
The Pennsylvania State University

The Graduate School

College of Engineering

A FRAMEWORK FOR ANALYZING APPLICATION INTERFERENCE ON GPUS

A Thesis in

Computer Science and Engineering

by

Tuba Kesten

© 2014 Tuba Kesten

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2014

The thesis of Tuba Kesten was reviewed and approved* by the following:

Chita R. Das
Professor of Computer Science and Engineering
Thesis Co-Adviser

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Thesis Co-Adviser

Lee Coraor
Professor of Computer Science and Engineering
Director of Academic Affairs

*Signatures are on file in the Graduate School

iii

ABSTRACT

 Graphical Processor Units (GPUs) have a widespread usage in diverse areas such as

manufacturing, research, health, life sciences, engineering etc. to accelerate general-purpose

computation. To achieve better speedups in general-purpose computation, the available resources

are increasing for each new generation of GPUs. In practice, most GPU applications in high-

performance computing cannot effectively utilize all of the resources in the system due the lack

of enough thread-level parallelism. This underutilization hurts the overall performance in terms

up speedup and throughput. To fully exploit the capabilities of GPUs, concurrent execution of

applications is critical. NVIDIA’s recent GPU architecture Kepler achieves concurrency

management by Hyper-Q technique which assigns a separate work queue to each application. We

first propose a flexible and Hyper-Q like multi-application framework which is capable of

simulating 2-application and 3-application workloads. Our framework supports 25 applications

and 300 of 2-application workloads chosen from Parboil, Rodinia, SHOC and CUDA application

suites. Our framework provides programmers to adapt their CUDA code for concurrent execution

with little programming effort. Further, we study the application interference of multi-application

workloads for different core partitioning schemes in this work. We characterize applications from

our application suite based on Misses-Per Kilo Instruction (MPKI) values. We evaluate the 2-

application workloads constructed from these applications using various performance metrics:

Weighted Speedup (WS/STP), IT, Average Normalized Turnaround Time (ANTT), Fairness

Index (FI), and Bandwidth Utilization. The experiments show that MPKI is not enough to

analyze the interaction among applications, and the attained bandwidth1 of each application also

needs to be taken into consideration.

1 “Attained bandwidth” and “bandwidth utilization” can be used interchangeably in this thesis.

iv

TABLE OF CONTENTS	

LIST OF FIGURES ... vi	

LIST OF TABLES ... vii	

ACKNOWLEDGEMENTS .. viii	

Chapter 1 Introduction .. 1	

Chapter 2 Background ... 4	

2.1 NVIDIA GPU Architecture .. 4	
2.1.1 Streaming Processor Model ... 4	
2.1.2 Memory Model .. 5	

2.2 Application Execution on GPUs .. 7	
2.2.1 Single Application Execution on GPUs .. 7	
2.2.2 Multiple Application Execution on GPUs ... 8	

Chapter 3 Related Work .. 10	

3.1 Concurrent execution of Multiple Kernels on GPUs ... 10	
3.2 Work Scheduling in GPUs ... 12	

Chapter 4 Concurrent Application Framework on GPUs 14	

4.1 Why Is Concurrent Execution Necessary? ... 14	
4.2 Existing Simulation Tool ... 14	
4.3 Extending GPGPU-Sim for Multiple Application Execution 15	
4.4 Evaluation Methodology .. 17	
4.5 Benchmarks .. 18	

4.5.1 CUDA SDK ... 18	
4.5.2 SHOC Benchmark Suite .. 22	
4.5.3 Parboil Benchmark Suite ... 23	
4.4.4 Rodinia Benchmark Suite .. 24	

Chapter 5 Experimental Setup and Results ... 26	

5.1 Experimental Setup .. 26	
5.2 Evaluation Metrics ... 28	
5.3 Experimental Results .. 29	

5.3.1 Bandwidth Utilization ... 29	
5.3.2 System Throughput ... 32	
5.3.3 Average Normalized Turnaround Time .. 37	
5.3.4 Instruction Throughput .. 39	
5.3.5 Fairness Index .. 41	

Chapter 6 Conclusion and Future Work .. 43	

v

Bibliography ... 44	

vi

LIST OF FIGURES

Figure 1-1: Fraction of warp utilization when LUD co-scheduled with various workloads ... 3

Figure 2-1: Memory Hierarchy in NVIDIA CUDA Streaming Processor. 6

Figure 2-2: Software Architecture of GPGPUs ... 8

Figure 2-3: Concurrent application execution on current NVIDIA Architectures. 9

Figure 4-1: Modification of Scalar Product kernel for concurrent execution. 16

Figure 5-1: DRAM bandwidth utilization distribution across several workloads
for different core configurations. ... 31

Figure 5-2: Weighted speedup for the workloads in which one application is Type H 32

Figure 5-3: Weighted speedup of several workloads with individual slowdowns 33

Figure 5-4: Weighted speedup for the workloads in which one application is Type M. 35

Figure 5-5: Weighted speedup for the workloads in which both applications are Type L 36

Figure 5-6: Comparison of ANTT for three core-partitioning schemes. 38

Figure 5-7: Comparison of instruction throughput (IT) for evaluated workloads 40

Figure 5-8: Comparison of FI based on several core-partitioning schemes……… 42

vii

LIST OF TABLES

Table 4-1: List of benchmarks used in the framework .. 25

Table 5-1: Simulated baseline GPU configuration. ... 26

Table 5-2: GPU Applications: L2 MPKI and Classification ... 27

Table 5-3: Evaluation Metrics .. 29

Table 5-4: IT values of applications for 15 SMs .. 39

viii

ACKNOWLEDGEMENTS

I am using this opportunity to express my gratitude to everyone who made this thesis

possible and an unforgettable experience for me.

First of all, I express my warm thanks to Prof. Chita Das and Prof. Mahmut Kandemir for

giving me the opportunity to study M.Sc. degree in Computer Science and Engineering

Department at The Pennsylvania State University.

I would like to thank all my HPCL lab mates for their friendship and endless support.

Among them, special thanks goes to Adwait Jog, Onur Kayiran and Ashutosh Pattnaik. Without

guidance of Adwait and Onur, this thesis would not come so far. I was really lucky to work with

Adwait Jog who is an excellent mentor.

I don’t have any siblings, but throughout this graduate school, I had many friends who

are now part of my family. Firstly, I want to thank to my sisters Dr. Nurshide Pulati, Irem Aksu

and my brother Cihan Can for sharing both good and bad with me. I really appreciate their

friendship and trust. Secondly, I want to thank my Bodrumers: Gokce Islertas, Togan Gencoglu,

Didem Demirel and my dear friends Dilan Suslu, Gizem Demirel for encouraging me from all the

way from Turkey.

I also would like to give my gratitude to my lovely roommates, Aigerim Jumatayeva and

Ainur Ilyubayeva for their ultimate encouragement and making me laugh at my most stressful

moments.

I would like to thank my dear friends, Nilsu Kistak, Melike Faiz, Ibrahim Ekrem

Bardakci, Sema Erten, Firdevs Ilci and Ozge Atil for making my stay in State College happy and

delightful.

ix

Most importantly, none of this would have been possible without unconditional love and

patience from my amazing family. The source of my happiness has always been them.

Throughout this journey, their support helped me to manage the stresses of graduate school. They

always reinforce me to be a better person in the life. This thesis is mainly dedicated to my

beloved parents, Gonca Kesten and Ayhan Kesten.

Tuba Kesten

December 2014

x

To my beloved parents

Gonca and Ayhan Kesten,

1

Chapter 1

Introduction

Graphical Processor Units (GPUs) have traditionally been used in gaming industry to

create real world experience to the users. Since the last decade, the widespread adoption of GPUs

occurs in the general processing computing due to their tremendous computational power and

high bandwidth. They play a big role in accelerating many high performance applications in

many computational platforms. [1,2,3] The capability of running high number of threads in

parallel reduces the work for CPU, especially for data-intensive computations. Currently, 64

supercomputers in TOP500 [4], including many near the top of the list, use GPUs to benefit in

High Performance Computing (HPC) applications. Another example of how GPUs takes place in

our life is Google’s project Tango [5]. Tango project is trying to scale the physical world into the

boundaries of digital screen on the phone. With the help of GPUs, Tango can record quarter

millions of 3D measurements in a second.

As GPUs start to take an active role in general purpose computing, the GPU vendors

increase the available resources in each new generation. Current NVIDIA Kepler [3] architecture

has increased the CUDA cores and core resources such as warp schedulers where a warp is a

group of 32 threads, register file size etc. compared to previous Fermi [2] architecture. To benefit

from these available resources, CUDA framework provides developers simple compiler directives

to exploit the parallelism in the program. However; recent works address that GPUs lead to

resource underutilization due to single application execution. [6,7,8] To illustrate this

phenomenon, we first execute a CUDA application alone, then schedule it with one of the other

applications from our application suite. In order to show how effectively the core resources are

used by the applications, we calculate the warp utilization of the system. In a 30-core system,

2

alone execution of LUD achieves 13.4% utilization. During the concurrent execution, we

distribute the resources evenly to each application. Figure 1-1 shows the warp utilization for these

workloads and the alone execution. All the cases for concurrent execution of workloads gives

better utilization rate compared to the utilization rate of the alone execution. For instance,

scheduling LUD with RAY achieves 35% utilization. The benefit from concurrent execution

depends on the application characteristics. Hence, analyzing the interference among applications

is crucial for future research directions in GPUs.

