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Abstract

Immunoglobulin molecules are extremely effective at providing protection from foreign mole-
cules or viruses; however, in certain cases the naturally occurring immune system cannot provide
adequate protection. Monoclonal antibodies are designed to fill these gaps by engineering anti-
gen binding regions capable of targeting and eliminating dangerous molecules. The monoclonal
antibodies can function when isolated and able to travel through the blood stream. However, im-
munoglobulin efficiency decreases upon self-association for two reasons. First, the immune system
may recognize the associated molecules and eliminate them depending on the size of the aggre-
gates. Second, if the molecules associate in such a way that the antigen binding regions are no
longer accessible they will be unable to function.

This thesis discusses molecular simulation techniques that can be used to study the structural
changes that occur due to intrinsic molecular flexibility in immunoglobulin molecules as well as the
structure of small aggregates that form through self-association. One solvated immunoglobulin
molecule was studied by explicitly representing every atom however coarse-graining techniques
were required in order to study multiple molecules in the same system.

The role of terminal galactose residues in the carbohydrate attached to the Fc domain in an
atomisitc model of an antibody molecule was studied in this work. Carbohydrate mobility as well
as the protein–carbohydrate hydrogen bonding interactions were compared between simulations
with and without terminal galactose residues. It was shown that one of the two biantennary ter-
minal galactose residues preferentially interacts with the protein when both were present; however,
when both were removed the carbohydrate structure changed such that new protein–carbohydrate
interactions formed. This change in solvent accessible protein surfaces will be an important area
of study to both increase effector functions and decrease self-association involving the Fc domain.

Understanding through which residues immunoglobulin molecules interact will lead to better
designed monoclonal antibodies with increased aggregation resistance. To aid in this understand-
ing, a previously developed residue level coarse-grained model was employed using the same model
molecule from the previous atomistic studies. The residues most often involved in self-association
of the antibody were individually mutated to alanine and the resulting association frequencies were
compared to the “native” immunoglobulin results to determine the residues most important in
self-association. Because of the asymmetry in the three-dimensional structure of the model im-
munoglobulin molecule used in this work, differences in aggregation behavior between two domains
with identical amino acid sequence indicated that molecular structure can play a significant role in
self-association.

These simulation techniques were shown to be effective at studying molecular flexibility and
protein–carbohydrate interactions with great chemical detail as well as the self-association with
resolution at the residue level. The future combination of results from these types of studies will
increase the understanding of the solution behavior of immunoglobulin molecules in order to develop
more effective monoclonal antibodies.
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Chapter 1

Introduction

1.1 Background

When the scientific fields of chemistry and biology were combined and used to study the

chemistry of life, a new science was born. An immediately obvious application of knowledge in this

area was health care and ways to fight disease in order to prolong life. An increased understanding

of biological processes with a basis in fundamental chemical structures allowed for the development

of small molecules that can manipulate the equilibria of these chemical reactions for a specific

desired result. These drugs are now a many billion dollar industry in the United States alone and

the focus of much research effort in both academic and industrial settings. A similar renaissance

occurred when advances in computational power were applied to the study of biological systems

using the understanding gained from the biochemistry field. As far back as the 1950s and 1960s

computers had been used to model human speech1 and large scale systems such as bus terminal

operations2 and traffic signals3, however beginning in the late 1960s and early 1970s the first works

of biological simulations began. These simulations modeled a significantly smaller scale, attempting

to represent natural phenomena on an atomistic or molecular scale. Ambitiously, one of the first

problems tackled was protein folding by Levitt and Warshel in which a simple representation

of pancreatic trypsin inhibitor was subjected to successive energy minimizations and allowed to

undergo thermal fluctuations.4 Although not perfect, these simulations were a first indication that

simulation without prior knowledge of the native structure could be used to predict protein folding.

A few years later, Sternberg and Thornton asserted that the three dimensional structure of a
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protein should be able to be determined based on the linear amino acid sequence, and discussed

various methods of determining native structures using computer simulation.5 Work at Harvard

by McCammon, Gelin, and Karplus based on the initial work of Levitt and Warshel led to the

first simulations of protein dynamics in which the first fundamental molecular dynamics computer

code was developed.6 This code went on to be the basis of the now well known molecular dynamics

code in the CHARMM and AMBER software suites and initiated great developments in both the

underlying chemical force fields and computational techniques used to study structural biology.7

Experimental results that define well structured proteins can be used to form the basis of a

database for knowledge-based structure matching, aided by use of modern computational power.

This idea was suggested by Blundell et. al. in 1987 in which the structure of a protein of interest can

be predicted by searching for similarities in amino acid sequence within a large database of already

known structures.8 This procedure showed promise 27 years ago and the number and accessibility

of known protein amino acid sequences and structures has been and is still growing rapidly. Com-

putational powers today would allow for not only similarities between primary through quaternary

structures to be matched but also protein function, active sites and the organism(s) of origin to

enhance the matching procedure. Although the accuracy of predicting native protein structures

was reasonable with a simple model and has been increasing with more complex prediction method-

ologies, protein folding is still a somewhat intractable problem today for large molecules. A free

energy landscape is shown in one dimension in Figure 1.1 to help demonstrate this point. The

native state for a given protein could exist at either (a) or (b). Although (a) is lower in energy than

(b), energy barrier(s) may limit the existence of the protein at (a) in nature. This phenomenon was

suggested in 1990 by Honeycutt and Thirumalai9 and called the metastability hypothesis, in which

multiple local minima in the free energy exist with similar structural characteristics. In this case

the absolute lowest energy conformation obtained from simulation may not be related to the most
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relevant structure of the protein. Conversely, if there is a unique folding process through which a

protein can reach a final native state (a), there may be an energy barrier that limits access to (a)

from a starting point (b) using molecular simulation.

H aL

H bL

Degree of Freedom

F
re

e
E

n
er

g
y

Fig. 1.1 Schematic free energy landscape showing two possible protein native states (a) and (b).
Given a starting point not in close proximity to (a), molecular simulations may not be able to
overcome energy barriers to result in the lowest energy conformation. The energy barrier may be
overcome in nature through a unique folding process. It may also be the opposite case, where
the energy barrier cannot be overcome naturally but a molecular simulation technique could be
employed to arrive at (a). These two cases demonstrate the need for at least some knowledge of
the native state of a protein in order to study it in silico.

Experimental methods such as x-ray crystallography are able to capture a snapshot of the

conformations in which a molecule exists in nature and are useful starting points for simulation. In

fact, because these experimental methods often only capture static representations, use of molec-

ular dynamics simulations can offer further insight into the biophysical behavior of molecules.

Although some information about dynamic behavior is available from the “blur” of electron den-

sity arising from thermal fluctuations in diffraction patterns, these results are usually obtained



4

at non-physiological conditions in order to aid crystallization. Furthermore, some molecules pose

difficulties to crystallize for this type of characterization; however fragments of these molecules can

be isolated and crystallized and then recombined in silico to study their full three dimensional

structure. For example, Brandt et. al. used individual fragments of an immunoglobulin molecule,

which will be discussed at greater length throughout this work, obtained from x-ray crystallogra-

phy and reconstructed a three-dimensional structure representative of an intact antibody.10 Insight

from experimental work was used as input to generate an ensemble of structures which was then

validated using a hydrodynamic model and compared to experimental results. Confirmation that

the simulations were recreating the correct hydrodynamics validated that the structures resulting

from simulation could in fact be found in reality but had not previously been observed.

1.2 Immunoglobulins

Immunoglobulins are a class of proteins that act as antibodies. Antibodies function in various

organisms in the immune system by selectively targeting and eliminating or neutralizing foreign

molecules. Antigen binding regions of the protein attach to specific regions on the foreign molecules.

Other regions on the protein are recognized by various cells in the immune system that assist in

elimination or destruction of antigens that may cause a risk to the organism. Immunoglobulins can

be categorized into five different classes, IgA, IgD, IgE, IgG, and IgM, with varying structures and

functions. IgD, IgE and IgG are found as a monomeric units representing a singular immunoglobulin

molecule while IgA is found a dimer and IgM is found a pentamer of these monomeric repeat units.

IgG is by far the most abundant serum immunoglobulin and the subject of most research regarding

immunoglobulins.

Four protein chains in an immunoglobulin molecule fold into three globular domains that

form a “Y” shape. Two arms of the Y-shape are referred to as Fab domains, named as such
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because these two domains contain the antigen binding regions. The third domain is called the Fc

domain, named as such because it was the first domain to be found crystallizable when isolated from

the rest of the protein.11 All three domains consist of four subdomains which contain a familiar

recurring immunoglobulin fold structure. This characteristic immunoglobulin fold is shown in

Figure 1.2. This visualization is made using the Visual Molecular Dynamics software program12

(VMD) specifically from the CH2 subdomain from chain 1 using the atomic coordinates from X-

ray crystallography experiments reported in the 1HZH entry in the Protein Data Bank. (See later

for more information about IgG crystal structures) The secondary structure appearing in each

immunoglobulin fold is primarily made of antiparallel β-sheets. Two β-sheets, one containing three

β-strands (blue in Figure 1.2) and one containing four β-strands (red in Figure 1.2), lie on top of

each other with a disulfide bond holding them in place (yellow in Figure 1.2).13 The loops that

fold between β-strands form the complementarity determining region (CDR) in the Fab domains

that are responsible for binding to antigens. A total of twelve disulfide bonds (one in each of four

subdomains in three domains) help maintain the structure of subdomains and, along with non-

bonded interactions, consequently maintain stable domain structure. In IgG1, two disulfide bonds

connect the two heavy chains in the hinge region and one disulfide bond connects CH1 and CL

subdomains in each Fab domain which help maintain structure and govern flexibility. The hinge

region disulfide bonding differs among IgG classes.
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Fig. 1.2 Characteristic immunoglobulin fold in IgG subdomains visualized using VMD from the
atomic coordinates captured in X-ray crystallography experiments and reported in the 1HZH entry
in the Protein Data Bank. Specifically, the CH2 subdomain in 1HZH is shown here. Two β-
sheets (red and blue) connected by a disulfide bond (yellow) are responsible for the stability of IgG
subdomains.

The structure of a whole immunoglobulin molecule is shown in Figure 1.3. This representa-

tion visualizes the atomic coordinates using VMD captured from X-ray crystallography experiments

and reported in the 1HZH entry in the Protein Data Bank. (See later for more information about

IgG crystal structures) Each of the two longest of the four chains in IgG, often referred to as

“heavy” chains, begin in one domain and end in a second domain, while making a flexible hinge

region that connects domains. The two heavy chains begin in separate domains and meet in the

third common domain to form the finally folded Fc domain. The other end of the heavy chain folds

with one of two shorter, or “light”, chains to form the quaternary structure of the Fab domains.

Heavy chains fold into four distinct subdomains, of which three are referred to as “constant” (CH1,

CH2, CH3), and one is referred to as “variable” (VH). The three constant domains are largely
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conserved within an immunoglobulin class (i.e. - CHX subdomains across all IgG antibodies show

significant similarity in linear amino acid sequence), while VH shows more variability.13 Sections of

the VH subdomain reside in the antigen binding region and the differences in sequence within an

immunoglobulin class contributes to the ability for different immunoglobulin molecules within the

same class to bind to many different antigens. The light chains contain one constant subdomain,

CL, and one variable subdomain, VL. As with the constant heavy chain subdomains, the CL sub-

domains remain reasonably conserved within an immunoglobulin class, while the VL subdomains,

along with VH subdomains, determine to which antigens the immunoglobulin can bind.

Fig. 1.3 Structure of IgG visualized using VMD from the atomic coordinates captured in X-ray
crystallography experiments and reported in the 1HZH entry in the Protein Data Bank. Subdo-
mains with “H” (but not Hinge) form from the folding of IgG heavy chains. The N-terminus begins
in the VH subdomain and the chain travels through CH1, the hinge, CH2, and CH3 subdomains.
Subdomains with “L” form from the folding of IgG light chains. The N-terminus begins in VL and
ends in CL.
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Specifically in the constant subdomains, heavy chains within each of the five classes of

immunoglobulins have been observed to be very similar in amino acid sequence. They have been

named α, γ, δ, ε, and µ for heavy chains in IgA, IgG, IgD, IgE, and IgM respectively.13 Light

chains in IgG, having been the most studied immunoglobulin, have been grouped into two different

types, κ and λ, based on the CL subdomain amino acid sequence. Amino acid sequence in variable

subdomains, however, are different among IgG molecules and contribute to the ability for IgG to

bind to a variety of antigens.

Based on the prevalence of IgG1 in humans, it has been selected as the target for engineering

monoclonal antibodies for use in supplementing the naturally occurring immune system. For many

diseases, antigen binding sites can be engineered to specifically target sites on viruses or cancer cells

to provide protection against antigens a human cannot normally defend. For example, engineering

antibody molecules with γ type heavy chains and either κ or λ type light chains can be presumed

to behave similarly to IgG in the body. By changing the amino acid sequence in VH and VL

subdomains such that the newly engineered antigen binding regions specifically target harmful

foreign molecules, deficiencies in the naturally occurring immune system can be remedied. The

self-association of these molecules in solution limits how well they can perform their desired task of

targeting antigens. Therefore, the causes of self-association must be understood in order to increase

the efficiency of these monoclonal antibodies.

