
The Pennsylvania State University 

The Graduate School 

College of Engineering 

 

TRAILING EDGE NOISE PREDICTION USING THE 

NON-LINEAR DISTURBANCE EQUATIONS 

A Thesis in 

Aerospace Engineering 

by 

Abhishek Jain 

 

©2015 Abhishek Jain 

 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

 

Master of Science 

 

 

 

August 2015 
  



ii 
 

 

 

The thesis of Abhishek Jain was reviewed and approved* by the following: 

 

Kenneth S. Brentner 

Professor of Aerospace Engineering 

Thesis Co-Advisor 

 

Philip J. Morris 

Boeing A/D Weliver Professor of Aerospace Engineering 

Thesis Co-Advisor 

 

George A. Lesieutre 

Professor of Aerospace Engineering 

Head of the Department of Aerospace Engineering 

 

 

*Signatures are on file in the Graduate School. 
  



iii 
 

ABSTRACT 

AIRFOIL self-noise consists of five major sources. One of these identified sources is turbulent 

boundary layer – trailing edge (TBL-TE) noise, which is an important source of rotor and wind 

turbine broadband noise, and the focus of this thesis. Trailing edge noise is the result of unsteady 

flow interacting with the trailing edge of an airfoil or other sharp edged flow surface. The 

presence of the sharp trailing edge scatters the sound generated by the turbulent eddies very 

efficiently, especially for sources in the immediate vicinity of the edge. There is a need for 

accurate and computationally efficient methods to calculate the turbulent boundary layer trailing-

edge (TBL-TE) noise that are not reliant on empirical data. The majority of the current semi-

empirical techniques are based on measurements from symmetric NACA airfoil sections (i.e. 

NACA 0012). These techniques are generally not coupled with CFD solvers to obtain turbulent 

boundary layer data that provides pertinent parameters used in the acoustic calculations. Some 

methods exist that incorporate CFD solutions like Large Eddy simulations (LES) into their noise 

prediction algorithms. But these are prohibitively expensive and impractical for routine use. The 

method described in this paper is a first principles approach that aims to predict the TBL-TE 

noise using computational aeroacoustic (CAA) techniques without resorting to empiricism. 

 

 The prediction of trailing edge noise requires an accurate calculation of the boundary layer 

fluctuations in the vicinity of the trailing edge. Scales in the computational domain ranging from 

the small turbulent boundary layer scales to those of the long-range noise propagation need to be 

resolved. These data can be obtained using simulation techniques like Direct Numerical 

Simulation (DNS) or Large Eddy Simulation (LES). However such simulations for complete 

helicopters or wind turbine rotors are impractical given today’s computational resources. Also, 

DNS becomes unrealistic for the propagation of the acoustic signal to distant observers. The 

method described here overcomes these limitations by using a hybrid CAA approach coupled 

with a flow solver based on the non-linear disturbance equations (NLDE). The overall problem is 

separated into component problems with the NLDE equations applied over a relatively small 

noise generating region i.e. approximately the last 10% of the chord or less. This makes the 

solution more computationally efficient than LES for the full airfoil or rotor and enables the use 

of the most computationally efficient methods in the required regions.  

 

 The proposed method is advantageous to helicopter and wind turbine manufacturers as it 

provides a tool for the prediction of rotor broadband noise at the design stage. This can also be 

used as a tool to reduce noise through the analysis of appropriate noise reduction devices.  
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Chapter 1 

Introduction 

The noise that emanates from helicopters as they operate under normal flight conditions has been 

a ubiquitous source of annoyance and is a concern for helicopter manufacturers and designers 

everywhere. The prediction and reduction of noise has proven to be a unique and challenging 

aspect of engineering design.  

 

Rotorcraft noise consists of various sources. The first major type is rotor harmonic noise. This is 

any noise generated by the rotor systems on the aircraft. Harmonic thickness and loading noise 

are representative of the above and are caused by steady and unsteady aerodynamic forces. The 

major occurrence of these is at low to mid-range frequencies. High-speed-impulsive (HSI) and 

blade-vortex-interaction (BVI) noise are also categorized under rotor harmonic noise. These are 

all deterministic sources. When present, the impulsive HSI and BVI sources are often the 

dominant source of noise radiated by the rotorcraft.   

 

Thickness noise is largely governed by the blade thickness and tip Mach number. It is generated 

when air is displaced when the blade passes through the air. In the transonic regime, thickness 

noise is dominated by low frequency content at the first few harmonics of the main rotor 

operational frequency. The intensity of thickness noise increases at high advancing tip Mach 

numbers.  

 

Loading noise is generated by the application of the aerodynamic forces of the rotor on the fluid 

medium. It too consists of mainly low-frequency content. In a rotor system, thrust and drag are 

the dominant aerodynamic forces. Lifting forces create noise normal to the tip-path plane while 

pressure drag forces create noise near the tip-path plane of the rotor. 
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When the rotor blade operates in the transonic regime, local shocks form and propagate near the 

tip-path plane of the rotor and cause High-Speed-Impulsive (HSI) noise. Thinner blade sections 

and operation at lower tip speeds reduces the significance of this noise source.  

 

Blade-vortex-interaction (BVI) noise is the impulsive version of the loading noise. The passage 

of the rotor blade in close proximity to trailing vortices from the preceding blade results in a 

rapid change of the blade aerodynamic loads, generating impulsive waves that are most intense 

out of the plane of the rotor. The intensity of BVI is driven by the wake geometry, the wake 

strength, and the miss distance between the rotor tip-path and the trailed wake. 

 

The second major classification of rotorcraft noise is aperiodic broadband noise that can be 

caused by random loadings due to atmospheric turbulence, inflow disturbances, turbulence from 

blade boundary layer effects, vortex shedding, and flow separation. Broadband noise is 

comprised of components that may extend over a large range of frequencies.  The importance of 

the prediction of broadband noise radiated from helicopters stems from the fact that for most 

helicopters, the frequency of the broadband noise falls in the range where the human ear is most 

sensitive. The contribution of broadband noise to the overall noise of the rotors can be 

substantial. There are many physical noise mechanisms of broadband noise generation in 

helicopter rotors. Essentially all the known mechanisms are associated with random pressure 

fluctuations on the blade surface.  

Some of the sources of broadband noise are from turbulence ingestion, while there are airfoil 

self-noise mechanisms most classically described by the technical report of Brooks et al. [1]. The 

self-noise mechanisms produced by an airfoil in smooth, non-turbulent, subsonic inflow are 

categorized into five flow types. Each flow condition is examined through experimental 

measurements and a semi-empirical prediction method is developed. 
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Figure 1.1: Airfoil self-noise mechanisms [1] 

 

Airfoil self-noise occurs when an airfoil shape is placed in an otherwise uniform and steady fluid 

flow. Noise is generated when flow unsteadiness (in the form of fluid turbulence) interacts with 

the surfaces of the airfoil that generated sound.  The five specific self-noise mechanisms can be 

listed as below 

1. Turbulent Boundary Layer – Trailing Edge Noise 

2. Laminar Boundary Layer – Vortex Shedding Noise. 

3. Separation Stall Noise 

4. Trailing Edge Bluntness – Vortex Shedding Noise 

5. Tip Vortex Formation Noise. 

 

The first of these noise mechanisms is a result of the interaction of a high Reynolds number 

turbulent boundary layer generated over the airfoil surface with a sharp trailing edge. Laminar 

boundary layers at low Reynolds number have instabilities present in the flow that cause vortex 
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shedding and associated noise from the trailing edge. The third noise mechanism is a low 

frequency phenomenon caused by large scale flow separation at high angles of attack. Pressure 

fluctuations caused by vorticity oscillations behind a blunt trailing edge also generate vortex-

shedding noise. Lastly, the circulation of finite length blades generates tip vortex noise near the 

tips of the lifting blade.  

1.1. Trailing Edge Noise Mechanism 

The wide range of applications where trailing edge noise is a concern has resulted in an extensive 

array of literature available on the topic. Thus, a large effort has been put forth to understand the 

sound generation mechanism and the characteristics of the resulting noise. Trailing edge noise is 

caused by the interaction of the turbulence with a trailing edge (TE). Turbulence is characterized 

by the irregular flow of air and other fluids past (airfoils) or through objects (pipes, engines) and 

it is the usual condition of airflow considered in engineering applications. Turbulent flow can be 

thought of as a continuous series of randomly orientated eddies of various sizes and intensity that 

are linked in a form of energy cascade. This energy cascade is the physical mechanism that 

dissipates the energy that the immersed object imparts to the flow. Hence, turbulent flow is 

unsteady and contains fluctuating eddies with a large range of sizes (or scales). Fluctuating 

eddies by themselves are a source of noise, the most familiar form being caused by airline jet 

engines. The addition of a close boundary, such as an airfoil, will amplify the noise generated by 

fluid turbulence. Turbulent Boundary layer – trailing edge (TBL-TE) noise is also an important 

source of rotor broadband noise. Developing a model for accurate prediction of TBL-TE noise is 

an essential component of obtaining usable acoustic data. 

Figure 1.2 is a diagram illustrating TE noise. On the right of the figure, the major flow processes 

that occur over an airfoil placed in an otherwise uniform and steady fluid stream are shown. The 

flow encounters the leading edge of the airfoil and forms a boundary layer due to viscosity, 

which that normally transitions to a turbulent state on the surface of the airfoil. Figure 1.2 

illustrates the growth of this boundary layer over the airfoil surface and defines its thickness at 

the TE as δ. Turbulent eddies are formed within the boundary layer and it is the interaction of 

these eddies with the TE that generates broadband aerodynamic noise.  
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In acoustic terms, the edge presents itself as a sharp impedance discontinuity. This discontinuity 

scatters acoustic waves generated by the fluid turbulence (considered to be quadrupole) and 

creates an intensified radiated acoustic field. When the dimensions of the airfoil are small 

compared with the radiated acoustic wavelength (chord = C << λ = acoustic wavelength), then 

the fluctuating flow causes surface pressure fluctuations that are (effectively instantaneously) 

transmitted across the airfoil in the hydrodynamic near field. In this case, the radiated sound is of 

dipole character with the strength proportional to the fluctuating total force amplitude. This type 

of noise amplitude scales with the sixth power of the Mach number (M
6
). 

When the airfoil dimensions are large compared with the radiated acoustic wavelength (C >> λ), 

the TE will diffract turbulence induced quadrupole noise. In this case, the intensified radiated 

noise is still of a multipole nature with an amplitude governed by the intensity and spatial 

distribution of the turbulent field. Diffracted turbulence scales with M
5
, hence for a subsonic 

flow (M <1) this noise is more intense that the dipole case described above.  

The airfoil in Fig. 1.1 also includes TE bluntness of thickness h. The effect of bluntness is to 

create vortex shedding in the wake of the airfoil. This creates a stream of counter-rotating 

vortices with a higher spanwise (z-direction) coherency that the turbulent eddies in the turbulent 

boundary layer. This results in tonal noise, sometimes of dipole nature if the wavelength is 

smaller than the chord. The diffraction of the boundary layer turbulence, on the other hand, 

creates broadband noise up to high frequencies.  

1.2. Motivation for present research 

The Brooks, Pope and Marcolini (BPM) model was developed based on experiments with the 

NACA 0012 airfoil. The methods developed are semi – empirical with an analytical basis.  

Using just the BPM model one is not able to obtain accurate results for different kinds of airfoils. 

The NAFNoise [2] code developed by the National Renewable Energy Laboratory (NREL) tried 

to improve the BPM model by incorporating boundary layer prediction routines such as 

XFOIL[54] into the solution algorithm to obtain more accurate boundary layer properties that are 

used as inputs into the noise prediction empirical formulae. There were still some issues with 

matching the exact experimental data for different airfoils and also understanding the underlying 

mechanisms of the self-noise. Shortcomings were also found in the noise prediction algorithm 
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implemented in FAST (an NREL code for wind turbines). The absence of Doppler shift effects 

when predicting noise resulted in a mismatch between results generated from PSU-WOPWOP 

(which uses a numerical implementation of the BPM model for broadband noise) [21] and FAST 

for flow over a whole rotor. Some options also considered were the aerodynamic load 

mechanisms employed in FAST compared to those employed in PSU-WOPWOP. 

 

 

Figure 1.2: The generation of TE noise. On the left are some technologies where the TE noise limits their 

operation. On the right is a schematic of an airfoil, showing boundary layer growth over the surface and 

aerodynamic noise generation mechanisms at the TE. The turbulent boundary layer (upper right) is a 

computer simulation showing iso-vorticity contours of the boundary layer structure. [3] 

One of the approaches to overcome this hurdle is the use of a first principles approach to obtain 

accurate and fast rotor broadband noise prediction. This approach involves the use of hybrid 

Computational Aeroacoustics (CAA).  

The goal of the present project is to develop a method for accurately and efficiently calculating 

rotor broadband noise using a first principles approach. The present method uses a multi-level 

approach by dividing the entire CAA problem into components. In this manner, the most 

efficient computational method can be chosen to solve each component problem. Computational 

efficiency is also obtained by restricting the CFD domain to the trailing edge of the blade. 
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CHOPA, a high fidelity flow solver based on the Non- Linear Disturbance Equations (NLDE), is 

used to solve the CFD component of the problem and PSU- WOPWOP, a multi-functional FW-

H solver, is used to solve the aeroacoustic component problem. 