 NVIDIA Fermi architecture exploits stream mechanism (Chapter 2.3) to execute multiple

applications; however, the scope of the concurrent execution is limited. When an application is

launched on the GPU, the second application can be launched only if there are enough resources.

To handle with this problem, NVIDIA Kepler architecture improves concurrency mechanism by

introducing Hyper-Q mechanism, in which each application has separate streams so the

concurrent execution is guaranteed.

 In this study, we propose a framework extended from GPGPU-Sim simulator that adapts

the Hyper-Q mechanism. With the help of our framework, researchers can simulate two-

application or three-application workloads constructed from 25 benchmarks. These benchmarks

are chosen from various application suites: Rodinia [9], CUDA [1], Parboil [10], and SHOC [11].

We choose 9 representative applications and form 2-application workloads to analyze application

interference, we examine the implications of different core partitioning schemes across

applications. There are further research problems can be explored such as cache partitioning,

dynamic resource scheduling etc. For this purpose, we release our framework for public.[github]

3

Figure 1-1: Fraction of warp utilization when LUD co-scheduled with various workloads

There are four main contributions presented in this thesis:

• We develop a flexible multiple application framework called MAFIA (Multiple

Application Framework In GPU Architectures) by extending GPGPU-Sim.

• We perform a detailed analysis of application characteristics and interference among

multiple applications in GPUs through concurrent execution.

• We conduct experiment for analyzing SM partitioning schemes in multiple

application context.

• We report experimental results that show the capability of our proposed framework.

The thesis is organized as follows. Chapter 2 gives insights about current NVIDIA GPU

architecture and how the concurrency is achieved on these GPUs. Recent research studies on

concurrent execution of GPU applications can be found in Chapter 3. Chapter 4 presents the

details of the proposed framework. Chapter 4.2 provides information about GPGPU-Sim on

which the proposed framework is developed. Chapter 5 describes the experiment setup and

presents the performance results of the evaluated benchmarks. The thesis is concluded in Chapter

6 with a summary of our major observations and possible future research directions.

0	
5	
10	
15	
20	
25	
30	
35	
40	

LUD_30	 LUD_BLK	 LUD_SCP	 LUD_3DS	 LUD_RAY	 LUD_JPEG	

Pe
rc
en

ta
ge
	 o
f	 U

@l
iz
a@

on
	 (%

)	 	

4

Chapter 2

Background

2.1 NVIDIA GPU Architecture

In this study, we use NVIDIA GPU architecture with CUDA programming model. There

are two main components of GPUs: (1) Global Memory. (2) Streaming Processors (SM).In this

chapter, we briefly discuss the basic terminology related to CUDA and CUDA programming

paradigm.

2.1.1 Streaming Processor Model

Streaming Processors are responsible for the actual computations of CUDA programs.

Each SM contains a number of CUDA cores. CUDA v2.x capable GPUs can have CUDA cores

up to 48. In the recent NVIDIA GPU architecture Kepler, a fourfold increase occurs compared to

Fermi (192 CUDA cores). Each CUDA core has a fully pipelined arithmetic logic unit (ALU)

and floating-point unit (FPU). FPU provides the fused multiply-add (FMA) instruction to support

both single and double precision.

As GPU computing has a widespread adoption through scientific applications, double

precision arithmetic performance gains importance in architecture design. For this reason, GPUs

have special function units (SFU) that execute transcendental instructions such as sine, cosine,

and square root. The recent architecture Kepler provides eightfold number of SFUs in Fermi

GF110 SM to increase the performance of HPC applications.

5

NVIDIA GPUs use a single instruction, multiple threads (SIMT) execution model that is

a hybrid of single instruction multiple data (SIMD) and simultaneous multithreading (SMT)

models. SIMT is more flexible than SIMD regarding that it can execute single instruction with

multiple register sets, multiple memory addresses or multiple flow paths. SIMD vector

architectures express parallelism within vector instructions, while SIMT provides parallelism

among independent threads. SIMT architecture is more effective in terms of understanding the

behavior of independent threads. However, it introduces extra cost due to the hardware barrier

synchronization.

2.1.2 Memory Model

In this subsection, we present the details of GPU Memory hierarchy. Figure 2-1 shows

the overview of memory on a GPU. The main component of the memory structure is global

memory which is similar to RAM in CPU and accessible by both CPU and GPU.The nature of

GPU computing allows multiple accesses to global memory, however; these accesses can cause

memory incoherence. It only guarantees that the order of memory reads and writes for the same

address will be preserved in the thread. The global memory is specialized for maximizing the

throughput instead of minimizing the latency.

Each SM in GPU has a shared memory that resides on-chip. It provides higher bandwidth

and reduces global memory bandwidth. To achieve high throughput, the shared memory is

divided into modules called banks so the threads can access at the shared memory concurrently. If

multiple threads want to access to the same bank, it can lead to serialization and decrease the

effective bandwidth. To solve this problem, memory padding or changing address pattern can be

used.[] Kepler GK110 architecture uses 64KB configurable shared memory and L1 cache that can

6

be divided as 48GB of Shared memory with 16KB of L1 cache or vice versa. Compared to Fermi

architecture, the shared memory bandwidth is doubled to 64KB. Furthermore, Kepler introduces a

new technique called warp shuffling that allows the exchange of data within threads of a warp

without using the shared memory. The shuffle instruction has lower latency than shared memory

and does not need any additional resources.

Besides L1 cache, Kepler adds a new 48KB read-only cache to the memory hierarchy.

The data in this cache can be accessed through the lifetime of kernel. Previously in Fermi, this

read-only cache can be used through texture memory that restricts mapping data into textures. By

removing this restriction in Kepler, unaligned memory access patterns are supported by this

cache.

Figure 2-1: Memory Hierarchy in NVIDIA CUDA Streaming Processor

7

2.2 Application Execution on GPUs

2.2.1 Single Application Execution on GPUs

A typical CUDA program consists of multiple kernel grids as shown in Figure 2-2. A

kernel includes multiple thread blocks that execute the parallel portions of the program. In CUDA

terminology, each of these thread blocks refers to a cooperative thread array (CTA). Each SM

executes one or more CTAs and one warp at a time. A warp represents a group of 32 threads.

While the kernel and thread block are programming abstractions implemented in GPU hardware,

warp is a machine object.

In the context of single application execution on GPUs, each kernel of application is

executed sequentially. [3] When a kernel is launched, the CTA scheduler distributes the available

resources in a round-robin fashion. The number of CTAs per SM is dependent on the SM

resources such as the number of registers, memory size, the number of threads etc. Also, the

requirements of a CTA in a particular kernel affect this number. For instance, assume that the

CTA of kernel X demands 8KB for execution. Given a baseline architecture with 32 KB shared

memory, kernel X can execute only 4 CTAs due to the size of shared memory.

8

Figure 2-2: Software Architecture of GPGPUs

2.2.2 Multiple Application Execution on GPUs

 Current GPUs achieve concurrent execution by using CUDA Streams. A CUDA Stream

can be defined as a work queue that consists of operations inserted by the host program. Each of

these operations can be a data transfer or a kernel execution. The order of these operations is

always preserved during the execution. CUDA programming model allows us to create multiple

streams in the same program context and execute their operations out of order based on the

resource availability. If there is a dependency among kernels in different streams, it can be solved

by using CUDA synchronization or using CUDA events.

9

Figure 2-3: Concurrent application execution on current NVIDIA Architectures.

 Figure 2-3 shows the concurrency schemes on current NVIDIA architectures. Fermi

Architecture allows 16 kernel launches from different streams at the same time. However, the

streams are multiplexed into the same work distributor, which introduces intra-stream

dependencies. [4] The work distributor ensures that all the dependencies are resolved and then

distributes the work into Streaming Processors (SMs). On the other hand, Kepler Architecture

improves concurrency by introducing Hyper-Q feature. In order to reduce and eliminate the false

dependencies, Kepler takes advantage of Grid Management Unit, which is capable of creating

individual work queue for each stream. Compared to Fermi Architecture, Kepler supports 32-way

concurrency of kernel launches from separate streams. In our work, we adapted Hyper-Q feature

of Kepler architecture to GPGPU-Sim Simulator.