1.3 IgG Crystal Structures

The structure and dynamics of IgG molecules are of great interest to study in order to

understand how the molecules behave in solution. Immunoglobulins, however, are too large to be

studied using experimental techniques such as solution NMR, but characterization techniques such

as X-ray crystallography are capable of capturing snapshots of some conformations. Only a few of
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these snapshots have been captured using X-ray crystallography and released publicly14;15;16 and

they show significantly different conformations available to IgG in solution.

The 1HZH IgG crystal structure16 was obtained from antibody b12 at a resolution of 2.7

Å. This IgG1 antibody was shown to recognize a specific site on the human immunodeficiency

virus (HIV) believed to limit the virus’ ability to enter new cells. While the amino acid sequences

of each heavy and light chain were identical to the other, the three-dimensional structure of the

conformation captured from X-ray crystallography was very asymmetrical. The Fc domain was

located in close proximity to what was designated as the Fab2 domain, while the Fab1 domain was

more isolated from the other two domains. The presumed flexibility in the hinge region manifested

itself as a difference in dihedral torsional angles between the two chains. There were two possible

hinge inter-chain disulfide bonds, however only one was found to be connected. The authors

explained that it may fluctuate between connected and disconnected states naturally or could

have been disconnected due to radiation during experiment, but indicated that only one of the

two disulfide bonds needed to be connected for normal biological function. Carbohydrates were

identified in the Fc domain and characterized as G1F and G2 glycans. Because antibody b12 is

believed to have potential for the neutralization of HIV this crystal structure is often used as a

model antibody for use in molecular simulations.

The remaining two crystal structures available in the Protein Data Bank are 1IGY and 1IGT.

The 1IGY crystal structure15 was obtained at 3.2 Å from a murine IgG1 molecule. The monoclonal

antibody was designed to target the drug phenobarbital. The angle between the main axis of the

Fc domain and the common plane of the Fab domains was much more acute than in 1HZH and was

nearly 90 degrees. The 1IGT crystal structure14 was obtained at 2.8 Å from an IgG2 monoclonal

antibody designed to target canine lymphoma tumors. The angle between main Fab axes is nearly

180 degrees, while the Fc domain was found to be near perpendicular to their common axis as was
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found in the 1IGY crystal structure. These two crystal structures, while informative with respect

to the ensemble of conformations available to IgG molecules in solution, represent alternative but

not ideal structures for modeling IgG using molecular simulations.

1.4 Thesis Overview

Building on the background information provided above, solution dynamics and small-

aggregate structure of IgG molecules were studied using molecular simulation techniques. These

techniques are described briefly in the following sections of Chapter 1. Chapter 2 describes all-

atom molecular dynamic simulations of a single IgG molecule and highlights specific changes in

protein-carbohydrate interactions in the Fc domain depending on the presence of a terminal galac-

tose residue in the glycan. All-atom computer simulations of one solvated IgG molecule push the

limit of current computational power, however are capable of describing solution dynamics unable

to be captured by experimental methods. In order to study interactions between multiple IgG

molecules using computational methods, a coarse-grained model is employed to study the structure

of small aggregates and is described in Chapter 3. This coarse-grained model is used to highlight

the residues that were shown to be important in the formation of these small aggregates. Chapter

4 discusses conclusions drawn from both works and suggests possible future work to further the un-

derstanding of IgG solution structure and dynamics to improve efficiency of therapeutic monoclonal

antibodies.

1.5 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations can provide access to detailed information at length

and time scales that are either impossible or difficult to obtain experimentally. Classical MD simu-

lations, derived from Newton’s laws of motion, can be used to sample an ensemble of configurations
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and reveal the dynamics of equilibrium structures. The applicability of simulation ranges from ab

initio systems in which the electronic state of matter can be studied, to atomistic systems with

every atom explicitly represented, to coarse-grained systems where atoms or molecules are grouped

together on to continuum systems. Given this large range of length scales available to probe, there

is balance between the accessibility of chemical detail and time scale based on current computa-

tional power. In order to study long time scales, one must sacrifice chemical detail; conversely, to

study small, detailed systems, one is limited to short time scales. This work will discuss simulations

of atomistic and coarse-grained systems containing immunoglobulin molecules. These techniques

are described in the following two subsections.

1.5.1 Atomistic Molecular Dynamics

As mentioned earlier, classical MD simulations follow the laws of classical mechanics. As

such, each atom in a system can be defined by a position in space and a mass. Given the initial

configuration defined by a set of coordinates and a force field that describes atomic interactions,

Newton’s laws of motion can be numerically integrated to predict the movements of each atom

through time. The selection of the force field parameters that govern interactions and consequently

atomic motions is not trivial; however, much work has been done since the first MD simulations

and various “well developed” force fields exist today. These force fields contain parameters for

use in potential energy functions that describe pairwise interactions between different atom types.

Atom types can be relatively general, such as sp3 hybridized carbon atoms or very specific, such as

aromatic sp2 hybridized carbon atoms between 2 nitrogen atoms in a 5-membered ring (this occurs

specifically in the histidine amino acid residue).

The set of atom types and their corresponding parameters along with the functional form

of the equation that represents pairwise potential energies define the various force fields. The
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atomistic simulations described in this work used the 99SB AMBER force field, which was developed

specifically for simulations containing biologically relevant matter. The functional form used for

pairwise interactions in the AMBER force fields is

V (r) =
∑
bonds

kb(b− b0)
2 +

∑
angles

Kθ(θ − θ0)
2 +

∑
dihedrals

(Vn/2)(1 + cos[nφ− δ])

+
∑
nonbij

(Aij/r
12
ij

) − (Bij/r
6
ij

) + (qiqj/rij), (1.1)

where the potential energy, V , is dependent only on the separation distance, r, between particles

i and j. Bonded parameters are required for bond force constant, kb, equilibrium bond length,

b0, angle bending force constant, Kθ, equilibrium angle, θ0, torsion rotation force constant, Vn,

torsion symmetry, n, and equilibrium dihedral angle, δ. Nonbonded parameters are required for

Lennard-Jones constants, Aij and Bij , and partial charges, qi and qj , for particles i and j. Given an

instantaneous configuration, the forces acting on all atoms (and corresponding accelerations) can

be obtained through the derivative of the potential energy function. Numerical integration allows

prediction of atomic positions after a finite time step. Different algorithms exist to perform this

propagation of atomic positions through time in which the atomic positions, velocities and accel-

erations are approximated by Taylor series expansion. The velocity-verlet algorithm implemented

within the AMBER software package was used in the simulations described in this work.

The optimization procedures used to obtain parameters for the different atom types were

performed in efforts to reproduce experimentally observed properties of macromolecules, specifically

proteins. Beginning with parameters derived from ab initio studies, refinement of parameters in

order to better replicate known structures provides a set of always improving force field parameters.

Since the atomistic work presented herein was performed, a newer version of the AMBER all-atom

force field, 12SB, has been released. Efforts were placed on better reproducing experimentally
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observed secondary structures. As will be described in Chapter 2, the immunoglobulin domains

and their secondary structures remained stable on the time-scale studied using the 99SB force

field. An important note made by the forefathers of biologically oriented MD simulation is that

these parameters provided in simulation software packages are approximate and can be adapted for

different systems in order to better study properties of interest.17 In simulation work where protein

folding and unfolding is of great interest, the newer 12SB force field could be more applicable.

1.5.2 Coarse-Grained Molecular Dynamics

With modern computer performance, relatively large systems (∼1 million atoms) can be

simulated with atomistic details for reasonable time scales (∼hundreds of nanoseconds). However,

there are many systems of interest to study that are beyond these boundaries. At this scale, the

number of calculations per time step with all atoms represented explicitly, even when limited to

pairwise interactions, are too high to perform simulations within a reasonable time frame. In order

to limit the number of these calculations, coarse-graining techniques can be employed in which the

degrees of freedom in a system is decreased which in turn decreases the calculations required per

time step. This is usually accomplished by grouping multiple atoms together and treating them

as a single point in space or a coarse-grained (CG) bead. The motions of individual atoms within

a CG bead can no longer be studied, however if these motions can be considered insignificant in

order to study a property of interest, this sacrifice can prove to be beneficial. These CG beads

interact through potentials that are mathematically defined in order to maintain known, important

system properties such as structural motifs, etc. These potentials cannot be developed in the same

way as atomistic potentials, however may still contain similarities with regards to bond, angle, and

dihedral energetic terms. Successful coarse-grained systems can yield insights into systems larger



14

than those accessible to atomistic study and can also provide a valuable stepping stone from taking

data from atomistic systems for continuum studies.

Any number of atoms can be coarse-grained into one bead. This choice depends on the

system and properties of interest, and could range from grouping hydrogen atoms with heavy

atoms (united-atom models) to representing molecules with thousands of amino acid residues with

just a handful of CG beads. One common method to reduce the number of degrees of freedom in

protein simulations is by using an Elastic Network Model (ENM), which has shown to accurately

reproduce thermal fluctuations around an equilibrium structure.18;19 Using this technique, coarse-

grained beads within a cutoff distance are connected by an “elastic spring” based on separation

distance. The elastic spring is mathematically represented with a harmonic energetic potential

with equilibrium distance set based on an equilibrium structure and force constant adjusted to

maintain protein structure. By implementing this ENM, the structure can be maintained without

representing all atoms explicitly. An ENM allows for structural fluctuations and therefore allows

for more efficient simulation of an equilibrium structure. An ENM can be sufficient to study longer

time scales for an equilibrium structure, however to study molecular interactions an intermolecular

potential is required. Different intermolecular potentials have been suggested for different degrees

of coarse-graining such as the MARTINI potential20 which uses multiple beads per protein residue.

Other choices involve knowledge-based energetic potentials, as will be discussed in Chapter 3.

Whereas atomistic simulations allow specific atom-atom interactions in molecules such as

hydrogen bonding or interactions between atoms with opposite partial charges, coarse-graining

grants access to much longer time and length scales. Many biological phenomena occur on the

microsecond to millisecond time scale which is not possible to simulate fully atomistically today.

Coarse-grained simulations have been used to help solve problems on these time scales such as

membrane protein assembly21 and and RNA folding22.
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Chapter 2

Effects of Galactosylation in Immunoglobulin G

from All-Atom Molecular Dynamics Simulations*

2.1 Introduction

Immunoglobulins (Ig) are a class of glycoproteins that act as antibodies in the immune

system. Antibodies target and neutralize or eliminate foreign molecules to provide protection to

the host organism. Of the five classes of human immunoglobulins (IgA, IgD, IgE, IgG, IgM), IgG

is the most abundant and well studied. Four subclasses of IgG have been identified (IgG1–4), with

IgG1 being the most prevalent serum IgG antibody.23 Two heavy chains and two light chains fold

to form three domains connected by a hinge region, which introduces molecular flexibility. Two

domains contain antigen binding sites (Fab domains), while the third domain contains binding sites

for effector functions (Fc domain).

The Fc domain was the first domain to be isolated and crystallized by Porter in 1958.11

Since then, the structure of many Fab and Fc domains has been experimentally determined and

reported in the Protein Data Bank (PDB); however, to date only three intact structures of a 150 kDa

glycoprotein have been determined by X-ray crystallography. The 1IGT crystal structure14 presents

an IgG2 murine monoclonal antibody. However, as previously mentioned, we are interested in

studying IgG1, because IgG1 is the most prevalent IgG subclass and of most interest for applications

such as monoclonal antibodies. The 1IGY crystal structure15 captured the structure of a murine

IgG1 molecule, however the 1HZH crystal structure16 captured the structure of a human IgG1

antibody and was therefore chosen as a model molecule to study in this work. Although these

*Reprinted with permission from Fortunato M. E., Colina C. M. J. Phys. Chem. B 2014, 118 (33),
9844–9851. ©2014 American Chemical Society
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three structures show distinctly different IgG configurations, they by no means represent a complete

sampling of all conformations available to a solvated IgG molecule. Because of the large size of

the antibody, the dynamic motions of IgG in more physiologically relevant conditions cannot be

studied by solution NMR. However, molecular simulations can be used to sample the ensemble of

conformations available to a solvated IgG molecule by using previously determined crystal structures

as starting points. The motivation of these computational studies is the need for a model IgG

molecule with increased aggregation resistance to be used as monoclonal antibodies for therapeutic

treatments to aid the immune system. Moreover, in recent years, much attention has been given to

the role that glycosylation can play in all biomolecules and specifically IgG for the aforementioned

applications driving the development of therapeutics as well as providing novel targets for drug

design. These are highlighted in the recent review published in Science by Dalziel et al.24 on

glycosylation in biomolecules.

Chennamsetty et al.25 studied an ensemble of IgG1 conformations collected from 30 ns

atomistic molecular dynamic (MD) simulations, with explicit water molecules, to locate regions of

the molecule prone to aggregation. Calculating the average spatial aggregation propensity (SAP)

parameter for each residue allowed for the discovery of groups of residues that showed increased

risk for aggregation in solution. SAP parameters were also determined from implicit water models

and from the crystal structure; however, the accuracy of the results from these models decreased

when compared with all atom explicit water models. These results corroborated the importance of

modeling water molecules in an explicit fashion to correctly capture the behavior of IgG molecules

in solution.