1.3. Organizaton of the thesis.  

Chapter 2 consists of an introduction to trailing edge noise theory, the current state of prediction 

methods for the same and a discussion of the issues present in the various noise prediction 

methods including some of the problems with the Computation Fluid Dynamics (CFD) 

approaches to the problem. 

Chapter 3 is an outline of the approach currently used in the thesis. It starts with a description of 

the framework and the NLDE allowing concentration on a very small portion of the domain. It 

also includes a description of the NLDE flow solver (CHOPA) and the techniques used 

(LDDRK, Unsteady dual time stepping, SEM etc.). The various inflow boundary condition 

techniques are also examined and the advantages and disadvantages of each are discussed. 

Chapter 4 involves an explanation of the Synthetic Eddy Method (SEM), used as a turbulent 

inflow boundary condition, and the validation of the technique. 

Chapter 5 discusses the two example cases carried out for the trailing edge noise prediction in 

CHOPA: a flat plate zero pressure gradient boundary layer simulation and an airfoil trailing edge 

noise simulation for the NACA 0012 airfoil. 

Chapter 6 is a summary of the thesis and some of the additional work that needs to be performed 

to enhance the project.  
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Chapter 2 

Trailing Edge Noise  

Equipment used in industry today creates conditions where unsteady fluid flow and sharp edges 

are common. The interaction of these, both in industry and nature often creates loud and 

unwanted sound, which is known as trailing edge noise. The most common form of unsteady 

flow is turbulent, and as turbulent flow passes the trailing edge of an airfoil, strong broadband 

noise is generated, which can be annoying to people.  Airfoil trailing edge noise can be created 

by wind turbines, helicopter rotors, aircraft wings, gas-turbine blades, cooling fans, propellers 

and submarine control surfaces. As unwanted noise reduces the quality of life and can be a 

public health issue, it is necessary for engineers to be able to understand, predict and control 

airfoil trailing edge. 

2.1. Theory 

Interaction with sharp edges causes a scattering of eddies present near the trailing edges. TBL-

TE noise can be thought of as a scattering process, where the turbulent energy in the boundary 

layer fluctuations is scattered by the trailing edge and converted into acoustic energy. This 

results in the radiated sound intensity increasing at low freestream velocities. The sound scales 

with the fifth power of the flow velocity. This is in contrast to the sound intensity produced by 

free turbulent eddies that radiate sound intensity that scales with the eight power of the flow 

velocity.  

The classic formulation of Ffowcs Williams and Hall [4] describes the characteristics of trailing 

edge noise using the inviscid form of Lighthill's equation [5]. On considering the potential field 

radiated by a quadrupole distribution in the vicinity of a sharp edged infinite half plane, where 
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the ambient fluid is at rest, it was found that the sound intensity was dependent on a relationship 

involving the distance between the center of an eddy and the edge of the half plane r0, and the 

acoustic wavenumber k. Quadrupoles associated with eddies satisfying the inequality 2kr0 << 1 

display sound output increase by a factor of (kr0) 
-3

. Therefore, using the assumption that the 

acoustic wavenumber scales linearly with the characteristic fluid velocity, it was concluded that 

the scattered intensity increases in proportion to the fifth power of the velocity [4]. The relation 

for the intensity of trailing edge noise takes the form, 

                                                            𝐼 ~ 𝜌0
2 𝑣′2

𝑈𝑐
3

𝑎0
(
𝐿ℒ

𝑅2
)                                               (2.1) 

where ρ0 is the ambient density, 𝑣′2 is the mean square turbulent fluctuation velocity, Uc is the 

velocity of the convecting turbulence, a0 is the speed of sound, L is the spanwise length of the 

eddies interacting with the trailing edge, ℒ represents the characteristic correlation radius of the 

turbulent eddy and R is the separation distance of the source and the observer points. This 

equation is the classical formulation of trailing edge noise and is the basis of comparison for 

many noise prediction models and validations. Furthermore, the relation has been found to 

possess a directional dependence of sin
2
(θ/2) for a rigid half plane, where θ is the angle measured 

from the downstream direction parallel to the half plane. Comparatively, Ffowcs Williams and 

Hall also found that if the eddies are far enough from the edge, more specifically, if the relation 

(kr0)
1/2

 >> 1 is satisfied, the far field sound characteristics are not amplified by the presence of 

the half plane edge. 

Howe [6] reviewed various trailing edge noise formulations and concluded that all sharp trailing 

edge noise theories are essentially identical for low Mach numbers. He also presented a unified 

theory of trailing edge noise, investigated the effect of the Kutta condition and extended the 

model to include the effects of forward flight and source motion relative to the edge. These 

results have been validated by subsequent trailing edge noise experiments; in particular those of 

Brooks and Hodgson [7] on the NACA 0012 sharp edged airfoil. 
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2.2 Prediction methods 

TBL-TE prediction methods are included in most, if not all noise prediction models. Propagation 

effects of the TBL-TE noise source are also important when calculating the spectra at observer 

locations. These usually include directivity and convective amplification effects. 

Two-dimensional semi-empirical source modeling methods for airfoil self-noise prediction are 

most popular. Examples of these are the method developed by Brooks et al. [7] or the TNO [8] 

trailing edge noise prediction method. These methods discretize the rotor blade into several 

spanwise segments such that each segment represents a two dimensional airfoil shape. The semi-

empirical models require input that is obtained using a variety of methods depending on the 

particular model. This ranges from using an a priori database [9] containing the necessary input 

data to the use of a panel integral boundary layer code [10], to a full Reynolds averaged Navier-

Stokes computation to obtain the turbulent boundary layer parameters [11]. Once the source 

strength is found, a propagation model is used to calculate the sound pressure level for each 

segment at a given observer location and the element contributions are acoustically summed. 

There are many challenges associated with the prediction of airfoil trailing edge noise, the most 

difficult of which is modeling the turbulence in the boundary layer. Exact analytical solutions are 

available to predict trailing edge noise (Ffowcs Williams and Hall [4], Amiet, [12], Howe [13]; 

however, each solution requires an estimate of the turbulent velocity or surface pressure 

spectrum.  

The field of computational aeroacoustics (CAA) is associated with a solution of the above 

mentioned problem. CAA consists of a wide range of methodologies where noise is predicted 

through a numerical solution of the propagation of sound waves in an inhomogeneous flow field. 

The increase in modern day computing power has made this a popular approach in the prediction 

of noise. CAA consists of multiple approaches that are broadly categorized into two types. The 

first approach involves obtaining direct calculation of noise at an observer location by fully 

simulating the flow field and obtaining the acoustic pressure fluctuations. But this method is 

prohibitively computationally expensive. The second approach is a hybrid CAA approach which 

uses high fidelity CFD flow results as input to an allied aeroacoustic solver employing various 

acoustic analogies to determine the sound output.  
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Turbulence is a random, complex and highly non-linear process with no closed form solutions. 

Methods have been developed to resolve this issue. The methods involve varying complexities 

and resolution of all the scales present in turbulent flow. The most computationally demanding 

technique for resolving turbulent flows is Direct Numerical Simulation (DNS). DNS attempts to 

simulate all features of the flow, ranging from the smallest of turbulent scales to long range 

sound propagation when applied to the compressible Navier-Stokes equations for the acoustic 

field. Another technique to resolve the energy carrying eddies of the flow is called as Large Eddy 

Simulation (LES). LES involves the simulation of the large, energy carrying eddies of the flow 

and includes equations to model the small, dissipative scale eddies. The basis of LES is spatial 

filtering, rather than time-averaging as is popular in Reynolds Averaged Navier Stokes (RANS) 

methods. Spatial filtering has the consequence that turbulence scales larger than the grid size are 

directly resolved with no modeling assumptions. For turbulence scales smaller than the grid size, 

a special turbulence model is used, known as a sub-grid-scale (SGS) model. The model is 

transient, simulating all the fluctuations above the grid scale, therefore requiring significantly 

more memory than RANS, which is steady state (as the turbulence is averaged over infinite 

time). This method is less expensive computationally, when compared to DNS but is still 

intractable for large scale and frequent industrial usage. Figure 2.1 shows the associated energy 

spectrum that is the basis of the LES method. There have also been attempts to couple turbulence 

and TE noise calculations [14] to reduce computational expense by modeling aspects of 

turbulence using an eddy viscosity model. These methods have not proved successful when 

predicting high frequency noise components. Accounting for these components is important as 

these are the most annoying to the human ear and are heavily weighted in aircraft and other noise 

regulations.  
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Figure 2.1: Turbulent Kinetic Energy subdivided into 3 regions. An energy containing part, a region that 

tranfers energy to the smaller scales and a dissipation region (LES models the energetic scales) 

Another formulation that has been tried to predict turbulent trailing edge noise is the use of 

Unsteady RANS (URANS). RANS methods are the most widely used techniques in the industry 

today and are the least computationally demanding method available. The RANS method is 

characterized by turbulence closure models to model all the turbulent fluctuations. For 

application in aeroacosutics this method has some shortcomings. Detailed information about the 

small fluctuations are often required in aeroacoustics. However as already was mentioned, it is 

possible to reconstruct noise sources or recreate the stochastic turbulence field from a RANS 

simulation. Such techniques use a model to synthesize a turbulence field based on these time-

averaged turbulence quantities [14]. There have been a number of model turbulence spectrums 

developed over the years from experimental velocity correlations. These model spectra use the 

turbulence length scales calculated by the RANS model. Once the spectral information has been 

determined, a deconvolution procedure is used to synthesize the transient velocity field at each 

point required by the noise prediction model. 

Hybrid methods that are in the middle ground regarding complexity and computing power have 

also been tried when modeling trailing edge noise. These involve the blending between the 

statistical RANS and LES methods. The basis for these is to solve the boundary layer with 

RANS, and use LES for the external flow and separated flow region. Sometimes zonal hybrid 

methods are employed where a region in the vicinity of the wall is defined where the turbulent 
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boundary layer is solved. Communication to the outer LES regions is prescribed by an explicit 

boundary condition. On the other hand, in the blended hybrid methods a smooth transition is 

made between different regions. The most common type of a hybrid RAN-LES technique is 

Detached Eddy Simulation (DES) which was first proposed by Spalart and Allmaras in 1992 

[15]. The general idea behind this model is that it acts as a RANS model in attached boundary 

layers and turns into LES for the separated flow regions. The switching between the two models 

depends on the local grid resolution. DES however suffers from transition layers from the 

interface treatment and as a result under predicts the skin friction. Methods like Delayed 

Detached Eddy simulation (DDES) have been developed to alleviate some of the problems 

encountered in traditional Detached Eddy Simulation approaches [16]. Figure 2.2 gives an 

account of the different grid types encountered during the application of the DES method.  

 

Figure 2.2: Different mesh designs as can be encountered during grid refinement in the course of DES. 

The first has spacing as large as the boundary layer. The second mesh has a smaller spacing than the 

boundary layer, but is too coarse to support LES content. The last mesh is an LES grid. [16] 

Hybrid computational aeroacoustics (CAA) is the other practice adopted when trying to predict 

trailing edge noise. Two tools are incorporated in this approach; the first is a time dependent, 

high fidelity Computational Fluid Dynamics (CFD) code capable of resolving both the small and 

large scales of interest present in the problem at hand. The second tool required is an 

aeroacoustics solver based on Lighthill's acoustic analogy. In most cases the aeroacoustics code 
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solves the Ffowcs Williams -- Hawkings equation, which is a generalized integral formulation of 

Lighthill's acoustic analogy. The idea behind this approach is to obtain a full resolution of the 

flow variable fluctuations in the flow field surrounding the acoustic sources using the CFD 

solver. Then, the time dependent flow data is saved to a surface that surrounds the acoustic 

source and passed to the aeroacoustics solver to determine the propagation of the resulting noise. 

The hybrid CAA approach is general, and only requires the ambient flow conditions, the blade 

geometry and the desired observer locations for input. The noise prediction is purely 

computational and no empirical relations are used. Therefore, provided that the CFD 

computation is accurate, the model can capture the resulting noise spectrum. Among other 

advantages is the inclusion of rotational and three-dimensional effects present on the complete, 

3-dimensional rotor blade and a fully time dependent solution capable of yielding a pressure time 

history of the acoustic fluctuations. However, despite the reduction in computational resources 

required for a hybrid CAA simulation over a direct calculation, a highly resolved Direct 

Numerical Simulation (DNS) or even a Large Eddy Simulation (LES) of an entire rotor blade 

remains an impractical option given present computational capabilities. 

2.3. New hybrid CAA noise prediction method. 

A new technique has been developed at Penn State to make the problem of the prediction of 

trailing edge noise more tractable. This involves the separation of the CAA problems into 

modules and applying the most computationally efficient solution methods to the individual 

modules. First, a Reynolds Averaged Navier Stokes (RANS) solver is used to calculate the time 

averaged (mean) flow around the entire airfoil. Then, the Nonlinear Disturbance Equations 

(NLDE) are used to simulate the fine scales in the boundary layer near the airfoil trailing edge. 

This technique, developed by Morris et al. [17] is essentially LES except that it solves for 

perturbations about an estimate of the mean flow, in a limited region of the total flow. The 

unsteady surface pressures and/or unsteady flow field calculated by the NLDE are passed to the 

PSU-WOPWOP noise prediction code, which is used to predict the noise from the trailing edge. 