10

Chapter 3

Related Work

This section presents the recent studies done in GPU scheduling. In comparison to these

prior efforts, our work presents a new concurrent application execution framework that consists

of large number of CUDA workloads. Our framework provides flexibility to add new CUDA

codes in the framework without much effort. We believe that this framework could be for further

scheduling strategies in GPUs. Additionally, our study analyzes multiple application interference

during concurrent execution.

3.1 Concurrent execution of Multiple Kernels on GPUs

Guevara et al. [12] introduce an issue queue that merges workloads to run on GPU

simultaneously. They achieve task parallelism by using block partitioning. Their technique allows

multiple kernels to be merged if the single kernel does not have enough data parallelism. They do

not change SM partitioning dynamically while merging the kernels.

Gregg et al. [13] propose a framework called KernelMerge that executes two kernels

concurrently for OpenCL benchmarks. They examine how the kernels interact and interfere each

other during execution. KernelMerge uses two scheduling algorithms: Work-stealing algorithm,

and partitioning algorithm. Work-stealing algorithm favors round-robin scheduling that means

assignment is based on first-come first-served policy. In the partitioning scheme, resource

allocation is fixed. For instance, assume that one-third of the resources are assigned to a short-

running kernel and the remaining is assigned to a long-running kernel. When the scheduler

workgroups finish, the work is replaced from their assigned kernel. Our study also resembles to

11

partitioning algorithm. However, in contrast, our framework statically allocates resources based

on applications, not based on kernels.

Wang et al. [14] present the advantages of context funneling over context switching in

multithreaded application environment. In context switching, each host thread defines its own

GPU context and interacts with the GPU independently. This method implies several limitations

such as serialization, synchronization overhead, and thread safety. So as to overcome these

limitations; context funneling, which allows host threads to share a single context, is introduced.

This method allows the concurrent execution to extend all across host threads.

Wang et al. [15] propose a kernel-scheduling scheme called Kernel fuse that determine

the independent kernels in the application and then apply different kernel fusion methods to

reduce energy consumption. The size of shared memory is selected based on the bigger one of the

original kernels. Also, the operations of multiple threads are mapped into one thread to reduce the

thread space. These optimizations moderate the cost of kernel-fusion.

Pai et al. [8]emphasize how single execution on GPUs causes resource underutilization

and present the reasons behind the serialization of the kernels. To solve this problem, they

propose elastic kernels mechanism that enables fine-grain resource allocation on GPUs. They

implement several concurrency policies at the Stream Scheduler level and evaluate elastic kernel

with these policies. Moreover, they implement time-slice kernel execution with elastic kernels to

allow fair execution among long-running kernels, and short-running kernels.

Jog et al. [6] propose a round-robin memory scheduler for multiple GPU applications that

preserves the characteristics of FR-FCFS memory scheduling scheme. Using round-robin

mechanism among concurrently scheduled applications, the proposed mechanism improves both

fairness and the system performance.

12

The closest work to our framework is proposed by Adriaens et al. [16] which introduces

spatial multitasking that allows GPU resources to be partitioned among multiple applications

simultaneously. They compare cooperative and spatial multitasking to show how their method

benefits from different SM (Streaming Multi-processor) partitioning heuristics. They evaluate

their scheduling scheme using GPGPU-Sim simulator. A typical GPU application consists of

multiple kernels. While scheduling two kernels in cooperative multitasking, e.g. kernel A and B,

kernel B can start after the completion of kernel A. The obvious disadvantage of cooperative

multitasking is that the kernel will never finish execution due to the malfunction. This will yield

other kernel to never start its execution. In order to solve this issue, each kernel is assigned a

time slice to execute in and switch contexts at the end of each time slice, which is called

preemptive scheduling. However, preemptive scheduling causes context switching overhead.

Spatial multitasking overcomes these problems by dividing GPU resources among kernels rather

than the execution time. In experimental evaluation of spatial multitasking, they restrict the

simulations to 5M GPU cycles to observe the characteristics of whole execution. In our

simulations, we simulated two-application workloads till each of them finish execution at least

once. Furthermore, we present a fixed number of cycles simulation option in our framework. This

option is explained in detail in Chapter 3.

3.2 Work Scheduling in GPUs

 Kayiran et al. [17] propose a dynamic CTA scheduling mechanism called DYNCTA that

decides the number of optimal CTAs considering the application characteristics. Concurrent

execution of high number of threads will not be optimal for system performance. This leads to

high cache contention and miss rates due to the degree of thread-level parallelism. DYNCTA

13

decreases this cache and the memory congestion by allocating fewer resources based on

application’s demands.

 To solve resource underutilization problems in memory context, Jog et al. [18] propose

four CTA-aware warp scheduling techniques which improve both L1 hit rates and DRAM

bandwidth utilization. The first two techniques are CTA-aware two-level warp scheduler and

locality-aware warp scheduling that improve per-core performance. The third technique enhances

GPGPU performance by improving DRAM bank-level parallelism. The fourth technique takes

advantage of open DRAM rows and applies opportunistic memory prefetching to boost the

system performance.

 Jog et al. [19] propose a prefetch-aware warp scheduling technique which organizes the

scheduling of consecutive warps not to execute back-to-back. This technique is an effective way

to tolerate memory latency and also it enhances memory bank parallelism.

 The recent work proposed by Kayiran et al. [7] explores concurrency management in

CPU-GPU architectures. They address how GPUs dominate the system performance due to the

high thread-level parallelism. They propose two schemes to minimize this interference. One

scheme favors CPU performance when the GPU interference occurs; other one balances both

CPU and GPU performance and improves the overall system performance.

14

Chapter 4

Concurrent Application Framework on GPUs

4.1 Why Is Concurrent Execution Necessary?

 The amount of available resources is increasing in each new generation of GPU.

However, the utilization rate of resources decreases, which implies that single application

execution is one of the major impediments of GPUs. NVIDIA Fermi architecture introduced the

conservative approach of concurrent execution using streams in 2009. Since then, the limitations

and advantages of concurrent execution have been discussed in context of memory scheduling,

SM scheduling, and warp scheduling. [6,7]

 Recent NVIDIA Kepler architecture extends concurrency with new concepts: Hyper-Q

and dynamic parallelism. Dynamic Parallelism allows GPU to create new work for itself and

Hyper-Q improves the concurrency by creating independent work queue for each stream. So far,

there is no simulation framework available that supports these new concepts of GPU

architectures. Our main goal is to provide a framework that supports a Hyper-Q-like concept to

explore the potential research problems.

 Our framework is adapted from GPGPUSim V3.x which models GPU microarchitecture

similar to NVIDIA Fermi Architecture. We try to choose the closest configuration parameters

regarding the latest release Kepler Architecture.

4.2 Existing Simulation Tool

 GPGPU-Sim is a simulation tool [20] that provides timing model for SM cores, caches,

interconnection network, and memory partition on GPUs. It reports the number of cycles spent

15

for each launched kernel. It does not consider the time spent on the memory transfer time

between CPU and GPU memory. The tool allows the CPU to run concurrently with asynchronous

kernel launches.

 GPGPU-Sim emulates the NVIDIA’s virtual GPU instruction set called Parallel Thread

eXecution (PTX). PTX is a pseudo assembly instruction set that cannot execute on NVIDIA

hardware directly so it needs to be assembled into native instruction set (SASS) by the hardware.

Based on hardware, PTX is compiled into multiple versions of SASS. Since each hardware

generation has a different type of SASS, the binary version of the PTX is stored to meet the future

hardware requirements.

4.3 Extending GPGPU-Sim for Multiple Application Execution

 Recent GPU studies focus on kernel-based concurrent scheduling rather than application-

based as described in previous Chapter 3. Most of them evaluate their proposed solution based on

several benchmarks, at most 11 benchmarks, taken from different application suites. Our main

purpose is to provide a flexible and extensive framework that will help to explore multiple

application context on GPUs. However, building a framework is an arduous task since the diverse

features of application suites. We adapted benchmarks from 4 application suites (CUDA SDK,

Parboil, SHOC, and Rodinia) and each of them includes different main function and arguments.

Thus, we need to merge them in one executable file to provide access to them from same

platform. To form an n-application workload, we create a new thread for each application

resulting in an n-threaded program. As mentioned in the previous sections, we take advantage of

CUDA streams to execute multiple applications. The framework can launch different streams in

parallel, but internal operations of the stream are executed in serial manner.

