)-ES, where 1 is the parent population size, and λ is the child 

population size. It results in fast search that again tends toward pre-convergence, a trait that is 

actually desired in this work. Recall also that CMA-ES uses information from previous 

generations when performing covariance and step size updates, so evolution is not happening in a 

bubble each generation. This means a small parent population size can still result in a good search 

of the space. 

3.2.2 CMA-ES Population Requirements 

To perform the local optimization task that CMA-ES is enlisted for in this work, it 

requires a population of evaluated solutions. As the standard RRT* search occurs, the nodes that 

have been searched and their associated cost are added to the CMA-ES data structure, or 

population, under certain conditions. Note that the CMA-ES population is a separate data 

structure from the RRT* search tree, and is used only to evolve the selection criteria for candidate 

nodes. The criteria for a node to be added to the CMA-ES population are looser than the criteria 

for a node to be added to the RRT* search tree because even nodes that are infeasible under 

certain conditions still contain useful adaptation information. 

The CMA-ES population consists of the seven degree of freedom node states and an 

associated cost which determines the probability a future node will be chosen from a similar 

region in the space. A node is added to the population if it satisfies the following two conditions: 

1. The node is reachable with a feasible amount of thrust from a current vertex in the search 

tree. 

2. The goal is reachable with a feasible amount of thrust from the node. 
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If a node can satisfy both 1 and 2, and both of these connections are collision free, the node is 

added to the population with a cost equivalent to the cumulative cost to arrive at the node, plus 

the cost to reach the goal 

 𝑐𝐶𝑀𝐴𝐸𝑆(𝑧) = 𝐶𝑜𝑠𝑡(𝑧𝑝𝑎𝑟𝑒𝑛𝑡) + 𝑐 (𝑥𝑧𝑝𝑎𝑟𝑒𝑛𝑡,𝑧) + 𝑐(𝑥𝑧,𝑧𝑔𝑜𝑎𝑙
) (39) 

 

where 𝑧𝑝𝑎𝑟𝑒𝑛𝑡 is the parent vertex to 𝑧 in the search tree, 𝑥𝑧𝑝𝑎𝑟𝑒𝑛𝑡,𝑧 is the trajectory connecting 

𝑧𝑝𝑎𝑟𝑒𝑛𝑡 to 𝑧, and 𝑥𝑧,𝑧𝑔𝑜𝑎𝑙
 is the trajectory connecting 𝑧, to 𝑧𝑔𝑜𝑎𝑙. If a collision occurs during the 

execution of 1 or 2, the cost of the node in the population, calculated in Eq. 39, is doubled. If a 

node cannot satisfy both 1 and 2, it is not added to the adaptation population.  

3.3 HCW Steering Function 

 Within the RRT* algorithm, a steering function is required to determine the optimal 

connection trajectory between vertices. Due to the nature of the controller utilized in this effort, 

HCW RRT*-ES implements three variations of the basic steering function. HCWSteer is for 

standard connections, HCWSteerGoal is for connections to the goal, and HCWSteerRewire is for 

rewiring the tree’s connections. The steering functions in this effort utilize the impulsive ∆𝑉 

solution to the HCW equations. This method is computationally efficient for both trajectory 

computation and impingement prevention calculations. This method also adheres to the 

conditions for asymptotic optimality of RRT*.  

 In this section the HCWSteer function will be developed first, as it serves as a basis for the 

other two steering functions. This development is followed by the development of HCWSteerGoal 

and HCWSteerRewire. Then the impulsive ∆𝑉 is validated as accurate, and finally the steering 

functions will be shown to adhere to the requirements for asymptotic optimality. 
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3.3.1 HCWSteer Function 

The  HCWSteer functions implement the closed form solution of the HCW equations 

presented in Chapter 2. When HCWSteer is called inside of RRT* it takes in an initial vertex 𝑧𝑖, 

and a final vertex 𝑧𝑓 to be connected by a dynamically feasible trajectory. It then computes the 

impulsive ∆𝑉⃗⃗ maneuvers to move the vehicle exactly from the initial vertex to the final vertex. 

Recall that each vertex consists of the position, velocity, and a time when that vertex is visited. 

Thus, HCWSteer takes in: 

 𝑧𝑖 = [𝛿𝑥𝑖, 𝛿𝑦𝑖 , 𝛿𝑧𝑖 , 𝛿𝑢𝑖, 𝛿𝑣𝑖, 𝛿𝑤𝑖, 𝑡𝑖]
𝑇 (40) 

 𝑧𝑓 = [𝛿𝑥𝑓 , 𝛿𝑦𝑓 , 𝛿𝑧𝑓 , 𝛿𝑢𝑓 , 𝛿𝑣𝑓 , 𝛿𝑤𝑓 , 𝑡𝑓]
𝑇
 (41) 

 

Let 𝑟𝑖 and  𝑣⃗𝑖
− be the position and velocity components at 𝑧𝑖 respectively, and 𝑟𝑓 and  𝑣⃗𝑓

+  be the 

position and velocity components at 𝑧𝑓 respectively. Two impulsive ∆𝑉⃗⃗ maneuvers are required 

to transfer the vehicle from 𝑧𝑖 to 𝑧𝑓 in the time between the two states, ∆𝑡 = 𝑡𝑓 − 𝑡𝑖. To travel 

from 𝑟𝑖 to 𝑟𝑓 in time ∆𝑡, the required velocity at 𝑟𝑖 is given by  

 {𝑣⃗𝑖
+} = [𝚽𝑟𝑣(∆𝑡)]−1({𝑟𝑓} − [𝚽𝑟𝑟(∆𝑡)]{𝑟𝑖}) (42) 

 

which is a rearrangement of Eq. 31. The first ∆𝑉⃗⃗ which must be performed at 𝑟𝑖 is then given by 

 ∆𝑉⃗⃗𝑖 = 𝑣⃗𝑖
+ − 𝑣⃗𝑖

−  (43) 

 

The resultant velocity at 𝑟𝑓 is given by 

 {𝑣⃗𝑓
−} = [𝚽𝑣𝑟(∆𝑡)]{𝑟𝑖} + [𝚽𝑣𝑣(∆𝑡)]{𝑣⃗𝑖

+} (44) 

 

which is Eq. 32, using the syntax and variables developed in the current section. The second ∆𝑉⃗⃗ 

which must be performed at 𝑟𝑓 is then given by 

 ∆𝑉⃗⃗𝑖 = 𝑣⃗𝑓
+ − 𝑣⃗𝑓

−  (45) 
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Now the required control inputs are known given the two vertices which must be connected 

within RRT*, however there are some constraints on these control inputs. 

The first constraint is trivial, however must be addressed. Given that every vertex has 

time as part of its state, a vertex can only connect to a state which has a time that is greater than 

its own time.  

The other constraints are control input constraints on the vehicle. The thrusters of the 

chase spacecraft will only be capable of providing a finite amount of thrust, and therefore the 

amount of  ∆𝑉⃗⃗ which can be achieved at a given vertex is bound. The bound check equation is 

given for a connection between vertices  𝑧𝑖 and 𝑧𝑓 as 

 ∆𝑉⃗⃗𝑚𝑖𝑛 ≤ {∆𝑉⃗⃗𝑖
− + ∆𝑉⃗⃗𝑖⋀∆𝑉⃗⃗𝑓} ≤ ∆𝑉⃗⃗𝑚𝑎𝑥   (46) 

 

where ∆𝑉⃗⃗𝑖 and 𝑉⃗⃗𝑓 are as above, and ∆𝑉⃗⃗𝑖
− is the ∆𝑉⃗⃗𝑓 required to connect from 𝑧𝑖’s parent, to 𝑧𝑖. 

The impulsive maneuvers considered in the bound check are illustrated in Figure 3-2. ∆𝑉⃗⃗𝑖
− must 

be considered, because both ∆𝑉⃗⃗𝑖
− and ∆𝑉⃗⃗𝑖 occur at 𝑧𝑖 at time 𝑡𝑖. To maintain the accuracy of the 

impulsive approximation and the bounds, they must be considered as one impulsive maneuver.  

 

Figure 3-2 Control input bound considerations 
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If the above constraints hold true, then the steering function assigns a cost to the 

successful connection. The cost is given by  

 𝑐𝑜𝑠𝑡 =  ∆𝑡 + 𝑅|∆𝑉⃗⃗𝑖
− + ∆𝑉⃗⃗𝑖| (47) 

 

where R is a user defined scaling variable to balance the cost associated with time of flight versus 

propellant use. It should be noted that ∆𝑉⃗⃗𝑓 is not included in the cost function because it does not 

represent the entire maneuver occurring at 𝑧𝑓, following the reasoning given for the Bound Check 

Equation (Eq. 46) .  

 The HCWSteer function outputs the cost, time, and ∆𝑉′𝑠 required to travel between two 

vertices. If there is not a feasible connection between these two vertices, then the function returns 

infinity for the cost. 

3.3.1.1 HCWSteerGoal Function 

First, let 𝑧𝑔𝑜𝑎𝑙 be the goal node, and 𝑧𝑖 be the vertex in the search tree for which a 

connection to 𝑧𝑔𝑜𝑎𝑙 is attempted. Since one of the parameters that the algorithm is attempting to 

minimize is time of flight, the time to reach the goal node, 𝑡𝑔𝑜𝑎𝑙, is unknown a priori. This means 

the HCWSteerGoal function must also solve for the time of flight between 𝑧𝑖 and 𝑧𝑔𝑜𝑎𝑙 to 

minimize the cost function.  

The minimization occurs by iterating through the time of flight between 𝑧𝑖 and 𝑧𝑔𝑜𝑎𝑙. At 

each time of flight, the cost of the trajectory is calculated, and the lowest cost is tracked. The 

HCWSteerGoal function exits under two conditions:  

 𝑐𝑜𝑠𝑡∗ < ∆𝑡 (48) 

 OR 

 𝑡𝑔𝑜𝑎𝑙 > 𝑡𝑚𝑎𝑥 (49) 

 

 𝑡𝑔𝑜𝑎𝑙 = 𝑡𝑖 + ∆𝑡 (50) 
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In Eq. 48, 𝑐𝑜𝑠𝑡∗ is the lowest cost that has been found at the current iteration. This becomes an 

exit condition because by Eq. 47, 𝑐𝑜𝑠𝑡 > ∆𝑡 for all ∆𝑡. Termination of the algorithm at 𝑐𝑜𝑠𝑡∗ <

∆𝑡 ensures the global minimum cost and arrival time are found. The second condition in Eq. 49 

ensures that the time of flight from start to goal does not exceed the maximum time of flight set 

by the user. The remainder of HCWSteerGoal behaves the same as HCWSteer. 