The advantage of the NLDE method over traditional LES for aeroacoustic applications is that it 

increases the accuracy of the solution in the acoustic field and it can also establish a statistically 

stationary solution faster. This reduces the total computation time. In a full closure of the flow 
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solver, a turbulence model would be implemented to model the unresolved scales in the 

boundary layer. The NLDE are only used for the simulation of the flow in the trailing edge 

region of the airfoil. They predict both fluctuations on the airfoil surface as well as the fine-scale 

turbulence in the vicinity of the blade trailing edge. The NLDE can be solved in a small fraction 

of time relative to what would be required if the flow field for the entire blade needed to be 

calculated. The grids required for the NLDE calculations are finer than the grids needed for the 

mean flow computations. In conjunction with the permeable surface FW-H equation method, 

these compressible flow simulations enable the associated noise to be predicted.  

The acoustic propagation tools used in CAA are only as good as the pressure data provided to 

them. An accurate FW-H solver such as PSU-WOPWOP will have limited use if the flow data 

given to it is low fidelity. Among the different types of noise sources, broadband noise is 

arguably most difficult to predict because it can originate from the smallest of flow scales: 

boundary layer turbulence on blade surfaces.  

2.4. Issues related to CAA 

Most of the issues encountered when performing CAA are different from conventional CFD 

problems. While most aerodynamics and fluid mechanics problems are steady-state (time 

independent) or involve low-frequency unsteadiness, aeroacoustics problems are by definition 

time-dependent. Listed below are most of the concerns when formulating CAA solutions for 

noise generation and prediction. 

2.4.1. Large Spectral Bandwidth: TBL-TE noise is broadband and the spectrum is fairly wide. 

There is a need to resolve the high-frequency waves with extremely short wavelength. 

Developing finite difference algorithms that give adequate resolution for the number of points 

required per wavelength is an important issue. 

2.4.2. Acoustic Wave/Mean Flow Disparity: There exists a large disparity in the acoustic and 

hydrodynamic fluctuations. Sometimes, the small magnitude of the acoustic disturbances might 

be smaller than any error incurred in the mean flow computation. This has led to the question of 

solving for the perturbations about the mean flow or to solve the full nonlinear equations to 

capture a very small-amplitude sound field directly. The NLDE method can be mentioned as a 

solution in this regard. 
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2.4.3. Far-field noise propagation: In most aeroacoustics problems, interest is in the sound 

waves radiated to the far field. This requires a solution that is uniformly valid from the source 

region all the way to the measurement point many acoustic wavelengths away. Because of the 

long propagation distance, CAA schemes must have minimal numerical dispersion and 

dissipation. Also, it should propagate the waves at the correct wave speeds and should be 

isotropic irrespective of the orientation of the computation mesh.  

2.4.4. Non-reflecting boundary conditions: The finite size of the computational domain is 

compensated for by the application of appropriate boundary conditions on the artificial 

boundaries. For CAA problems these boundary conditions need to ensure the passage of acoustic 

and flow disturbances with minimal reflections. This is necessary to prevent contamination of the 

source of the noise. The difference between boundary conditions being applied to a CFD domain 

compared to a CAA domain lies in the fact that the acoustic waves decay very slowly and are 

still finite at the boundaries, whereas flow disturbances generally tend to decay away from their 

region of generation.  

2.4.5. Multi-scale resolution: The various acoustic sources present in CAA problems have 

length scales very different from the acoustic wavelength. The length scale of the source region 

and that of the acoustic far field region can be vastly different. Numerical algorithms and 

methods should be implemented keeping multi-scale resolution in mind.  

2.5. Basic elements of CAA numerical algorithms 

To simulate an aeroacoustic phenomenon or problem computationally, the numerical algorithm 

must consist of several basic elements. These are, 

2.5.1. Time-Accurate Marching computation scheme 

A good quality time marching scheme is basic to any computational effort. For noise prediction, 

a time dependent solution for the propagation of sound waves is needed. As CAA solutions are 

generally unsteady (time-dependent), time-marching schemes are required. The solution should 

be calculated with a constant time-step which meets the stability criterion but also minimizes run 

time. Explicit schemes require that a pressure wave travel less than one grid point per time step. 

Because of the finite differencing method, if a pressure wave travels further than one cell, the 
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surrounding cells would not be able to properly influence the propagation. Therefore, the size of 

the grid spacing and local speed of sound strictly limit the size of the time stepping used. For a 

wave traveling between two grid points separated by a spacing of Δx, 

𝛥𝑡 <  
𝛥𝑥

𝑐 + 𝑢
                                                                          (2.2) 

where c is the local speed of sound, u is the local flow velocity in the wave propagation 

direction, and 𝛥t is an upper bound on the allowable time stepping in the explicit scheme. The 

new solver uses explicit five stage, fourth order accurate time marching. The scheme selected is 

a Low Dissipation and Dispersion Runge-Kutta (LDDRK) method outlined by Hu, Hussaini, and 

Manthey [18]. Details on the time marching scheme can be found in Section 3.2.1, where a more 

detailed limit on the time step size is also presented. 

2.5.2. Suitably designed computational grid. 

CFD and CAA solutions are highly grid dependent. High fidelity grids built around complex 

geometries are the cornerstone of efficient and robust simulations. For the TBL-TE case flow 

fields need to be highly resolved in the turbulent boundary layer region of the airfoil and blade 

surface to resolve time accurate turbulent structures or eddies. In the context of the work 

performed for this thesis, the grid resolution is decided by the size of the eddy generated by the 

turbulence injection techniques.  

2.5.3. Low dispersion and low dissipation numerical scheme. 

The propagation characteristics of waves governed by a series of partial differential equations 

depend on the dispersion relation in frequency and wave number space. The dispersion relation 

relates wave angular frequency and wave numbers of flow variables [19]. Using Fourier 

transforms of the governing equations, Tam and Webb developed a class of finite difference 

schemes known as Dispersion-Relation-Preserving (DRP) schemes. A fourth order accurate DRP 

scheme was selected for the NLDE code, which has better dispersion characteristics than a 

standard sixth order central difference grid. Details of the scheme used in the new NLDE code 

can be found in Section 3.2.3. Also, a Low-Dispersion and Low-Dissipation scheme was used for 

time integration and is discussed in Section 3.2.1. 
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2.5.4. An artificial damping algorithm or filtering procedure. 

To obtain a high-quality numerical solution, it is necessary to eliminate the short wavelength 

spurious numerical waves. The spurious numerical waves can contaminate the computed 

solution. This can be achieved by the introduction of artificial selective damping terms in the 

finite difference equations. These damping terms can also help suppress numerical instabilities at 

the boundaries of the computational domain or at surfaces of discontinuities such as mesh-size 

change interfaces or solid wall surfaces. Explicit low-pass numerical filtering is used in the 

NLDE code to prevent the growth of high wave number modes inherent to central differencing 

schemes.  

2.5.5. Numerical treatments for use at the boundaries of the computational domain. 

Outgoing waves need to be able to pass through the boundaries of the computational domain 

with little to no reflection. Also, there is a need to reproduce the effects of the regions outside the 

computational domain. Incoming acoustic and vorticity waves or turbulence inflow needs to be 

generated by numerical boundary conditions. Far-field radiation conditions are given by Tam 

and Webb [19], which are derived from the asymptotic solutions of the linearized Euler 

equations. All boundaries away from a solid wall include some form of these radiation 

conditions, so acoustic waves leave without reflection and altering the interior solution. Solid 

wall viscous boundary conditions enforce a no-slip condition at the wall. In addition, an adiabatic 

condition enforces zero pressure and density gradient normal to the wall surface. Aeroacoustic 

boundary conditions are applied to only the perturbation variables in the solution because the 

mean flow is assumed to already satisfy the physical boundaries. Biased DRP finite differencing 

stencils are used to calculate flow derivatives at both the radiation and solid wall boundaries. 

2.6. Compressible Higher Order Parallel Acoustic solver (CHOPA)  

A flow solver [20] has been developed at Penn State over several years keeping in mind the 

above requirements for a high-fidelity CAA solver which solves about the perturbations of the 

mean flow using the NLDE method. The following chapter discusses the governing equation of 

the flow solver along with an account of the boundary conditions.   
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Chapter 3 

NLDE Flow Solver 

A high-fidelity flow solver based on the NLDE is used in the current method to resolve the 

smaller scales. This technique, first developed by Morris et al. [17] is an LES-like formulation 

except that it solves for the perturbations about an assumed mean flow. The estimated mean flow 

behaves as a source term in the perturbation form of the Navier-Stokes equations.  In this way, 

the characteristic features of the full rotorcraft rotor flow field can be obtained and a high 

fidelity, time-dependent simulation can be performed in a limited region of interest. 

The NLDE approach lends itself to the application of algorithms best suited for the solution of 

individual problems. Traditional, verified and robust computational fluid dynamic (CFD) 

approaches are used to simulate the mean flow and the NLDE solver is used to solve for the 

unsteady flow and acoustic fluctuations. An advantage to using the NLDE is that CAA boundary 

conditions for fluctuations about a known mean flow can be applied, resulting in a more accurate 

acoustic field. 

The implementation of the overall solution is as follows (Figure 3.1). The RANS solution is 

obtained using well-established flow solvers. In the current research the Compressible High-

Order Parallel Acoustics (CHOPA) [20] solver has also been used to obtain the RANS solution. 

The CHOPA solver was first developed as an aeroacoustic solver in the Aerospace Engineering 

Department at The Pennsylvania State University, and has since been extended for general 

turbulent flow simulations. This RANS solution is imported into the NLDE section of CHOPA. 

It is important to note that the NLDE grid in CHOPA can be different from the RANS grid, such 

that it is more appropriate to LES, and can also be restricted to a limited region of interest.  Once 

the unsteady flow solution is found, the solution time history is saved on a prescribed permeable 
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acoustic data surface.  Finally, by importing this data into the Ffowcs Williams--Hawkings 

solver, PSU-WOPWOP [21-23], the problem’s acoustic information such as the sound pressure 

level at a given observer, can be obtained.   

 

Figure 3.1: A schematic of the problem solving process. (Adapted from Christiansen et al.[24]) 

The flow solver has been improved for the current work by the addition of a turbulence injection 

boundary condition called the Synthetic Eddy method.  

3.1. Governing Equations 

In this section a brief summary is provided for the Non-Linear Disturbance Equations. The 

vector form of the three-dimensional, compressible Navier-Stokes equation: 

 

𝑑𝒒

𝑑𝑡
+
𝑑𝑬

𝑑𝑥
+
𝑑𝑭

𝑑𝑦
+
𝑑𝑮

𝑑𝑧
=
𝑑𝑬𝒗
𝑑𝑥

+
𝑑𝑭𝒗
𝑑𝑥

+
𝑑𝑮𝒗
𝑑𝑥

                                     (3.1) 

 

where q is the conservative flow variable defined as: 

𝑞 =  

{
 
 

 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝑒 }
 
 

 
 

 ,                                                                           (3.2) 
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ρ is the fluid density; u, v and w are the x, y and z components of the velocity, and e is the total 

energy per unit volume 

𝑒 =  
𝑝

𝛾 − 1 
+
1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2) ,                                                (3.3) 

 

p is the instantaneous pressure and 𝛾 is the specific heat ratio. The inviscid flux terms are: 
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                                                              (3.6) 

 

and Ev, Fv and Gv are the viscous flux terms in the x, y and z directions. 

After performing a long-time average and a Favre-average the instantaneous flow field is split 

into a time-mean part and a perturbation part q’ around the time-mean values q0.  
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                                    𝑞 =  𝑞0 + 𝑞
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Since the time-averaged mean flow solution is known from a separate RANS computation, the 

Navier-Stokes equation can be rearranged to give the governing equations in terms of the 

disturbances. The terms involving the known time-mean quantities are treated as source terms 

R(q0). This rearrangement gives the NLDE as follows,  
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The 𝑢𝑗
″ term is obtained from performing a Favre-average on the instantaneous velocity terms in 

the N-S equations and decomposing them into a time-averaged mean flow and perturbation part.  

The governing equation is integrated over time using a 5 stage 4
th

 order low-dispersion and 

dissipation Runge-Kutta method.  

3.2. Numerical Discretization   

CHOPA is a finite difference code written in the Fortran 90 language. It is parallelized using the 

Message Passing Interface (MPI) for communication between processors. The spatial 

discretization is performed using a seven point, fourth order accurate, central difference scheme 
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called the Dispersion-Relation-Preserving (DRP) scheme developed by Tam and Webb [19]. The 

weighted coefficients used in this scheme improve the dispersion characteristics of wave 

propagation through the numerical domain. Near the boundary, the stencil is reduced to a fourth 

order central difference 5 point stencil, a 2
nd

 order central scheme at the point adjacent to the 

boundary and a 2
nd

 order one sided scheme at the boundary. 

Time stepping is performed using a low dispersion dissipation 4
th

 order Runge Kutta scheme 

(LDDRK). The computation time is decreased by using the dual time-stepping method and 

implementing Multigrid [25] and Implicit Residual Smoothing (IRS) schemes [26] during the 

computation. The dual time stepping scheme involves performing a series of quasi-steady 

computations in a fictitious time domain based on the local time step. The constraint on the 

physical time step, with regard to numerical stability is removed by the implementation of this 

technique.    

3.2.1. Dispersion-Relation-Preserving Scheme (DRP) 

In any CAA problem, particularly TBL-TE noise prediction, the numerical scheme needs to 

faithfully capture the propagation of sound waves over a long distance. Widely used finite-

difference schemes inevitably cause dispersion for high-frequency wave components. 

Coefficients of standard central difference schemes are derived by Taylor series expansions. 