16

Figure 4-1: Modification of Scalar Product kernel for concurrent execution

 For each thread function, the framework creates a separate CUDA Stream, and issues all

its necessary commands to this stream. To protect shared data between n applications and thread

synchronization, the framework uses POSIX mutex variables [21]. Since the original benchmarks

do not include stream operations, the framework needs to modify the synchronous operations in

each application. Our framework converts the CUDA API memory transfer operations to

printf("Executing GPU kernel...\n");
cutilSafeCall(cudaThreadSynchronize());
cutilCheckError(cutResetTimer(hTimer));
cutilCheckError(cutStartTimer(hTimer));
scalarProdGPU<<<128, 256>>>(d_C, d_A, d_B, VECTOR_N, ELEMENT_N);
cutilCheckMsg("scalarProdGPU() execution failed\n");
cutilSafeCall(cudaThreadSynchronize());
cutilCheckError(cutStopTimer(hTimer));
printf("GPU time: %f msecs.\n", cutGetTimerValue(hTimer));
printf("Reading back GPU result...\n");
//Read back GPU results to compare them to CPU results
cutilSafeCall(cudaMemcpy(h_C_GPU, d_C, RESULT_SZ,cudaMemcpyDeviceToHost));

printf("Executing GPU kernel...\n");
cutilSafeCall(cudaStreamSynchronize(stream_app));
cutilCheckError(cutResetTimer(hTimer));
cutilCheckError(cutStartTimer(hTimer));
scalarProdGPU<<<128, 256, 0, stream_app>>>(d_C, d_A, d_B, VECTOR_N, ELEMENT_N);
cutilCheckMsg("scalarProdGPU() execution failed\n");
pthread_mutex_unlock (mutexapp);
cutilSafeCall(cudaStreamSynchronize(stream_app));
cutilCheckError(cutStopTimer(hTimer));
printf("GPU time: %f msecs.\n", cutGetTimerValue(hTimer));
printf("Reading back GPU result...\n");
//Read back GPU results to compare them to CPU results
cutilSafeCall(cudaMemcpyAsync(h_C_GPU,d_C,RESULT_SZ,cudaMemcpyDeviceToHost,stream_app));

Modify CUDA code for
concurrent execution

17

asynchronous CUDA Stream API calls. (e.g CudaMemCpyAsync()) To ensure the correct

execution of multiple streams, our framework also adds asynchronous synchronization calls (e.g.

CudaStreamSynchronize()) to necessary places in the source code. After the basic modifications,

our n-application workload is ready to launch on GPGPU-Sim which is capable of simulating

multiple CUDA or OpenGL applications.

 Figure 4-1 presents a code snippet that shows the modified version of SCP for concurrent

execution. The highlighted parts show the modifications done by our framework. Firstly, we

convert synchronous memory transfers to asynchronous memory transfers. (e.g. cudaMemcpy()

to cudaMemcpyAsync()) Secondly, we pass the required parameters such as stream id to the

kernel function. Thirdly, we add necessary mutex operations to ensure safety of data during

kernel execution. Lastly, we modify the synchronization commands (e.g.

cudaThreadSynchronize() to cudaStreamSynchronize()) to block the stream till the operations are

completed.

 Initial release of the framework consists of 300 (25 choose 2) two-application workloads

and 2300 (25 choose 3) three-application workloads. We provide the basic guidelines on how to

modify the existing CUDA code to our framework. We release MAFIA framework for public use

and future research studies in this domain.

4.4 Evaluation Methodology

 Our framework is capable of simulating two- and three-application workloads on

GPGPU-Sim. The concurrent execution of applications cannot be completed simultaneously since

the unique characteristics of applications. To illustrate this problem, assume that SCP and JPEG

are running on the simulator concurrently as shown in Figure X. JPEG’s execution time is three

times shorter than SCP’s execution time; so, when JPEG completes the execution, SCP only

18

completes 1/3 of the simulation. To deal with this problem, we use the Tuck and Tullsen method

which relaunches the applications till both of them are completed at least once. We collect the

statistics of individual application at two points based on their respective completion times. The

applications used in this study follow this trend; however, some of the applications in the

remaining portion take several days to complete. For the sake of feasibility, we assume that the

application to be tagged as finished when it reaches to M million cycles. The user can modify this

M parameter in configuration file. This option provides user to observe the performance trends

till that cycle.

4.5 Benchmarks

 The benchmarks are listed in Table 4-1 with their main properties such as block

dimension, grid dimension, and the application domain. We adapted applications from four

different application suites: CUDA SDK, Parboil, Rodinia and Shoc. Our framework supports 25

benchmarks from these suites. The detailed description for each benchmark is presented below:

4.5.1 CUDA SDK

These benchmarks are taken from CUDA 4.0 Code Samples. These samples include wide

range of techniques to show how CUDA is applicable in all the domains.

Graph Algorithm: Breadth-First Search (BFS): [15] This benchmark is developed by

Harish and Narayanan performs BFS problem using level synchronization. In the BFS problem,

the aim is to find minimum number of edges needed to reach every vertex of given unweighted

graph from source vertex. In CUDA implementation of BFS, each thread represents one vertex

therefore; the degree of parallelism is scaled by the input size. However, the input size for the

19

algorithm is limited by the size of device memory. As the algorithm uses global memory instead

of shared memory, global memory traffic is one of the drawbacks for the performance. We use

32k vertex and 500k edges input for our experiment.

Black-Scholes option pricing (BLK): The option pricing is one of the important

problem in financial engineering. This application implements the Black-Scholes model for

European options. The Black-Scholes model provides a partial differential equation (PED) for the

optimization of an option price under certain assumptions. From GPU perspective, the

organization of the data is the main factor to ensure memory coalescing. Since G-80 class GPUs

can load 4, 8 or 16 bytes words, the arrays of structures around these boundaries creates non-

coalesced memory accesses. In order to prevent this problem, the data is arranged based on

structure of arrays strategy that allows memory coalescing for any size of input.

MUMmerGPU (MUM): MummerGpu is a fast, low-cost application to align multiple

query sequences (eg. DNA sequences) that generated in genotyping, genome resequencing, and

metagenomics projects. The purpose of sequence alignment algorithm is to find similar regions

between query sequence and reference sequence. Same as in the serial version, suffix tree is used

to find exact alignments. The suffix tree encodes every suffix of a sequence on a unique path

from root to a leaf. MummerGPU executes alignment kernel in parallel contrary to serial version

of the algorithm. MummerGPU uses 2D texture cache to store suffix tree. It rearranges the nodes

and its children relatively close in memory, which improves cache hit rate during sequence

alignment. MummerGPU performs 10xs better than CPU when the input query size is than 800

bp.

Neural Network (NN): An artificial neural network is information process system that

is inspired by how human brain is processing the information. This application implements the

recognition of the handwritten digits with the help of convolutional neural networks. Bakhoda et

al. [20] modifies this algorithm to enable multiple digit recognition. They simulate the

20

recognition of 28 digits from the Modified National Institute of Standards Technology database

of handwritten digits. We used that version in our study.

Ray Tracing (RAY): is a popular technique for rendering images in computer graphics.

It generates high –quality photos by simulating a variety of reflection and refraction of light. In

CUDA implementation of RAY, each thread is responsible for one pixel of the image. We use

256 x 256 image for this study.

Scalar Product (SCP): Scalar Product is one of the common applications for parallel

programming. This application is the implementation of dot product of two vectors on GPU.

After product stage, accumulation is achieved by tree-based reduction. There are some

restrictions on parameters to boost the performance. For instance, number of elements per vector

should be a multiple of warp size to meet memory coalescing constraints. On G80 GPUs 24-bit

multiplication takes 4 clocks per warp on the other hand, 32-bit multiplication takes 16 clocks per

warp. The algorithm prefers using 24-bit version if operands fit into 24 bits. We use 256 vectors;

each of them contains 4096 elements in this study.

JPEG Compression (JPEG): is a compression algorithm that reduces the file size

without affecting image quality. This algorithm requires 4 steps: Divide input to 8 x8 blocks,

DCT (Divine Cosine Transformation, quantization, and IDCT (Inverse DCT). In CUDA

implementation, these four steps are covered with two methods. Encoding performs DCT and

quantization, and decoding performs IDCT. Both encoding and decoding take a bmp file as input.

Decoding first encodes the file on the CPU then decodes on the GPU.

Fast Walsh Transform (FWT): Fast Walsh Transform, also known as Hadamond

Transform, is example of generalized Fourier transforms. It is applied in data encryption, data

compression, and signal processing. This benchmark implements the efficient version of naturally

ordered Walsh transform in CUDA and its application to dyadic convolution computation. It is a

memory intensive benchmark that requires 64 MB input and output buffers.

21

3D Stencil (3DS): [22] 3D stencil refers to 3 input elements in each direction without

counting the elements at the intersection. This algorithm processes on 3D volume by slicing into

2D thread blocks in order to increase the data reuse. 3D Stencil is used in seismic computing.

Computational Fluid Dynamics (CFD): [23] Computational Fluid Dynamics is a

technique to compute the flow around, or through the objects. CFD is applied in diverse areas

ranging from biology to astrophysics. The benchmark consists of a structured multi-block solver

that divided into 3D hexahedral blocks. Mass, momentum, and energy equations are applied to

each block to compute flow properties.

Separable Convolution (CONS): [24] This benchmark implements convolution filtering

that is widely applied in image processing for smoothing and edge detection. The image

convolution algorithm is suitable for the banked structure of the shared memory and memory

coalescing. The amount of the shared memory affects the performance gain.