Also from the Trout group, Voynov et al.26 used explicit water atomistic simulations to study

protein–carbohydrate interactions in IgG1 with G0-type glycosylation. (See later for description

of glycosylation types) By calculating the solvent-accessible surface area (SASA) of certain protein
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residues near the carbohydrate in the CH 2 subdomain, they were able to determine which residues

were exposed with G0 glycosylation. Subsequently, by removing the carbohydrate during SASA

calculations, they compared the solvent exposure of CH2 protein residues with and without gly-

cosylation. These results showed that certain residues initially covered by the carbohydrate could

dynamically become exposed within a matter of nanoseconds. Moreover, the aromatic side chains

of many of these residues were believed to be important for the protein–carbohydrate interactions

and resistance to aggregation. The authors supported this by performing mutations of phenylala-

nine residues to nonaromatic serine residues and showed an increase in aggregation when compared

with native IgG or a mutation to tryptophan, which also contains an aromatic side chain.

Recently, Wang et al.27 performed MD simulations on a murine IgG2 molecule to study

destabilization upon deglycosylation and heat stress. Their results showed that at 298 K the

CH2 subdomain was destabilized by deglycosylation evidenced by an increase in root-mean-square

deviations (RMSd) of the α-carbons from the crystal structure; however, other domains were not

significantly destabilized. At 400 K, destabilization was observed with deglycosylation as an increase

in α-carbon RMSd throughout the whole molecule, with the hinge region and Fab variable domains

showing the largest destabilization in addition to the CH2 subdomain.

Kortkhonjia et al.28 used atomistic and explicit water MD simulations to study dynamic

motions of IgG1 in solution with G2 glycosylation. By using various constraints on bond lengths

and hydrogen motions, a time step of 4 fs provided increased computational efficiency and the

ability to collect an ensemble of conformations representing the microsecond time scale. Supported

by fluorescence anisotropy experiments, these MD simulations demonstrated the flexibility of an

IgG molecule and its ability to adopt a variety of conformations.
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2.1.1 Galactosylation in Immunoglobulin G

It is envisioned that antiviral therapy will have a robust glycan factor in the forthcoming

years. The development of therapeutic glycoproteins has been greatly inspired by biosynthetic tech-

nologies that can produce specific glycoforms. A clear example of this approach is the development

of monoclonal antibodies with engineered glycosylation, which enhanced in vivo properties, includ-

ing its direct modification. Thus, it is key to understand the conformational freedom available to

the various glycoforms found in IgG. Advances in this area of study, which this work aims to ad-

dress, will prove to be essential in the search for therapeutic monoclonal antibodies with increased

performance.

IgG contains two conserved glycosylation sites in the Fc domain. Glycosylation is heteroge-

neous across IgG sub classes and can also be heterogeneous within the same molecule. A bianten-

nary carbohydrate is N-linked at a specific asparagine residue on each heavy chain in the CH2

subdomain. As shown in Figure 1, the core, branched structure of the carbohydrate is constant,

while terminal residues characterize specific glycans. These glycans are often named according to

the number of biantennary terminal galactose residues (i.e., G0, G1, G2) and the presence of a

core fucose residue (i.e., G0F, G1F, G2F). Additionally, a bisecting N-acetyl glucosamine residue

and biantennary terminal sialic acid residues can be present. Any combination of these additional

residues is possible, and the distribution of different glycans in human populations has been well

studied.29;30 These studies showed that the vast majority of IgG glycans contain a core fucose

residue and one or more terminal galactose residue. Core fucose residues have been shown to be

important for binding to FcγRIIIa, a receptor for antibody-dependent cellular cytotoxicity.31;32

The lack of terminal galactose residues has been associated with the autoimmune disease rheuma-

toid arthritis,33;34 and sialyation has been linked to anti-inflammatory responses.35;36 While the
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molecular mechanisms connecting these residues to the biological roles they play are still unclear,

it is without question the glycosylation of IgG plays a large role in its biological activity.

Fig. 2.1 Carbohydrate structures in the Fc CH2 subdomain in IgG. (Left) One heavy chain Fc frag-
ment showing the glycosylation site and carbohydrate structure. (Right) Cartoon representation
of possible glycans showing the conserved, branched core structure with variable terminal residues.

In G1 glycans, the terminal galactose residue is preferentially located on the six-arm of the

branched carbohydrate. (See Figure 2.1) Specific interactions of this six-arm galactose residue with

the Fc domain are suggested from X-ray crystallography studies, while (if present) the three-arm

galactose residue is found to be a further distance from the protein.16;37;38 Solution NMR studies

of isolated, glycosylated Fc fragments39 have shown longer relaxation times for six-arm galactose

residues in comparison to three-arm galactose residues, supporting previous findings from static

X-ray crystallography snapshots. In this work, atomistic MDs simulations are used to study the

structure and mobility of the carbohydrate in two different IgG1 glycoforms to understand the

conformational freedom available to them. This understanding can prove to be essential in the

search for therapeutic monoclonal antibodies with increased performance.
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2.2 Methods

Two independent 100 ns atomistic MD simulations of a full immunoglobulin G1 (IgG1)

glycoprotein were performed using the AMBER 12 software suite40 with the AMBER ff99SB41 and

GLYCAM 06h42 force fields. The two simulations used initial coordinates of non-hydrogen atoms

obtained from X-ray diffraction experiments on IgG1 reported in the pdb entry 1HZH.16 Thirteen

missing residues in heavy chain 2 reported in the pdb entry were reconstructed using heavy chain 1

as a model. The two independent simulations differed in the glycosylation in the Fc domain. One

simulation contained G1F/G2 glycosylation (IgG-G3) and the other simulation contained G0/G0

glycosylation (IgG-G0). Amber’s LEaP program was used to (1) add hydrogen atoms to the heavy

atoms present in the pdb entry, (2) add 22 Cl− counterions to neutralize the charge of the protein,

(3) connect disulfide bonds, (4) construct two N-linked oligosaccharides present in the Fc domain,

and (5) solvate the glycoprotein with TIP3P water molecules in a truncated octahedron with a

minimum distance of 10 Å between the glycoprotein and any edge of the simulation box. The initial

structures contained ∼330 000 atoms (of which 20 626 atoms belonged to the protein). Periodic

boundary conditions were used in all optimization and simulation procedures. Energy minimization

on the initial structures was performed using the SANDER program in two steps. First, the

glycoprotein atoms were restrained to their initial positions allowing the solvent and specifically

the protein/water interface to relax first. Ten thousand steps of steepest descent minimization were

performed, followed by 10 000 steps of conjugate gradient minimization. The restraint was then

removed for another cycle of 10 000 steepest descent and 10 000 conjugate gradient minimization

steps. Energy calculations for nonbonded interactions were made with a cutoff of 12 Å during

minimization as well as throughout the MD simulations. The PMEMD program was used to heat

the system using MD for 40 ps from 0 to 300 K in the canonical ensemble (NVT). The glycoprotein

atoms were restrained during heating. The SHAKE algorithm was applied with a tolerance of
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0.00001 Å to constrain bonds involving hydrogen during all MD simulations, allowing a time step

of 2 fs. Particle mesh Ewald summations were used to calculate electrostatic interactions beyond

the nonbonded cutoff distance in the system during all MD runs. The GPU-accelerated PMEMD

program written in CUDA43 was used for production runs. MD simulations were performed at 300

K and 1 bar in the isobaric–isothermal ensemble (NPT). System properties (energies, temperature,

pressure, density) and atom coordinates were recorded every 2 ps during the simulations. Every

fifth frame of the trajectory was used for analysis resulting in data points every 10 ps. Analyses

of root-mean-square deviations, radii of gyration, atomic fluctuations, and hydrogen bonding were

performed using CPPTRAJ in the AmberTools 12 software suite.40

The RMSd of backbone atoms (–C–C–N–), using the crystal structure as a reference, was

mass weighted and averaged over each frame considered for analysis. To obtain domain RMSd

values, only root mean square fitting and RMSd calculations for the domains of interest were

averaged. The domains were defined as follows: Fab1, residues 1–230 of heavy chain 1 and resides

1–215 of light chain 1; Fab2, residues 1–230 of heavy chain 2 and residues 1-2-15 of light chain 2;

Fc, residues 246–457 of heavy chain 1 and heavy chain 2; Hinge, residues 231-245 of heavy chain 1

and heavy chain 2.

To analyze domain orientations, we determined two vectors for each domain (see Figure

2.2) using α-carbon atom positions. The first vector defined the directional orientation of the

domain (directional vector), and the second vector defined the rotational orientation of the domain

(rotational vector). Each domain contained two variable subdomains of which the centers of mass

were determined (points A and B). Two additional points were determined as the center of mass of

the two constant subdomains (point D) and the two variable subdomains (point C). The directional

vector was defined as DC, and the rotational vector was defined by the result from the cross product

DAXDB, which represents the vector normal to the plane containing points A, B, and D. This
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procedure was used to obtain two characteristic vectors for each domain. Angles of interest were

determined by calculating the dot product between normalized unit vectors.

Fig. 2.2 IgG representation showing centers of mass (COM) used to determine domain orientations.
A trace of the backbone is shown in gray lines. (Left) One Fab domain showing the COM for the two
variable subdomains (points A and B) and their COM (point C) and the COM of the two constant
subdomains (point D) viewed from the top(top) and side (bottom). The plane used to represent
the orientation of the domain is shown, which contains points A, B, and D. (Right) Characteristic
planes shown for all three IgG domains.

Carbohydrate mobility was measured on a per residue basis by calculating the atomic fluctu-

ations of carbon and oxygen atoms after performing a root-mean-square (RMS) fit of the Fc domain

backbone coordinates. This RMS fit was preferred to fitting only the carbohydrate residues as it

was of interest to study how the carbohydrate moves within the cavity between CH2 subdomains

in the Fc domain and not strictly deviations in the carbohydrate structure. Interatomic interac-

tions were considered hydrogen bonds if the distance between the donor and acceptor heavy atoms

was <3.0 Å and the angle between heavy atom–hydrogen–heavy atom was >135°. Heavy atoms
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considered able to form hydrogen bonds were oxygen and nitrogen atoms. Every 10 ps, the num-

ber of hydrogen bonds between residues of interest was calculated. The fractional occupancy of

hydrogen bonding was determined by breaking the trajectory into 100 1 ns blocks and calculating

the percentage of frames in each block where a hydrogen bond was present.

2.3 Results and Discussion

IgG has been chosen as a model antibody to engineer monoclonal antibodies for therapeutic

treatments to aid the immune system. Much effort has been put toward better understanding the

structure and dynamics of the molecule in solution to decrease aggregation propensity in com-

mercial solutions. The structure of the ∼150 kDa glycoprotein has been determined by X-ray

crystallography; however, because of the large size of the antibody, the ensemble of conformations

IgG can adopt under more physiologically relevant conditions cannot be currently determined by

experimental techniques such as solution NMR. Thus, atomistic molecular simulations are used in

this work to complement the experimental efforts, sampling the ensemble of conformations available

to a solvated IgG molecule by using the experimentally determined crystal structures as starting

points.

2.3.1 RMSd

RMSd calculations for individual domains and the hinge region, shown in Figure 2.3 a–d,

showed that the smaller hinge region (30 total residues) displayed higher backbone deviation than

the larger IgG domains (400+ residues each). Usually, larger groups of residues will have larger

backbone deviations, contrary to these results. This indicated significant flexibility in the hinge

region that connects relatively stable domains that allow IgG molecules to adopt a wide range of

available conformations in solution.
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Fig. 2.3 IgG-G3 (red circles) and IgG-G0 (blue squares) domain RMSD values for backbone atoms:
(a) Fab1 domain, (b) Fab2 domain, (c) Fc domain, and (d) hinge region.

The protein backbone RMSd values for the whole IgG molecules (IgG-G3: red circles and

IgG-G0: blue squares) as a function of simulation time are shown in Figure 2.4. Fluctuations are

shown in dark colored lines in the background behind data points plotted every 2.5 ns. (Fluctuations

were omitted from all other plots for clarity) Large RMSd values are obtained when averaging over

all backbone atoms in an IgG molecule due to segmental motions as a result of hinge flexibility and

not due to domain distortions.
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Fig. 2.4 Backbone RMSd values for IgG-G3 (red circles) and IgG-G0 (blue squares). Data points
are shown every 2.5 ns, with fluctuations shown in the background.

2.3.2 Segmental Motions

The segmental motions of IgG domains contribute to the efficiency of antigen binding by

allowing the domains to adopt a variety of orientations. Because of the stability observed within

domains, geometrical definitions can be used to characterize these domain orientations during MD

simulations. These geometrical definitions, defined in the Methods section, provided directional

and rotational vectors to describe the angle between directions the domains point and the rotation

between domains, respectively. In some cases, domains were free to translate or rotate freely with

respect to other domains, and in other cases pairs of domains moved in tandem. The Fab1 domain

began isolated from the Fab2 and Fc domains (see Figure 2.2) and presumably had more degrees

of freedom to adopt a wider variety of conformations. This claim is supported in Figure 2.5, which

shows the angle between the directional vectors of the Fab1 and Fab2 domains. Both IgG-G3 (left)
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and IgG-G0 (right) displayed a wide range of possible angles between directional vectors of Fab1

and Fab2.
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Fig. 2.5 Distributions of angles between directional vectors of Fab1 and Fab2 domains in the IgG-G3
(left) and IgG-G0 (right) simulations.

In contrast with the overlapping peaks seen in Figure 2.5, much sharper and more discrete

distributions of favorable orientations were observed when analyzing the distributions of rotational

orientations between Fab1 and Fab2, shown in Figure 2.6. In both simulations, the directional

vectors were observed to fall roughly within the range of 105–160°without any apparent favorable

directional orientations. However, three distinct distributions of favorable rotational orientations

were observed at 60, 100, and 135°. Evidence of Fab domains orienting at specific angles has also

been seen previously by Brandt et al. in atomistic MD simulations.10
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Fig. 2.6 Distributions of angles between rotational vectors of Fab1 and Fab2 domains in the IgG-G3
(left) and IgG-G0 (right) simulations.