They generally have the following form 

�̅� ≅
2

∆𝑥
∑ 𝑎𝑗 sin 𝑘∆𝑥

𝑁

𝑗=−𝑁

                                                          (3.9) 

where k is the original wavenumber and �̅� is the modified wavenumber for the non-dispersive 

scheme. 

These schemes do not have good dispersion conserving characteristics. Tam and Web [28] 

introduced a DRP scheme, wherein one free coefficient can be assigned by lowering the order of 

accuracy of discretization. The coefficient can be determined by minimizing the square of the 

difference between 𝑘∆𝑥 and �̅�∆𝑥 over the desired range of wave numbers. This guarantees a 
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good approximation to the original partial differential equation within the desired wavenumber 

range.  

3.2.2. Time-Stepping schemes 

Explicit Range-Kutta methods are the most popular CAA methods used to achieve high orders of 

accuracy. Time stepping in CHOPA is carried out using a low dispersion and dissipation 4
th

 

order Range Kutta scheme (LDDRK).  

A multi-stage Runge-Kutta has the following general form:  

{
  
 

  
 

𝑄(1) = 𝑄𝑛

𝑄(2) = 𝑄𝑛 + ∆𝑡𝛼2𝑅𝑒𝑠
(1)

… .
𝑄(𝐾) = 𝑄𝑛 + ∆𝑡𝛼𝐾𝑅𝑒𝑠

(𝐾−1)

𝑄(𝑛+1) = 𝑄𝑛 + ∆𝑡∑ 𝛽𝑗
𝐾

𝑗=1
𝑅𝑒𝑠(𝑗)

                                       (3.10) 

where ∑ 𝛽𝑗
𝐾
𝑗=1 = 1. To minimize dispersion and diffusion errors, conditions are placed on the 

coefficients [18]. In CHOPA, a 4
th

 order Runge-Kutta is used for time accurate simulations with 

the following coefficients. 

∝ = [
1

2
,
1

2
, 1]                                                                  (3.11) 

𝛽 = [
1

6
,
1

3
,
1

3
,
1

6
]                                                              (3.12) 

These coefficients ensure good damping characteristics over a wide range of wavenumbers. 

The local time step ∆𝑡 is calculated in the following way, it is prescribed for various regions in 

the computation region 

∆𝑡 = min(∆𝑡𝐼, ∆𝑡𝑉)                                                     (3.13) 

where ∆𝑡𝐼 and ∆𝑡𝑉 are the time steps due to the inviscid and the viscous contributions of the 

flow.  

The inviscid time step ∆𝑡𝐼 is: 
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∆𝑡𝐼 = 
𝐶𝐹𝐿

𝜆𝜁 + 𝜆𝜂 + 𝜆𝜉
                                                    (3.14) 

where CFL is the Courant-Freidrichs-Lewy criterion 

The ∆𝑡𝑉 is based on the cell Reynolds number 

∆𝑡𝑉 = 
𝜌𝑅𝑒𝐶𝐹𝐿

𝑀𝜇(|∇𝜉|2 + |∇휂|2 + |∇휁|2
                                      (3.15) 

where 𝜆𝜁 , 𝜆𝜂 and 𝜆𝜉are the spectra radii of the Jacobian matrix of the flux terms in the grid 

transformation equation. 

Explicit Runge-Kutta methods are quite efficient and easy to implement but the stability 

constraint puts a strict limit on the maximum allowable time step. Reduction in grid size leads to 

an unaffordable drop in the time step. In CHOPA, this is compensated for by using a dual time-

stepping method. 

3.2.3. Dual time stepping  

Convergence acceleration methods have been implemented in CHOPA to overcome the low time 

step size that occurs due to the fine grid required to capture the turbulence and acoustic detail of 

the CAA problem. One of these methods is the Dual Time Stepping method, which was first 

introduced by Jameson [25] for unsteady flow calculations past airfoils and wings. In this 

algorithm a fictitious time 𝜏 is introduced to the semi-discretized equations. The governing 

equations are then modified as follows: 

𝜕𝑄

𝜕𝜏
=  −

𝜕𝑄

𝜕𝑡
+ 𝑅𝑒𝑠(𝑄) = 𝑅𝑒𝑠∗(𝑄)                                            (3.16) 

For a dual-time stepping method, time derivatives with respect to the physical time, t, can be 

discretized with a three-point backward difference scheme:  

[
𝜕𝑄

𝜕𝜏
]
𝑛+1

=
−3𝑄𝑛,𝑚+1 − 4𝑄𝑚 + 𝑄𝑚−1

2∆𝑡
+ 𝑅𝑒𝑠(𝑄𝑛,𝑚+1) = 𝑅𝑒𝑠∗(𝑄𝑛,𝑚+1)        (3.17) 

where, the index m denotes the physical time step, and the index n denotes the fictitious time 

step. The above discretization converts the implicit algorithm in the physical time domain to an 
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explicit algorithm in the fictitious time domain, which iterates to a well converged state using a 

four stage Runge-Kutta scheme, to ensure that the flow has reached a quasi-steady state where 

𝑅𝑒𝑠∗(𝑄) is the predicted state residual for the next time step. 

Further computational efficiency is obtained in the fictitious time domain, which is not time-

accurate, using other convergence acceleration methods. Multigrid and the implicit residual 

smoothing method (IRS) are also available in CHOPA. The details of the implementation can be 

found in the CHOPA manual [27] 

3.2.4. Boundary conditions 

There are various boundary conditions implemented in CHOPA. The boundary conditions that 

are essential for use in the prediction of trailing edge noise are the following. 

3.2.4.1. Non-reflecting boundary conditions. 

Far-field boundary conditions are implemented on the edges of the computational domain to 

ensure the passage of acoustic waves as well as the flow perturbations. Tam and Webb [28] and 

Tam and Dong [29] developed radiation boundary conditions for this purpose by writing the 

instantaneous solutions as the superposition of a mean flow part and a disturbance part. Dong 

[29] modified these radiation boundary conditions where the mean-flow solution is not 

necessary. The full set of equations can be found in the CHOPA manual [27]. 

3.2.4.2. No-Slip Adiabatic Wall 

Body surfaces are given no-slip, adiabatic wall boundary conditions. This enforces zero fluid 

velocity relative to the surface velocity, and zero pressure and density gradient in the direction 

normal to the blade surface. 
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3.2.4.3. Inflow boundary conditions 

The restriction of the computational domain to an area of interest requires special attention to the 

flow data entering and leaving the boundaries. For the prediction of trailing edge noise, a 

detailed description of the unsteady turbulent fluctuations is only required near the trailing edge. 

A non-reflecting boundary condition can ensure that the outgoing waves pass out of the 

computational domain with minimal reflection. However, on a rotor blade, the boundary layer 

develops from near the leading edge, and contains fully turbulent flow by the time it nears the 

trailing edge. Therefore, it is important to carefully construct the turbulent fluctuations present in 

the developed boundary layer at the inflow boundary of a truncated domain. 

3.3. Inflow Boundary Conditions 

A good representation of the physical system that is being simulated is needed. Thus, the correct 

turbulence models need to be selected in the appropriate region of the problem. Realistic inflow 

boundary conditions need to be specified that are consistent with the turbulence model chosen 

for the particular simulation region.  

 

The simplest inflow conditions are imposed on regions of the CFD domain where a RANS 

simulation is being used. Analytical and experimental profiles for the mean velocities and 

turbulent variables are usually imposed at the inlet of these domains. It has been shown in 

previous results that a universal asymptotic behavior is reached by a RANS flow irrespective of 

the inlet condition used.  

 

High-fidelity techniques, on the other, hand require a more complicated specification of the 

inflow data. Just the application of statistical quantities, like mean mass flow rate or a mean 

velocity and turbulent kinetic energy profile, is insufficient for providing detailed turbulence 

inflow. There has to be the presence of an unsteady turbulent velocity signal representative of the 

turbulence at the inlet. Ideally the upstream flow would provide enough knowledge of the 

unsteady turbulent velocity signal but due to the limited computational domain providing the 

same is an unrealistic process. There are problems for which random disturbances are placed in 

the laminar region of the flow, but these are generally studies in which the process of transition is 

being studied. There is no requirement of turbulent velocity fluctuations at the inlet. In order to 
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limit the computational cost of the LES and DNS of spatially evolving flows, the boundaries are 

made to be as close to the region of interest as possible. Thus the length of the transition region 

that leads to true physically realizable turbulence must be made to be as short as possible.  

The influence of the inlet boundary conditions on the downstream flow not only depends on the 

accuracy of the inflow data, but also on the flow under consideration. For free shear flows an 

inviscid instability mechanism amplifies exponentially the small perturbations, and the inlet 

boundary conditions is believed to be of small importance (Li et al., 2000 [30]) in the formation 

of turbulence downstream of the inlet. In contrast, for attached flows (where instability 

mechanisms are not so powerful), the specification of accurate boundary conditions is necessary 

to reach a turbulent state in the downstream flow. In all cases, it was shown by George and 

Davidson [31] that even simple shear flows (such as mixing layers or boundary layers) simulated 

with LES or DNS do not reach equilibrium states at the same location under different upstream 

conditions. 

Several methods have been proposed to obtain turbulent fluctuations as input to the inlet of the 

turbulent boundary layer for unsteady compressible turbulent flows.  Some of the common 

methods used are described below.  

 

3.3.1. Recycling method 

The concept of recycling/rescaling was first introduced by Spalart [32], simplified for 

incompressible flows by Lund et al. [33] and extended to compressible applications by Urbin and 

Knight. [34]. The technique is implemented by extracting profiles of dependent variables at some 

location downstream of the inflow boundary, rescaling them, and then reintroducing them at the 

inflow plane, in a dynamic fashion. Typically, the flow between the recycled boundaries must 

initially be artificially perturbed in order to generate fine-scale structures. Eventually, it will then 

achieve an equilibrium state. The advantage of this method is that the inflow is treated implicitly 

as part of the overall simulation. One disadvantage is that the rescaling is approximate. In 

addition, there is an imposed frequency determined by the spatial distance between the recycling 

boundaries. Having a greater distance between the boundaries reduces the frequency and helps 
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decorrelate the solution between the two. Unfortunately, this greater distance adds to the 

computational expense. 

The design behind the formulation is to break the instantaneous flow variable into a mean and 

fluctuating part and rescale each part separately. The mean streamwise velocity U exhibits a two-

layer behavior 

𝑈𝑣𝐷 = 𝑢𝜏𝐹𝑖(𝑦
+)      Inner region                                                 (3.18) 

𝑈∞
𝑣𝐷 − 𝑈𝑣𝐷 = 𝑢𝜏𝐹𝑜(휂)      Outer region                                     (3.19) 

where 𝐹𝑖(𝑦
+) and 𝐹𝑜(휂) are dimensionless universal functions, 𝑈∞

𝑣𝐷 is the free-stream Van-

Driest velocity and  

𝑦+ =
𝑦𝑢𝜏
𝑣𝑤

                                                                (3.20) 

휂 =  
𝑦

𝛿
                                                                     (3.21) 

where 𝑢𝜏 = √𝜏𝑤/𝜌𝑤 is the local friction velocity, 𝜈𝑤 = 𝜇𝑤/𝜌𝑤 is the kinematic viscosity 

evaluated at the wall, 𝛿 is the local boundary layer thickness, and 𝑈𝑣𝐷 is the Van Driest 

transformed velocity 

𝑈𝑣𝐷 = 
𝑈∞
𝐴
{sin−1 [

2𝐴2𝑈
𝑈∞

− 𝐵

√𝐵2 + 4𝐴2
] + sin−1 [

𝐵

√𝐵2 + 4𝐴2
]}                        (3.22) 

where 

𝐴 = √
(𝛾 − 1)

2
𝑃𝑟𝑡𝑀∞

2
𝑇∞
𝑇𝑤
                                                               (3.23) 

𝐵 = [1 + 𝑃𝑟𝑡
1/2 (𝛾 − 1)

2
𝑀∞
2 ]
𝑇∞
𝑇𝑤
− 1                                           (3.24) 

and 𝑃𝑟𝑡 ≈ 0.89 is the mean turbulent Prandtl number. A composite formula based on the Prandtl 

mixing length concept and Coles’ Law of the Wake that is valid outside the viscous sublayer is  
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𝑈𝑣𝐷 =
𝑢𝜏
𝜅
log𝑒 𝑦

+ + 𝐵′𝑢𝜏 + 2
II

𝜅
𝑢𝜏 sin

2 (
𝜋

2

𝑦

𝛿
)                         (3.25) 

where 𝜅 = 0.4 is Von Karman’s constant, 𝐵′=5.1 and II = 0.55 (at high Reynold’s numbers). 

Within the viscous sublayer, 

𝑈 = 𝑢𝜏∫ (
𝑇𝑤
𝑇
)
𝜔

𝑑𝑦+
𝑦+

0

                                                      (3.26) 

where the molecular dynamic viscosity is assumed to obey 

𝜇

𝜇𝑤
= (

𝑇

𝑇𝑤
)
𝜔

                                                                          (3.27) 

where 𝜔 is a constant. Eqs. 3.26 and 3.27 can be suitably blended to provide a mean streamwise 

velocity profile for the entire boundary layer 

The fluctuating streamwise velocity component 𝑢′ diplays a significant effect of compressibility. 