3.3.1.2 HCWSteerRewire Function 

The third steering function is required for when rewires are attempted. A rewire is when a 

connection is attempted between two vertices which are already in the search tree (image 7 and 8 

of Figure 2-8). Although each vertex can only have a single parent, each vertex can be the parent 

to multiple child vertices. The consequence of this is that when a rewire occurs, 𝑧𝑓 could be the 

parent to one or more vertices, so the control input constraint check must be augmented for a 

bound check of ∆𝑉⃗⃗𝑓 in addition to ∆𝑉⃗⃗𝑖. The augmented control input constraint check becomes 

 ∆𝑉⃗⃗𝑚𝑖𝑛 ≤ {∆𝑉⃗⃗𝑖
− + ∆𝑉⃗⃗𝑖⋀∆𝑉⃗⃗𝑓 + ∆𝑉⃗⃗𝑓,𝑛

+ } ≤ ∆𝑉⃗⃗𝑚𝑎𝑥, 𝑓𝑜𝑟 𝑛 = 1: 𝑛𝑢𝑚_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑧𝑓) (51)   

 

where ∆𝑉⃗⃗𝑓,𝑛
+  is the ∆𝑉⃗⃗𝑖 required to traverse from 𝑧𝑓 to its 𝑛𝑡ℎ child vertex. Figure 3-3 illustrates a 

situation where this extra bound check is required. A rewire is being attempted from 𝑧𝑖 to 𝑧𝑓, 

however 𝑧𝑓 has two child vertices which have established ∆𝑉′𝑠 that must be considered in the 

bound check. 
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Figure 3-3 HCWSteerRewire control input bound considerations 

 

The remainder of the HCWSteerRewire function remains the same as in HCWSteer, 

including the cost function. Although the information exists after a rewire to more fully develop 

the cost of a trajectory between two vertices, to maintain consistency among all vertices in the 

search tree Eq. 47 is still used to assess the cost of a trajectory resulting from a rewire. 

3.3.2 Adherence to Optimality Conditions 

In [16], four conditions are presented for asymptotic optimality of the RRT* algorithm. 

The first condition is that the Steer function connects vertices in a locally optimal manner, and 

that the procedure to determine the near and nearest tree vertices to a new node, must compute the 

distance in a way that reflects the actual cost to traverse between the vertices and the node. These 

two conditions are satisfied based on the HCW-based impulsive control developed for this work. 
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For HCWSteer and HCWSteerRewire, the control allows for one solution, which is then inherently 

optimal. For HCWSteerGoal, the optimal trajectory is found using iterations over the time of flight 

to minimize the cost function, as was presented in a previous section. In addition, the procedure 

to determine the near and nearest tree vertices to a new node uses the HCWSteer function for its 

distance computation. It then naturally follows that these distances reflect the actual cost to travel 

from vertex to node. 

 The third requirement is that the system fulfills the Weakened Local Controllability 

condition, and the fourth requirement is that the system fulfills the 𝜖-Collision-Free Approximate 

Trajectories condition. These requirement are fulfilled for any controllable system whose state is 

not augmented by time.16 A vehicle whose dynamics are governed by the HCW equations is in 

fact controllable.  The HCW equations in state space form are given by: 

 A=

[
 
 
 
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3𝜇

𝑅3 0 0 0 2√
𝜇

𝑅3 0

0 0 0 −2√
𝜇

𝑅3 0 0

0 0
−𝜇

𝑅3 0 0 0]
 
 
 
 
 
 
 
 

 (52) 

 

 B=

[
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝑚
0 0

0
1

𝑚
0

0 0
1

𝑚]
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[
 
 
 
 
 
𝛿𝑥̇
𝛿𝑦̇
𝛿𝑧̇
𝛿𝑥̈
𝛿𝑦̈
𝛿𝑧̈]

 
 
 
 
 

= 𝐴

[
 
 
 
 
 
𝛿𝑥
𝛿𝑦
𝛿𝑧
𝛿𝑥̇
𝛿𝑦̇
𝛿𝑧̇]

 
 
 
 
 

+ 𝐵 [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] (54) 

 

with controllability matrix given by: 
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 𝐶 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵 𝐴4𝐵 𝐴5𝐵] (55) 

 

The system is controllable if the matrix C has full row rank. For the case of the HCW equations, 

C has a rank of 6, so the HCW equations are indeed controllable. It then follows that the control 

scheme developed in this work, which uses the solution to the HCW equations also results in a 

controllable system. 

However, the fact that the state of the vehicle in this work is augmented by time must be 

considered. Goretkin et. al. extend the above conditions to a system where the state of the vehicle 

is augmented by time in [11]. Therefore, RRT* asymptotic optimality holds for the dynamic 

system in this work. 

3.3.3 Impulsive Maneuver Accuracy 

The final portion of the steering functions to be addressed is the accuracy of the 

impulsive maneuver approximation. The impulsive approximation is often used for planning 

rendezvous maneuvers, but often these maneuvers occur at greater vehicle separation distances 

than in the current work. Since separation distance is fairly small in this work, inaccuracies in the 

impulsive maneuver approximation could directly correlate to collisions when the chase vehicle is 

attempting to execute its planned trajectory. 

The upper bound of the difference between the velocity change for an impulsive 

maneuver, and the velocity change brought on by a thrust over some finite time is given in [23] as 

 ∆𝑉𝑓 − ∆𝑉𝐼 ≤
1

24
(𝜔∆𝑡)2∆𝑉𝐼 (56) 

 

where ∆𝑉𝑓 is the velocity change that occurs for a thruster fired over a finite time ∆𝑡, 𝜔 is the 

Schuler frequency (√𝜇 𝑟3⁄ ), and ∆𝑉𝐼 is the impulsive velocity change approximation. For a 

given ∆𝑡, the maximum finite ∆𝑉 is given by 
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 ∆𝑉𝑚𝑎𝑥 = (
𝑇ℎ𝑟𝑢𝑠𝑡𝑚𝑎𝑥

𝑚
)∆𝑡 (57) 

 

where 𝑚 is the mass of the spacecraft. In Eq. 56, ∆𝑉𝑚𝑎𝑥 is substituted for ∆𝑉𝐼 on the right side of 

the equation to give the error bound.  

3.4 Impingement Prevention 

Impingement prevention is a key component to the motion planning algorithm developed 

in this thesis. For a trajectory to be free of rocket plume impingement: 

 𝐿𝑖 = {𝑥⃗(𝑡) +  𝑠(𝑥⃗(𝑡) + 𝑃𝑖𝑢𝑖(𝑡) | 𝑠 ∈ [0,1])} ∈ 𝑋𝑓𝑟𝑒𝑒 (58) 

 

where 𝐿𝑖 is the line segment extending from the position of the vehicle at the time of an impulsive 

maneuver, to a point a distance away from the position of vehicle proportional to the control input 

in the direction of the control input, and 𝑃𝑖 scales the thrust plume length according to the 

thruster’s characteristics. As an example, if the vehicle is at point (1,1,1) and a ∆𝑉 is applied so as 

to increase the vehicle’s velocity in the positive x direction, L would be the line segment from 

(1,1,1) to (1+P∆𝑉,1,1) where 1+P∆𝑉 will be less than 1. If the user desires to have thruster 

impingement taken into consideration, the test for impingement is called whenever a collision 

check is called. If an impingement occurs, the maneuver is considered to be infeasible, just as if a 

collision occurs. 

Chapter 4 presents simulation which are used to analyze the effectiveness of the 

algorithm developed in this work. The new RRT*-ES algorithm is compared with RRT*, and 

algorithmic capabilities are assessed. 
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Chapter 4 

 

Simulations 

Trial runs with various algorithm parameter settings were performed to validate the 

algorithm’s functionality. The simulations were all performed in MATLAB on Penn State’s 

LionX computing clusters. These clusters consist of Intel Xeon X5675 Six-Core 3.06 GHz 

processers. The MATLAB code structure, collision detection algorithm, and plotting functions in 

this work are based on the RRT MATLAB code in [10].  

4.1 International Space Station Model 

The hybrid algorithm developed in Chapter 3 is applicable to a free-flying spacecraft 

navigating with respect to a reference object or spacecraft in a circular orbit about a central body. 

For the purpose of experimentation, the International Space Station was used as the target 

spacecraft. The ISS not only offers a challenging obstacle environment for the motion planner, 

but ISS operations would also benefit from the capabilities of an autonomous inspection vehicle. 

For experimentation, a full-scale simplified model of the ISS was created in MATLAB. 

The model is composed of rectangular planes which represent most of the Station’s modules and 

features, as shown in Figure 4-1. Although details are missing, this model provides a structure 

complicated enough for rigorous algorithm testing. In addition the ISS’s natural frequency of 

0.0011 rad/s is used in the equations of motion. 
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Figure 4-1 ISS MATLAB model 

4.2 Free-Flying Vehicle Model 

The free-flying vehicle model implemented in these experiments takes its physical 

parameters from NASA’s mini AERCam9 and SPHERES4 projects. The thruster configuration is 

displayed in Figure 4-2. This configuration gives two thrusters pointing in the positive and 

negative x, y, and z directions respectively. Given this thruster configuration, the vehicle will be 

capable of achieving the trajectories planned by the motion planning algorithm developed in 

Chapter 3. Each thruster is modeled as having a maximum thrust of 0.18 N, giving a maximum 

thrust of 0.36 N in each direction. Finally, the vehicle is modeled as a point mass of 4.5 kg. The 

point mass model is appropriate for motion planning because obstacles can simply be expanded 

so as to account for the size of the free-flying vehicle. 
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Figure 4-2 Vehicle thruster configuration [2] 

 

Now with the vehicle and thruster model established, the error introduced into the motion 

planning algorithm by the impulsive maneuver approximation can be analyzed. Recalling Eq. 56 

and Eq. 57, the vehicle mass, and the vehicle’s maximum thrust, a maximum finite thruster firing 

time of 10 seconds per maneuver is allowed in these experiments. The maximum ∆𝑉 with these 

parameters as given by Eq. 57 is 0.8 m/s. The maximum impulsive ∆𝑉 error is then computed to 

be 4.0333x10-4 m/s, which is 0.05% of the maximum ∆𝑉 and therefore deemed an appropriate 

approximation. However, the maximum thruster fire time was chosen somewhat arbitrarily in this 

work and further analysis should be performed to find the acceptable error region. If a higher 

error is acceptable, it would allow for a higher maximum ∆𝑉 and more maneuver intensive 

trajectories. 