2.3.3 Radius of Gyration

Along with RMSd measurements, radius of gyration (Rg) calculations provide a first indi-

cation of the structural changes occurring during the simulations and also provide an opportunity

to compare with experimental results. Rg distributions of IgG-G3 (left) and IgG-G0 (right) are

shown in Figure 2.7. In both simulations, the IgG molecules sample conformations that resulted in

a Rg between 49 and52 Å during most of the simulation. However, the distribution of Rg observed

for IgG-G3 showed three distinct peaks, while IgG-G0 showed only two peaks. The main peak in

both distributions was centered at 49.5 Å and a smaller peak was centered higher between 51 and

52 Å. IgG-G3 also sampled a conformation with a smaller Rg, shown by the peak centered at 47.5

Å. This indicated that IgG-G3 was able to sample three different conformations during the 100 ns

simulation while IgG-G0 sampled only two. Furthermore, in both simulations, the majority of data

are found below the Rg for the initial configuration in the crystal structure of 51.8 Å, indicating that

IgG adopts a more compact structure in solution than what is captured in the 1HZH crystal struc-

ture. This is likely a consequence of the environmental differences between X-ray crystallography

conditions and simulations conditions.
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Fig. 2.7 Distribution of radii of gyration in the IgG-G3 (left) and IgG-G0 (right) simulations.

The results from the simulation here presented are within the range of results observed from

X-ray and neutron scattering experiments. Monte Carlo and MD simulations in the work of Clark

et al.44 showed the Rg of IgG can range from 39 to 55 Å using free-energy constraints. Rayner

et al.45 used X-ray and neutron scattering to calculate the Rg at various concentrations and by

extrapolating to an infinitely dilute solution obtained an Rg of 50.1 Å. Pilz et al.46 also used X-ray

scattering to determine the Rg of rabbit IgG to be 51.7 Å. The agreement of Rg obtained in this

work with the experimental results available supports the results here presented.

2.3.4 Carbohydrate Mobility

The mobility of each carbohydrate residue (measured as described in the Methods section)

is shown in Figure 2.8. Each IgG molecule contained two carbohydrates, shown on the left (car-

bohydrate one) and right (carbohydrate two) sides of the plot separated by a solid black line, and

consisted of a core group of residues and three-arm and six-arm groups that branch from the core.

The difference between IgG-G0 and IgG-G3 can easily be seen here as the absence of terminal

galactose (Gal) residues in the three-arm and six-arm groups of carbohydrate one and the six-arm

group of carbohydrate two as well as the absence of the fucose (Fuc) residue in carbohydrate two.
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The core carbohydrate residues in both simulations showed similar behavior with reasonably con-

stant mobility, with slightly higher overall mobility in carbohydrate two than in carbohydrate one.

However, the behavior of terminal residues in the three-arm and six-arm groups showed much more

interesting trends. The six-arm groups in both carbohydrates in IgG-G3 contained terminal Gal

residues, which showed the lowest mobility of all residues. Furthermore, there was an apparent

trend of decreasing mobility along the six-arm group from the mannose (Man) residue, which is

connected to the core group, to the N-acetyl glucosamine (GlcNAc) residue, and finally to the ter-

minal Gal residue. This indicated a specific interaction between the carbohydrate and the protein

pinning the six-arm to the protein. In contrast, whether there was a terminal Gal residue in the

three-arm group (carbohydrate one) or not (carbohydrate two), there was a trend of increasing

mobility moving from the Man residue out toward the terminal residue, which indicated the ab-

sence of this protein–carbohydrate interaction. Similarly, in IgG-G0, where there were no terminal

Gal residues, there was no trend of significantly decreasing atomic fluctuations in either the three-

arm or six-arm branches. Our results agree with previous studies of IgG Fc oligosaccharides using

NMR to determine terminal Gal residue mobility and specific interactions between the protein and

carbohydrate.30
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Fig. 2.8 Atomic fluctuations for carbohydrate residues. Carbohydrate one (left half) is connected
to the heavy chain originating in Fab1 and carbohydrate two (right half) is connected to the heavy
chain originating in Fab2.

2.3.5 Protein–Carbohydrate Interface

Hydrogen-bonding analyses of terminal residues in IgG-G3 and IgG-G0 were compared to

study the differences in specific interactions at the protein–carbohydrate interface in the Fc domain.

The fractional occupancies of hydrogen bonding between carbohydrate terminal residues and Fc

domain protein residues in IgG-G3 (left) and IgG-G0 (right) are shown in Figure 2.9. Data from

IgG-G3 simulations are represented in red/orange, and data from IgG-G0 simulations are repre-

sented in blue/cyan. In each plot, carbohydrate one and carbohydrate two are distinguished by

dark/light colors, while galactose and GlcNAc residues are distinguished by solid/dashed lines.
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Fig. 2.9 Fractional occupancy of hydrogen bonding between terminal carbohydrate residues and the
protein in IgG-G3 (left) and IgG-G0 (right) simulations. Six-arm terminal residues are represented
by solid lines, and three-arm terminal residues are represented by dashed lines. Carbohydrate one
is colored red (left plot) and dark blue(right plot), and carbohydrate two is colored orange(left plot)
and light blue(right plot).

For both carbohydrates in IgG-G3, the six-arm terminal galactose residues (solid lines)

showed nearly permanent hydrogen-bonding with a fractional occupancy >0.99 throughout the

whole 100 ns trajectory. The terminal galactose residue on the three- arm of carbohydrate one

(red dashed line) and terminal GlcNAc residue on the three-arm of carbohydrate two (orange

dashed line) showed fewer and more dynamic interactions with the protein. The strong specific

interactions of the six-arm terminal galactose residues with the protein agreed well with the low

mobility determined for these residues. The three- arm terminal residues, which showed high atomic

fluctuations, showed dynamic hydrogen bonding agreeing well with increased mobility.

In IgG-G0, the more permanent hydrogen-bonding interactions between the carbohydrate

and the protein were observed on the three-arm branches of the carbohydrates (dashed lines).

Specifically, a very strong interaction between the terminal GlcNAc residue on the three-arm of

carbohydrate one and the protein was observed to form after 20 ns and remained throughout the

rest of the simulation. This agreed with the slight decrease in mobility seen in the three-arm

GlcNAc residue in comparison to the three-arm Man residue in carbohydrate one, although this
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was not obvious from the mobility analysis alone. The very low fractional occupancy of six-arm

terminal GlcNAc residues in IgG-G0 compared to the very high fractional occupancy of six-arm

Gal terminal residues in IgG-G3 demonstrates the importance of terminal six-arm Gal residues to

maintain specific interactions that stabilize glycan structure. If removed, as in IgG-G0, a significant

structural change is observed in the glycan, leading to different specific interactions at the protein–

carbohydrate interface.

2.4 Conclusions

Fully atomistic MD simulations of IgG were performed on two glycoforms (∼330 000 atoms

each) for a total simulation time of 200 ns. Each independent simulation showed segmental motions

of IgG domains resulting from the hinge region flexibility that allowed a variety of conformations to

be adopted. Domains that interacted through specific hydrogen bonding that limited their relative

motions were identified as well as other pairs of domains that were free to move but maintained

specific rotational orientations relative to each other. These conformations sampled do not nearly

represent the full set of configurations available to IgG in solution but do expand upon the set

and knowledge available from crystallographic orientations. Carbohydrate structures between two

simulations with different glycoforms were compared and found to support previous studies where

terminal six-arm galactose residues are important in protein–carbohydrate interactions. Addition-

ally, the simulations show that in the absence of terminal six-arm galactose residues, the three-arm

branch of the carbohydrate can form specific hydrogen bonds at the protein–carbohydrate inter-

face. Glycan structure has been suggested to be important for IgG effector functions upon binding

to Fc receptors47 as well as self-association through governing available protein–protein interac-

tions.48 Furthermore, intermolecular interactions involving the Fc domain have been shown to be

important specifically in IgG self-association.49 However, resolving glycan structure from electron
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density maps from crystallographic experiments can be difficult due to their small size and relative

flexibility. This work demonstrates the ability of atomistic simulations to capture glycan struc-

tural changes in the Fc domain that govern the accessibility of specific protein regions for either

receptor recognition or self-association and will lead to a more thorough understanding of the role

glycosylation plays in these phenomena.
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Chapter 3

Coarse-Grained Simulations of Immunoglobulin G

3.1 Introduction

Due to the large size of immunoglobulin molecules, fully atomistic simulations studying

intermolecular interactions on the microsecond timescale are not possible with current computing

power. Studying the specific interactions responsible for the initial aggregation of IgG molecules

experimentally can prove to be difficult due to problems in isolating small aggregates and the

ensemble average nature of many experimental techniques. Coarse-grained models that allow access

to extended length and time scales can be used to study the structure of small IgG aggregates and

reveal the interactions that play a crucial role in their initial formation.

A coarse-grained model was recently developed to study electrostatic based interactions

between domains of IgG.49 Two different degrees of coarse-graining were used: a 12-bead and a

26-bead model. Both of these models greatly reduced the degrees of freedom in the system by

reducing the 1000+ amino acid residues in IgG in each molecule to 12 or 26 beads. The 12-bead

model placed one coarse-grained site at the center of mass of each immunoglobulin subdomain

while the 26-bead model added more refinement in the CDR regions of the Fab domains and the

hinge region. Masses and partial charges of the coarse-grained beads were obtained from the

atomistic representations of the residues that made up the coarse-grained regions. Intramolecular

potential energy terms were developed from previous atomistic simulations, while Lennard-Jones

and Coulombic potentials were used for intermolecular interactions. Using these coarse models 1000

antibody molecules were simulated in one system and the differences between interacting domains
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of two different antibody molecules were observed. One of the two molecules showed that both Fab-

Fab and Fab-Fc interactions were highly probable, while the second molecule showed significantly

more Fab-Fc interactions. This work highlighted the ability of coarse-grained models to elucidate

the structures formed upon initial aggregation of large immunoglobulin molecules using a very

coarse CG model.

There are numerous, practically unlimited, ways to coarse-grain molecular coordinates to

reduce the number of degrees of freedom. The choice for the degree of coarse-graining depends

greatly on the phenomena one wishes to study. In this work the self-association of immunoglobulin

molecules was studied. Although explicitly representing all atoms was out of computational reach,

residue based coarse-graining allowed for the identification of specific residues that cause and/or play

an important role in self-association. Additionally this allowed for the systematic mutation of these

select residues to observe the self-associating behavior when this residue has been substituted. Other

coarse-grained models have been developed in which finer coarse-graining is applied to proteins,

such as the AMBER united-atom potential50 which groups hydrogen atoms with heavy atoms, and

the MARTINI potential20 which uses a mapping of four heavy atoms to one coarse-grained bead

and results in few, but multiple, beads per residue. These models, while more computationally

expensive than a one–bead–per–residue mapping, can capture more detailed structural changes

which are believed to be very important in dictating aggregation potential.51 Joubert et al. showed

that a variety of monoclonal antibodies across all IgG subclasses showed aggregation behaviors

dependent on the type of stress applied.52 This suggested that because the aggregation pathway

was found to be dependent on stress and independent of IgG subclass, the destabilization and/or

changes in structure (domain orientations) likely plays a more significant role than amino acid

sequence. This leads to two practical techniques to study coarse-grained IgG molecules: one in

which one structure (domain orientations) is simulated to study how molecules with this structure
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associate and then systematically alter the domain orientations, and another method in which

the molecular domains are allowed to reorient during the simulation. The first method is less

computationally expensive and still allows for the study of how molecules with differently oriented

domains associate and is therefore employed here.

The work presented herein uses a coarse-grained Elastic Network Model in which each amino

acid residue is represented by one bead. The model was originally presented by Lin and Colina53.

The choice of spatial position for each coarse-grained bead was chosen to be the position of each

alpha carbon atom in the protein crystal structures. An Elastic Network Model was used for in-

tramolecular bead-bead interactions in which all beads within a cutoff distance of 11.5 Å were

connected with an elastic bond based on separation distance. Spring force constants of 20, 5, and

1 kcal/mol were applied to beads separated by 4, 7, and 11.5 Å respectively. A pairwise Buck-

ingham potential was used for intermolecular bead-bead interactions. Parameters for each unique

bead-bead interaction were determined on a knowledge basis using a database of 384 protein do-

mains and a scoring function based on complexes formed between these domains. It is important

to note that these parameters developed for the intermolecular potential were determined in the

presence of explicit solvent, and as such the coarse-grained potentials implicitly included solvent

effects. In other words, the strength of interactions between bead types was related to their prob-

ability of interacting in solution. With this taken into account, solvent molecules are not explicitly

represented in the simulations presented in this work. The methodology for structure generation

and simulation are presented first, followed by a description of the different systems studied in this

work. The selection process for mutations and calculation procedures for analytical results are then

discussed. Results from the various systems are presented before providing conclusions gathered

from all simulations.
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3.2 Methodology

The initial structures used to perform coarse-grained simulations of immunoglobulin G were

obtained using spatial coordinates from crystal structure entries in the Protein Data Bank (see

introduction chapter for in depth description of 1HZH and 1IGY crystal structures). Coarse-

grained bead coordinates for each amino acid residue were defined by the atomic coordinates of the

alpha carbon atoms in the crystal structures. The effective potentials developed in the Lin model

described all pairwise interactions in the system and were used to determine the forces acting on all

coarse-grained beads. Intramolecular potentials were modeled with using simple harmonic energy

wells centered at the “equilibrium” separation distance (i.e., the separation distance between beads

in the starting structure). Intermolecular potentials were modeled using the Buckingham potential

E = Ae−r/ρ − C

r6
, (3.1)

where the parameters A, ρ, and C were previously determined for each residue–residue interaction

using protein docking. A scoring function for residue interactions was created using a set of protein

complexes. Residue sizes were determined to define the effective separation distances between each

pair of residues. For those pairs of residues determined to be “attractive” based on the scoring

function the potential was set to zero at 3
4 of the effective separation distance, while the potential

well depth was set to 1.5 times the scoring function. For those pairs of residues determined to be

“repulsive” based on the scoring function the C parameter is set to zero and the potential is set to

correspond to the scoring function at the effective separation distance and 100 times the scoring

function at zero separation.