GUPS (Giga Updates per Second): Random memory accesses have a significant effect

on the system performance. GUPS is a performance metric to measure the peak performance of

the memory architecture of the system. It is calculated by dividing the number of randomly

updated memory locations with one billion. An update refers to read-modify-write operation on

64-bit table. The memory size is generally chosen the power of two.

Histogram (HISTO): [25] Histogram is an application that calculates the frequency of

occurrence of each element. It is commonly used in data mining and image processing. CUDA

has two implementation of Histogram: Histogram64 and Histogram256. We use Histogram256

that provides higher precision with an implementation of 256-bin histogram. The input array is

divided into sub-arrays; then each result of sub-array is stored in sub-histogram, and for final step

the sub histograms are merged into a single histogram. Since multiple threads can share the same

sub-histograms, this can lead to bank conflicts and intra-warp branching divergence based on the

input value.

22

4.5.2 SHOC Benchmark Suite

Scalable Heterogonous Computing Benchmark (SHOC) [11] consists of benchmarks to

measure the performance and stability of high performance computing architectures. It supports

both OpenCl and CUDA to make a comparison between them. SHOC has two levels: First level

benchmarks were implemented to measure low-level architectural features; other level includes

common benchmarks from parallel processing. The benchmarks presented below taken from level

one and two.

Reduction (RED): Reduction performs the sum of elements in a single-precision array or

a double-precision array. While the input data is stored in global memory, the intermediate

calculations are stored in the local shared memory to hide high memory latency.

Scan (SCAN): Scan also known as parallel prefix sum, is common algorithm in parallel

computing. It takes an array as an input and outputs prefix sum based on array index. In GPU, the

performance can degrade due to the shared memory bank conflicts. In order to prevent this,

padding is added to the computed shared memory index. [26]

Quality Threshold Clustering (QTC): [27] The Quality Threshold clustering Algorithm

is applicable in various fields such as mathematics, data mining, and chemistry. First, it

introduced by Heyer at al. to measure clustering time to find co-regulated genes. Compared to k-

means, the number of cluster (k) is not necessary for computation. Moreover, for given threshold

parameter, it guarantees to meet that requirement. GPU implementation of QTC shows outer loop

parallelism and the work in inner loop is memory bound. Since the matrices used during the

algorithm are large-scaled, they need to be stored in global memory, which means high memory

latency. In order to optimize latency, the global memory accesses are coalesced.

 Triad STREAM (TRD): The STREAM Triad benchmark takes two floating-point

vectors and a scalar value (A, B, s as respectively) as inputs and calculates sustainable memory

23

bandwidth (𝑀𝐵 = 𝐴 + 𝑠 ∗ 𝐵). The vector addition operation is achieved with no temporal reuse.

Since data is stored in the global memory, memory operations are more expensive than vector

addition. Therefore, memory operations dominate the performance.

4.5.3 Parboil Benchmark Suite

 Parboil Benchmark Suite [10] consists of scientific benchmarks chosen from diverse

range of application domains such as image processing, fluid dynamics, astronomy, and biology.

These benchmarks emphasize on throughput computing by using dynamic task kernels, dense

matrix operations and data-dependent memory accesses. The benchmarks we include in our

framework are listed below:

 Sum of Absolute Differences (SAD): In image processing, the input video frame needs

to be compared with the several reference frames to find the most similar one. For this purpose,

the sum of absolute differences benchmark is used. First, the frames are tiled into 4x4 blocks and

the comparison between each pair is calculated. Then, the summation of these differences

provides us the final result. SAD is a memory intensive benchmark that benefits from register

tiling optimizations to exploit data reuse. In GPU implementation, coarsening is applied to reduce

the texture cache accesses. For the calculation of larger blocks, grouping the vector additions on

GPU reduces memory traffic.

 Matrix Multiplication (MM): This dense matrix multiplication benchmark is

implemented based on register tiling CUDA SGEMM code from Volkov []. Compared to

Volkov’s implementation, they introduce parameters to setup the degrees of register tiling and

shared memory tiling to adapt MM implementation to the new generation of GPUs.

24

4.4.4 Rodinia Benchmark Suite

 Rodinia Benchmark Suite developed by Che. et al. [9] includes benchmarks which are

selected based on Berkeley’s dwarf taxonomy. These benchmarks present different behaviors in

terms of parallelism, memory- access patterns, and data sharing characteristics. The benchmarks

used in this study are listed below:

 Speckle Reducing Anisotropic Diffusion (SRAD): SRAD is an image processing

algorithm that removes the noise in an image without changing important features of it. The

computation is done by partial differential equations by using four neighbors of each pixel.

 Hotspot (HS): Hotspot is a thermal modeling methodology for VLSI systems,

developed by Huang et. al., measures processor temperature and power based on architectural

floor plan. In GPU implementation of HS, the kernel-based calculations are done by applying

differential equations on blocks of temperatures. Each output represents the average temperature

of the cell on the chip-area.

 Back Propogation (BP): This benchmark is an implementation of the neural network

algorithm in which the data includes complex sensory input. The algorithm has two phases: First

phase is called Forward phase, the input generates the output activations through the neural

network. The backward phase estimates the error between the observed values and the

activations. Then, the error value is propogated backwards to adjust the weights and bias values.

 Needleman-Wunsch (NW): The Needleman-Wunsch algorithm is used in

bioinformatics to align DNA sequences. This algorithm uses divide and conquer approach in

which processes small block to construct the final solution. The full sequence is represented in 2-

D matrix. There are two matrix constructed during the process. The first one is score matrix,

which consists the value of maximum weighted path. The second one, the trace-back matrix,

25

helps us to find best alignment. The trace-back matrix is processed in diagonal strips for

parallelism.

Benchmark Abbr.
Block
Dim

Grid
Dim Domain

Ray Tracing RAY 128 512 Image Processing
JPEG Compression JPEG 64 512 Image Processing
Neural Network NN 168 169 Machine Learning
 1400 25
 2800 1
 280 1
MUMmerGPU MUM 256 196 Bioinformatics
Scalar Product SCP 256 128 Mathematics
Hotspot HS 256 1849 Physics Simulation
Histogram HISTO 256 240 Data Mining
Separable CONS 128 9216 Image Processing
Convolution 64 18432
Computational Fluid
Dynamics CFD 192 1008 Computational Physics
Back Propogation BP 256 4096 Pattern Recognition
Breadth-first Search BFS2 512 63 Graph Algorithm
Black-Scholes Pricing BLK 128 480 Finance
 GUPS 128 512 System Performance
3D Stencil 3DS 256 128 Seismic Computing
Fast Walsh FWT 512 4096 Computational Mathematics
Convolution 256 128
 256 8192

Table 4-1- List of benchmarks used in the framework

26

Chapter 5

Experimental Setup and Results

5.1 Experimental Setup

Simulated System

For this study, we use GPGPU-Sim 3.2.2 simulator as mentioned in the previous chapter.

We modified the simulator to support concurrent application execution. Table 2 shows the

hardware configuration we used for GPGPU-Sim. We use the default parameters that are based

on NVIDIA GeForce GTX 480 Fermi architecture.

GPU Core Config. 30 Shader Cores, 1400MHz, SIMT Width = 16 x2

GPU Resources/ Core Max. 1536 Threads (48 warps, 32 Threads/warp),

48 KB Shared Memory, 32684 Registers

GPU Caches / Core 16 KB 4-way L1 Data Cache, 12KB 24-way

Texture, 8KB 2-way Constant Cache, 2KB 4-way

I-cache, 128B Line Size

Features Memory Coalescing, Inter-warp Merging, Post

Dominator

Interconnect 1 crossbar/direction (30SMs/ 6 Memory

Controllers), 1400MHz

Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS

scheduling, 16 DRAM-banks/MC, 924 MHz

memory clock

Table 5-1: Simulated baseline GPU configuration

27

Application Classification

We classify the applications based on their memory sensitivity values measured by their

MPKI (Misses per Kilo instructions) using 15 SMs of 30 SMs in the system. Table 1 shows the

classification of GPU applications based on their MPKI values. Benchmarks with less than and

equal to 1 MPKI are considered as low memory sensitive (Type L); benchmarks with less than

and equal 3 MPKI are considered as medium memory sensitive (Type M) and the others are

classified as high memory sensitive (Type H).

We form two-application workloads from applications listed in Table 1. We simulate all

workloads till completion since some applications include multiple kernels. Each kernel of these

applications can show different behavior that will lead us to inaccurate analysis. Simulating till

completion ensures us to observe all phases of the application. We evaluate each workload using

three core-partitioning schemes: 10-20, 15-15 and 20-10. We do not scale the L2 Cache

partitioning based on core-partitioning schemes. Regardless of the core-partitioning scheme, each

application receives the half of L2 cache.