4.3 Experimental Setup 

The experiments were run on the LionX Linux computing clusters at Penn State. Due to 

the stochastic nature of the algorithm, multiple runs had to be performed for each parameter 

setting to confirm algorithm characteristics. For each parameter setting, the algorithm was run 11 
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times for a set number of iterations. Each group of 11 runs with the same parameter settings will 

be referred to as a set of runs. 

Three algorithm characteristics were experimented with during these runs. They were 

impingement prevention, the propellant vs. time scale factor, and the use of RRT* or RRT*-ES. 

When impingement prevention is turned off, any thruster impingement is ignored. This setting 

would be acceptable for systems with cold-gas thrusters, or other thrusters which do not use a 

volatile propellant. The propellant vs. time scale factor determines how much importance the 

planner puts on propellant use and time of flight in the optimization procedure. This parameter 

was set to either heavily weight propellant use, or heavily weight time of flight. If the mission 

being planned is time critical, the user may heavily weight time of flight, however if the mission 

requires the inspection of many areas of the target spacecraft, the user may heavily weight 

propellant use. Finally, either the RRT* or RRT*-ES algorithm was used for planning. This was 

done so as to enable an analysis of the effectiveness of the CMA-ES local optimizer in the hybrid 

algorithm.  

 All parameter combinations were used to plan a mission in proximity to the International 

Space Station. The parameter combinations were used for three different start and goal 

combinations. The start and goal state combinations can be found in Table 4-1, from here referred 

to as simulations A, B, and C. Simulation A was run for 5,000 iterations, while simulation B and C 

were run for 10,000 iterations. Each combination is shown in Figure 4-3, Figure 4-4, and Figure 

4-5 respectively, where the start state is depicted as a red circle and the goal state is depicted as a 

blue circle. Time is not included in Table 4-1, but the first state always starts at a time of 0, and 

the goal state time is a variable as discussed in Chapter 3. The start and goal states were chosen to 

mimic realistic planning situations, as well as to challenge the planner, particularly with 

impingement prevention. 
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Table 4-1. Simulation start and goal states 

Simulation  x (m) y (m) z (m) u (m/s) v (m/s) w (m/s) 

A 

Start 0 14.85 13.7 0 0 0 

Goal 1.8 -1.8 49 0 0 0 

B 

Start 0 14.85 13.7 0 0 0 

Goal 0 -14.8 19.3 0 0 0 

C 

Start 1.8 -1.8 49 0 0 0 

Goal -1.8 -1.8 -49 0 0 0 

 

 

Figure 4-3 Goal and start state combination A 

Start 

Goal 
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Figure 4-4 Goal and start state combination B 

 

 

Figure 4-5 Goal and start state combination C 

  

Start 

Goal 

Start 

Goal 
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 The bounds used for each start and goal combination can be found in Table 4-2. These 

bounds were developed with several considerations in mind. First, given the non-intuitive nature 

of the dynamics of the system considered in this work, the size and direction of the optimal 

trajectory is difficult to predict. However, bounds must exist for efficient search to occur. For 

these reason, the position bounds were made to be fairly large, and roughly centered at the 

midway point of the line between the start and goal points.  The velocity bounds were set so as to 

reduce the risk of high speed impact with the target spacecraft if any of the inspection vehicle’s 

systems fail. Finally, a maximum time of flight between the start and the goal state is set based on 

user preferences for the flight characteristics. It allows the user to weight the cost function so as 

to minimize propellant use, but do so with some time limit for the flight. In this work it was set to 

1000 seconds after experimentation showed the trajectories found by the planner had times of 

flight less than 1000 seconds. 

Table 4-2. Simulation bounds 

Simulation  x 

(m) 

y 

(m) 

z 

(m) 

u 

(m/s) 

v 

(m/s) 

w 

(m/s) 

t  

(s) 

A 

Minimum -40 -40 -10 -1 -1 -1 0 

Maximum 40 50 70 1 1 1 1000 

B 

Minimum -40 -40 -50 -1 -1 -1 0 

Maximum 40 50 70 1 1 1 1000 

C 

Minimum -50 -50 -70 -1 -1 -1 0 

Maximum 50 50 70 1 1 1 1000 
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 As presented in Section 2.2.3, a scaling factor 𝛾 is required within RRT*’s 

NearVertices function. It is required to scale the radius of the “ball” for which connections are 

attempted between a given state and tree vertices. The 𝛾’s for simulations in this work were 

determined experimentally. Short simulations were performed where the average connection cost 

between vertices was determined for a particular Propellant vs. Time Scale Factor. The 

NearVertices scale factor was then chosen in an attempt to achieve 15 to 20 connection attempts 

per iteration. 

 The NearVertices scale factors are presented in Table 4-3. The 𝛾’s were required to be 

different for each Propellant vs. Time scale factor because the Propellant vs. Time scale factor 

greatly influences the cost to travel between nodes. Recalling that the proximity of nodes is 

determined by the cost to travel between them, it follows then that the NearVertices scale factor 

must change when the Propellant vs. Time scale factor changes. 

Table 4-3. NearVertices scale factors 

Simulation Prop. vs. Time Scale Factor 

1,000 

Prop vs. Time Scale Factor 

10,000 

A 3,000 30,000 

B 3,000 30,000 

C 4,000 40,000 

 

 The final set of parameters are for the CMA-ES adaptation. The general requirements for 

these parameters were specified in Section 3.2.1. The parameters for the simulations performed in 

this work were chosen after brief experimentation, and with an understanding of the underlying 

functionality of CMA-ES. The child, or adaptation, population was set to 10 to encourage quick 
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search. The parent population was set to 1 to encourage quick search and convergence. As stated 

in Section 3.2.1, the initial step size, or standard deviation, was set to be half the size of the search 

space to help encourage thorough search. The initial mean was set to be the mean of the search 

space bounds for each simulation. The initial covariance was set to be a diagonal matrix of ones, 

with the covariance for the velocities scaled appropriately. Finally step size reset was set to occur 

at a step size less than 5, and complete reset was set to occur at a step size less than 5  and 

difference in population mean less than 10. 

 This experimentation does not provide for an exhaustive parameter analysis, but does 

allow for some conclusions on how the parameters impact the results. Chapter 5 presents the 

experimental results and discusses their implications toward autonomous flight in the vicinity of 

complex space structures. 
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Chapter 5 

Results and Discussion 

The experimentation performed for this thesis demonstrates the trade-offs between the 

RRT* algorithm and the RRT*-ES algorithm, as well as the effect of the parameters outlined in 

Chapter 4. The results are presented as averages over each set of runs, along with confidence 

intervals. The confidence intervals presented are the 95% confidence interval over a normal 

distribution. These confidence intervals are required for proper analysis due to the stochastic 

nature of the algorithms. In addition Multifactor Analysis of Variance and Tukey’s procedure 

were applied to the run data to obtain insight into the effect of a single parameter on algorithmic 

properties. These statistical methods were taken from [7], and implemented via the MATLAB 

functions “anovan,” and “multcompare.” 

In the following sections, graphical results are presented first to help demonstrate the 

general behavior of the algorithm when operating with different parameter combinations. Then 

the trajectory cost, convergence index, ∆𝑉 requirements, time of flight, and computational run 

time of the algorithms are compared. Comparisons are made between all parameter combinations, 

and conclusions on the effectiveness of the algorithms are drawn.  

5.1 Graphical Results 

To facilitate the analysis performed while comparing trajectory properties, it is important 

to have an understanding of the types of trajectories that are planned, and how search proceeds 

with different parameter combinations. For these purposes, a selection of runs will be presented in 

this section which best demonstrate algorithmic properties. The remainder of figures for the runs 

are located in Appendix D. 
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Figure 5-1 is presented to demonstrate the difference in search characteristics between 

RRT* and RRT*-ES. In image 1 and 2 of the figure, the lowest cost trajectories for a set of runs 

holding all parameters equal except the algorithm type are depicted for simulation C. In image 3 

and 4 of the figure, the location of every vertex in the search trees which found the lowest cost 

trajectories of image 1 and 2 are depicted. The parameter settings for these trajectories are 

Impingement Prevention on, and a Propellant vs. Time Scale Factor of 10,000. 

Some of the characteristics of the search performed to find the trajectories in image 1 and 

2 can be established from image 3 and 4.  In image 4, when CMA-ES is not used, vertices are 

dispersed through the search space evenly. However in image 3, when CMA-ES is used, there is a 

concentration of tree vertices around the vertices of the optimal trajectory. This demonstrates 

CMA-ES’s local optimization capabilities. The CMA-ES algorithm embedded within RRT*-ES 

has located an area of the search space that contains low cost solutions, and therefore RRT*-ES 

has thoroughly searched that space. The result is that the trajectory in image 1 is in fact a lower 

cost trajectory than that of image 2. 
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Figure 5-1 Search characteristics of HCW RRT* and HCW CMA-ES RRT* 

 

Although RRT*-ES finds lower cost trajectories than RRT*, it is inferior to RRT* in 

other ways. Referring to Figure 5-1 again, remember RRT*-ES focuses search on areas of the 

search space where low cost nodes have previously been found. As a result of this characteristic, 

at every iteration there will be many tree vertices in proximity to the newly selected search node. 

Therefore more connections are attempted within the algorithm, and more computation time is 

required. 

Figure 5-2 and Figure 5-3 depict optimal trajectories for simulation A keeping all 

parameters constant except the use of impingement prevention. The algorithm used was RRT*-

ES, and the Propellant vs. Time Scale Factor was 10,000.  It is immediately clear that an 
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impingement free trajectory requires a less direct path from start to goal. Notice in Figure 5-2 the 

vehicle maneuvers in such a way as to leave its start position above a module without thrusting 

into the module, and approaches the goal position next to the solar panel in such a way as to not 

thrust into the solar panel. This difference is also reflected in the required propellant use and time 

of flight of the trajectories. When impingement prevention is required, a large subset of feasible 

trajectories from start to goal are no longer feasible, requiring more complex and costly 

trajectories. 