A structure generation program was developed to create systems containing coarse-grained

molecules using Lin’s model. For each residue in the PDB file provided to the program, the residue
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type, and α-carbon x, y, and z coordinates were used to determine all bonds required for the Elastic

Network Model. The desired number of molecules were inserted with random orientation onto a

cubic lattice and simulation box dimensions were determined in order to result in a system with

the desired concentration. The program then output all ENM bond coefficients, CG bead types

(residue types) and positions, and pairs of bonded CG beads formatted as a data file compatible

with the LAMMPS (Large-scale Atomic/Molecules Massively Parallel Simulator) software package.

See the Appendix for the python script used to generate the LAMMPS input data file.

Molecular dynamics simulations were performed using LAMMPS in the canonical ensemble

(NVT) at 300 K using a time-step of 50 fs. Walls reflected beads that moved outside the simulation

box by placing them back inside the system proportional to the distance they traveled outside the

system and inverting the velocity component in the direction it exited the system. Thermodynamic

information about the system was recorded every 2.5 ps and atomic positions were recorded every 50

ps. Simulations were performed for at least 60 million time steps (3 µs). Initially, systems containing

two native 1HZH IgG molecules were simulated at 10, 20, and 40 mg/ml. The concentration is set

by the simulation box size, such that the lower concentration systems have more space to explore

and high concentration systems feel more confinement from simulation box walls. For example, to

obtain a system at 10 mg/ml, two IgG molecules were confined in a cubic simulation box with a

dimension of 368 Å. Similarly, to obtain a system at 40 mg/ml, two IgG molecules were confined

in a cubic simulation box with a dimension of 232 Å. Systems containing two molecules with single

site mutations were then simulated, as well as larger systems containing 8 native or mutated IgG

molecules. Residues for mutation were selected based on the frequency with which they were

involved in associations in simulations containing native molecules and surrounding residues with

nonzero solvent accessibility. Lastly double-site mutations were simulated in which the residue

in the other corresponding heavy or light chain was also mutated. Table 3.1 summarizes the
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systems studied using this coarse-grained model. Systems are given an identification name for

future reference. The first letter(s) describe the mutations present (N-native; SM-single mutation;

DM-double mutation). Residue numbers are absolute residue numbers such that they range from 1

to 1344. The last letter before punctuation describes the largest aggregate that can be studied in the

system, or the system size (D-dimer; O-octamer). The integers following punctuation either describe

the concentration being studied (in the case of native IgG molecules), or the mutation(s) present

in the system. Columns 2-5 in Table 3.1 contain information about the system size, concentration,

mutations, and reference structures used to obtain the force constants and equilibrium separations

for the intramolecular Elastic Network Model.

Table 3.1 Summary of coarse-grained systems.
Sim. ID System Size (# IgG) Conc. (mg/ml) Mutations

ND.10 2 10 None
ND.20 2 20 None
ND.40 2 40 None

SMD.487 2 20 S487A
SMD.489 2 20 F489A
SMD.508 2 20 I508A

SMD.Mut#1 2 20 Mut#1
SMD.Mut#2 2 20 Mut#2

SMD.702 2 20 L702A
NO.10 8 10 None
NO.40 8 40 None

DMO.30 8 40 S30A/S487A
DMO.Mut#1 8 40 Mut#1

Molecular associations were determined by calculating the total non-bonded interaction en-

ergy between two molecules. Two molecules with an interaction energy less than -12 kcal/mol were

considered to be involved in a reversible association based on previous work with this model.53

The frequency of these associations was monitored to determine equilibration of the systems with

respect to molecular associations. Average association frequencies were obtained by performing av-

erages over successive blocks of 1000 snapshots. Each snapshot is separated by 50 ps, and therefore
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averages were taken over 50 ns of simulation time. Equilibration was asserted after a plateau in

the running averages of these values was observed. The occurrences of domain-domain interactions

were determined based on both molecular pairwise interactions energies and bead-bead separation

distances. For each snapshot in which a molecular association was present (molecular pairwise

interactions energy less than -12 kcal/mol), all pairs of CG beads separated by less than 6.5 Å in

that snapshot were recorded. For each pair of domains, the total number of occurrences of CG

bead interactions was used to create distributions of domain-domain associations.

3.3 Results and Discussion

3.3.1 Native IgG Dimers

Systems containing two coarse-grained native 1HZH IgG molecules were simulated at 10

(ND.10), 20 (ND.20), and 40 (ND.40) mg/ml to study the formation of native IgG dimers. The

simulation time required to obtain equilibration of association frequency at these different con-

centrations was determined which helped to guide the selection of concentration for subsequent

simulations of larger systems. Equilibration of average association frequency was a requirement

in order to adequately sample the conformational space available to the small aggregates in the

system. Plots of average association frequency as a function of simulation time for one independent

simulation at each concentration are shown in Figures 3.1-3.3 for concentrations of 10, 20 and 40

mg/ml respectively. The number of molecular associations per 1000 snapshots are shown in blue,

while the running average of these values is shown in pink. As the concentration increased, the

frequency of associations and average association frequency value both increased.
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Fig. 3.1 Association frequency (blue) and running average of association frequency (pink) of IgG
molecules at 10 mg/ml.
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Fig. 3.2 Association frequency (blue) and running average of association frequency (pink) of IgG
molecules at 20 mg/ml.
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Fig. 3.3 Association frequency (blue) and running average of association frequency (pink) of IgG
molecules at 40 mg/ml.

The average association frequency (pink lines from Figures 3.1-3.3) for each of three inde-

pendent simulations at each concentration are compared in Figures 3.4-3.6, showing the degree

of reproducibility between independent simulations. Three independent simulations of ND.20 and

ND.40 systems showed sufficient reproducibility of average association frequency and evidence of

equilibration after at least two microseconds. The ND.10 systems showed many fewer associations

as expected at a lower concentration, and did not show adequate equilibration within four microsec-

onds. Due to the increased simulation time required to achieve equilibration at 10 mg/ml, dimer

systems at this concentration were not studied further when introducing mutations; however, this

concentration was not eliminated from consideration when studying systems with more molecules.

Both increasing simulation time and increasing the number of molecules in each system accomplish

the same goal of increasing the total number of IgG interactions, which is the ultimate goal to

ensure adequate sampling. Using the plateau value of the average association frequency from each
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simulation, the averages and standard deviations of average association frequency at each concen-

tration were obtained and plotted in Figure 3.7. The results at 10 mg/ml are included, however are

represented with an open symbol to indicate equilibration was not achieved. As seen previously,

the average association frequency increased as the concentration increased, however the deviation

in this value also increased.
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Fig. 3.4 Average association frequency of IgG molecules in dimer system ND.10 at 10 mg/ml for
three independent simulations.
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Fig. 3.5 Average association frequency of IgG molecules in dimer system ND.20 at 20 mg/ml for
three independent simulations.
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Fig. 3.6 Average association frequency of IgG molecules in dimer system ND.40 at 40 mg/ml for
three independent simulations.
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Fig. 3.7 Mean and standard deviation of average association frequency values showing degree of
reproducibility over three independent simulations at each concentration. Data point at 10 mg/ml
is shown with open symbol indicating equilibration was not achieved.

3.3.2 Small Native IgG Aggregates

Once the model was shown to be capable of capturing reversible molecular associations in

the formation of IgG dimers, larger systems were simulated in order to study the formation of

small IgG aggregates. It is important to note that almost exclusively reversible associations were

observed, such that molecules can separate and re-associate. Only under these conditions can

many different conformations of small aggregates can be studied. Here, small IgG aggregates are

considered to be groups of three or more IgG molecules that are considered associated using the -12

kcal/mol pairwise intermolecular interaction energy threshold. Eight native 1HZH IgG molecules

were placed in a simulation box such that their centers of geometry were located on a simple cubic

lattice. Each molecule was randomly rotated to remove initial orientational bias and the simulations

were performed following the same procedure as with previous systems. Only systems at 10 mg/ml

(NO.10) and 40 mg/ml (NO.40) were simulated. It is important to note that dimer systems at
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10 mg/ml which showed poor sampling of associations within a few microseconds displayed better

sampling on the same time scale due to the increased number of opportunities for association (i.e.-

increased number of molecules in the system). In this regard, simulating on an extended time-scale

or increasing the number of molecules at the same concentration both result in improved sampling

of molecular associations.

The number of occurrences of aggregates of different sizes on a logarithmic scale is shown

in Figure 3.8 with NO.10 shown in blue and NO.40 shown in red. As expected, there were more

occurrences of larger aggregates at a higher concentration indicating the probability of forming

larger aggregates increased with concentration. Figure 3.8 also shows the relative probability of

aggregation growth at these two concentrations. At 10 mg/ml (blue) there was a higher probability

for intermediately sized aggregates (4-5 molecules) to decrease in size rather than increase in size,

evidenced by the larger number of smaller sized aggregates. At 40 mg/ml intermediately sized

aggregates had similar probability to increase or decrease in size. This can be considered a relative

increase in the probability of aggregation growth at 40 mg/ml. This model is best suited to study

the structure of small IgG aggregates as opposed to the dynamics of their formation, and as such

studying systems with a higher concentration that increase the rate at which aggregates form

allowed for more sampling of small IgG aggregates.
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Fig. 3.8 Distribution of differently sized 1HZH IgG aggregates in a system containing eight molecules
at 10 mg/ml (NO.10; blue) and 40 mg/ml (NO.40; red).

To determine which of the domains were most frequently involved in the self-association

of IgG in these simulations the number of occurrences of each domain-domain interaction was

determined. For each association (defined by pairwise molecular interaction energy less than -

12 kcal/mol) pairs of residues that were within 6.5 Å were recorded. These residue pairs were

categorized into six different domain-domain interactions: three like-domain associations (Fab1-

Fab1, Fab2-Fab2, Fc-Fc) and three mixed-domain associations (Fab1-Fab2, Fab1-Fc, Fab2-Fc).

Figure 3.9 shows the number of occurrences for each of these domain-domain associations. Each

set of data points (connected by lines as a guide for the eye) in grey represents a different molecule in

the system. Data points and error bars in red are means and standard deviations obtained from all

molecules in the system. Two important observations were made from this plot. First, the mixed-

domain associations occurred much more frequently than the like-domain associations. Secondly,

the most probable association that formed was between the Fab2 and Fc domains. This association
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occurred with a higher probability than the association between Fab1 and Fc even though the

linear sequence of amino acids is identical in Fab1 and Fab2 domains in the 1HZH molecule. These

two observations indicated that differences in association probability between pairs of domains

originated due to differences in domain orientations. The 1HZH crystal structure is asymmetrical

with the Fab2 and Fc domains in close contact while the Fab1 domain is more isolated. It must

then be concluded that changes in IgG domain orientation could alter the association probability

between domains and could play an important part in IgG self-association.
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Fig. 3.9 Number of occurrences for each domain-domain associations in native 1HZH IgG. Each set
of data points (connected by lines as a guide for the eye) in grey represents a different molecule in
the system. Data points and error bars in red are means and standard deviations obtained from
all molecules in the system.

3.3.3 Mutations and Their Effect on Domain-domain Interactions

Dimer Systems

Dimer systems at 20 mg/ml were chosen as a model system to confirm this CG model can

be used to study the effect of mutation of specific residues on IgG association. It was shown above
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that these systems had relatively small standard deviation in average association frequency and

therefore the statistical significance of differences observed in this value upon mutation can be

taken into consideration. Dimer systems (as opposed to larger systems) were simulated first to

isolate important residues for IgG association. These residues/mutations could then be studied

further by simulating larger, more computationally demanding systems.

Simulations with single site mutations were performed to study the influence of individual

protein residues on self-association. Mutation sites were chosen in regions believed to be important

for IgG self-association based on the frequency of involvement in associations of native IgG from

previous simulation. These mutations were S487A, F489A, I508A, Mut#1, Mut#2, and L702A and

were all located in the Fab2 domain. Systems with two 1HZH IgG molecules with these mutations

were created at 20 mg/ml and were simulated using the same procedure as the native dimer systems.

Figure 3.10 shows the average association frequency values obtained from these simulations with

single site mutations (SMD.487 - brown, SMD.489 - magenta, SMD.508 - red, SMD.Mut#1 - teal,

SMD.Mut#2 -green, and SMD.702 - blue). For comparison, the average association frequency value

of native IgG was 159 ± 13 associations per 1000 snapshots. Both Mut#1 and Mut#2 resulted in

a decrease of average association frequency of statistical significance, indicating these residues may

be important in IgG self-association.
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Fig. 3.10 Average association frequency values obtained from simulations with single site muta-
tions (SMD.487 - brown, SMD.489 - magenta, SMD.508 - red, SMD.Mut#1 - teal, SMD.Mut#2
-green, and SMD.702 - blue). The average association frequency value of native IgG was 159 ± 13
associations per 1000 snapshots.