Benchmarks MPKI Type

GUPS 30.294 Type H

MUM 22.278 Type H

SCP 2.683 Type M

FWT 2.155 Type M

BFS2 2.08 Type M

BLK 1.596 Type M

3DS 1.168 Type M

JPEG 1.092 Type M

NN 0.208 Type L

RAY 0.158 Type L

Table 5-2: GPU Applications: L2 MPKI and Classification

28

5.2 Evaluation Metrics

 We report the performance of the each workload and their interactions to each other in

two different categories. In this section, we present the metrics used in the experiment.

Instruction Throughput (Eq. 4) is the sum of raw IPCs, and is commonly used for the

evaluation of multi-application system. However, recent studies [8,28] prefer weighted speedup

due to fairness and consistency. They address that raw IPC can unfairly favor high-IPC

applications. The weighted speedup (Eq.1) is defined as the sum of per application slowdowns

experienced during concurrent execution with respect to alone execution on entire system.

Weighted speedup can be interpreted as system-level throughput (STP), which defined as the

average number of jobs finished per unit of time. The maximum value of WS depends on the

number of applications that run concurrently (e.g. for 2 application, it will be 2). We provide both

metrics to discuss which one of them is more suitable for our study. We measure Average

Normalized Turnaround Time (ANTT) (Eq.3), which defined as the arithmetic average across the

slowdown of turnaround time per application in multi-application workload. Turnaround time is

execution time of the application. ANTT indicates the amount of the interaction among

applications. Thus, lower ANTT is better. Fairness index (FI) (Eq. 4) presents the maximum ratio

of slowdowns between two applications. The system is fair when FI is equal to 1.

29

5.3 Experimental Results

5.3.1 Bandwidth Utilization

Figure 5-1 presents the memory bandwidth components of several workloads chosen

from different categories. The memory bandwidth components are listed as follows:

• App1 and App 2 BW: The percentage of DRAM cycles used moving data over

DRAM interface with respect to App1 and App2.

• Wasted BW: The percentage of DRAM cycles in which there is a pending

request in the memory request queue, but no data is transferred on DRAM.

• Idle-BW: The percentage of DRAM cycles when DRAM is idle.

 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝐴𝑃𝑃! = !"#!
!!!"#$

!"#!
!"#$%

 Eq. 1 𝑆𝑇𝑃 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛(𝐴𝑃𝑃!)!

 𝐻𝑊𝑆 𝐴𝑃𝑃! = !"##
!

!"#!
!

 Eq. 2 𝐴𝑁𝑇𝑇 = !
!"#(!""!)!

Eq. 3 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 (𝐹𝐼) = 𝑀𝐴𝑋 !"#$%#$&(!""!)
!"#$%#$&(!""!)

, !"#$%#$&(!""!)
!"#$%#$&(!""!)

Eq. 4 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝐼𝑇) = 𝐼𝑃𝐶!!

Table 5-3: Evaluation Metrics

30

We plot the concurrent execution of two-application workloads for 3 different core

configurations. We also provide memory bandwidth values for single application execution to

understand how the applications interfere with each other during the execution. For instance,

Alone1_10, Alone1_15 and Alone1_20 show the single APP1 executes by using 10 SMs of 30

SMs system, 15 SMs of 30 SMs system and 20 SMs of 30 SMs of system respectively.

As shown in Figure 5-1, MUM, GUPS, BLK, and FWT have high attained bandwidth.

When two of these applications execute together (MUM_GUPS and BLK_FWT), there will not

be crucial change in bandwidth utilization through different core configurations. As one

application gains, the other one will lose due to the race between applications for the available

bandwidth. However, for NN_GUPS, GUPS will benefit from using more cores than NN due to

the low bandwidth utilization of NN. In Figure 5-1, RAY is co-scheduled with BLK and BFS2.

RAY has a scalable bandwidth utilization based on assigned number of cores. For stand-alone

execution, it has 60% and 37% of bandwidth utilization with 10 cores and 20 cores, respectively.

Thus, assigning more cores to RAY will decrease the negative impact on the co-scheduled

application. These observations show that high bandwidth applications such as GUPS, MUM

(Table 5-2) can cause the co-scheduled application in negatively and dominate the overall DRAM

bandwidth utilization.

Figure 5-1 also confirms the necessity of concurrent application execution. If the single

application itself serves a huge portion of Idle BW, the concurrent execution of that application

improves the DRAM bandwidth utilization as seen in BLK_BFS2 and NN_GUPS. In the case of

BLK_BFS2, BFS2 has 60% of idle DRAM cycles during single execution. By scheduling with

BLK, the idle DRAM cycles becomes 0.006%.

31

Figure 5-1: DRAM bandwidth utilization distribution across several workloads for

different core configurations.

0%	
20%	
40%	
60%	
80%	

100%	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

MUM_GUPS	 NN_GUPS	 BFS2_GUPS	

Pe
rc
en

ta
ge
	 o
f	 D

RA
M
	 c
yc
le
s	 App1-‐BW	 	 App2-‐BW	 Waste-‐BW	 	 Idle-‐BW	 	

0%	
20%	
40%	
60%	
80%	

100%	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

BFS2_RAY	 BLK_RAY	

Pe
rc
en

ta
ge
	 o
f	 D

RA
M
	 c
yc
le
s	 App1-‐BW	 	 App2-‐BW	 Waste-‐BW	 	 Idle-‐BW	 	

0%	
20%	
40%	
60%	
80%	

100%	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

al
on

e1
_1
0	

al
on

e2
_2
0	

al
on

e1
_1
5	

al
on

e2
_1
5	

al
on

e1
_2
0	

al
on

e2
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

BLK_FWT	 BLK_BFS2	

Pe
rc
en

ta
ge
	 o
f	 D

RA
M
	 c
yc
le
s	

App1-‐BW	 	 App2-‐BW	 Waste-‐BW	 	 Idle-‐BW	 	

32

5.3.2 System Throughput

Co-scheduling Type H applications

Figure 5-2: Weighted speedup for the workloads in which one application is Type H

Figure 5-2 shows WS of three core partitioning schemes (10-20, 15-15 and 20-10), using

workloads in which App1 chosen from Type High MPKI. For App2, we have 3 cases: Type High

MPKI (MUM), Type Medium MPKI (FWT, BLK, SCP, 3DS, JPEG, and BFS2) and Type Low

MPKI (RAY, NN).

In case 1, we examine the performance of MUM-GUPS. In general, we expect that

assigning more cores to lower MPKI application will boost the weighted speedup. MUM has

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	
2	

M
U
M
_G

U
PS
	 	

3D
S_
G
U
PS
	 	

BF
S2
_G

U
PS
	 	

BL
K_

G
U
PS
	 	

3D
S_
M
U
M
	 	

BF
S2
_M

U
M
	 	

BL
K_

M
U
M
	 	

SC
P_

G
U
PS
	 	

G
U
PS
_F
W
T	
	

G
U
PS
_J
PE

G
	 	

SC
P_

M
U
M
	 	

M
U
M
_F
W
T	
	

M
U
M
_J
PE

G
	 	

N
N
_G

U
PS
	 	

RA
Y_

G
U
PS
	 	

N
N
_M

U
M
	 	

RA
Y_

M
U
M
	 	

Type	 H	
and	 	 H	

Type	 H	 and	 M	 Type	 H	 and	 L	

W
ei
gh
te
d	
Sp
ee
du

p	

WS	 10_20	 WS	 15-‐15	 WS	 20-‐10	

33

lower MPKI than GUPS as shown in table 5-2. Thus, scheme 20-10 shows better speedup

comparing to others.

In case 2, considering only MPKI values of applications are not enough to observe the

trend of medium MPKI applications. Due to the high variance between bandwidth utilizations of

the applications, we also add this metric into our discussion. When we co-schedule GUPS or

MUM with BLK or FWT, the lower MPKI application is favorable since they have close attained

bandwidth. For SCP-MUM and SCP-GUPS, the performance values are close for all core-

partitioning schemes and assigning more cores to lower bandwidth application is preferable. For

the remaining applications, their bandwidth utilization is scalable based on assigned core number.

(Table 5-2) We give individual slowdowns for these applications when they are co-scheduled

with MUM or GUPS in Figure 5-3.

Figure 5-3: Weighted speedup of several workloads with individual slowdowns

 As expected, individual speedup of lower MPKI application increases while the number

of assigned cores increase. However, assigning more cores causes dramatic change in bandwidth

utilization of the application (e.g. JPEG for 10 cores, BW = 0.55 and for 20 cores BW=0.72).

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

10
_2
0	

15
_1
5	

20
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

10
_2
0	

15
_1
5	

20
_1
0	

3DS_GUPS	 	 3DS_MUM	 JPEG_GUPS	 JPEG_MUM	

W
ei
gh
te
d	
Sp
ee
du

p	

APP1	 APP2	

34

This change implies an important amount of performance degradation in individual speedup of

GUPS or MUM. Thus, assigning more cores to GUPS or MUM provides better system

performance.