Now that a basic behavioral understanding of the algorithm has been developed, the 

following sections will analyze performance based on numerical values.  

  

Figure 5-2 Optimal trajectory with impingement prevention 

Start 

Goal 
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Figure 5-3 Optimal trajectory without impingement prevention 

5.2 Data Tables  

Data is presented in two types of tables. Table 5-1 is an example of the first type of data 

table. In this type of table, the entries are the average values over 11 runs with the parameter 

settings as presented in Table 5-1. In this case, “SF” is the Propellant vs. Time Scale Factor, “IP” 

is the Impingement Prevention Setting, and “Alg” is the algorithm used to solve the problem. In 

addition the 95% confidence interval of the average is provided in these tables. 

 

 

 

 

 

 

Start 

Goal 
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Table 5-1. Example average table 

Propellant vs. 

Time Scale 

Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 

On 
SF = 1,000; IP = On; 

Alg = RRT*-ES 

SF = 1,000; IP = On; 

Alg = RRT* 

Off 
SF = 1,000; IP = Off; 

Alg = RRT*-ES 

SF = 1,000; IP = Off; 

Alg = RRT* 

10000 

On 
SF = 10,000; IP = On; 

Alg = RRT*-ES 

SF = 10,000; IP = On; 

Alg = RRT* 

Off 
SF = 10,000; IP = Off; 

Alg = RRT*-ES 

SF = 10,000; IP = Off; 

Alg = RRT* 

 

 Table 5-2 is an example of the second type of data table. This type of table was 

assembled by applying a Multifactor Analysis of Variance (ANOVA) and Tukey’s procedure on 

the run data. These tests were performed for a 95% confidence interval. Each row in Table 5-2 

contains data comparisons when holding all parameter constant except for the parameter 

presented in the associated row of the first column. The second column contains the difference in 

the mean value of the two populations from the first column when going from the first setting to 

the second setting.  For example in the first row, the second column entry is  

 𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆 − 𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗ (59) 

 

The fourth and fifth columns contain the 95% confidence interval of the difference in means, and 

the sixth column contains the percent difference between the means. Again, as an example the 

percent difference of means in row one is calculated as 

 
(𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆−𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗)

𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗
× 100 (60) 

 

 If the confidence interval does not change sign in a given row, the difference between means is 

statistically significant at a 95% confidence interval. If the difference in means does change sign 

in a given row, the difference is not statistically significant. 

 

 



61 

 

Table 5-2. Example ANOVA table 

"Old Value" to 

"New Value" 

Difference in 

Mean 
Confidence Interval % Difference in Mean 

RRT* to RRT*-

ES 
𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆

− 𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗ 

Confidence 

interval 

lower bound 

Confidence 

interval 

upper bound 

(𝑀𝑒𝑎𝑛 𝑅𝑅𝑇∗𝐸𝑆 − 𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗)

𝑀𝑒𝑎𝑛𝑅𝑅𝑇∗
 

Scale Factor of 

10,000 to Scale 

Factor of 1,000 

𝑀𝑒𝑎𝑛 1,000

− 𝑀𝑒𝑎𝑛10,000 

Confidence 

interval 

lower bound 

Confidence 

interval 

upper bound 

(𝑀𝑒𝑎𝑛 1,000 − 𝑀𝑒𝑎𝑛10,000)

𝑀𝑒𝑎𝑛10,000
 

Impingement 

Prevention Off 

to Impingement 

Prevention On 

𝑀𝑒𝑎𝑛 𝐼𝑃 𝑂𝑛

− 𝑀𝑒𝑎𝑛𝐼𝑃 𝑂𝑓𝑓 

Confidence 

interval 

lower bound 

Confidence 

interval 

upper bound 

(𝑀𝑒𝑎𝑛 𝐼𝑃 𝑂𝑛 − 𝑀𝑒𝑎𝑛𝐼𝑃 𝑂𝑓𝑓)

𝑀𝑒𝑎𝑛𝐼𝑃 𝑂𝑓𝑓
 

 

5.3 Cost Comparison 

The minimum cost found by an optimization algorithm is one of the best ways to evaluate 

its algorithmic success and capabilities. Regardless of the accuracy of the impulsive 

approximation and the HCW equations, or the appropriateness of the scaling factor, the cost 

achieved is still a good metric to compare the capabilities of RRT* and RRT*-ES. 

The average cost for all parameter combinations of simulations A, B, and C are presented 

in Table 5-3, Table 5-4, and Table 5-5 respectively. Each entry in these tables represents the 

average cost over 11 runs. Table 5-6 presents the Analysis of Variance and Tukey’s procedure 

results for the trajectory costs. 

In analyzing Table 5-6, it can be seen that a change in each parameter results in a 

statistically significant change in the cost of the algorithm. The first comparison that will be made 

is between RRT*-ES and RRT*. RRT*-ES exhibits a 23% mean cost decrease as compared to 

RRT* across parameter combinations. This demonstrates the improved optimization capabilities 

of RRT*-ES. As shown in section 5.1, the CMA-ES addition to RRT* focuses search on 

promising areas of the space, leading to local optimization behaviors and lower cost solutions. 
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 Table 5-3. Average cost and 95% confidence interval (A) 

Propellant vs. Time Scale 

Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 1,297.6 ± 57.6 1,476.6 ± 41.7 

Off 960.3 ± 49.2 1,064.2 ± 90.6 

10000 
On 4,693.3 ± 301.2 6,148.2 ± 355.5 

Off 2,358.9 ± 64.7 2,535.1 ± 64.5 

 

Table 5-4. Average cost and 95% confidence interval (B) 

Propellant vs. Time Scale 

Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 1,301.3 ± 67.8 1,683.4 ± 143.8 

Off 924.2 ± 71.8 1,363.5 ± 94.5 

10000 
On 8,265.1 ± 2,327.7 10,482.4 ± 2,362.1 

Off 2,383.7 ± 76.4 2,795.8 ± 216.7 

 

Table 5-5. Average cost and 95% confidence interval (C) 

Propellant vs. Time Scale 

Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 1,575.8 ± 67.0 2,087.5 ± 96.5 

Off 1,422.0 ± 28.4 1,549.8 ± 37.5 

10000 
On 8,088.3 ± 609.8 13,081.5 ± 1,173.3 

Off 5,503.0 ± 155.3 5,819.2 ± 167.0 

 

Table 5-6. ANOVA test on cost and 95% confidence interval 

Parameter 
Difference 

in Mean 
Confidence Interval 

% Difference 

in Mean 

RRT* to RRT*-ES -942.8 -1,242.48 -643.1 -23% 

Scale Factor of 10,000 to Scale 

Factor of 1,000 
-4,620.7 -4,920.35 -4,321.0 -77% 

Impingement Prevention Off to 

Impingement Prevention On 
2,625.1 2,325.43 2,924.8 110% 
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The use of impingement prevention within the algorithm also has a significant effect on 

the cost of solutions. When impingement prevention is used, there is a 110% increase in cost 

compared to when impingement prevention is not used. As stated previously, impingement 

prevention imparts significant constraints on the planning algorithm, thus requiring higher cost 

trajectories. This being said, the algorithm was indeed able to find trajectories avoid thruster 

impingement on the target spacecraft in all cases. 

Note that the effects of impingement prevention on the cost of a trajectory are also 

dependent on the start and goal states for the inspection vehicle. In simulation A, and simulation 

B, with a Propellant vs. Time Scale Factor of 10,000, impingement prevention more than doubles 

the average trajectory cost in all cases. However for simulation C, the effect of impingement 

prevention is less significant. Figure 5-4 displays the set of 11 runs for all simulations with 

RRT*-ES, and a scale factor of 10,000. It compares the runs with Impingement Prevention off 

versus Impingement Prevention On. What can be seen is that for simulations A and B, the planned 

trajectories are required to change significantly when Impingement Prevention is on, however this 

is not as true in simulation C. The required change is reflected in the trajectory costs. 
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Figure 5-4 Run sets with Impingement Prevention off vs. Impingement Prevention on 
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It is also worthwhile to analyze the cost coefficient of variation for each set of runs. The 

coefficient of variation gives a normalized value which can be used to compare convergence of 

sets of runs. A lower coefficient of variation represents a more consistent algorithm. Table 5-7, 

Table 5-8, and Table 5-9 display the coefficients of variation for simulations A, B, and C 

respectively.  

When Impingement Prevention is off, and the Propellant vs. Time Scale Factor is 10,000, 

the coefficient of variation is consistently lower than when Impingement Prevention is on, 

demonstrating better convergence. However when the Propellant vs. Time Scale Factor is 1,000, 

the difference in Coefficient of Variation is more simulation dependent. This suggests that when 

time of flight is more heavily weighted for a given trajectory, impingement prevention may not be 

as significant of a factor in terms of convergence across runs, as compared to when ΔV is more 

heavily weighted. In fact, in some cases it would seem that in decreasing the feasible areas of the 

search space, impingement prevention encourages the algorithm to consistently converge to 

similar cost trajectories. 

Table 5-7. Average cost coefficient of variation (A) 

Propellant vs. Time Scale Factor 
Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 0.0661 0.0420 

Off 0.0763 0.1267 

10000 
On 0.0955 0.0861 

Off 0.0408 0.0379 

 

Table 5-8. Average cost coefficient of variation (B) 

Propellant vs. Time Scale Factor 
Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 0.0776 0.1272 

Off 0.1157 0.1031 

10000 
On 0.4192 0.3354 

Off 0.0477 0.1154 
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Table 5-9. Average cost coefficient of variation (C) 

Propellant vs. Time Scale Factor Impingement Prevention 
RRT*-

ES 
RRT* 

1000 
On 0.0633 0.0688 

Off 0.0298 0.0360 

10000 
On 0.1122 0.1335 

Off 0.0420 0.0427 

 

The convergence result for a Propellant vs. Time Scale Factor of 10,000 is also reflected 

in Figure 5-5 and Figure 5-6. These plots display the minimum cost history at each iteration for 

the set of runs of RRT*-ES on simulation B, with a scale factor of 10,000.  In Figure 5-5 

Impingement Prevention was on, in Figure 5-6 Impingement Prevention was off. Again, the cause 

for this behavior is the difficulty of the problem when impingement prevention is turned on and 

ΔV is to be minimized.  