Figure 3.11 shows the number of occurrences for domain-domain interactions in three of

these single site mutation dimer simulations. The S487A mutation showed native-like behavior,

as expected from the similarity in average association frequency with the native IgG simulations.

Surprisingly, the F489A mutation, which also showed similarity in average association frequency

with the native IgG simulations, showed a significant decrease in Fab2-Fc interaction occurrences,

however showed an increase in Fab1-Fc interactions, which resulted in an overall average association

frequency similar to that of native IgG. The F489A mutation was effective at decreasing the inter-

actions between the Fab2 and Fc domains, as residue 489 is located in the Fab2 domain, however an

increase in Fab1-Fc interactions compensated for this decrease. The end result was little change in

overall average association frequency. The Mut#1 mutation also showed a significant decrease in

Fab2-Fc interactions, as well as decreases in Fab2-Fab2, Fab1-Fab2, and Fc-Fc interactions. In this
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case, there was not a compensation for the loss of associations through increased Fab1-Fc interac-

tions. In other words, associations involving this residue are not only solely governed by residue

type but domain orientation may also play a role in association probability.
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Fig. 3.11 Number of occurrences for domain-domain associations in SMD.487 (orange), SMD.489
(green), and SMD.Mut#1 (cyan).

Octamer Systems

S487A and Mut#1 mutations were further studied by simulating systems containing eight of

these mutated IgG molecules at 40 mg/ml. Additionally, mutations of molecules in these systems

were performed in both the Fab1 and Fab2 domains. These systems were refferred to as DMO.30

(S30A/S487A) and DMO.Mut#1. Please refer to Table 3.1 for the full description of these sim-

ulations. In each simulation, the number of domain-domain interactions for each molecule were

averaged and the standard deviation was calculated. The results for DMO.30 are shown in Figure

3.12. Standard deviations were relatively low, indicating consistent association behavior for all

molecules in the system. Compared to native IgG (see Figure 3.9), DMO.30 showed a decrease
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in the probability of Fab2-Fc associations, although Fab1-Fc associations were still present. This

again reinforces the importance of IgG structure on the self-association probability. The results

for DMO.Mut#1 are shown in Figure 3.13. A low number of occurrences of most domain-domain

interactions were observed in comparison to both native IgG and DMO.30; however, a very large

standard deviation was obtained for Fab2-Fc interactions. For 6 of the 8 molecules in the system,

a decrease in Fab2-Fc interactions was observed. In 4 of these 6 cases the number of interactions

was below 200,000, and in the other 2 cases, the number of Fab2-Fc interactions was below 400,000

(mean value from DMO.30). In the remaining 2 cases (i.e.-2 of the 8 molecules in the system) the

number of Fab2-Fc interactions was over 1,000,000 contributing to the large standard deviation.

This indicated that for the majority of the molecules in the system, the DMO.Mut#1 mutation

significantly decreased the association probability resulting from all of the domain-domain inter-

actions. However, in a few cases (2 of 8 molecules) Fab2-Fc interactions remained prevalent in

the system. If IgG aggregation occurs in two steps, first a weak reversible association followed

by formation of strong irreversible associations, it is possible that the mutations in DMO.Mut#1

decreased the probability of forming strong associations through limiting the initial formation of

weak reversible associations. However, if these strong associations did form, the mutations present

in DMO.Mut#1 played no role in causing molecular separation. It logically follows then that either

or both residues in DMO.Mut#1 are important in forming the initial weak reversible associations

however are not crucial to the formation of strong irreversible associations.
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Fig. 3.12 Number of occurrences for domain-domain interactions in DMO.30. Averages and Stan-
dard deviations are calculated from all eight molecules in the system.
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Fig. 3.13 Number of occurrences for domain-domain interactions in DMO.Mut#1. Averages and
Standard deviations are calculated from all eight molecules in the system.
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3.3.4 Conclusions

A one–bead–per–residue coarse-grain model was used to study the structure of small IgG

aggregates. The model implicitly included solvent effects through modeling intermolecular interac-

tions (residue–residue interactions) based on a scoring function of docking simulations from many

protein complexes. Molecular structure was maintained using an ENM with distance dependent

force constants. Equilibration of the association frequency during simulation was confirmed for 20

and 40 mg/ml, however a concentration of 10 mg/ml showed poor equilibration within 3 µs due to

fewer molecular contacts. Simulations of IgG using the structure captured from X-ray experiments

and reported in the 1HZH entry in the Protein Data Bank showed that “native” 1HZH IgG associ-

ated most frequently through Fc-Fab interactions. Although the amino acid sequence is identical in

both Fab domains, the domain orientations were not symmetrical and this resulted in slightly higher

association between Fab2 and Fc domains, where Fab2 is the Fab domain in close contact with the

Fc domain in the crystal structure. For in silico mutagenesis studies, residues were selected based

on high frequency of involvement in associations in the native 1HZH IgG. Mutation of some of these

residues showed statistically significant changes in association occurrences while mutation of other

select residues caused little change in association behavior. Mut#1 in Fab2 and the corresponding

residue in Fab1 showed promising results with regards to decreasing IgG self-association by limiting

weak reversible associations, however strong associations still formed which the mutations studied

herein did not eliminate. The methodology presented in this work shows the viability of studying

the important residues for self-association for IgG through mutation of specific residues. Moreover,

the model is general and can be applied to any protein or mixture of proteins. This provides a

relatively fast way to screen through many mutations to identify problematic regions of proteins

for aggregation as well as study the structure of small aggregates.



55

Chapter 4

Conclusions and Future Work

4.1 Atomistic Scale

The ability to explicitly represent every atom in a system allows for great chemical detail

to study protein solution behavior. Immunoglobulin molecules are of great interest to study in

this manner to better understand their solution behavior and increase their efficiency for use in

therapeutic treatments as monoclonal antibodies. The work presented in this thesis discussed the

segmental motions resulting from hinge region flexibility on the 100 ns time scale and carbohydrate

mobility as a function of the presence of terminal galactose residues in the Fc carbohydrate. It

is believed that both of these phenomena can play a role in IgG self-association and/or effector

functions. Glycosylation has specifically received much attention recently as a “newer” method

to control IgG behavior. The simulations presented here demonstrated the ability to capture

changes in carbohydrate mobility and protein–carbohydrate interactions by removing one residue

at the terminal ends of the biantennary carbohydrates. The results agreed well with the previously

suggested mobility of agalactosylated carbohydrates. New carbohydrate structures - ones in which

the three-arm carbohydrate branch interacted strongly with the protein through hydrogen bonding

- were presented which can have a large impact in the design of future monoclonal antibodies,

specifically regarding the choice of glycosylation, to decrease IgG self-association.

Various other interesting phenomena were observed during these simulations as well. Al-

though IgG1 molecules normally have two disulfide bonds connecting the hinge region, the structure

captured in the 1HZH crystal structure (which is IgG1) showed that only one of the two possible
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disulfide bonds were connected. In fact, the second set of CYS residues were separated by more

than 15 Å. The authors16 indicated the disulfide bond could be dynamic, or could have been

damaged during X-ray experiments. During the atomistic simulations presented in Chapter 2, the

second, unconnected set of CYS residues were observed to approach each other and remain within

a reasonable distance that could allow a dynamic disulfide bond to exist. Preliminary results are

presented below followed by suggested future work based on these results.

4.1.1 Disulfide Bonds in IgG1

Disulfide bonds in the hinge region of IgG connect the two heavy chains and play a part in

governing the segmental motions and intrinsic flexibility of the domains. Different IgG classes have

different disulfide bond connectivity in the hinge region depending on the location of CYS residues

in the amino acid sequence. In IgG1 there are two pairs of CYS residues in the hinge region that

can be connected in disulfide bonds. They are separated by three residues in each heavy chain and

is it generally believed that both are connected although only one is required for normal effector

functionality.16 In the 1HZH crystal structure16, it was found that only one pair of CYS residues

was connected by a disulfide bond. This conformation is shown in Figure 4.1 visualized using VMD.

The direction in which the domains can be found are indicated as well for reference. It can be seen

here that the sulfur atoms (yellow) in the initial configuration in the unconnected CYS residues are

separated by more than 15 Å. During simulation (specifically discussed here for simulation IgG-

G3 from Chapter 2, however the same phenomenon was observed in IgG-G0 simulations), these

unconnected CYS residues approach to a distance likely able to accommodate a dynamic disulfide

bond. The separation distance at 9 ns can be seen in Figure 4.2.
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Fab1

Fab2

Fc

Fig. 4.1 Hinge region in 1HZH IgG at 0 ns in the IgG-G3 simulation from Chapter 2. Sulfur
atoms (shown in yellow) from two pairs of CYS residues can be seen. One pair of CYS residues is
connected in a disulfide bond while the other pair begin separated by >15 Å.

Fab1 Fab2

Fc

Fig. 4.2 Hinge region in 1HZH IgG at 9 ns in the IgG-G3 simulation from Chapter 2. Sulfur
atoms (shown in yellow) from two pairs of CYS residues can be seen. One pair of CYS residues is
connected in a disulfide bond while the other pair has now approached to a separation distance <4
Å.
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A plot of separation distance between the two pairs of sulfur atoms in corresponding CYS

residues in the hinge region can be seen in Figure 4.3. Here it can be seen that relatively quickly

(within 10 ns) the sulfur atoms approach in close proximity, going from a separation distance >15

Å to <4 Å. The separation distance between sulfur atoms connected in the disulfide bond are also

shown for reference. This separation distance will never be reached for nonbonded sulfur atoms.
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Fig. 4.3 Separation distance between sulfur atoms in two pairs of CYS residues in the hinge region
of 1HZH IgG as a function of simulaion time in the IgG-G3 simulation from Chapter 2. One pair of
sulfur atoms are connected in a disulfide bond and their separation distance is held constant at the
equilibrium bond distance governed by the AMBER force field. The second pair of sulfur atoms
begin separated by >15 Å by relatively quickly approach <4 Å and fluctuate near that distance.

4.1.2 Future Work

Future simulations studying the effects of hinge region disulfide connectivity on segmental

motions could lead to insights crucial to engineer antibodies with controlled flexibility. Following the

methodology presented in Chapter 2 for fully-atomistic simulations of IgG, independent simulations

with different hinge region disulfide connectivity will demonstrate how disulfide bonds in the hinge
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region govern flexibility. In these new simulations, instead of beginning the simulations using

the 1HZH crystal structure, a snapshot during the simulations presented in Chapter 2 would be

used as the initial configuration. This snapshot should be chosen such that the stress introduced by

connecting the previously unconnected pair of CYS residues in the hinge region would be minimized.

This could be achieved by selecting a snapshot in which, at minimum, two parameters are optimized:

sulfur–sulfur atom separation distance and α-carbon–α-carbon separation distance for the CYS

residues in consideration. Additionally parameters that define the angle(s) between α-carbon–β-

carbon–sulfur atom and associated dihedral angles could be optimized. These parameters would be

optimized such that they closely match the parameters for a connected pair of CYS residues (i.e.,

the pair of CYS residues connected in the hinge region in the crystal structure). Beginning from this

initial configuration, simulations in which both CYS residue pairs are connected, neither of the CYS

residue pairs are connected, and the opposite CYS residue pair is connected. These simulations, in

addition to the simulations already performed with the hinge region disulfide bond connectivity in

the crystal structure, represent all the permutations of disulfide bond connectivity available in the

hinge region from this starting structure. Using the crystal structure initial configuration, another

simulation should be performed in which both hinge region disulfide bonds are disconnected. This

would be used to confirm that minimally one disulfide bond is required to maintain the close

proximity observed between pairs of CYS residues. Comparisons of Rg and segmental motions (like

those described in Chapter 2) between these simulations will help elucidate the role the disulfide

bonds play in governing domain flexibility. It is hypothesized that disconnecting the disulfide bond

between residues closer to the N-terminus of the heavy chains (closer to Fab domains) would increase

the magnitude of segmental motions and connecting the disulfide bond between residues closer to

the C-terminus of the heavy chains (closer to the Fc domain) would decrease carbohydrate mobility

and/or decrease separation distance between CH2 subdomains.
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4.2 Coarse-Grained Scale

By sacrificing atomistic detail and coarse-graining out degrees of freedom that prove in-

significant in the scope of phenomena of interest allows simulation time and length scales to reach

longer and further than those achievable in fully-atomistic simulations. This technique was used to

study the self-association of IgG molecules using a one–bead–per–residue mapping, Elastic Network

model (ENM) for intramolecular potentials, and an intermolecular knowledge based Buckingham

potential. The ENM allowed for thermal fluctuations in the structure while keeping computational

costs relatively low. The one–bead–per–residue mapping with unique potentials for pairs of all