In case 3, we examine the co-scheduling of Type-H MPKI application with Type-L

MPKI application. As discussed before, low MPKI application benefits from more number of

cores. NN follows this trend and achieves the best performance compared to other workloads

when it is co-scheduled with MUM or GUPS. Moreover, NN does not hurt the performance of

co-scheduled application due to its low bandwidth utilization. We cannot expect the same thing

for RAY, because of the scalable bandwidth utilization based on the number of cores. Like

applications 3DS and JPEG, explained in Case 2, RAY interferes the co-scheduled application in

negative way so assigning fewer cores achieves better overall WS.

Co-Scheduling Type-M applications

MPKI values of Type-M applications are listed in Table 5-2. Bandwidth utilization of

these applications is high in general except BFS2. There are two cases we need to consider: Type-

M with Type-L and Type-M with Type-M. In the first case, higher number of cores should be

assigned to Type-L application if the bandwidth utilization of that application is low like NN. For

workloads that include RAY, the opposite situation occurs. As the assigned core number

increases for RAY, it interferes the Type-M application more due to the bandwidth utilization.

35

Figure 5-4: Weighted speedup for the workloads in which one application is Type M

When both applications in a workload are Type M, we need to take into account both

MPKI and bandwidth utilization. For instance, JPEG-3DS performs better with even core

partitioning compared to other partitioning schemes, because of the similar MPKIs and

bandwidth utilizations. If we rank the applications by their bandwidth utilizations, SCP has the

highest nearly 82% and BFS2 has the lowest 13%. Due to the L1 cache, BFS2 gains

improvements from more resources when it is co-scheduled with the other applications. BFS2 is a

very L1 cache sensitive application.

0	

0.5	

1	

1.5	

2	

2.5	

SC
P_

3D
S	
	

SC
P_

FW
T	
	

SC
P_

JP
EG

	 	
JP
EG

_F
W
T	
	

BF
S2
_3
DS

	 	
BF

S2
_F
W
T	
	

BF
S2
_S
CP

	 	
BL
K_

3D
S	
	

BL
K_

BF
S2
	 	

BL
K_

FW
T	
	

BL
K_

JP
EG

	 	
BL
K_

SC
P	
	

3D
S_
FW

T	
	

3D
S_
JP
EG

	 	

N
N
_F
W
T	
	

BL
K_

N
N
	 	

N
N
_J
PE

G
	 	

N
N
_M

U
M
	 	

N
N
_R

AY
	 	

RA
Y_

FW
T	
	

BL
K_

RA
Y	
	

RA
Y_

JP
EG

	 	
RA

Y_
M
U
M
	 	

3D
S_
N
N
	 	

3D
S_
RA

Y	
	

BF
S2
_N

N
	 	

BF
S2
_R

AY
	 	

SC
P_

N
N
	 	

SC
P_

RA
Y	
	

Type	 M	 and	 Type	 M	 Type	 M	 and	 Type	 L	

W
ei
gh
te
d	
Sp
ee
du

p	

WS	 10_20	 WS	 15-‐15	 WS	 20-‐10	

36

Co-Scheduling Type L applications

In our classification, there are only two applications which have low MPKI values: RAY

and NN. To analyze this case in details, we also include SAD and HS, which have 0.119 and

0.319 MPKI values respectively. Figure 5-5 shows the system throughput obtained from

scheduling two Type L applications together. All the applications have low MPKI values, so we

need to consider bandwidth utilization of applications while assigning cores. Assigning more

cores to the application with lower bandwidth compensates the performance loss incurred from

the bandwidth contention.

Figure 5-5: Weighted speedup for the workloads in which both applications are Type L

 NN has the lowest the attained bandwidth and it does not degrade the co-scheduled

application’s performance much. Thus, the overall system throughput for workloads that include

NN, is higher compared to other two-application workloads. As mentioned before, RAY has a

scalable bandwidth utilization based on number of assigned cores. For instance in SAD_RAY

workload, when RAY gets 20 cores, it hurts SAD so much due to RAY’s bandwidth utilization

becomes 67%.

0	

0.5	

1	

1.5	

2	

2.5	

NN_RAY	 	 HS_NN	 	 HS_RAY	 	 HS_SAD	 	 SAD_NN	 	 SAD_RAY	 	

W
ei
gh
te
d	
Sp
ee
du

p	

WS	 10_20	 WS	 15-‐15	 WS	 20-‐10	

37

5.3.3 Average Normalized Turnaround Time

Figure 5-6 presents the average normalized turnaround times (ANTT) of workloads for

with three core-partitioning schemes. ANTT refers to the amount of interaction between

applications. In ideal case, when application do not interfere each other, ANTT is 1. A smaller

value of ANTT will be advantageous for the system performance. Almost %75 of the workloads

prefers the same core-partitioning scheme as in the weighted speedup figure. That means, the

core-partitioning scheme gives the highest weighted speedup and also ensures the shortest time.

However, when we examine the workloads that include GUPS, STP and ANTT do not favor the

same core-partitioning scheme. When GUPS uses more cores than the co-scheduled application,

the other application cannot satisfy its memory requests quickly due to the bandwidth usage of

GUPS. Thus, it increases the overall execution time. Same reason can be given in order to

consider the behavior of BLK-FWT and SCP-FWT workloads since they both have high

bandwidth utilization.

38

Figure 5-6: Comparison of ANTT for three core partitioning schemes.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

3D
S_
FW

T	
	

3D
S_
G
U
PS
	 	

3D
S_
JP
EG

	 	
3D

S_
M
U
M
	 	

3D
S_
N
N
	 	

3D
S_
RA

Y	
	

BF
S2
_3
DS

	 	
BF

S2
_F
W
T	
	

BF
S2
_G

U
PS
	 	

BF
S2
_J
PE

G
	 	

BF
S2
_M

U
M
	 	

BF
S2
_N

N
	 	

BF
S2
_R

AY
	 	

BF
S2
_S
CP

	 	
BL
K_

3D
S	
	

BL
K_

BF
S2
	 	

BL
K_

FW
T	
	

BL
K_

G
U
PS
	 	

BL
K_

JP
EG

	 	
BL
K_

M
U
M
	 	

BL
K_

N
N
	 	

BL
K_

RA
Y	
	

BL
K_

SC
P	
	

Av
er
ag
e	
N
or
m
al
iz
ed

	 T
ur
na

ro
un

d	
Ti
m
e	

ANTT	 10_20	 ANTT	 15_15	 ANTT	 20_10	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

G
U
PS
_F
W
T	
	

G
U
PS
_J
PE

G
	 	

JP
EG

_F
W
T	
	

M
U
M
_F
W
T	
	

M
U
M
_G

U
PS
	 	

M
U
M
_J
PE

G
	 	

N
N
_F
W
T	
	

N
N
_G

U
PS
	 	

N
N
_J
PE

G
	 	

N
N
_M

U
M
	 	

N
N
_R

AY
	 	

RA
Y_

FW
T	
	

RA
Y_

G
U
PS
	 	

RA
Y_

JP
EG

	 	
RA

Y_
M
U
M
	 	

SC
P_

3D
S	
	

SC
P_

FW
T	
	

SC
P_

G
U
PS
	 	

SC
P_

JP
EG

	 	
SC
P_

M
U
M
	 	

SC
P_

N
N
	 	

SC
P_

RA
Y	
	

Av
er
ag
e	
N
or
m
al
iz
ed

	 T
ur
na

ro
un

d	
Ti
m
e	

	

39

5.3.4 Instruction Throughput

Instruction throughput (IT) is defined as the total number of committed per cycle. Table

5-4 gives the ITs for single application execution when 15 SMs of entire system assigned to that

application.

Table 5-4: IT values of applications for 15 SMs

To show how instruction throughput is affected in concurrent execution, we conduct

experiments for three core-partitioning schemes. Figure 5-7 presents the results of these

experiments. The major observation is that the application that has more IPC in single application

execution takes advantage of more resources compared to co-scheduled application. For instance,

BFS2 and RAY have IT 20.19 and 461.33, respectively. When we check the throughput of

workload BFS2-RAY, it decreases as we assign more cores to BFS2. For BFS2-GUPS, the

instruction throughput is not changing through the different SM partitioning schemes due to the

similar IT values. 3DS-RAY shows the highest throughput among the other workloads since both

have high IT values. We conclude that the instruction throughput of co-scheduled applications is

proportional to their single IT values.