 Across runs there is little difference in Cost Coefficient of Variation between RRT* and 

RRT*-ES. This is a reasonable result since both algorithms rely on the core RRT* procedure. As 

such, both should exhibit similar convergence behaviors. The difference is that RRT*-ES 

converges to a lower cost solution due to its local optimization abilities. 
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Figure 5-5 Cost vs. number of iterations, impingement prevention on 

 

Figure 5-6 Cost vs. number of iterations, impingement prevention off 
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5.4 Convergence Index 

In this work, the convergence index is defined as the iteration at which the lowest cost 

solution for a run was found. The optimal convergence index is hard to determine. Although a 

lower convergence index may suggest a faster running algorithm, it could also signal pre-

convergence. This is when an optimization algorithm gets stuck in a local minimum which 

hinders its ability to continue search for the global optimum. The stochastic nature of the 

algorithms used in this experimentation should help to prevent search from getting stuck in a 

local minimum. It should also be noted that a better metric of how “fast” the algorithm converges 

on its best solution would be the number of calls to the steering functions. Unfortunately, this was 

not tracked during simulations.  

The average convergence index for simulations A, B, and C can be found in Table 5-10, 

Table 5-11, and Table 5-12 respectively. The Analysis of Variance and Tukey’s procedure results 

can be found in Table 5-13.  

From Table 5-13, it can be seen that across all runs the only parameter setting that results 

in a statistically significant difference in Convergence Index is the use of Impingement 

Prevention. With Impingement Prevention on, there is a 39% increase in the Convergence Index 

of the algorithms. Again, the added constraints impingement prevention imposes on the motion 

planning problem result in a much more difficult problem for the algorithms to solve. As a result, 

it takes more search iterations to find the optimal trajectories. Figure 5-5 and Figure 5-6 give a 

strong visual representation of this behavior. 
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Table 5-10. Average convergence index and 95% confidence interval (A) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 3,735.8 ± 1,925.0 2,820.2 ± 1,297.9 

Off 3,244.2 ± 1,969.9 3,102.6 ± 1,481.2 

10000 
On 4,010.9 ± 1,454.6 4,564.1 ± 1,562.9 

Off 4,252.2 ± 1,458.7 2,552.4 ± 1,566.7 

 

Table 5-11. Average convergence index and 95% confidence interval (B) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 4,746.2 ± 1,473.5 5,315.4 ± 1,658.3 

Off 2,617.0 ± 1,686.3 1,980.9 ± 1,238.3 

10000 
On 4,888.9 ± 1,105.0 4,330.8 ± 1,706.9 

Off 3,497.9 ± 1,432.9 4,322.4 ± 1,597.7 

 

Table 5-12. Average convergence index and 95% confidence interval (C) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 4,979.9 ± 1,684.6 4,798.9 ± 1,549.2 

Off 3,618.6 ± 1,432.6 4,034.4 ± 1,954.2 

10000 
On 5,595.1 ± 1,551.8 5,644.9 ± 1,163.1 

Off 3,414.5 ± 1,987.1 3,293.9 ± 1,614.4 

 

Table 5-13. ANOVA test on convergence index and 95% confidence interval 

Parameter 
Difference 

in Mean 

Confidence 

Interval 

% Difference 

in Mean 

RRT* to RRT*-ES 153.4 -416.81 723.5 4% 
Scale Factor of 10,000 to Scale Factor of 

1,000 
-447.8 -1,017.99 122.4 -11% 

Impingement Prevention Off to 

Impingement Prevention On 
1,291.7 721.51 1,861.9 39% 
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5.5 Total ΔV 

In this work the total impulsive ΔV required for a particular trajectory is considered 

analogous to the amount of propellant that is required for a particular trajectory. As such, it is one 

of the two trajectory parameters minimized within the cost function. It is also important to recall 

that the Impingement vs. Time Scale Factor is applied directly to ΔV in the cost function, Eq. 47. 

The predicted behavior was that when the Impingement vs. Time Scale Factor increased, holding 

all other parameters constant, the trajectory ΔV would decrease and the time of flight would 

increase. On average across parameter combinations this result held true for trajectory ΔV. 

Analysis of Variance and Tukey’s procedure results are displayed in Table 5-14. When the 

Propellant vs. Time Scale Factor is reduced from 10,000 to 1,000, on average across runs the 

trajectory ΔV increases by 51%.   

Table 5-14. ANOVA test on ΔV and 95% confidence interval 

Parameter 
Difference 

in Mean 

Confidence 

Interval 

% Difference 

in Mean 

RRT* to RRT*-ES -0.17 -0.21 -0.13 -23% 
Scale Factor of 10,000 to Scale Factor of 

1,000 
0.27 0.23 0.31 51% 

Impingement Prevention Off to 

Impingement Prevention On 
0.40 0.36 0.44 89% 

 

 However, under certain conditions, the scaling factor did not alter the trajectory 

parameters as expected. The average ΔVs for each parameter combination are presented in Table 

5-15, Table 5-16, and Table 5-17. In some cases when Impingement Prevention was turned on, 

the increased Propellant vs. Time Scale Factor would result in a slight increase in the ΔV 

required. The anomalies occurred in simulation B, as seen in Table 5-16. A thorough analysis of 

this behavior is relegated to future work, however there is some evidence that the challenging 

location of the start and goal point in simulation B for impingement prevention may have 
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hindered the capability of the algorithm to fully optimize trajectories in 8,000 iterations, with the 

given search bounds.  

Table 5-15. Average ΔV and 95% confidence interval (A) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 0.7390 ± 0.0545 0.9053 ± 0.0850 

Off 0.4890 ± 0.0603 0.5754 ± 0.1144 

10000 
On 0.3835 ± 0.0383 0.5229 ± 0.0442 

Off 0.1404 ± 0.0071 0.1568 ± 0.0053 

 

Table 5-16. Average ΔV and 95% confidence interval (B) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 0.7064 ± 0.1065 0.9196 ± 0.1616 

Off 0.4740 ± 0.0746 0.7241 ± 0.1402 

10000 
On 0.7808 ± 0.2693 0.9526 ± 0.2333 

Off 0.1388 ± 0.0076 0.1799 ± 0.0217 

 

Table 5-17. Average ΔV and 95% confidence interval (C) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 0.9367 ± 0.1268 1.3641 ± 0.1152 

Off 0.7560 ± 0.0366 0.8476 ± 0.0702 

10000 
On 0.7942 ± 0.0820 1.2387 ± 0.1164 

Off 0.4648 ± 0.0365 0.4835 ± 0.0158 

 

The challenge arises because in simulation B, the goal state is on top of one of the Space 

Stations solar panels, and the inspection vehicle is approaching from below. This situation 

essentially requires the inspection vehicle to approach the goal state by traveling on the x-y plane 

with no z velocity. The behavior can be seen in Figure 5-7 for a group of 11 runs, where the red 

circle is the start state and the blue circle is the goal state. The approach requirements for 

impingement prevention for this simulation causes extreme restrictions within the algorithm. 
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Simulation B 

RRT*-ES 

Impingement Prevention On 

Scaling Factor: 1,000 

 

 

 

Figure 5-7 Simulation B with Impingement Prevention isometric and side view 

 

In Figure 5-8, the optimal trajectories for the RRT*-ES runs of simulation B for all 

parameter combinations are presented. From these trajectories, some more insight can be gained 

for the reasons behind the ineffectiveness of the Propellant vs. Time Scale factor when 

Impingement Prevention is on. When the Propellant vs. Time Scale Factor is 10,000, there is 

good algorithmic convergence when Impingement Prevention is off, so it is a logical conclusion 

that these trajectories are near optimal in that image. However, these trajectories also result in 

impingement. In order to avoid impingement, when the scaling factor is 10,000, the trajectories 

are limited to trajectories similar to those with a scaling factor of 1,000. Thus, at both scaling 

factors the trajectories require a similar amount of ΔV. This deficiency may be relieved by 

opening the bounds of the search space, but further testing is required. Some further analysis of 

these ΔV behaviors and how they are coupled with Time of Flight behaviors is performed in 

Section 5.6. 
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Scaling 

Factor 

Impingement Prevention Off Impingement Prevention On 

1,000 

  

10,000 

  

Figure 5-8 Simulation B run comparison based on scaling factor 

 

Not only does the use of Impingement Prevention influence the effectiveness of the 

Propellant vs. Time Scale Factor in some cases, but it also leads to a significant increase in 

trajectory ΔV on average. When Impingement Prevention is turned on, there is an 89% increase in 

ΔV across parameter combinations. Again, this is a result of the constraints put on the trajectories 

due to Impingement Prevention. This result gives credence to further investigation on propellant 

type for close proximity space missions. Although caustic propellants like hydrazine have a 

higher ISP than do cold gas type propellants, the required ΔV to execute safe trajectories for 

caustic propellants is also significantly higher. A trade must be performed when planning close 
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proximity missions to analyze if the added efficiency of caustic propellants outweighs the extra 

maneuvering they would require. 

Another result from ΔV comparisons is that RRT*-ES results in a 23% decrease in ΔV. 

The explanation of this result follows that of the overall cost difference between RRT* and 

RRT*-ES from Section 5.3. 

5.6 Time of Flight 

The time of flight of a trajectory is the second component to the cost function which is to 

be minimized by the motion planning algorithm. This component to the cost function is required 

for multiple reasons. Even if time of flight is not a critical mission parameter, in most cases some 

human supervision over the mission will be required, which calls for a limited time of flight. In 

other cases, the time that the inspection craft can spend completing its mission may be a critical 

mission parameter, and thus the user is able to minimize time of flight with the correct Propellant 

vs. Time of Flight Scaling Factor. 

Table 5-18, Table 5-19, and Table 5-20 display the average time of flight and 95% 

confidence interval for every parameter combination and each simulation. Table 5-21 displays the 

Analysis of Variance and Tukey’s procedure results for time of flight across parameters. As 

discussed in the previous section, the main parameter that should influence the trajectory Time of 

Flight is the Propellant vs. Time Scale Factor. A high scale factor should result in longer flight 

times than a lower scale factor. As can be seen in Table 5-21, this held true. A scale factor of 

1,000 resulted in a 36% lower time of flight than a scale factor of 10,000 across all other 

parameter combinations. 