20 amino acids allowed for relatively high resolution of interacting sites on IgG molecules. Af-

ter demonstrating equilibration of association frequency within 3 µs, the distribution of associating

domains showed that mixed-domain interactions involving the Fc domain were the most likely asso-

ciations. Additionally, interactions between Fab2 and Fc domains occurred with higher probability

than Fab1-Fc interactions. Because the linear amino acid sequence of Fab1 and Fab2 are identical,

these results indicated that the structure and domain orientations of IgG plays an important role

in self-association. Furthermore, drawing on results from the previous atomistic studies, changes

in IgG structure or domain orientations, which can be large due to high hinge region flexibility,

must be considered to fully understand IgG self-association. This can be accomplished by allow-

ing the coarse-grained IgG molecules to change structure by replacing the ENM with a different

intramolecular potential. An alternative approach is to continue to use the same ENM but begin

simulations with different structures. Using the ENM, it was shown that important residues in

self-association could be identified through systematic mutation and also has the added benefit of

maintaining a low level of computational cost. These different structures can be obtained from the

two other intact IgG crystal structure entries in the Protein Data Bank or can be extracted from

fully-atomistic simulations similar to those presented in Chapter 2. Those simulations were able to
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capture a wide range of domain orientations which provided solvent accessibility to a different set

of residues. Selection of these snapshots should be performed such that the full range of domain

conformations observed atomistically can be studied in the new coarse-grained systems. PDB files

obtained from atomistic simulations can be used with the structure generation script presented

in the Appendix in the same way the crystal structure PDB file was used. The structure gener-

ation script takes care of generating the parameters for the intramolecular ENM potential. The

same simulation methodology described in Chapter 3 is still applicable to these systems with new

molecular structures, as well as the analysis techniques. In order to capture the effect of glyco-

sylation and/or changes in carbohydrate structure, the intermolecular potential for those residues

“covered” by the carbohydrate can be altered to represent their decreased accessibility or changes

in surface hydrophobicity. It will be through the combination of knowledge gained from atom-

istic and coarse-grained simulations that accurate solution behavior at high concentrations will be

understood.
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Appendix

Coarse-Grained Structure Generation Python Script

The python script written for Python 2.7 used to generate the coarse-grained systems used

in Chapter 3 is provided here. Minimally this script reads in a PDB file containing atoms named

’CA’ (for α-carbon) and generates all bonds in ENM described in Chapter 3. Based on the

input of the number of molecules, n, a system of n, molecules are placed on a cubic lattice

with random orientation at the desired input concentration. The atom and bond information

is then output formatted to be read by LAMMPS to the designated file name. The code pre-

sented here is v1.0 while future versions can be obtained from the Colina research group web page:

http://www2.matse.psu.edu/colinagroup/. In v1.0, important functions used in the structure

generation of these systems are provided in functions.py while the main functionality is provided

in structureGeneration.py. As described in the code the usage syntax for the program is

python structureGeneration.py -p <pdb> [-n <number>] [-c <conc>] [-m <mut>] [-o <out>],

where the only required command line option is the input pdb file and default values of 2

molecules, 40 mg/ml, no mutations, and data.lmps are used for the rest of the input parameters

unless otherwise specified. While this code works generally for any pdb file, future revisions are

envisioned to accept multiple pdb files to generate heterogenous systems.

structureGeneration.py:

# imports
import sys
import math
import time
from operator import i t emge t t e r
from copy import deepcopy
from f u n c t i o n s import r ead opt i on s
from f u n c t i o n s import t r a n s l a t e m o l e c u l e
from f u n c t i o n s import r o t a t e m o l e c u l e
from f u n c t i o n s import r e a d f i l e
from f u n c t i o n s import make bonds
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from f u n c t i o n s import ge t d imens ions

s t a r t = time . time ( )

r e s c o d e s = {
’ALA’ : { ’ number ’ : 1 , ’ mass ’ : 71 .0788} ,
’ARG’ : { ’ number ’ : 2 , ’ mass ’ : 156 .1876} ,
’ASN’ : { ’ number ’ : 3 , ’ mass ’ : 114 .1039} ,
’ASP ’ : { ’ number ’ : 4 , ’ mass ’ : 115 .0886} ,
’CYS’ : { ’ number ’ : 5 , ’ mass ’ : 103 .1448} ,
’GLN’ : { ’ number ’ : 6 , ’ mass ’ : 128 .1308} ,
’GLU’ : { ’ number ’ : 7 , ’ mass ’ : 129 .1155} ,
’GLY’ : { ’ number ’ : 8 , ’ mass ’ : 57 .05200} ,
’HIS ’ : { ’ number ’ : 9 , ’ mass ’ : 137 .1412} ,
’ ILE ’ : { ’ number ’ : 10 , ’ mass ’ : 113 .1595} ,
’LEU’ : { ’ number ’ : 11 , ’ mass ’ : 135 .1595} ,
’LYS ’ : { ’ number ’ : 12 , ’ mass ’ : 128 .1742} ,
’MET’ : { ’ number ’ : 13 , ’ mass ’ : 131 .1986} ,
’PHE’ : { ’ number ’ : 14 , ’ mass ’ : 147 .1766} ,
’PRO’ : { ’ number ’ : 15 , ’ mass ’ : 97 .11670} ,
’SER ’ : { ’ number ’ : 16 , ’ mass ’ : 87 .0782} ,
’THR’ : { ’ number ’ : 17 , ’ mass ’ : 101 .1051} ,
’TRP’ : { ’ number ’ : 18 , ’ mass ’ : 186 .2133} ,
’TYR’ : { ’ number ’ : 19 , ’ mass ’ : 163 .1760} ,
’VAL’ : { ’ number ’ : 20 , ’ mass ’ : 99 .1326}

}

c u t o f f = 11 .5 # c u t o f f d i s t ance f o r EBN
system = l i s t ( ) # i n i t i a l i z e l i s t to hold a l l molecu le s

# reads command l i n e arguments and re tu rn s parameters
input pdb , num molecules , concentrat ion , mutations , o u t p u t f i l e = read opt i on s ( sys . argv )

# reads input pdb f i l e and re tu rn s l i s t o f alpha carbon atoms
atoms = r e a d f i l e ( input pdb , mutations )

# reads l i s t o f atoms and re tu rn s a l l ENM bonds
bonds = make bonds ( atoms , c u t o f f )

# add l i s t o f atoms to system : t h i s i s molecu le s # 1
system . append ( atoms )
temp num mol = 0 # temporary counter f o r number o f molecu le s in the system

# c r e a t e s imple cubic l a t t i c e
f o r k in range (0 , i n t (math . c e i l ( i n t ( num molecules ) ** (1 / 3 . 0 ) ) ) ) :

f o r j in range (0 , i n t (math . c e i l ( i n t ( num molecules ) ** (1 / 3 . 0 ) ) ) ) :
f o r i in range (0 , i n t (math . c e i l ( i n t ( num molecules ) ** (1 / 3 . 0 ) ) ) ) :

# i f t h i s i s not the f i r s t molecule c r e a t e copy then t r a n s l a t e
# and r o t a t e molecule , then add to system
i f temp num mol != 0 :

# output so i t l ook s l i k e something i s happening
p r in t ( ’ Attempting to add molecule ’ +
s t r (tempNumMol + 1) + ’ to s imu la t i on box . ’
+ s t r ( i ) + ’ ’ + s t r ( j ) + ’ ’ + s t r ( k ) )
temp atoms = deepcopy ( atoms )
temp atoms = t r a n s l a t e m o l e c u l e ( temp atoms , i , j , k )
temp atoms = r o t a t e m o l e c u l e ( temp atoms , system )
system . append ( temp atoms )

# update temporary molecule counter
temp num mol += 1
# break out o f l oops i f we have added
# the c o r r e c t number o f molecu le s
i f temp num mol >= num molecules :

break
i f temp num mol >= num molecules :
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break
i f temp num mol >= num molecules :

break

# f i n d box dimensions based on d e s i r e d concent ra t i on
xlo , xhi , ylo , yhi , z lo , zh i = get d imens ions ( system , concent ra t i on )

# number o f unique bond types
nbtypes = len ( bonds )
# number o f bonds i s m u l t i p l i e d by number o f molecu le s
nbonds = nbtypes * num molecules
# number o f beads i s r e s i d u e s * number o f molecu le s
natoms = len ( atoms ) * num molecules

# wr i t e lammps data
output = open ( o u t p u t f i l e , ’w+ ’)
output . wr i t e ( ’ LAMMPS DATA FILE\n\n ’ )
output . wr i t e ( ’ %12d atoms\n ’ % natoms )
output . wr i t e ( ’ %12d bonds\n ’ % nbonds )
output . wr i t e ( ’ %12d ang l e s \n ’ % 0)
output . wr i t e ( ’ %12d d i h e d r a l s \n ’ % 0)
output . wr i t e ( ’ %12d impropers \n ’ % 0)
output . wr i t e ( ’\n ’ )
output . wr i t e ( ’ %12d atom types \n ’ % 20)
output . wr i t e ( ’ %12d bond types \n ’ % nbtypes )
output . wr i t e ( ’ %12d ang le types \n ’ % 0)
output . wr i t e ( ’ %12d d ihed ra l types \n ’ % 0)
output . wr i t e ( ’ %12d improper types \n ’ % 0)
output . wr i t e ( ’\n ’ )
output . wr i t e ( ’ %16.6 f %16.6 f x lo xhi \n ’ % ( xlo , xhi ) )
output . wr i t e ( ’ %16.6 f %16.6 f y lo yhi \n ’ % ( ylo , yhi ) )
output . wr i t e ( ’ %16.6 f %16.6 f z l o zh i \n ’ % ( z lo , zh i ) )
output . wr i t e ( ’\n ’ )
output . wr i t e ( ’ Masses\n ’ )
output . wr i t e ( ’\n ’ )
f o r key in so r t ed ( r e s c o d e s ) :

output . wr i t e ( ’ %6d %12.6 f \n ’ % ( r e s c o d e s [ key ] [ ’ number ’ ] ,
r e s c o d e s [ key ] [ ’ mass ’ ] ) )

output . wr i t e ( ’\n ’ )
output . wr i t e ( ’ Bond Coe f f s \n ’ )
output . wr i t e ( ’\n ’ )
f o r bond in so r t ed ( bonds , key=i t emge t t e r ( ’ type ’ ) ) :

output . wr i t e ( ’ %6d %12.6 f %12.6 f \n ’ % ( bond [ ’ type ’ ] , bond [ ’ k ’ ] ,
bond [ ’ dd ’ ] ) )

output . wr i t e ( ’\n ’ )
output . wr i t e ( ’ Atoms\n ’ )
output . wr i t e ( ’\n ’ )

f o r n in range (0 , num molecules ) :
f o r atom in so r t ed ( system [ n ] , key=i t emge t t e r ( ’ number ’ ) ) :

output . wr i t e ( ’ %8d %6d %6d %9.4 f %9.4 f %9.4 f \n ’ % (
( atom [ ’ number ’ ] ) + n * l en ( atoms ) , n + 1 ,
r e s c o d e s [ atom [ ’ type ’ ] ] [ ’ number ’ ] ,
atom [ ’ x ’ ] , atom [ ’ y ’ ] , atom [ ’ z ’ ] ) )

output . wr i t e ( ’\n ’ )
output . wr i t e ( ’ Bonds\n ’ )
output . wr i t e ( ’\n ’ )
f o r n in range (0 , num molecules ) :

f o r bond in so r t ed ( bonds , key=i t emge t t e r ( ’ type ’ ) ) :
output . wr i t e ( ’ %8d %6d %6d %6d\n ’ % ( ( bond [ ’ type ’ ] ) + n * nbtypes ,
bond [ ’ type ’ ] , bond [ ’ a1 ’ ] + n * l en ( atoms ) ,
bond [ ’ a2 ’ ] + n * l en ( atoms ) ) )

output . wr i t e ( ’\n ’ )
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output . wr i t e ( ’\n ’ )

output . c l o s e ( )

end = time . time ( )

p r i n t end − s t a r t

sys . e x i t (1 )

functions.py:

import random
import math
import re
import sys
from operator import i t emge t t e r

r e s c o d e s = {
’ALA’ : { ’ number ’ : 1 , ’ mass ’ : 71 .0788} ,
’ARG’ : { ’ number ’ : 2 , ’ mass ’ : 156 .1876} ,
’ASN’ : { ’ number ’ : 3 , ’ mass ’ : 114 .1039} ,
’ASP ’ : { ’ number ’ : 4 , ’ mass ’ : 115 .0886} ,
’CYS’ : { ’ number ’ : 5 , ’ mass ’ : 103 .1448} ,
’GLN’ : { ’ number ’ : 6 , ’ mass ’ : 128 .1308} ,
’GLU’ : { ’ number ’ : 7 , ’ mass ’ : 129 .1155} ,
’GLY’ : { ’ number ’ : 8 , ’ mass ’ : 57 .05200} ,
’HIS ’ : { ’ number ’ : 9 , ’ mass ’ : 137 .1412} ,
’ ILE ’ : { ’ number ’ : 10 , ’ mass ’ : 113 .1595} ,
’LEU’ : { ’ number ’ : 11 , ’ mass ’ : 135 .1595} ,
’LYS ’ : { ’ number ’ : 12 , ’ mass ’ : 128 .1742} ,
’MET’ : { ’ number ’ : 13 , ’ mass ’ : 131 .1986} ,
’PHE’ : { ’ number ’ : 14 , ’ mass ’ : 147 .1766} ,
’PRO’ : { ’ number ’ : 15 , ’ mass ’ : 97 .11670} ,
’SER ’ : { ’ number ’ : 16 , ’ mass ’ : 87 .0782} ,
’THR’ : { ’ number ’ : 17 , ’ mass ’ : 101 .1051} ,
’TRP’ : { ’ number ’ : 18 , ’ mass ’ : 186 .2133} ,
’TYR’ : { ’ number ’ : 19 , ’ mass ’ : 163 .1760} ,
’VAL’ : { ’ number ’ : 20 , ’ mass ’ : 99 .1326}