The profile of the normalized rms fluctuations √𝑢′2̅̅ ̅̅ /𝑢𝜏varies substantially with freestream Mach 

number. However, the profile of the alternatively normalized rms fluctuation √�̅�𝑢′2̅̅ ̅̅ /𝜏𝑤 shows 

an approximately universal behavior for Mach numbers up to approximately five. Thus,  

�̅�𝑢′2̅̅ ̅̅ = 𝜏𝑤𝐼𝑖(𝑦
+)    Inner                                                     (3.28) 

�̅�𝑢′2̅̅ ̅̅ = 𝜏𝑤𝐼𝑜(휂)    Outer                                                      (3.29) 

where 𝐼𝑖 and 𝐼𝑜 are universal dimensionless functions. Since 𝜏𝑤 = 𝜌𝑤𝑢𝜏
2, the following are 

obtained: 

𝑢′2̅̅ ̅̅ =
𝜌𝑤
𝜌
𝑢𝜏

2𝐼𝑖(𝑦
+)   Inner                                                   (3.30) 

𝑢′2̅̅ ̅̅ =
𝜌𝑤
𝜌
𝑢𝜏

2𝐼𝑜(휂)   Outer                                                    (3.31) 
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Since the mean pressure is constant across the boundary layer,  

𝜌𝑤
�̅�
=
𝑇

𝑇𝑤
=
𝑇

𝑇∞

𝑇∞
𝑇𝑤
                                                                  (3.32) 

From 3.28 and 3.29, it therefore follows (for fixed 𝑇𝑤/𝑇∞) 

𝑢′2̅̅ ̅̅ = 𝑢𝜏
2ℐ𝑖(𝑦

+, 𝑢𝜏/𝑈∞)   Inner region                                       (3.33) 

𝑢′2̅̅ ̅̅ = 𝑢𝜏
2ℐ𝑜(휂, 𝑢𝜏/𝑈∞)   Outer region                                        (3.34) 

where ℐ𝑖 and ℐ𝑜 are universal dimensionless functions. 

The Strong Reynolds Analogy states that the total temperature fluctuations are negligible in non-

hypersonic turbulent boundary layers at conventional rates of heat transfer. Thus, the static 

temperature fluctuations are to a first approximation related to the streamwise velocity 

fluctuations 

𝑇′ = −
1

𝑐𝑝
𝑈𝑢′                                                                (3.35) 

This implies that the Reynolds analogy factor Ra defined by 

𝑅𝑎 =
𝑇′𝑢′̅̅ ̅̅ ̅̅

√𝑇′2̅̅ ̅̅ √𝑢′2
                                                              (3.36) 

is equal to unity. 

Consider the mean and fluctuating flow at a location x = xR downstream of the inflow boundary 

(Fig. 3.2). The mean velocity components are denoted as UR(y), VR(y) and WR(y), and the mean 

density and temperature RR(y) and TR(y), respectively. These mean values can be obtained from 

the DNS or LES. Similarly, at any instant the fluctuating velocity components u’R(y, z, t), v’R(y, 

z, t) and w’R(y, z, t) and the fluctuating density ρ’R(y, z, t) and temperature T’R(y, z, t) can also be 

obtained at the recycle plane. These mean and fluctuating quantities are used to define the 

dynamic inflow conditions at xI. 
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Lund et al. [33] developed a rescaling-recycling method for LES of incompressible turbulent 

flows inspired by the method Spalart and Leonard [53]. The incompressible limit of (3.18) is  

𝑈 = 𝑢𝜏𝐹𝑖(𝑦
+)          Inner region                                               (3.37) 

𝑈∞ − 𝑈 = 𝑢𝜏𝐹𝑜(휂)     Outer region                                              (3.38) 

Lund et al. defined 

𝛽 =
𝑢𝜏1
𝑢𝜏𝑅

                                                                        (3.40) 

and since 𝐹𝑖(𝑦
+) and 𝐹𝑜(휂) are universal functions, 

𝑈1(𝑦
+) = 𝛽𝑈𝑅(𝑦1

+)      Inner region                                           (3.41) 

𝑈1(휂1) = 𝛽𝑈(휂1) + (1 − 𝛽)𝑈∞  Outer region.                                      (3.42) 

then Lund et al. [33] assumed 

𝑢1
′ (𝑦1

+, 𝑧, 𝑡) = 𝛽𝑢𝑅
′ ((𝑦1

+, 𝑧, 𝑡)   Inner region,                                     (3.43)  

𝑢1
′ (휂1, 𝑧, 𝑡) = 𝛽𝑢𝑅

′ ((휂1, 𝑧, 𝑡)   Outer region.                                     (3.44)  

A similar scaling is employed for 𝑣′ and 𝑤′. 

Lund et al. [33] used a smoothing function S(η) to combine the inner and outer expressions for 

the velocity components. For the streamwise velocity, 

𝑈1 = [1 − S(η1)](𝑈1 + 𝑢1
′ )|𝐼𝑛𝑛𝑒𝑟 + 𝑆(η1)(𝑈1 + 𝑢1

′ )|𝑂𝑢𝑡𝑒𝑟,                 (3.45) 

where 

𝑆(휂) =  𝑓(𝑥) = {

1

2
[1 + tanh [

𝑎(휂 − 𝑏)

(1 − 2𝑏)휂 + 𝑏
] [tanh𝑎]−1] , 휂 ≤ 1

1, 휂 > 1

     ,         (3.46) 

and 𝑎 = 4 and 𝑏 =  0.2 are constants. The value of a determines the width of the regions where 

S transitions from zero to one, and b determines the location of the transition. A value b = 0.2 

provides a smooth transition at 휂 ≈ 0.2 
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The friction velocity at the inflow is determined from the relation, 

𝑢𝜏1 = 𝑢𝜏𝑅 (
휃𝑅
휃1
)

1
[2(𝑛−1)]

     ,                                               (3.47) 

where θ is the incompressible momentum thickness and n=5.  

Urbin and Knight [34] extended the method of Lund et al. to compressible turbulent boundary 

layers. Assuming the mean profiles at xR are an accurate representation of the turbulent flow, the 

mean streamwise UR satisfies (3.48) and (3.49) 

𝑈𝑅
𝑣𝐷 = 𝑢𝜏𝑅𝐹𝑖(𝑦

+)          Inner region,                                       (3.48) 

𝑈∞
𝑣𝐷 − 𝑈𝑅

𝑣𝐷 = 𝑢𝜏𝑅𝐹𝑜(휂)          Outer region.                                       (3.49) 

Since 𝐹𝑖(𝑦
+) and 𝐹𝑜(휂) are universal functions, 

𝑈1
𝑣𝐷(𝑦+) = 𝛽𝑈𝑅

𝑣𝐷(𝑦1
+)      Inner region,                                       (3.50) 

𝑈1
𝑣𝐷(휂1) = 𝛽𝑈

𝑣𝐷(휂1) + (1 − 𝛽)𝑈∞
𝑣𝐷 , Outer region.                           (3.51) 

The mean velocity U1 is obtained from (3.50) and (3.51). For a given location y1, the 

corresponding location yn is obtained from 𝑦𝑅
+ = 𝑦1

+ in the inner region and 휂1 = 휂𝑅 in the outer 

region, thus  

𝑦𝑅 = 𝛽𝑦1     Inner region                                                    (3.52) 

𝑦𝑅 = 𝛼𝑦1     Outer region                                                    (3.53) 

Assuming 𝑇𝑤1 = 𝑇𝑤𝑅. The following empirical correlations are used, 

𝛼 = [1 +
(𝑥𝑅 − 𝑥1)

𝛿1
0.27

6
5𝑅𝑒𝛿1

−1
5 ]

−5
6

     ,                                  (3.54) 

and 

𝛽 = 𝜖−
1
10    ,                                                              (3.55) 
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where 

𝜖 =  
𝛿1
𝛿𝑅
 .                                                                    (3.56) 

The mean wall normal velocity is scaled in a similar manner. 

The mean temperature at the inflow boundary is  

𝑇1(𝑦1
+) = 𝑇𝑅(𝑦1

+),    Inner region,                                             (3.57) 

𝑇1(휂1) = 𝑇𝑅(휂𝑅),    Outer region.                                             (3.58) 

The mean density is obtained from the ideal gas law �̅� = 𝑅𝑅𝑔𝑇. 

Thus, as we neglect the variation of 𝑢𝜏 between x1 and xR, Eq (3.52) suggests  

𝑢1
′ (𝑦1

+, 𝑧, 𝑡) = 𝛽𝑢𝑅
′ ((𝑦1

+, 𝑧, 𝑡),   Inner region,                                  (3.59)  

𝑢1
′ (휂1, 𝑧, 𝑡) = 𝛽𝑢𝑅

′ ((휂1, 𝑧, 𝑡),   Outer region.                                   (3.60)  

And similar scaling is employed for 𝑣′ and 𝑤′. 

Static temperature fluctuations are assumed to scale in a simple manner 

𝑇′1(𝑦1
+) = 𝑇′𝑅(𝑦1

+),    Inner region,                                           (3.61) 

𝑇′1(휂1) = 𝑇′𝑅(휂𝑅),    Outer region.                                            (3.62) 

The inner and outer expressions for the mean and fluctuating velocity, density and temperature 

are obtained at xR at each time step across the entire boundary layer, and combined using the 

smoothing function 𝑆(휂) of Lund et al. The two other inflow velocity components and 

temperature are generated in a similar manner. The static pressure is assumed to be constant, and 

the instantaneous density is computed from the ideal gas law. 
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Figure 3.2: Schematic depiction of the Recycling method. 

 

Recycling techniques based on the formulation of Urbin et al. are probably the most effective 

and least expensive inflow boundary conditions available to simulate a spatially evolving wall 

bounded flow. However these methods suffer from drawbacks. First, the simulated flow is 

required to be in an equilibrium state at the inlet for the scaling laws to apply. In addition, 

1. The recycling procedure retains the memory of the streamwise-periodic origin of the 

inflow, thus introducing a spurious periodicity in the flow direction. 

2. The flow initialization strongly influences the effectiveness of the method. 

Inappropriate initial conditions, such as white noise, might not be sustainable and can 

even lead to a relaminarization of the flow. 

3. A precursor simulation is required to initiate the flow. 

3.3.2. Precursor databases 

This is a more general method to generated inflow data is to extract it from a separate precursor 

database. Providing an adequate scaling of the velocity fluctuations, the database can supply 

inflow data for a large variety of configurations and Reynolds numbers. Nonetheless, such 

methods require large storage capacities. 
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3.3.3. Synthetic Turbulence 

Most of the synthetic turbulence methods generate turbulence using randomized signals. The 

main goal of these methods is to modify these sequences in such a way that they do not vanish 

under numerical or viscous dissipation and that their statistical properties are close to those of a 

real flow. This was first introduced by Lund et al. [33]. This method used a basic random 

fluctuation method, according to which target Reynolds stresses are assigned to a white noise 

and introduced at the inlet. The data generated by this method lacked both turbulent structure and 

nonlinear energy transfer. A long adaptation distance of 50 boundary layer thicknesses was 

needed for the transition to physical turbulence. An evolution of this method was proposed 

which consists of prescribing velocity fluctuations with a specified power spectrum and random 

phase. Together with the additional computational effort to evaluate the fast Fourier transforms, 

the resulting method required a relatively long spatial development for the flow to become 

physically realistic. Another approach followed by Mahesh et al. [35] and Na and Moin [36] was 

to randomize the amplitude of the Fourier modes rather than their phase. These operations were 

applied to a frozen turbulent DNS field to generate sequences of fluctuations, which were then 

superimposed on a mean velocity field. The friction coefficient was shown to recover after three 

boundary layer thicknesses, but the method also introduced an unphysical periodicity, which can 

be problematic in some applications. Another spectral-based inflow generation method is based 

on the work of Kraichnan [37], later adapted to an anisotropic turbulence by Smirnov et al. [38] 

and simplified by Battern et al. [39]. The principle is to build the fluctuation velocity field as a 

superposition of spatiotemporal Fourier modes with random-based amplitudes and phases. It 

includes the anisotropy information in the formula for the amplitude and allows for a 

specification of a length and time scale. This method was tested by Keating et al. [54] and led to 

adaptation distances of more than 20 initial boundary thicknesses. A more complex method 

based on the specification of autocorreleation lengths yielded adaptation distances of the order of 

ten boundary layer thicknesses. The last type of synthetic method gathers procedures that include 

a slight degree of empiricism. They are based on the idea that turbulence can be reproduced by a 

superposition of coherent structures with given shape, length, and time scale. Sandham et al. [40] 

derived a method in which turbulent structures are modeled by a sum of trigonometric functions 

yielding an adaptation distance of 40 displacement thicknesses. On a more realistic basis, Perry 

and Marusic [41] showed that the Reynolds stresses and the mean velocity profile of a turbulent 
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plane channel can be accurately reproduced from a superposition of analytical hairpin-type 

vortical structures. In the same spirit, Mathey et al. [42] chose to superimpose randomly located 

Guassian-shaped streamwise vortices. Jarrin et al. [43] further extended the latter methods to 

arbitrary-shaped vortices with prescribed second-order moments.   

Compared to recycling methods, synthetic techniques have none of the three drawbacks 

highlighted above because they are feed forward and their random nature is expected to suppress 

any periodicity. Besides, a synthetic inflow condition does not need any initialization and thus 

reduces the initial transient mentioned above down to one flow through time. However, even 

complex synthesizing procedures can lead to adaptation distances of the order of 20δ0. Hence, 

Spille-Kohoff and Kaltenbach [44] proposed to add a feedback path to the former method in 

order to shorten this distance, with the addition of source terms for the wall-normal velocity in 

the Navier–Stokes equations at given streamwise locations. The amplitude of these terms is 

tuned to minimize the error between the Reynolds stresses at given control planes and the 

Reynolds stresses specified at the inlet. This method has been applied to the synthetic condition 

of Batten et al. [39] and reduced the adaptation distance from 20 to 10–15 δ0. Yet a major 

drawback of synthetic methods is that the statistics needed for the process (such as the mean 

velocity profile, the Reynolds stresses or the energy spectrum) must be known a priori. Most of 

the studies that use synthetic inflow have recourse to the statistics extracted from another 

simulation performed with a different inflow method. However, the approach followed here 

looks to overcome the issues mentioned above. 