 Interestingly, the anomalies that were seen in trajectory ΔV were not seen in trajectory 

time of flight. The response to Propellant vs Time Scale Factor was always as expected. This 
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result coupled with the ΔV anomalies again require further detailed investigation and 

experimentation which was not performed in this thesis. 

 From the experimentation that has been performed, it can be seen that the Impingement 

Prevention setting and the algorithm type had much less of an effect on the trajectory time of 

flight than they did on the trajectory ΔV. In the case of impingement prevention this makes sense 

because impingement prevention is a constraint placed directly on when a ΔV can be applied to 

the inspection vehicle. In the case of the algorithm used, this result suggests the cost improvement 

between RRT* and RRT*-ES is being driven by the trajectory ΔV. This could be a result of 

CMA-ES parameterization, but further experimentation is required.  

 An important result is that at a Propellant vs. Time Scale Factor of 10,000, the average 

trajectory time of flight approached the bound in all cases. It may be that for the algorithms to 

optimize ΔV in simulation B at a Propellant vs. Time Scale Factor of 10,000, the time of flight 

must be greater than 1,000 seconds. The convergence on seemingly non-optimal ΔVs in some of 

these cases may be a direct result of this bound.  

Table 5-18. Average TOF(s) and 95% confidence interval (A) 

Propellant vs. Time Scale 

Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 634.20 ± 59.15 591.07 ± 72.01 

Off 471.31 ± 71.76 488.85 ± 63.01 

10000 
On 974.42 ± 29.10 975.59 ± 49.87 

Off 955.18 ± 19.67 967.35 ± 25.08 

 

Table 5-19. Average TOF(s) and 95% confidence interval (B) 

Propellant vs. Time Scale 

Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 594.97 ± 61.39 732.28 ± 136.07 

Off 450.23 ± 46.40 639.34 ± 162.19 

10000 
On 942.91 ± 81.80 955.89 ± 56.60 

Off 995.60 ± 3.69 996.29 ± 2.35 
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Table 5-20. Average TOF(s) and 95% confidence interval (C) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 661.93 ± 104.81 748.80 ± 101.52 

Off 694.50 ± 35.14 712.81 ± 37.77 

10000 
On 914.97 ± 73.36 986.14 ± 17.83 

Off 995.99 ± 1.97 984.17 ± 20.01 

 

Table 5-21. ANOVA test on TOF(s) and 95% confidence interval 

Parameter 
Difference 

in Mean 
Confidence Interval 

% 

Difference 

in Mean 

RRT* to RRT*-ES -41.03 -66.09 -15.97 -5% 
Scale Factor of 10,000 to Scale Factor of 

1,000 
-352.02 -377.07 -326.96 -36% 

Impingement Prevention Off to 

Impingement Prevention On 
30.13 5.07 55.19 4% 

 

5.7 Computational Run Time 

This section presents the run time for the algorithms under all parameter combinations for 

the completion of 8,000 iterations.  This data gives some more insight into the computational 

demands that the different algorithms and settings put on a system. However, it should be noted 

that a stronger result would be the run time until convergence, but this data was unfortunately not 

collected in this work.  

Table 5-22, Table 5-23, and Table 5-24 display the average run time in seconds along 

with the 95% confidence interval across all parameter settings and simulations. Table 5-25 

displays the results of the Analysis of Variance and Tukey’s procedure on the data. It is 
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immediately clear that the choice of parameter settings has a strong effect on the computation run 

time of the algorithms. 

RRT*-ES requires 77% more computation time than RRT*. This results directly from the 

way that the algorithms search the space. Remember RRT*-ES will converge search on an area of 

low cost solutions. The consequence of this convergence is that when a new node is sampled 

from the space, it is likely that there will be many tree vertices close by. As such, the 

NearVertices function presented in Section 2.2.3.1 is likely to return a larger number of tree 

vertices, which means there will be more calls to the steering functions and collision detection. 

These are both among the more computationally costly functions in the algorithm. For RRT*, 

sampling occurs more evenly through the search space, and thus there tend to be less near vertices 

than for RRT*-ES. This means less calls to the steering functions and collision detection, and less 

computation time. 

Decreasing the Propellant vs. Time Scale factor resulted in a 60% decrease in average run 

time. The likely cause of this decrease is parameterization within NearVertices. The 

NearVertices function requires a scaling factor 𝛾 which determines how large the “ball” around 

a node is for determining which vertices are considered to be near enough for connection 

attempts. A large 𝛾 will attempt many connections around each node, theoretically resulting in 

lower cost paths to a particular node, but also larger run times. A small 𝛾 will not attempt as 

many connections around each node, theoretically resulting in higher cost paths to a particular 

node, but also smaller run times. It is hard to say with certainty without further testing whether 𝛾 

was appropriately sized for either Propellant vs. Time Scale Factor. However it seems clear from 

the data that the 𝛾 for a Propellant vs. Time Scale Factor of 10,000 is larger in comparison to 

average connection costs for that setting, than the 𝛾 for a Propellant vs. Time Scale Factor of 

1,000. 
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Finally, the use of Impingement Prevention resulted in a 29% decrease in computation 

time as compared with when Impingement Prevention was off. This is an interesting result 

because all of the data that has been collected points to the use of Impingement Prevention 

creating a more difficult problem to solve. However a longer run time with Impingement 

Prevention off and a less difficult problem are not mutually exclusive. When Impingement 

Prevention is off, there is more search space which is considered feasible because 

maneuverability is less constrained. This means more vertices will be added to the search tree, 

more attempted connections, and a longer run time 

Table 5-22. Average run time (s) and 95% confidence interval (A) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 7,398.7 ± 323.6 3,163.9 ± 127.0 

Off 7,712.4 ± 231.1 3,659.1 ± 107.5 

10000 
On 16,426.8 ± 1,270.9 8,722.6 ± 521.2 

Off 18,095.1 ± 673.8 11,550.2 ± 482.6 

 

Table 5-23. Average run time (s) and 95% confidence interval (B) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 7,056.3 ± 240.2 3,064.7 ± 207.3 

Off 7,529.2 ± 265.9 3,466.5 ± 57.3 

10000 
On 16,790.0 ± 1,026.2 8,243.1 ± 268.4 

Off 17,817.0 ± 1,094.2 10,897.3 ± 501.5 

 

Table 5-24. Average run time (s) and 95% confidence interval (C) 

Propellant vs. Time 

Scale Factor 

Impingement 

Prevention 
RRT*-ES RRT* 

1000 
On 18,555.8 ± 1,650.3 9,504.8 ± 1,497.8 

Off 26,244.9 ± 1,313.7 13,438.2 ± 334.0 

10000 
On 40,978.7 ± 4,411.6 21,942.3 ± 3,332.8 

Off 65,065.1 ± 2,705.4 43,703.2 ± 1,127.9 
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Table 5-25. ANOVA test on run time (s) and 95% confidence interval 

Paramater 
Difference 

in Mean 
Confidence Interval 

% 

Difference 

in Mean 

RRT* to RRT*-ES 9,026.2 8,307.27 9,745.1 77% 
Scale Factor of 10,000 to Scale 

Factor of 1,000 
-14,119.7 -14,838.64 -13,400.8 -60% 

Impingement Prevention Off to 

Impingement Prevention On 
-5,610.9 -6,329.77 -4,892.0 -29% 
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Chapter 6 

Conclusions and Future Work 

The results presented and analyzed in Chapter 5 give a good basis for conclusions to be 

drawn about the capabilities of the RRT*-ES algorithm developed in this thesis, as well as the 

effect of various user input parameters on the algorithm. With this being said, there are also 

several areas where further analysis could result in a more in depth understanding of the 

effectiveness of the algorithm. 

6.1 Conclusions 

In this thesis the RRT*-ES algorithm was developed as an offline algorithm which would 

exhibit better performance than the traditional RRT* algorithm for close proximity spacecraft 

motion planning. Toward this end, the RRT* algorithm was hybridized with the Covariance 

Matrix Adaptation Evolutionary Strategy to improve local optimization behaviors. In addition, 

the planned trajectories were governed by the Hill-Clohessy-Wiltshire Equations for relative 

motion of a chase spacecraft in relation to a target spacecraft in a circular orbit. An impingement 

prevention capability was also added to the motion planner for use when thruster plume 

impingement could result in damage to the target spacecraft. 

 Through experimentation, the effects of the algorithm used to perform the motion 

planning task (RRT* or RRT*-ES), the Propellant vs. Time Scale Factor, and Impingement 

Prevention were analyzed. For this analysis, trajectory cost, algorithmic convergence index, 

required trajectory ΔV, required trajectory time of flight, and computational run time were 

compared. 

It was shown that RRT*-ES was consistently able to find lower cost trajectories than 

RRT*, due to RRT*-ES’s embedded Evolutionary Strategy.  RRT*-ES’s superior optimization 
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capabilities were also reflected in trajectory ΔV and time of flight. However, there was more 

improvement in trajectory ΔV, suggesting RRT*-ES’s ability to optimize trajectory ΔV is the 

source of RRT*-ES’s cost reduction. The downside of the RRT*-ES algorithm is that it requires 

significantly more computation time to complete the same amount of iterations as RRT*. The 

cause of this behavior was isolated to RRT*-ES’s convergence behavior which resulted in more 

attempted vertex connections.  

When averaged across all runs, the Propellant vs. Time Scale Factor behaved as expected. 

When propellant use was more heavily weighted, ΔV use went down and time of flight went up. 

When time of flight was more heavily weighted, ΔV use went up and time of flight went down. 

However, there were some parameter settings that did not follow this behavior, possibly due to 

boundary constraints placed on the planner. Run time was also significantly affected by the 

Propellant vs. Time Scale Factor. However, it is believed this behavior stems from the scaling 

factor within the NearVertices function, rather than the Propellant vs. Time Scale Factor. 

Finally Impingement Prevention was found to be a powerful capability which also had a 

significant effect on the cost of planned trajectories. In all cases when impingement prevention 

was desired, the algorithms were both capable of finding and optimizing to some degree an 

impingement free trajectory. That being said, the required ΔV for these impingement free 

trajectories increased. This result could help motivate the designers of future close proximity 

missions to consider propellants which do not require impingement prevention measures. 
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6.2 Future Work 

Although the experimentation performed in this thesis has provided a good basis for 

algorithmic comparisons, there are several areas where these experiments could have been 

improved, and where the algorithm itself could be improved. 