}

pi = math . acos (−1)
random . seed (5 )

de f r ead opt i on s ( args ) :

pdb = ’ ’
num = ’2 ’
conc = ’40 ’
mut = ’ ’
out = ’ data . lmps ’

my args = l i s t ( args )
f l a g = my args . pop (0 )

whi l e l en ( my args ) > 0 :
f l a g = my args . pop (0 )
i f f l a g == ’−p ’ :

pdb = my args . pop (0 )
e l i f f l a g == ’−n ’ :

num = my args . pop (0 )
t ry :

num = i n t (num)
except ValueError :

p r i n t ( ’\ nPlease ente r a v a l i d i n t e g e r f o r
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the number o f molecu le s \n ’ )
e x i t (1 )

e l i f f l a g == ’−c ’ :
conc = my args . pop (0 )
t ry :

conc = i n t ( conc )
except ValueError :

p r i n t ( ’\ nPlease ente r a v a l i d i n t e g e r f o r
the concent ra t i on \n ’ )
e x i t (1 )

e l i f f l a g == ’−m’ :
mut = my args . pop (0 )
mut = mut . s p l i t ( ’ , ’ )

e l i f f l a g == ’−o ’ :
out = my args . pop (0 )

e l s e :
p r i n t ( ’\ nCoarse−Grained St ructure Generation S c r i p t \n ’ )
p r i n t ( ’ Usage : python s t ruc tureGenera t i on . py −p <pdb f i l e >
[−n <number o f molecules >] [−c <concentrat ion >]
[−m <mutations >] [−o <out f i l e > ] ’ )
p r i n t ( ’ Defau l t va lue s : −n 2 −c 40 −o data . lmps ’ )
e x i t (1 )

i f pdb != ’ ’ :
p r i n t ( ’\npdb : ’ + pdb)
p r i n t ( ’ number o f molecu le s : ’ + s t r (num) )
p r i n t ( ’ concent ra t i on : ’ + s t r ( conc ) + ’ mg/ml ’ )
p r i n t ( ’ mutations : ’ + ’ , ’ . j o i n (mut ) )
p r i n t ( ’ output f i l e : ’ + out )
re turn pdb , i n t (num) , conc , mut , out

e l s e :
p r i n t ( ’\npdb f i l e must be provided \n ’ )
e x i t (1 )

de f over lap ( atoms , system ) :
f o r m in range (0 , l en ( system ) ) :

f o r i in range (0 , l en ( atoms ) ) :
f o r n in range (0 , l en ( system [m] ) ) :

dd = math . s q r t (
( atoms [ i ] [ ’ x ’ ]− system [m] [ n ] [ ’ x ’ ] ) ** 2 +
( atoms [ i ] [ ’ y ’ ]− system [m] [ n ] [ ’ y ’ ] ) ** 2 +
( atoms [ i ] [ ’ z ’ ]− system [m] [ n ] [ ’ z ’ ] ) ** 2)
i f dd <= 12 :

re turn True
return Fal se

# func t i on that t r a n s l a t e s molecule
# by 100 un i t s in each i , j , k d i r e c t i o n
de f t r a n s l a t e m o l e c u l e ( atoms , i , j , k ) :

f o r n in range (0 , l en ( atoms ) ) :
atoms [ n ] [ ’ x ’ ] += i * 100
atoms [ n ] [ ’ y ’ ] += j * 100
atoms [ n ] [ ’ z ’ ] += k * 100

return atoms

de f r o t a t e m o l e c u l e ( atoms , system ) :

min x = sys . f l o a t i n f o . max
max x = sys . f l o a t i n f o . min
min y = sys . f l o a t i n f o . max
max y = sys . f l o a t i n f o . min
min z = sys . f l o a t i n f o . max
max z = sys . f l o a t i n f o . min
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f o r i in range (0 , l en ( atoms ) ) :
min x = atoms [ i ] [ ’ x ’ ] i f atoms [ i ] [ ’ x ’ ] < min x e l s e min x
max x = atoms [ i ] [ ’ x ’ ] i f atoms [ i ] [ ’ x ’ ] > max x e l s e max x
min y = atoms [ i ] [ ’ y ’ ] i f atoms [ i ] [ ’ y ’ ] < min y e l s e min y
max y = atoms [ i ] [ ’ y ’ ] i f atoms [ i ] [ ’ y ’ ] > max y e l s e max y
min z = atoms [ i ] [ ’ z ’ ] i f atoms [ i ] [ ’ z ’ ] < min z e l s e min z
max z = atoms [ i ] [ ’ z ’ ] i f atoms [ i ] [ ’ z ’ ] < max z e l s e max z

dx = max x − min x
dy = max y − min y
dz = max z − min z

avg x = ( min x + max x ) / 2
avg y = ( min y + max y ) / 2
avg z = ( min z + max z ) / 2

f o r i in range (0 , l en ( atoms ) ) :
atoms [ i ] [ ’ x ’ ] −= avg x
atoms [ i ] [ ’ y ’ ] −= avg y
atoms [ i ] [ ’ z ’ ] −= avg z

# generate random value f o r r o t a t i o n from 0 to 2 p i
r a n x t w i s t = random . random ( ) * 2 * pi
r a n y t w i s t = random . random ( ) * 2 * pi
r a n z t w i s t = random . random ( ) * 2 * pi

# apply r o t a t i o n matrix
f o r m in range (0 , l en ( atoms ) ) :

atoms [m] [ ’ x ’ ] , atoms [m] [ ’ y ’ ] , atoms [m] [ ’ z ’ ] = (
( atoms [m] [ ’ x ’ ] * math . cos ( r a n y t w i s t ) * math . cos ( r a n z t w i s t ) +

atoms [m] [ ’ z ’ ] * math . s i n ( r a n y t w i s t ) − atoms [m] [ ’ y ’ ] *

math . cos ( r a n y t w i s t ) * math . s i n ( r a n z t w i s t ) ) ,
(−1 * atoms [m] [ ’ z ’ ] * math . cos ( r a n y t w i s t ) * math . s i n ( r a n x t w i s t ) +

atoms [m] [ ’ x ’ ] * (math . cos ( r a n z t w i s t ) * math . s i n ( r a n x t w i s t ) *

math . s i n ( r a n y t w i s t ) + math . cos ( r a n x t w i s t ) * math . s i n ( r a n z t w i s t ) ) +
atoms [m] [ ’ y ’ ] * (math . cos ( r a n x t w i s t ) * math . cos ( r a n z t w i s t ) −
math . s i n ( r a n x t w i s t ) * math . s i n ( r a n y t w i s t ) * math . s i n ( r a n z t w i s t ) ) ) ,

( atoms [m] [ ’ z ’ ] * math . cos ( r a n x t w i s t ) * math . cos ( r a n y t w i s t ) +
atoms [m] [ ’ x ’ ] * (−1 * math . cos ( r a n x t w i s t ) * math . cos ( r a n z t w i s t ) *

math . s i n ( r a n y t w i s t ) + math . s i n ( r a n x t w i s t ) * math . s i n ( r a n z t w i s t ) ) +
atoms [m] [ ’ y ’ ] * (math . cos ( r a n z t w i s t ) * math . s i n ( r a n x t w i s t ) +
math . cos ( r a n x t w i s t ) * math . s i n ( r a n y t w i s t ) * math . s i n ( r a n z t w i s t ) ) ) )

f o r i in range (0 , l en ( atoms ) ) :
atoms [ i ] [ ’ x ’ ] += avg x
atoms [ i ] [ ’ y ’ ] += avg y
atoms [ i ] [ ’ z ’ ] += avg z

i f over lap ( atoms , system ) :
p r i n t ’ Overlap : attempting r o t a t i o n again ’
r o t a t e m o l e c u l e ( atoms , system )

e l s e :
pass

re turn atoms

de f r e a d f i l e ( my f i l e , mut ) :

t ry :
f = open ( m y f i l e )

except IOError :
p r i n t ( m y f i l e + ’ does not e x i s t or i s not readable ’ )
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e x i t (1 )

atoms = l i s t ( )
num atoms = 0

l i n e = f . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( )
x column = ’ ’
whi l e l i n e :

i f l i n e [ 0 ] . upper ( ) == ’ATOM’ :
i f x column == ’ ’ :

f o r i in range (0 , l en ( l i n e ) ) :
i f r e . s earch ( ’ˆ[0−9]+\ . [0−9]+$ ’ ,
l i n e [ i ] ) i s not None :

x column = i
break

i f l i n e [ 2 ] . upper ( ) == ’CA’ :
num atoms += 1
i f l i n e [ 3 ] . upper ( ) == ’CYX’ :

l i n e [ 3 ] = ’CYS’
i f s t r ( num atoms ) in mut :

p r i n t ( ’ Mutation : ’ +
s t r ( num atoms ) + ’ to ALA’ )
atoms . append ({ ’ number ’ : num atoms ,

’ type ’ : ’ALA’ ,
’ x ’ : f l o a t ( l i n e [ x column ] ) ,
’ y ’ : f l o a t ( l i n e [ x column + 1 ] ) ,
’ z ’ : f l o a t ( l i n e [ x column + 2 ] ) } )

e l s e :
atoms . append ({ ’ number ’ : num atoms ,

’ type ’ : l i n e [ 3 ] . upper ( ) ,
’ x ’ : f l o a t ( l i n e [ x column ] ) ,
’ y ’ : f l o a t ( l i n e [ x column + 1 ] ) ,
’ z ’ : f l o a t ( l i n e [ x column + 2 ] ) } )

l i n e = f . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( )

re turn atoms

de f make bonds ( atoms , c u t o f f ) :

bonds = l i s t ( )
num bonds = 0

atoms = sor t ed ( atoms , key=i t emge t t e r ( ’ number ’ ) )

f o r a1 in range (0 , l en ( atoms ) ) :
f o r a2 in range ( a1 + 1 , l en ( atoms ) ) :

dd = math . s q r t (
( atoms [ a1 ] [ ’ x ’ ] − atoms [ a2 ] [ ’ x ’ ] ) ** 2 +
( atoms [ a1 ] [ ’ y ’ ] − atoms [ a2 ] [ ’ y ’ ] ) ** 2 +
( atoms [ a1 ] [ ’ z ’ ] − atoms [ a2 ] [ ’ z ’ ] ) ** 2)
i f dd <= c u t o f f :

num bonds += 1
i f dd < 4 . 0 :

k = 20 .0
e l i f dd < 7 . 0 :

k = 5 .0
e l s e :

k = 1 .0
bonds . append ({ ’ type ’ : num bonds ,

’ a1 ’ : atoms [ a1 ] [ ’ number ’ ] ,
’ a2 ’ : atoms [ a2 ] [ ’ number ’ ] ,
’ k ’ : k ,
’dd ’ : dd})

re turn bonds
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de f ge t d imens ions ( system , concent ra t i on ) :

mass = 0
f o r i in range (0 , l en ( system [ 0 ] ) ) :

mass += r e s c o d e s [ system [ 0 ] [ i ] [ ’ type ’ ] ] [ ’ mass ’ ]

min x = sys . f l o a t i n f o . max
max x = sys . f l o a t i n f o . min
min y = sys . f l o a t i n f o . max
max y = sys . f l o a t i n f o . min
min z = sys . f l o a t i n f o . max
max z = sys . f l o a t i n f o . min

f o r m in range (0 , l en ( system ) ) :
f o r n in range (0 , l en ( system [ 0 ] ) ) :

min x = system [m] [ n ] [ ’ x ’ ] i f system [m] [ n ] [ ’ x ’ ] <
min x e l s e min x
max x = system [m] [ n ] [ ’ x ’ ] i f system [m] [ n ] [ ’ x ’ ] >
max x e l s e max x
min y = system [m] [ n ] [ ’ y ’ ] i f system [m] [ n ] [ ’ y ’ ] <
min y e l s e min y
max y = system [m] [ n ] [ ’ y ’ ] i f system [m] [ n ] [ ’ y ’ ] >
max y e l s e max y
min z = system [m] [ n ] [ ’ z ’ ] i f system [m] [ n ] [ ’ z ’ ] <
min z e l s e min z
max z = system [m] [ n ] [ ’ z ’ ] i f system [m] [ n ] [ ’ z ’ ] >
max z e l s e max z

dx = max x − min x
dy = max y − min y
dz = max z − min z

ta rge t d imens i on = (1 / f l o a t ( concent ra t i on ) * l en ( system ) /
6 .02 / 10 ** 23 * mass * 10 ** 27) ** (1 / 3 . 0 )

i f t a rge t d imens i on < dx or ta rge t d imens i on < dy or
ta rge t d imens i on < dz :

p r i n t ( ’ Error : molecu le s cannot f i t in s imu la t i on box in
t h i s o r i e n t a t i o n at t h i s concent ra t i on . Try again or
dec r e s e t a r g e t concent ra t i on . ’ )
sys . e x i t (1 )

e l s e :
pm x = ( ta rge t d imens i on − dx ) / 2
pm y = ( ta rge t d imens i on − dy ) / 2
pm z = ( ta rge t d imens i on − dz ) / 2
x lo = min x − pm x
xhi = max x + pm x
ylo = min y − pm y
yhi = max y + pm y
z l o = min z − pm z
zh i = max z + pm z

return xlo , xhi , ylo , yhi , z lo , zh i
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