The idea followed in the present study is inspired by the work of Perry and Marusic, [41] which 

suggests that the injection of analytical eddy structures, whose shapes are representative of 

typical coherent structures of the turbulent boundary layer, provides a good approximation for 

the low-order statistics of such wall-bounded flows. In this regard, the method proposed by Jarrin 

et al., [43] known as the synthetic-eddy method referred to as SEM, can be used as a statistical 

tool to create turbulent structures with a given shape and prescribed Reynolds stresses. Smaller 

adaptation distances should probably be obtained if the SEM is fed with a realistic scale and 

shape distribution across the boundary layer. 

The Synthetic Eddy Method is described in more detail in the next chapter. 
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Chapter 4 

The Synthetic Eddy-Method 

In order to generate physically realistic fluctuations at the inflow boundary of the NLDE domain, 

a modified Synthetic Eddy Method (SEM) is used. Originally formulated by Jarrin et al. [43], it 

was extended by Pamies et al. [45] and Roidl et al.[46] This method can be used as a statistical 

tool to create turbulent structures with a given shape and prescribed Reynolds stresses. 

Modifications have been made to this method to obtain smaller adaptation distances by providing 

realistic shape and length scale distributions across the boundary layer.  

Shortcomings of previously used synthetic techniques, such as the need for a priori statistics as 

input and large adaptation distances (~>10δ0) were sought to be overcome by the use of the 

SEM.  

The basis of the original SEM was to generate a velocity signal with prescribed first- and second- 

order moments. This operation uses the Cholesky decomposition Aij of a prescribed Reynolds 

stress tensor Rij to assign second order moments to a nomalized stochastic signal ũj(x,y,z,t) 

superimposed on a mean 𝑈𝑅𝐴𝑁𝑆,𝑗(𝑦) velocity distribution,  

                                             𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡) =  𝑈𝑅𝐴𝑁𝑆,𝑗(𝑦) + ∑𝐴𝑖𝑗𝑢′𝑗(𝑥, 𝑦, 𝑧, 𝑡),                            (4.1) 

𝑖

 

where 𝑢′𝑗 must be a centered random sequence with unit variance and zero covariance. x, y and z 

are the spatial coordinates in the streamwise, wall-normal and transverse directions, respectively. 

The major terms of the Cholesky tensor are Aii and A21. The principle of SEM is then to define ũj 

as a superimposition of turbulent Gaussian structures. The method is finally tuned by assigning a 

length scale and a convection velocity to these structures.  
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The modification made to the original method is the population of coherent turbulent structures 

as a function of distance from the wall. This then accounts for the inhomogeneity of scales. The 

inlet plane is split into p zones, in which SEM is applied separately with different control 

parameters. The random signal ũj needed for the Cholesky decomposition is computed as a sum 

over the P zones.  

ũ𝑗 = ∑𝑣𝑗𝑝

𝑃

𝑝=1

                                                               (4.2) 

 

where 𝑣𝑗𝑝 , which corresponds to normalized random sequences, has a compact support on the p
th

 

zone, and will be referred to as a mode.  

 

Figure 4.1 visualizes the virtual volumes 𝑉𝑣𝑖𝑟𝑡,𝑝 around the NLDE inflow boundary based on 

three inflow zones (P=3). The virtual volumes are defined by the streamwise, the wall-normal, 

and the spanwise dimensions of the turbulent length-scale 𝑙𝑥, the height of the plane 𝐿𝑦,𝑝 and the 

width of the computational domain 𝐿𝑧 

 

 

Figure 4.1: Sketch of three virtual volume boxes that encompass an LES inflow boundary on which the 

resulting synthetic velocity fluctuations are projected.
 
[46] 
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The whole random signal ũj is then generated according to Eq. (4.1), where each mode, vjp is 

defined as a superimposition of N(p) turbulent structures. Each structure is randomly positioned 

in the inlet plane using the location of its center (x
i
, y

i
, z

i
). It is also assigned a random sign ε𝑗

𝑖. 

These structures are characterized for each mode by a shape function 𝑓𝑙(𝑥,𝑦,𝑧),𝑗,𝑝 , which has 

compact support on [−1; 1], and satisfies the normalization condition, 

1

23
∫ (𝑓𝑙𝑥,𝑗,𝑝(�̃�)𝑓𝑙𝑦,𝑗,𝑝(�̃�)𝑓𝑙𝑧,𝑗,𝑝(�̃�))

2

𝑑�̃�𝑑�̃�𝑑�̃�
[−1,1]3

= 1                       (4.3) 

 

To simplify the specification of the shape functions, their dependence with time and space 

coordinates is separated and they are expressed as a product of three one-dimensional functions 

𝑓𝑙𝑥,𝑗,𝑝(�̃�), 𝑓𝑙𝑦,𝑗,𝑝(�̃�), and 𝑓𝑙𝑧,𝑗,𝑝(�̃�), where �̃�, �̃� and �̃� are the reduced variables for the streamwise, 

wall-normal, and transverse directions, respectively, defined below. Finally, the streamwise scale 

(𝑙𝑝
𝑥) as well as wall-normal (𝑙𝑝

𝑦
) and transverse (𝑙𝑝

𝑧) length scales are assigned to each structure 

using a variable substitution, 

 

     𝑢′𝑗(𝑥, 𝑦, 𝑧) = ∑
√𝑉𝑣𝑖𝑟𝑡,𝑝

√𝑁(𝑝)
∑ 휀𝑗

𝑖𝑓𝑙𝑥,𝑗,𝑝(�̃�)𝑓𝑙𝑦,𝑗,𝑝(𝑦)𝑓𝑙𝑧,𝑗,𝑝(�̃�)

𝑁(𝑝)

𝑖=1

𝑃

𝑝=1

                   (4.4) 

where,  

�̃� =
𝑥 − 𝑥𝑖

𝑙𝑝
𝑥 , �̃� =  

𝑦 − 𝑦𝑖

𝑙𝑝
𝑦  and �̃� =  

𝑧 − 𝑧𝑖

𝑙𝑝𝑧
 

The virtual eddy cores convect in the streamwise direction with the velocity ucon (Table 4.1). To 

imitate the ejective motion of the eddy in the log- and outer layer a convective velocity in the 

wall-normal direction is prescribed by  

 

𝑣𝑐𝑜𝑛 = 𝐶𝑐𝑜𝑛𝑈∞√|
𝑦𝑖 − 𝑦𝑚𝑖𝑛,𝑝

𝐿𝑦,𝑝
|                                                  (4.5) 

where 𝐿𝑦,𝑝 is the wall-normal length scale, 𝑦𝑚𝑖𝑛,𝑝 us the smallest normal distance to the wall of 

the plane p, and 𝐶𝑐𝑜𝑛 is a constant that determines the angle of the incoming flow structures. The 

ejection angle of the structures depends on the flow Mach number. In supersonic boundary layers 

the angle is higher than in subsonic boundary layers. For subsonic and supersonic boundary 
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layers, the constant is chosen as 𝐶𝑐𝑜𝑛 = 0.25 and 𝐶𝑐𝑜𝑛 = 0.5, respectively. The new position of 

the eddy core at 𝑡 = 𝑡0 + ∆𝑡 is calculated from 

 

𝑥𝑖(𝑡) = 𝑢𝑐𝑜𝑛∆𝑡 + 𝑥
𝑖(𝑡0),                                                        (4.6)  

 

𝑦𝑖(𝑡) = 𝑣𝑐𝑜𝑛∆𝑡 + 𝑦
𝑖(𝑡0).                                                        (4.7)  

 

Once �̃� > 1 or �̃� > 1, a new eddy core assigned with randomly chosen coordinates x
i
, y

i
, z

i
 and 

sign 휀𝑗
𝑖 is generated. 

 

The number of structures per mode N(p) can be adjusted so that the support of mode p remains 

statistically covered by structures. 

𝑁(𝑝) ≈
𝑆𝑝

𝑆𝑠
                                                                     (4.8) 

 

where 𝑆𝑝 is the surface of a transverse plane [𝑆𝑝 = 𝐿𝑧(𝑦𝑝
𝑙𝑜𝑤 − 𝑦𝑝

𝑢𝑝) ] and 𝑆𝑠 is the transverse 

surface of the support of the shape function 𝑆𝑠 = 4𝑙𝑝
𝑦
𝑙𝑝
𝑧 

 

4.1. Tuning the shape function for the various modes.  

 

The modified SEM is capable of producing randomly located turbulent structures, of 

customizable sizes, celerity and geometrical shape. Physical arguments help to divide the 

boundary layer into three parts: the viscous sublayer, the logarithmic zone and the wake region. 

The link between the first and second zone is a transition region called the buffer layer.  

 

Two types of scales are identified and structures are produced according to the various 

parameters present in these modes. For the near wall regions, scales are assumed to depend on 

the viscosity 𝜈𝑤 and the friction velocity 𝑢𝜏 = √
τ𝑤

𝜌𝑤
 (where τ𝑤 is the wall shear stress and 𝜌𝑤 is 

the fluid density at the wall). Outer scales depend on the global properties of the flow; e.g., δ and 

U∞. Statistical variables as well as physical scales of the near-wall region are known to be quite 
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universal when expressed in inner scaling. Similarly flow features in the outer part of the 

boundary layer are described well with outer scaling.  

 

Plane 𝐿𝑦,𝑝 = [𝑦𝑚𝑖𝑛; 𝑦𝑚𝑎𝑥] 𝑙𝑥 𝑙𝑦 𝑙𝑧 𝑢𝑐𝑜𝑛 𝑣𝑐𝑜𝑛 

p=1 [0;60
+
] (100)

+
 (20)

+
 (60)

+
 0.6𝑈∞ - 

p=2 [60
+
;0.65𝛿0] 

36휃

𝑅𝑒
𝜃

1
4

 
12휃

𝑅𝑒
𝜃

1
4

 
15휃

𝑅𝑒
𝜃

1
4

 
0.75𝑈∞ Eq. (4.5) 

p=3 [0.65𝛿0; 1.2𝛿0] 

50휃

𝑅𝑒
𝜃

1
4

 
20휃

𝑅𝑒
𝜃

1
4

 
20휃

𝑅𝑒
𝜃

1
4

 
0.9𝑈∞ Eq. (4.5) 

Table 4.1. Location of planes, turbulent length scales and the associated convection velocities. 

 

 

4.1.1. Near Wall region 

 

A large consensus exists concerning turbulent structures in the buffer layer. Jeong et al. [47] 

obtained ensemble averages of the velocity fields surrounding the vertical structures. This data 

provides precise structural information about the eddies present in the buffer layer.  Table 4.1 

gives the location of the center, sizes and convection velocity of various turbulent structures in 

the various modes. The normal length scale of the near wall region is fixed by the lowest altitude 

of 𝑦1
𝑙𝑜𝑤. The transverse length scale is slightly larger.  

 

4.1.2. Logarithmic layer and wake region 

 

When it comes to structures populating the logarithmic region and the rest of the boundary layer, 

such an analysis is by far more difficult. In fact, a lot of different eddy models have been 

proposed in the past to account for the turbulent scales distribution, boundary layer intermittency 

and structural angles. From recent numerical and experimental evidence, fluid dynamicists agree 

that the logarithmic region is populated with hairpinlike vortices that are organized in packets 

and evolve across the boundary layer to increasingly larger scales. In recent numerical studies, 
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del Alamo et al. [48] managed to educe the coherent structures in the logarithmic layer. As a 

result, they demonstrate that this region is populated with intense self-similar vortex clusters. 

Their instantaneous form cannot be described visually, but their ensemble average corresponds 

to a hairpin-like structure. Moreover, the size of these clusters scales with their distance to the 

wall.  

 

In the present method, the simple approach of introducing at the inlet the most representative 

structure of this layer—a hairpin—is adopted. A hairpin structure may be decomposed into two 

slanted legs connected by a transverse head. Legs are elongated and inclined in the streamwise-

wall normal plane, whereas heads are more elongated in the transverse direction. Following these 

observations, sizes and aspect ratios are chosen and a mode p=2 is defined, representing either 

the legs or the head of a hairpin. 

 

The analytical expressions of the shape functions are defined below.  

 

                                𝑓𝑙𝑥,1,𝑝=1,2(�̃�)𝑓𝑙𝑦,1,𝑝=1,2(�̃�)𝑓𝑙𝑧,1,𝑝=1,2(�̃�) = 𝐺(�̃�)𝐺(�̃�)𝐻(�̃�)                               (4.9) 

                               𝑓𝑙𝑥,2,𝑝=1,2(�̃�)𝑓𝑙𝑦,2,𝑝=1,2(�̃�)𝑓𝑙𝑧,2,𝑝=1,2(�̃�) = −𝐺(�̃�)𝐺(�̃�)𝐻(�̃�)                          (4.10) 

                              𝑓𝑙𝑥,3,𝑝=1,2(�̃�)𝑓𝑙𝑦,3,𝑝=1,2(�̃�)𝑓𝑙𝑧,3,𝑝=1,2(�̃�) = 𝐺(�̃�)𝐻(�̃�)𝐺(�̃�)                               (4.11) 

where,  

𝐻(휁̃) =  
1 − cos(2𝜋휁̃)

2𝜋. 0.44√𝑙𝜁
                                                           (4.12) 

and 𝐺 is a Gaussian-type distribution function 

𝐺(휁̃) =  
2

√𝑙𝜁𝜋
𝑒𝑥 𝑝 (−(2휁̃)

2
)                                               (4.13) 

with 휁̃ =  �̃�, 𝑦,̃ �̃� . 