One of the most pressing and straightforward future efforts is a better analysis of the 

computation required until the RRT* and RRT*-ES algorithms converge on their final solution. 

Analysis was performed on the iteration at which the algorithms converge, and on the run time of 

the algorithms, but each experiment was lacking in key areas. The iteration of convergence, 

referred to as the convergence index in this work, overlooks the fact that the amount of 

computation within each iteration differs significantly between algorithms, and between each 

iteration. The run time analysis gives some estimate of the computation costs of the algorithm, 

and inherently takes into consideration the amount of computation within each iteration, but data 

was only collected for the run time after 8,000 iterations.  

In the future the best way to compare the computational requirements of the different 

algorithms would be to track the number of times the collision detection function was called, and 

how many calls to this function were made before algorithmic convergence. Since the collision 

detection function is one of the most computationally demanding functions within the algorithms, 

it could give a better estimate of how much “computation” is required before convergence occurs. 

This information could then also be used to better understand if some of RRT*-ES’s superiority is 

a simple function of the number of connections attempted, rather than the intelligent location of 

these attempted connections. 

Another area of future work is a better analysis of how the Propellant vs. Time Scaling 

Factor and user defined search bounds interact with each other. The data collected in this work 

suggests that if search bounds are not chosen correctly, the Propellant vs. Time Scaling Factor 
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will not be effective in creating the balance between propellant use and time of flight that the user 

desires. A methodology to relate these two user inputs could be useful. 

Along these same lines, the scaling factor within the NearVertices function requires 

further analysis. An inappropriate scaling factor results in either computationally inefficient 

search, or ineffective search where few connections and rewires are attempted. The methodology 

in this work to identify the scaling factor was to run some short experiments from which an 

average trajectory cost for a particular simulation could be calculated. From there, the 

NearVertices scaling factor was sized to achieve an average of 15 to 20 attempted connections 

every iteration. However, experimental determination of this scaling factor was not thorough, and 

data points to much more variety in the number of connections attempted each iteration. A 

methodology to relate the NearVertices scaling factor, 𝛾, to the cost function and given 

environment could also be useful. 

Along with further analysis, some general algorithmic improvements could be made to 

the planner. First of which could be the implementation of a more computationally efficient 

collision detection algorithm. The collision detection algorithm used in this work models the 

target spacecraft as a collection of planar obstacles, and trajectories are split up into short line 

segments where each line segment in a trajectory is checked for collision with each planar 

obstacle.  This results in hundreds of millions of collision checks when running the algorithm for 

8,000 iterations. As such, even small improvements in the computational complexity of the 

collision detection algorithm could result in significant computational savings. 

Another improvement would be to switch the steering function from an impulsive 

maneuver steering function, to a continuous thrust steering function. In fact, an early version of 

the RRT*-ES algorithm utilized a modified LQR steering function based on the work of Webb 

and Berg25. The steering function and algorithm planned continuous thrust trajectories effectively, 
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however the continuous thrust trajectories planned did not lend themselves to efficient 

impingement prevention calculations. That being said, if the collision detection algorithm is 

improved, or impingement prevention is not a concern, continuous thrust trajectories could be 

useful for certain types of inspection vehicles, such as electric propulsion vehicles.  

A final improvement would be a more complete thruster plume model. For this work, the 

thruster plume was simply modeled as a line segment originating at the vehicle and extending in 

the direction of thrust. The size of the line was also chosen somewhat arbitrarily. This was done 

to demonstrate that the algorithms could in fact handle this extra constraint. In the future it may 

be useful to model the rocket plume more accurately in a cone shape which is proportional in size 

to the amount of thrust being provided, and based on propulsion system data.  
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CMA-ES Strategy Parameters 

Appendix A contains the formula for various internal strategy parameters of the 

Covariance Matrix Adaptation Evolutionary Strategy. These internal parameters are functions of 

user input parameters, as discussed in Section 2.3. 

Table A-1 CMA-ES strategy parameters 

Step Size Control 
𝑐𝜎 = 

𝜇𝑒𝑓𝑓 + 2

𝑛 + 𝜇𝑒𝑓𝑓 + 5
 

𝑑𝜎 = 1 + 2max(0,√
𝜇𝑒𝑓𝑓 − 1

𝑛 + 1
) + 𝑐𝜎 

Covariance Matrix 

Adaptation 

𝑐𝑐 =
4 +

𝜇𝑒𝑓𝑓
𝑛⁄  

𝑛 + 4 + 2
𝜇𝑒𝑓𝑓

𝑛⁄
 

𝑐1 =
2 

(𝑛 + 1.3)2 + 𝜇𝑒𝑓𝑓
 

𝑐𝜇 = min (1 − 𝑐1) 

𝛼𝜇

𝜇𝑒𝑓𝑓−2+1
𝜇𝑒𝑓𝑓⁄

(𝑛+2)2+𝛼𝜇
𝜇𝑒𝑓𝑓

2⁄
 with 𝛼𝜇 = 2 
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RRT* 

The RRT* algorithm is outlined in pseudocode form in Figure B-1. The algorithm begins 

with the initialization of the search graph G through the addition of vertex 𝑉 = {𝑧𝑠𝑡𝑎𝑟𝑡} and an 

empty set of edges, 𝐸 = 0/  (line 1). The algorithm then samples a random node 𝑧𝑟𝑎𝑛𝑑 in 𝑋𝑓𝑟𝑒𝑒, 

and the tree is extended from the nearest vertex, 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡,  in tree G toward 𝑧𝑛𝑒𝑤 (Figure B-1, 

lines 3 to 5). This trajectory that extends from G is denoted 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤, and the node that 

terminates this extension is denoted 𝑧𝑛𝑒𝑤.  If 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤 is collision free, 𝑧𝑛𝑒𝑤 is added to the 

set of tree vertices, V, and the cost equal to the cumulative cost to arrive at 𝑧𝑛𝑒𝑤 through 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 

is stored, along with 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 as the minimum cost parent to 𝑧𝑛𝑒𝑤 found thus far (Figure B-1, line 

6 to 8). Next NearVertices determines the set of vertices nearby 𝑧𝑛𝑒𝑤, called 𝑧𝑛𝑒𝑎𝑟 (Figure B-1, 

line 9). Connection are attempted from all 𝑧𝑛𝑒𝑎𝑟 to 𝑧𝑛𝑒𝑤.  If a connection from a 𝑧𝑛𝑒𝑎𝑟 to 𝑧𝑛𝑒𝑤 is 

collision free and the cumulative cost of the connection is the lowest found thus far, the 𝑧𝑛𝑒𝑎𝑟 and 

its cost are stored (Figure B-1, line 12 and 13). The connection that reaches 𝑧𝑛𝑒𝑤 with minimum 

cost is stored in E (Figure B-1, line 14). This makes the vertex in the tree which results in the 

lowest cost connection to 𝑧𝑛𝑒𝑤 the unique parent of 𝑧𝑛𝑒𝑤. Next a rewire attempts connections 

from 𝑧𝑛𝑒𝑤 to all 𝑋𝑛𝑒𝑎𝑟. For all of the collision free connections that result in a lower cost member 

of 𝑋𝑛𝑒𝑎𝑟, 𝑧𝑛𝑒𝑤 is made the parent, and the edge connecting 𝑧𝑛𝑒𝑤 to 𝑧𝑛𝑒𝑎𝑟 replaces the current 

edge connecting from the tree to 𝑧𝑛𝑒𝑎𝑟 (Figure B-1, line 17 to 19). This sequence repeats until the 

maximum number of iterations has bene reached. 
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 Figure B-1 RRT* pseudocode 

 

RRT*  

1   𝑉 ← {𝑧𝑠𝑡𝑎𝑟𝑡}; 𝐸 ←{ }; 

2   for 𝑖 = 1,… , 𝑛 do 

3      𝑧𝑟𝑎𝑛𝑑 ← SampleFreei; 

4      𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← NearestVertex(𝐺 = (𝑉, 𝐸), 𝑧𝑟𝑎𝑛𝑑); 

5      𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤 ← Steer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑧𝑟𝑎𝑛𝑑); 

6      if CollisionFree(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤)then 

7         𝑉 ← 𝑉⋃{𝑧𝑛𝑒𝑤}; 

8         𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ;  𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤); 

9     𝑋𝑛𝑒𝑎𝑟 ← NearVertices(𝐺 = (𝑉, 𝐸), 𝑧𝑛𝑒𝑤 , min {𝛾𝑅𝑅𝑇∗ (
log(card(𝑉))

card(𝑉)
)
1/𝑑

, 𝜂}); 

10          foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do 

11             𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤 ← Steer(𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑛𝑒𝑤); 

12             if CollisionFree(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) ∧Cost(𝑧𝑛𝑒𝑎𝑟) + 𝑐(Line(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤)) < 𝑐𝑚𝑖𝑛then 

13                 𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟; 𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤); 

14          𝐸 ← 𝐸⋃{(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤)}; 

15          foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do 

16             𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟 ← Steer(𝑧𝑛𝑒𝑤 , 𝑧𝑛𝑒𝑎𝑟); 

17     if CollisionFree(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) ∧Cost(𝑧𝑛𝑒𝑤) + 𝑐(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) <cost(𝑧𝑛𝑒𝑎𝑟)then 

18                𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑛𝑒𝑎𝑟); 

19                𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑒𝑎𝑟)})⋃{(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟)}; 

20  return 𝐺 = (𝑉, 𝐸); 
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RRT*-ES 

The RRT*-ES algorithm is outlined in pseudocode form in Figure C-1, Figure C-2, and 

Figure C-3. RRT*-ES has a structure very similar to RRT*. Only the differences between RRT* 

and RRT*-ES will be addressed here. The first difference arise in line 5 of Figure C-1. Here the 

CMA-ES parameters are updated according to the equations in Section 2.3.2, if the adaptation 

population has reached a sufficient size.  

The next change is the steering function implemented. On lines 8, 14, 22, and 26, the 

steering functions developed in Section 3.3.  

Another change occurs on lines 9, 15, and 23. Here the impingement detection function 

ImpingementFree is called, in addition to the collision detection function CollisionFree.  