Benchmark IT
RAY	 	 461.3289	
3DS	 	 440.2151	
BLK	 	 342.5075	
JPEG	 	 309.9041	
SCP	 	 305.604	
FWT	 	 235.7992	
NN	 	 37.7007	
MUM	 	 31.3921	
GUPS	 	 29.0296	
BFS2	 	 20.1847	

40

Figure 5-7: Comparison of instruction throughput (IT) for evaluated workloads

0	

100	

200	

300	

400	

500	

600	

3D
S_
FW

T	
	

3D
S_
G
U
PS
	 	

3D
S_
JP
EG

	 	
3D

S_
M
U
M
	 	

3D
S_
N
N
	 	

3D
S_
RA

Y	
	

BF
S2
_3
DS

	 	
BF

S2
_F
W
T	
	

BF
S2
_G

U
PS
	 	

BF
S2
_J
PE

G
	 	

BF
S2
_M

U
M
	 	

BF
S2
_N

N
	 	

BF
S2
_R

AY
	 	

BF
S2
_S
CP

	 	
BL
K_

3D
S	
	

BL
K_

BF
S2
	 	

BL
K_

FW
T	
	

BL
K_

G
U
PS
	 	

BL
K_

JP
EG

	 	
BL
K_

M
U
M
	 	

BL
K_

N
N
	 	

BL
K_

RA
Y	
	

BL
K_

SC
P	
	

In
st
ru
c@
on

	 T
hr
ou

gh
pu

t	

IT-‐10_20	 IT-‐15_15	 IT-‐20-‐10	

0	

100	

200	

300	

400	

500	

600	

700	

G
U
PS
_F
W
T	
	

G
U
PS
_J
PE

G
	 	

JP
EG

_F
W
T	
	

M
U
M
_F
W
T	
	

M
U
M
_G

U
PS
	 	

M
U
M
_J
PE

G
	 	

N
N
_F
W
T	
	

N
N
_G

U
PS
	 	

N
N
_J
PE

G
	 	

N
N
_M

U
M
	 	

N
N
_R

AY
	 	

RA
Y_

FW
T	
	

RA
Y_

G
U
PS
	 	

RA
Y_

JP
EG

	 	

RA
Y_

M
U
M
	 	

SC
P_

3D
S	
	

SC
P_

FW
T	
	

SC
P_

G
U
PS
	 	

SC
P_

JP
EG

	 	

SC
P_

M
U
M
	 	

SC
P_

N
N
	 	

SC
P_

RA
Y	
	

In
st
ru
c@
on

	 T
ht
ou

gh
pu

t	

IT-‐10_20	 IT-‐15_15	 IT-‐20-‐10	

41

5.3.5 Fairness Index

 Fairness index is used to measure if each of co-running application in the workload

makes equal progress compared to their alone executions. It is a crucial metric for multi-

application workloads due to the shared resources. Based on application characteristics assigning

more resources to a specific application can lead performance imbalance between applications

and also influence the overall system performance. Figure 5-8 compares the Fairness index (FI)

of workloads for different core partitioning schemes. For some applications like NN, the fairness

is balanced in most of the workloads. The applications that have similar bandwidth utilizations

like SCP-GUPS benefit more from partitioning resources evenly. RAY’s bandwidth utilization

changes based on the core allocation, so assigning fewer cores to RAY has a positive impact on

the co-scheduled application from the fairness perspective. BLK-GUPS presents the highest

fairness index among all workloads, nearly 6.5 for core partitioning 20-10. Since GUPS is the

most memory intensive application, having fewer resources compared the co-scheduled

application interferes GUPS more. Moreover, BLK shows the same behavior as GUPS. Assigning

more cores to BLK creates more memory contention. Assigning fewer cores to BLK ensures fair

SM allocation.

42

Figure 5-8: Comparison of FI based on several core partitioning schemes

0	

1	

2	

3	

4	

5	

6	

7	

Fa
irn

es
s	 I
nd

ex
	

FI	 10_20	 FI	 15_15	 FI	 20_10	

0	

1	

2	

3	

4	

5	

6	

Fa
irn

es
s	 I
nd

ex
	

FI	 10_20	 FI	 15_15	 FI	 20_10	

43

Chapter 6

Conclusion and Future Work

 In this thesis, we explore the application interference of GPU applications during

concurrent execution. We propose a flexible and adaptable framework that supports 25

applications from different benchmark suites. We characterize the applications based on their

memory sensitivity by using MPKI metric. Then, we conduct experiments for three different SM

partitioning schemes: 10-20, 15-15, and 20-10. Experiment results show that MPKI is not enough

to determine the best core-partitioning configuration. Thus, we also consider the attained

bandwidth of each application during evaluation. We use different metrics, bandwidth utilization,

WS, ANTT, FI and IT, to understand whether they benefit from the same core-partitioning

scheme. However, all metrics do not favor the same SM partitioning scheme. Therefore, the

performance trade-offs need to be considered based on the metric. One of the major observations

is that the application with high bandwidth hurts the performance of co-scheduled application for

nearly all metrics.

 For future work, we plan to investigate a dynamic SM and cache partitioning in multi-

application execution domain. Moreover, we are planning to extend the application suite by

adding some applications from popular domains such as cloud computing. We believe that this

framework will be helpful for further research studies in this area.

44

Bibliography

[1] NVIDIA. NVIDIA CUDA. [Online].

http://www.nvidia.com/object/cuda_home_new.html

[2] NVIDIA. NVIDIA's Next Generation CUDA Compute Architecture. [Online].

http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architect

ure_whitepaper.pdf

[3] NVIDIA. (2012) NVIDIA's Next Generation CUDA Compute Architecture: Kepler

GK110. [Online].

http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-

Whitepaper.pdf

[4] Top 500. [Online]. http://www.top500.org/lists/2014/11/

[5] Google Project Tango. [Online]. https://www.google.com/atap/projecttango/#project

[6] Adwait Jog et al., "Application-aware Memory System for Fair and Efficient Execution

of Concurrent GPGPU Applications," in ASPLOS GPGPU Workshop , 2014, p. 8.

[7] Onur Kayiran et al., "Manaing GPU Concurrency in Heteroeneous Architectures," in

MICRO, 2014.

[8] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan, "Improving GPGPU

Concurrency with Elastic Kernels," in ASPLOS, New York, NY, 2013.

[9] Shuai Che et al., "Rodinia : A benchmark suite for heterogeneous computing," in IISWC,

2009.

[10] John A. Stratton et al., "Parboil: A revised Benchmark Suite for Scientific and

Commercial Throughput Computing," 2012.

45

[11] Anthony Danalis et al., "The Scalable Heteogeneous Computing Benchmark Suite," in

GPGPU, 2010, p. 12.

[12] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron, "Enabling Task

Parallelism in the CUDA Scheduler," in Workshop on Programming Models for

Emerging Architecture (PMEA), 2009.

[13] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron, "Fine-Grained

Resource Sharing for Concurrent GPGPU Kernels," in HotPar, 2012.

[14] Lingyuan Wang, Miaoqing Huang, and T. El-Ghazawi, "Exploiting concurrent kernel

execution on graphic processing units," in HPCS, Istanbul, 2011.

[15] Guibin Wang, YiSong Lin, and Wei Yi, "Kernel Fusion: An Effective Method for Better

Power Efficiency on Multithreaded GPU," in GREENCOM-CPSCOM, 2010.

[16] Jacob T. Adriaens, Katherine Compton, Nam Sung Kim, and Michael J. Schulte, "The

case for GPGPGU Spatial Multitasking," in HPCA, New Orleans,LA, 2012.

[17] Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das, "Neither More Nor

Less: Optimizing Thread-level Parallelism for GPGPUs ," in PACT, 2013.

[18] Adwait Jog et al., "OWL: Cooperative Thread Array Aware Scheduling Techniques for

Improving GPGPU Performance," in ASPLOS, 2013.

[19] Adwait Jog et al., "Orchestrated Scheduling and Prefetching for GPGPUs," in ISCA,

2013.

[20] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt,

"Analyzing CUDA Workloads Using a Detailed GPU Simulator," in ISPASS, Boston,

2009

[21] Blaise Barney. POSIX Threads Programming. [Online].

46

https://computing.llnl.gov/tutorials/pthreads/

[22] Paulius Micikevicius, "3D Finite Difference Computation on GPUs using CUDA,"

NVIDIA, 2009.

[23] Graham Pullan and Tobias Brandvik. Computational Fluid Dynamics. [Online].

http://www.many-core.group.cam.ac.uk/projects/CFD.shtml

[24] Victor Podlozhnyuk, "Image Convolution with CUDA," NVIDIA, 2012.

[25] Victor Podlozhnyuk, "Histogram calculation in CUDA," NVIDIA, 2012.

[26] Mark Harris. (2007, Feb.) Parallel Prefix Sum with CUDA. [Online].

http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

[27] Anthony Danalis, Collin McCurdy, and Jeffery S. Vetter, "Efficient Quality Threshold

Clustering for Parallel Architectures," in IPDPS, 2012, p. 12.

[28] Stjin Eyerman and Lieven Eeckhout, "System-Level Performance Metrics for

Multiprogram Workloads," in IEEE MICRO, 2008.