 

Finally, the rest of the boundary layer is filled with Gaussian isotropic structures, for which 

aspect ratios are all unity and shape functions are defined as shown in Table 4.1. For this mode, 

no particular shape is imposed. Consequently, a random sign is given to each component so as to 

meet the zero covariance condition, as already mentioned above. Furthermore, two modes 𝑝 = 3 

and 𝑝 = 4 are introduced in the outer scaling region in order to account for the growth of scales 
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in the outer region. In accordance with the work of Quadrio and Luchini [49] and Adrian et al. 

[50], their convection velocity is set equal to 0.8U∞. The mode shape is given by, 

 

                                   𝑓𝑙𝑥,𝑗,𝑝=3(�̃�)𝑓𝑙𝑦,𝑗,𝑝=3(�̃�)𝑓𝑙𝑧,𝑗,𝑝=3(�̃�) = 𝐺(�̃�)𝐺(�̃�)𝐺(�̃�)                                  (4.14) 

where j = 1, 2, 3 describes the velocity component in the streamwise, wall-normal and spanwise 

directions respectively. 

The function 𝐻(휁̃) determines the arrangement of the vortices, while the function 𝐺(휁̃) defines 

the spatial distribution of the vortices. 

The length scales in the inflow planes p = 2, 3 were decided on using results of two-point 

correlations of turbulent boundary layers at several Reynolds and Mach numbers. The main 

dependence on 𝑅𝑒𝜃 has been determined. 

In the defect-law region i.e. the logarithmic region and the beginning of the wake region, the 

length scales in the streamwsie, the wall-normal, and the spanwise directions are determined by  

a scaling relation based on the momentum thickness and the Reynolds number 𝑅𝑒𝜃 that is 

adapted from the Blasius skin-friction formulation, 

𝑙𝑥,𝑝=2 =
36휃

𝑅𝑒
𝜃

1
4

  ,                                                              (4.15) 

𝑙𝑦,𝑝=2 =
12휃

𝑅𝑒
𝜃

1
4

  ,                                                              (4.16) 

𝑙𝑧,𝑝=2 =
15휃

𝑅𝑒
𝜃

1
4

  .                                                              (4.17) 

The eddies are stretched in the streamwise and the spanwise direction in the second plane 𝑝 = 2 

of the NLDE inflow boundary and their length scales scale with the Reynolds number 𝑅𝑒𝜃. In 

the outer layer i.e. 𝑝 =  3, the length scales are calculated by 
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𝑙𝑥,𝑝=3 =
50휃

𝑅𝑒
𝜃

1
4

   ,                                                             (4.18) 

𝑙𝑦,𝑝=3 =
20휃

𝑅𝑒
𝜃

1
4

 ,                                                              (4.19) 

𝑙𝑧,𝑝=3 =
20휃

𝑅𝑒
𝜃

1
4

  .                                                              (4.20) 

In this plane, the eddies are stretched only in the streamwise direction.  

It should be emphasized that the presented method only requires the velocity and turbulent 

viscosity distribution at the inlet to generate the synthetic structures. Furthermore, unlike the 

approach of Jarrin et al. [43], which requires a controlled forcing for an efficient RANS-to-LES 

transition, no control planes downstream of the inlet are necessary such that the computational 

complexity is reduced. It is more or less straightforward to combine the synthetic inflow 

formulation with any RANS turbulence model in a zonal RANS–LES method. Furthermore, for 

compressible boundary layer flows, Morkovin’s hypothesis (Smits and Dussauge, [51]) is 

applied at the LES inflow boundary to relate the density fluctuations via the assumption of 

locally constant pressure and velocity fluctuations and to enforce the strong Reynolds analogy 

(SRA) (Smits and Dussauge, [51]). 

 

4.2. Verification of the Synthetic Eddy Method 

The modified synthetic eddy method described above has been tested in the following steps. 

1. Isotropic turbulence with 𝑢𝑟𝑚𝑠 = 1 m/s was used as an input. The normal stresses of the 

prescribed Reynolds stress tensor were set to unity and the other components were set to 

zero.  

2. Prescribed stress tensor profiles based on experimental results obtained for zero pressure 

gradient flat plate boundary layers were used as input and the subsequent stress tensor 

from the SEM was compared to the input. 
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4.2.1. Isotropic turbulence case 

Time averaged statistics extracted from the simulation were compared with the desired results 

(the input Reynolds stress tensor). 

Isotropic synthetic fluctuations were generated on a two-dimensional plane with the modified 

SEM. A uniform mean flow of 𝑈𝑜 = 10 m/s in the x-direction normal to the inlet plane and rms 

velocity of 𝑢𝑜
′ = 1 m/s were used. In wind-tunnel experiments, this situation is created by 

passing a uniform stream through a grid.  

Shown below in Figures 4.2 and 4.3 are the time histories of the time averaged one point 

< 𝑢′ >,< 𝑣′ > averages and second order correlations < 𝑢′𝑢′ > and < 𝑢′𝑣′ >. The two graphs 

are shown for a point in each of the two planes having different shape functions. An input rms 

velocity of 1 m/s should correspond with the < 𝑢′𝑢′ > component going to 1 m/s while the other 

time averaged shear stresses and instantaneous velocities should go to zero because they are 

uncorrelated and independent of each other.    

Figure 4.4 is the normal stress component < 𝑢′𝑢′ > extracted at the end of the calculation and 

depicted for all the wall-normal points at a particular spanwise location.  
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Figure 4.2: Time history of  < 𝑢′ > , < 𝑣′ > and second order correlations < 𝑢′𝑢′ > and 

< 𝑢′𝑣′ > at 𝑦+ = 200. 

 

Figure 4.3: Time history of < 𝑢′ > , < 𝑣′ > and second order correlations < 𝑢′𝑢′ > and 

< 𝑢′𝑣′ > at 𝑦+ = 750. 
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Figure 4.4: Time averaged 𝑢𝑟𝑚𝑠 averaged for all points in the wall normal direction, 

extracted at 𝑡 =  1000 time steps.  

 

4.2.2. Prescribed stress tensor testing 

Prescribed stress tensor profiles extracted from experimental results for a zero-pressure-gradient 

flat-plate boundary layer were used as input to the simulation. The output was then compared to 

the prescribed profiles. The results are shown in Figures 4.5 and 4.6 below.  

Figures 4.5 and 4.6 show the prescribed stress tensor and their comparison with the stresses 

obtained from the SEM. A comparison of these figures shows that there is a good match between 

desired and simulated values. 
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Figure 4.5: Curves representing various components of the input Reynolds stress tensor [45] 

 

 

Figure 4.6: Graph showing comparison of input Reynolds stress compared to stresses obtained 

from the SEM simulation 
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Figure 4.7: 𝑢’ fluctuations generated at the inlet plane using the modified SEM method 

Figure 4.7 is a representation of the inlet plane of the standalone code and how the turbulent 

spots look in at the plane. The difference in eddy shapes is clearly visible in the regions where 

the different modes are described. 

4.3. Noise Calculations 

The next chapter describes the cases set up for the testing of the NLDE concept for trailing edge 

noise predictions. Two cases have been considered: a Flat Plate Zero Pressure Gradient trailing 

edge and a NACA 0012 airfoil trailing edge. 
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Chapter 5 

Noise Prediction 

Two cases have been set up to validate the NLDE model and the CHOPA code with the 

Synthetic Eddy Method (SEM) for the trailing edge noise prediction. The CHOPA code has 

already been tested for a variety of cases for jet noise predictions. Also standard test cases like 

Gaussian Pulse propagation and interpolation on finer grids have been performed to validate 

CHOPA. The SEM code has also been tested independently as mentioned in the previous 

chapter. It has been integrated into the CHOPA code as an additional boundary condition for 

turbulence injection. The flat plate and the NACA 0012 airfoil have been used to obtain noise 

predictions using a URANS base flow and then using a fine LES grid in the NLDE domain to 

obtain appropriate values. 

5.1. Flat Plate Trailing Edge. 

A zero pressure gradient flat plate boundary layer is used as a first validation case for testing 

CHOPA capabilities with SEM for turbulence injection. To set up the case, a coarse grid is 

constructed for the base flow calculation using the Spalart-Allmaras (SA) model and the 

Unsteady Reynolds Navier Stokes (URANS) settings in CHOPA. The grid used for the URANS 

case is made up of a hyperbolic tangential stretching function in the wall-normal (y) direction to 

resolve the boundary layer development and is also clustered near the leading edge to resolve the 

turbulent boundary layer.  

The grid used to obtain the URANS base flow calculations is a two-block structure consisting of 

329 points in the streamwise (x) direction, 209 grids in the wall-normal (y) direction and 5 points 

in the spanwise (z) direction for each block. The URANS formulation in CHOPA requires at 

least 4 points in the spanwise (z) direction for the application of the spatial stencil. A quasi-two 



52 
 

dimensional simulation is performed. The leading edge starts at x = 0.0 m and the flat plate 

extends to 0.74m where it is cutoff, giving the trailing edge. The mean density has been set to 1.2 

kg/m
3
 and pressure to 99.35 kPa. The domain is operating at Re ≈ 1.849x10

7
 and the free stream 

Mach number (M) is = 0.09991. The values specified above were chosen to correspond to the 

conditions specified in Pamies et al.
6
 and a specific case of Roidl et al.

7
 Also, the values for the 

Reynolds stress tensor for these cases is readily available. The thickness of the boundary layer 

has been verified by checking against available data. The boundary conditions for the RANS 

solution are subsonic inflow at the inlet, an adiabatic viscous wall at the lower boundary on the 

plate, Riemann boundary conditions on the upper boundary and the outlet, and periodic boundary 

conditions in the spanwise direction. The no-slip condition starts at the leading edge and extends 

to x = 0.74 m at the trailing edge. After this a connector boundary condition is applied to join the 

two blocks and simulate the free wake 

    

Figure 5.1: Trailing Edge Flat Plate coarse grid constructed for URANS base-flow calculation. 

Figure 5.1 is a depiction of the coarse grid used in the URANS case. The left figure shows the 

whole domain with the appropriate clustering visible near the leading edge and the flat plate. The 

right figure is a zoomed in version of the grid near the flat plate region. The leading edge is far 

enough from the domain inlet that it is not affected by the conditions there. The turbulent 

boundary layer is free to evolve without influence from the domain boundaries.  
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The URANS solution is run until the flow is statistically steady. An accurate RANS mean flow 

solution is important for running the NLDE simulation. The disturbances are solved around the 

mean equation and require accurate 𝜏𝑤𝑎𝑙𝑙 and boundary layer thickness 𝛿0. Also these values 

need to be considered when choosing inputs for the SEM inflow boundary condition. Figure 5.2 

shows the URANS solution with the streamwise velocity profile. The trailing edge has been 

indicated at x = 0.74 m and contours of the streamwise velocity of the domain are shown, which 

is magnified near the trailing edge. This is to show that the values that are used in the NLDE fine 

grid domain are accurate and serve as the proper base flow solution for this case.  

 

Figure 5.2: Trailing edge RANS results (velocity is nondimensionalized using speed of sound, i.e., 

𝑣 = 𝑣/𝑎∗, with 𝑎∗ = 340 𝑚/𝑠). 

Once the URANS base flow was obtained the NLDE grid was constructed. The NLDE fine grid 

starts at a downstream location of 0.7205 m which corresponds to a Reynolds number based on 

momentum thickness, 𝑅𝑒𝜃  =  3551. It consists of two blocks for the upper and lower part of the 

flat plate, joined by a connector boundary condition downstream of the trailing edge for the part 

shared by the blocks. The input friction velocity is 𝑢𝜏 = 1.126 m/s and the inlet boundary layer 

thickness 𝛿0 = 0.0162 m. The grid has the following dimensions for each block: 𝐿𝑥 = 17𝛿0, 

𝐿𝑦 = 1.7𝛿0,  and 𝐿𝑧 = 1.7 𝛿0, with 460 × 88 × 133  grid points in the 𝑥 (streamwise), 𝑦(wall 

normal) and 𝑧(spanwise) directions, respectively. The grid spacing is such that a grid resolution 

Location of  
Trailing edge 
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of 𝛥𝑥+ < 20, 𝛥𝑦+ < 1, and 𝛥𝑧+ < 12 is maintained throughout. This is done to ensure that the 

large eddies that are to be simulated are resolved at all times. The trailing edge starts at a 

downstream location of 𝑥 = 0.739 . The base flow solution is interpolated onto the grid. The 

above parameters have been chosen so that the results can be verified with the Pamies
 
[45] and 

Roidl
 
[46] cases that use the same input data. 

 

 

 

Figure 5.3: 2-D section of the Cartesian grid used in the NLDE domain. The NLDE domain has been 

restricted to the region shown above. 

Location of  
Trailing edge 
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Figure 5.4 shows contours of the streamwise velocity of the RANS solution interpolated onto the 

NLDE grid. The URANS base flow interpolation on the NLDE fine grid domain has been 

verified and depicted in figure 5.5. The velocity profile has been taken at two downstream 

locations to check if the interpolation is accurate.  