The final change occurs with the addition of goal state connection functions, as discussed 

in Section 3.1. On lines 26 and 27, if a connection has been made from the current search tree to 

the new node, a connection is attempted with the goal via the HCWSteerGoal and GoalConnect 

functions. The GoalConnect function’s pseudocode can be found in Figure C-2. This function 

makes the new node the parent to the goal node if 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is feasible, and 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is a 

member of the lowest cost trajectory from start to goal. If 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is feasible, but not a member 

of the lowest cost trajectory from start to goal, 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 and 𝑧𝑛𝑒𝑤 are stored in a goal parent 

structure, where 𝑧𝑛𝑒𝑤 is stored in 𝑉𝑔𝑜𝑎𝑙 and 𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 is stored in 𝐸𝑔𝑜𝑎𝑙. This is done for reasons 

outlined in Section 3.1.  

If in a future iteration a rewire occurs, the goal parent structure is revisited on line 29 of 

Figure C-1 by the function GoalRewire.  The GoalRewire function pseudocode can be found in 

Figure C-3. GoalRewire functions by checking all members of the goal parent structure, and 
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making a member of the structure the unique parent to the goal node if the member of the 

structure is now also a member of the lowest cost trajectory from start to goal due to a tree rewire. 

 
Figure C-1 RRT*-ES pseudocode  

RRT*-ES 

1 𝑉 ← {𝑧𝑠𝑡𝑎𝑟𝑡}; 𝐸 ←{ }; 𝑉𝑔𝑜𝑎𝑙 ← { }; 𝐸𝑔𝑜𝑎𝑙 ←{ }; 

2 𝐶𝑀𝐴 ← {𝜆, 𝜎0, 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠}; 𝑃𝑜𝑝 ←{ }; 

3 for 𝑖 = 1,… , 𝑛 do 

4  if Size(𝑃𝑜𝑝) ≥ 𝜆 

5   𝐶𝑀𝐴 ← UpdateCMA-ES(𝑃𝑜𝑝)  

6  𝑧𝑛𝑒𝑤 ← SampleCMA-ESi; 

7  𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← Nearest(𝐺 = (𝑉, 𝐸), 𝑧𝑟𝑎𝑛𝑑); 

8  𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤 ← HCWSteer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑧𝑛𝑒𝑤); 

9  if CollisionFree(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤) ∧ImpingementFree(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤) then 

10   𝑉 ← 𝑉⋃{𝑧𝑛𝑒𝑤}; 

11   𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡;  𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡,𝑛𝑒𝑤); 

12   𝑋𝑛𝑒𝑎𝑟 ← Near(𝐺 = (𝑉, 𝐸), 𝑧𝑛𝑒𝑤 ,min {𝛾𝑅𝑅𝑇∗ (
log(card(𝑉))

card(𝑉)
)
1/𝑑

, 𝜂}); 

13  foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do 

14   𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤 ← HCWSteer(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑧𝑛𝑒𝑤); 

15   if CollisionFree(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) ∧ImpingementFree(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤)  ∧Cost(𝑧𝑛𝑒𝑎𝑟) + 𝑐(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤) < 𝑐𝑚𝑖𝑛then 

16    𝑧𝑚𝑖𝑛 ← 𝑧𝑛𝑒𝑎𝑟; 𝑐𝑚𝑖𝑛 ←Cost(𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐(𝑥𝑛𝑒𝑎𝑟,𝑛𝑒𝑤); 

17    if 𝑧𝑛𝑒𝑤 ∉ 𝑉 then 

18     𝑉 ← 𝑉⋃{𝑧𝑛𝑒𝑤}; 

19     𝐸 ← 𝐸⋃{(𝑧𝑚𝑖𝑛 , 𝑧𝑛𝑒𝑤)}; 

20  if 𝑧𝑛𝑒𝑤 ∈ 𝑉 

21   foreach 𝑧𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟do 

22    𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟 ← HCWSteerRewire(𝑧𝑛𝑒𝑤 , 𝑧𝑛𝑒𝑎𝑟𝑒𝑠𝑡);  

23    if CollisionFree(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) ∧ImpingementFree(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟)  ∧Cost(𝑧𝑛𝑒𝑤) + 𝑐(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟) <Cost(𝑧𝑛𝑒𝑎𝑟)then 

24     𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑛𝑒𝑎𝑟); 

25              𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑛𝑒𝑎𝑟)})⋃{(𝑥𝑛𝑒𝑤,𝑛𝑒𝑎𝑟)};   // Rewire 

26   𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 ← HCWSteerGoal(𝑧𝑛𝑒𝑤 , 𝑧𝑔𝑜𝑎𝑙); 

27   (V,E, 𝑉𝑔𝑜𝑎𝑙, 𝐸𝑔𝑜𝑎𝑙)←GoalConnect(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙 , 𝑧𝑛𝑒𝑤 , 𝑧𝑔𝑜𝑎𝑙) 

28   if Rewire Occurred then 

29    (V,E) ←GoalRewire(𝑉𝑔𝑜𝑎𝑙 , 𝐸𝑔𝑜𝑎𝑙) 

38  return 𝐺 = (𝑉, 𝐸); 
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 Figure C-2 GoallConnect pseudocode 

 

Figure C-3 GoalRewire pseudocode 

GoalConnect 

1 if CollisionFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) ∧ImpingementFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙)  ∧Cost(𝑧𝑛𝑒𝑤) + 𝑐(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) <Cost(𝑧𝑔𝑜𝑎𝑙) then 

2  𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑔𝑜𝑎𝑙); 

3  𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑔𝑜𝑎𝑙)})⋃{(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙)};  

4 elseif CollisionFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) ∧ ImpingementFree(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙) 

5  𝑉𝑔𝑜𝑎𝑙 ← 𝑉𝑔𝑜𝑎𝑙⋃{𝑧𝑛𝑒𝑤}; 

6  𝐸𝑔𝑜𝑎𝑙 ← 𝐸𝑔𝑜𝑎𝑙⋃{(𝑥𝑛𝑒𝑤,𝑔𝑜𝑎𝑙)} 

GoalRewire 

1 foreach 𝑥𝑝𝑔 ∈ 𝐸𝑔𝑜𝑎𝑙 

2  if Cost(𝑧𝑝𝑔) + 𝑐(𝑥𝑝𝑔) < Cost(𝑧𝑔𝑜𝑎𝑙) then 

3   𝑧𝑛𝑒𝑤 ←Parent(𝑧𝑝𝑔); 

4   𝐸 ← (𝐸\{(𝑥𝑝𝑎𝑟𝑒𝑛𝑡,𝑔𝑜𝑎𝑙)})⋃{(𝑥𝑝𝑔,𝑔𝑜𝑎𝑙)}; 
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Data Figures 

 Appendix D contains the remaining figures produced from experiments performed in this 

thesis. There were 24 sets of 11 runs performed, and for each set of runs four plots were created. 

The four types of plots are costs plots, trajectories plots, lowest cost trajectory plots, and lowest 

cost trajectory plots with vertices.  

 For each set of runs, these four plots are put into one figure, as in Figure D-1. Each costs 

plot shows the cost versus the algorithm iteration for all of the 11 runs with the same parameter 

setting. Each trajectories plot shows all of the trajectories found by the 11 runs with the same 

parameter setting. Each minimum cost trajectory plot shows the minimum cost trajectory found 

out of the 11 runs with the same parameter setting. And finally, each minimum cost trajectory 

plot shows the minimum cost trajectory found out of the 11 runs with the same parameter setting, 

along with the vertices of the search tree that found that trajectory. 

 For ease of understanding and labelling of the following figures in Appendix D, each set 

of 11 runs which had the same parameter setting has been given a number. Table D-1 lists these 

set numbers, along with their associated parameter settings. The following figures are labelled so 

as to be associated with Table D-1. 
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Table D-1 Run set number and associated parameter settings 

Set 
Number 

Simulation 
Impingement 

Prevention 

Propellant 
vs. Time 

Scale Factor 
Algorithm 

1 A YES 1000 RRT*-ES 

2 A YES 1000 RRT* 

3 A YES 10000 RRT*-ES 

4 A YES 10000 RRT* 

5 A NO 1000 RRT*-ES 

6 A NO 1000 RRT* 

7 A NO 10000 RRT*-ES 

8 A NO 10000 RRT* 

9 B YES 1000 RRT*-ES 

10 B YES 1000 RRT* 

11 B YES 10000 RRT*-ES 

12 B YES 10000 RRT* 

13 B NO 1000 RRT*-ES 

14 B NO 1000 RRT* 

15 B NO 10000 RRT*-ES 

16 B NO 10000 RRT* 

17 C YES 1000 RRT*-ES 

18 C YES 1000 RRT* 

19 C YES 10000 RRT*-ES 

20 C YES 10000 RRT* 

21 C NO 1000 RRT*-ES 

22 C NO 1000 RRT* 

23 C NO 10000 RRT*-ES 

24 C NO 10000 RRT* 
 

  

 



93 

 

  

  

Figure D-1 Run set 1  

 

0 1000 2000 3000 4000 5000 6000 7000 8000
1200

1400

1600

1800

2000

2200

2400

Number of Iterations

C
o
s
t

Costs Set trajectories 

Lowest cost trajectory Lowest cost trajectory with tree vertices 



94 

 

  

  

Figure D-2 Run set 1  

 

 

 

 

 

 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
1000

1500

2000

2500

3000

3500

4000

4500

Number of Iterations

C
o
s
t

Costs Set trajectories 

Lowest cost trajectory Lowest cost trajectory with tree vertices 



95 

 

  

  

Figure D-3 Run set 3  
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Figure D-4 Run set 4  
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Figure D-5 Run set 5  
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Figure D-6 Run set 6 
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Figure D-7 Run set 7 
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Figure D-8 Run set 8 
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Figure D-9 Run set 9 
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Figure D-10 Run set 10 
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Figure D-11 Run set 11 
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Figure D-12 Run set 12 
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Figure D-13 Run set 13 
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Figure D-14 Run set 14 
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Figure D-15 Run set 15 
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Figure D-16 Run set 16 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of Iterations

C
o
s
t

Costs Set trajectories 

Lowest cost trajectory Lowest cost trajectory with tree vertices 



109 

 

  

  

Figure D-17 Run set 17 
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Figure D-18 Run set 18 
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Figure D-19 Run set 19 
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Figure D-20 Run set 20 
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Figure D-21 Run set 21 
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Figure D-22 Run set 22 
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Figure D-23 Run set 23 
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Figure D-24 Run set 24 
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