 

Figure 5.4: RANS solution interpolated onto the NLDE grid. 

 

  

Figure 5.5: u (streamwise) velocity profile at x = 0.73 m and x = 0.74 m  
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The Synthetic Eddy Method (SEM) has been used to initiate the turbulence for the NLDE 

domain. Permeable acoustic data surfaces (ADS) are used to extract the momentum, density 

and pressure fluctuations generated by the interaction of the eddies with the trailing edge. 

Figure 5.6 shows a representation of the multi-block grid used and the FW-H (Ffowcs 

Williams--Hawkings patches (ADS) associated with them. 

 

    

  

Figure 5.6: 3-D representation of the Cartesian grid boundaries (top-left), 3-D representation of the FW-H 

patches (top-right), 2-D representation of the Cartesian grid  boundaries(bottom-left),2-D representation 

of the FW-H patches (bottom-right) 
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CHOPA flow solutions at the selected FW-H patches are obtained as described in the CHOPA 

manual
 
[27]. These need to be converted to match the functional data file format for PSU-

WOPWOP for the relevant loading data (ρ, ρu, ρu, ρu and p – p0 (gage pressure)). A converter 

has been developed to read in the binary flow solution file output from CHOPA and apply the 

appropriate headers describing input flags needed in PSU-WOPWOP. 

Changes in the momentum variables are also need to be made to match with the assumptions on 

which the permeable surface version of Farassat’s formulation 1A is based. These are carried out 

using the base and ambient flow velocities present in the domain. The assumption in PSU-

WOPWOP is that the fluid medium is stationary and the airfoil or ADS is moving through the 

medium. This is in contrast to the flow solutions out of CHOPA where the airfoil is assumed to 

be stationary and the fluid flows over it. The momentum fluctuations are scaled to dimensional 

values and free stream velocity is added to the fluctuations on the ADS to match the 

requirements for PSU-WOPWOP. 

The solutions once converted to PSU-WOPWOP input files (patch and loading data files) are 

then used for the prediction of noise. PSU-WOPWOP case files were generated for the 

permeable surface method and Figure 5.7 depicts the observer configuration around the FW-H 

surfaces. 360 observers are used for the far-field noise at a distance of 1m. The noise results are 

described below. The OASPL sound pressure level is described in Figure 5.8. ADS data from 

only the two patches (top and bottom) are considered as the downstream patches contaminate the 

solution by dominating the fluctuation velocities. The lobe shapes do not match experimental and 

LES data. This may be a fact of there being not enough time-histories to get a full account of the 

broadband spectrum required to capture all frequencies. Acoustic pressure data was also gathered 

for a single observer placed directly over the trailing edge at a distance of one meter. Figure 5.9 

shows the acoustic pressure data collected using flow data on all ADS. The data seems to be 

generating an acoustic signal but hasn’t reached a mean value. Also, acoustic spectrum data was 

collected for the same observer, shown in Figure 5.10.  
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Figure 5.7: Observer configuration for the Flat Plate Trailing Edge Noise prediction. 

 

Figure 5.8: OASPL predictions for the Flat Plate Trailing Edge Noise. 
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Figure 5.9: Acoustic pressure (Pa) at an observer directly above the trailing edge at a distance of 1 m from 

the trailing edge 

 

Figure 5.10: Sound Pressure Level (SPL) spectrum for an observer directly above the trailing edge at a 

distance of 1 m from the trailing edge 
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5.2. NACA 0012 Trailing Edge Case 

The NACA 0012 airfoil is selected to obtain airfoil trailing edge noise results. This airfoil was 

commonly used in helicopter rotor blades in the past. Also, there is extensive literature available 

for the NACA 0012 airfoil and the results can be compared to noise results from the various 

studies that have been performed. The procedure to set-up the NACA 0012 trailing edge 

simulation is the same as the one described for the flat plate trailing edge case. The airfoil is set 

at zero degrees angle of attack for all the simulations used in the thesis.  

The first part of the case setup is the creation of the RANS coarse grid for the base flow URANS 

simulation. The grid used is obtained from the turbulence archive test cases from the NASA 

turbulence resource[52]. The topology is a so-called "C-grid," with the grid wrapping around the 

airfoil from the downstream far-field, around the lower surface to the upper, then back to the 

downstream far-field again; the grid connects to itself in a one-to-one fashion in the wake. The 

grid used has 897 x 257 x 4 points in the x, y and z directions respectively. There are 513 x 4 

points on the airfoil surface. The grid has been divided into two-blocks and initialized with the 

mean density set to 1.225 kg/m
3
 and pressure to 101.33 kPa. The domain is operating at Rec ≈ 

2.407x10
6
 based on the airfoil chord and the free stream Mach number 𝑀 =  0.09991. The far-

field boundary uses a Riemann boundary condition while the airfoil surface uses the adiabatic 

solid wall to simulate the solid surfaces. This grid has also been verified by simulating the 

NACA 0012 airfoil at 0 degree angle of attack and M=0.15. These values are used to verify 

results available as the validation case on the NASA turbulence resource. The boundary layer 

profile is tested against the law of the wall (LOTW), as shown in Figure 5.11 The skin-friction 

(Cf) and pressure (Cp) coefficients have also been tested for the Mach number mentioned 

aboveFigure 5.12 shows the friction and pressure coefficients superimposed on the graphs 

available on the website. Good agreement is observed between all values obtained from CHOPA 

compared to experimental and CFD code solutions available on the NASA turbulence website. 
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Figure 5.11: Boundary layer profile obtained from the RANS SA simulation from CHOPA(red line) 

superimposed on the Law of the Wall plot. 

 

Figure 5.12: Cf (left) and Cp (right) comparison with data from various solvers. The dashed blue line 

indicates values obtained from CHOPA. 

The NLDE grid is constructed in a limited domain near the trailing edge. The grid starts at a 

streamwise location of x = 0.7 m and extends up to x = 1.4 m to resolve some part of the wake. 

The wall-normal extent of the grid is 0.1 m above the airfoil surface at the inflow. The spanwise 

length is 0.0405 m. Grid spacing in the wall-normal and spanwise directions has been maintained 

to resolve eddies that are injected using the SEM. 𝑦+ ≈ 0.2  at the first point over the airfoil 

surface in the wall normal direction. 𝛥𝑧+ < 12 is used in the spanwise direction to get the 

appropriate 3-D effects of the turbulence. 𝛥𝑥+ < 100 is maintained in the streamwise direction 
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and is a value used commonly in many LES simulations of the NACA 0012 airfoil. The total grid 

points are 500 x 117 x 133 in one block. Two blocks are used, one each for the pressure and 

suction side of the airfoil. Also permeable acoustic data surfaces are used to resolve the acoustic 

data required as input to PSU-WOPWOP. Figure 5.13 (right) shows the ADS for the NLDE 

NACA 0012 zero degrees angle of attack (AOA) case.  

 

Figure 5.13: 2-D representation of Cartesian Grid boundaries and the FW-H surface (right) 

Noise results were collected for a ring of observers at a distance (radius) of 5 m (5 chord lengths) 

from the trailing edge. 360 observers are used in the observer grid to resolve noise values at 

every 1 degree angle resolution. This is shown in Figure 5.14. Figure 5.15 shows the Overall 

Sound Pressure level directivity plots that should depict the dipole like character of the noise. 

The directivity plot shows little agreement with the dipole character. This may be due the fact 

that enough time history data of the unsteady fluctuations is not available to obtain the whole 

range of frequencies required for the broadband noise spectrum. A single observer was placed 

directly over the trailing edge at a distance of five meters above the trailing edge to gather the 

acoustic data pressure, shown in Figure 5.16. An acoustic signal seems to being generated. 

Spectrum data was also obtained for the same observer. This has been shown in Figure 5.17. 
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Figure 5.14: Observer grid around the NACA 0012 airfoil. 360 observers have been used at every 1 

degree around the circle 

 

Figure 5.15: OASPL (dB) directivity for the NACA 0012 trailing edge 
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Figure 5.16: Acoustic pressure (Pa) at an observer directly above the trailing edge at a distance of 5 m 

from the trailing edge 

 

Figure 5.17: Sound Pressure Level (SPL) spectrum for an observer directly above the trailing edge at a 

distance of 5 m from the trailing edge 
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Chapter 6 

Conclusions 

This chapter summarizes the thesis and gives suggestions for future work and improvements that 

can be made to the CHOPA code. 

6.1. Summary and Future Work 

The CHOPA code has been validated for jet noise prediction and other simple cases like flow 

over a cylinder and Gaussian pulse propagation. The code has been used in this thesis for trailing 

edge noise prediction as a first principles approach to understand the underlying physics of the 

problem and to obtain a correct prediction of the TBL-TE noise generated by airfoil trailing 

edges. The hybrid RANS-NLDE formulation for tackling the problem leads to a computationally 

efficient solution using optimum techniques for the different parts of the problem. Turbulence 

injection in the form of the Synthetic Eddy Method has been integrated into CHOPA to enhance 

its capabilities and provide a means of adding physical turbulence to the NLDE domain. The 

NLDE domain is able to resolve unsteady flows and provide time histories of the acoustic 

pressure for noise prediction.  

Preliminary noise results have been obtained for two representative test cases in CHOPA, 

namely the Flat Plate Trailing Edge and the NACA 0012 trailing edge. The RANS solutions for 

these are obtained using a standard SA model available in CHOPA itself. The code could be 

extended to use RANS results from any widely available solver to serve as a base flow for the 

NLDE domain. 
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6.2. Suggested Improvements 

The CHOPA code with its extended SEM capabilities needs to be tested for additional cases. 

Also some improvements need to be made to the code to make it computationally efficient. 

6.2.1. Additional Grid Refinement Studies 

The NLDE grid currently used for the NACA 0012 is coarse in the stream-wise direction. 

Further studies need to be done with grids of different resolution to obtain an optimum grid level 

that balances eddy resolution with computational inexpensiveness. 

6.2.2. Scalability for parallelization 

The gathering of the unsteady momentum and pressure perturbation time histories on the 

Acoustic Data Surfaces takes a large amount of time for accurate noise predictions over the 

broad frequency range that TBL-TE exists over. Improvements in the parallelization routines can 

yield better results and would make the code capable of handling bigger grids and scaling over 

bigger computing clusters. 

6.2.3. Testing with different airfoils 

The current testing in CHOPA has been performed for a NACA 0012 airfoil at zero degree angle 

of attack. This is a symmetrical airfoil. To better approximate real world data, the NACA 0012 

airfoil should be tested at different angles of attack and validate the noise characteristics obtained 

should be validated. Also some other representative airfoils should be tested which can extend 

CHOPA usage to the wind turbine industry where TBL-TE noise is also of significant concern.  

6.2.4. Improvement in parallelization routines 

The parallelization routines of CHOPA need to be improved to make it scalable for bigger 

domains. As the code develops, the 3-D accuracy should continue to be validated for full 3-D 

helicopter rotor simulations. Specific spanwise blade sections of interest can be simulated 

individually with CHOPA. These spanwise sections can be run simultaneously in PSU-

WOPWOP for an overall estimate of the noise from the entire helicopter rotor. 
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Appendix A 

Mathematical Validation of the Synthetic Eddy Method (SEM) 

A.1. Description of problem space 

A finite set of points is considered 𝑆 ⊂  ℝ S={x1,x2,….xs} on which the synthetic velocity 

fluctuations are generated using SEM. An assumption is made that the mean velocity U, the 

Reynolds stresses 𝑅𝑖𝑗 and a characteristic length scale of the flow 𝜎 are available for the set of 

points considered.  

 

Figure A.1: The set of points on which the SEM signal is going to be computed and the surrounding box 

of eddies. 

A box of eddies is created which contains the synthetic eddies. It is defined by  

𝐵 = {(𝑥1, 𝑥2, 𝑥3)  ∈ ℝ
3 ∶  𝑥𝑖,𝑚𝑖𝑛 < 𝑥𝑖 < 𝑥𝑖,𝑚𝑎𝑥, 𝑖 = {1,2,3}}                       (𝐴. 1) 
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where  

𝑥𝑖,𝑚𝑖𝑛 = 
min

𝑥 ∈ 𝑆
(𝑥𝑖 − 𝜎(𝑥)) and 𝑥𝑖,𝑚𝑖𝑛 = 

max

𝑥 ∈ 𝑆
(𝑥𝑖 + 𝜎(𝑥))                      (𝐴. 2)  

The volume of the box of eddies is VB. Figure A.1 shows the set of points on which the input 

information is available, and on which the signal will be computed, and its corresponding 

surrounding box of eddies B. 

The velocity signal is generated by N eddies and has the following representation. 

𝒖 = 𝑼 +
1

√𝑁
∑𝑐𝑘𝑓𝜎(𝑥)(𝑥 − 𝑥

𝑘)

𝑁

𝑘=1

                                               (𝐴. 3) 

where the 𝑥𝑘 are the locations of the N eddies and the 𝑐𝑘 are the respective intensities. 𝑓𝜎(𝑥)(𝑥 −

𝑥𝑘) is the velocity distribution of the eddy located at 𝑥𝑘. The differences in the distributions 

between the eddies depend only on the length scale 𝜎 and define 𝑓𝜎 by 

𝑓𝜎(𝑥)(𝑥 − 𝑥
𝑘) =  √𝑉𝐵𝜎

−3𝑓 (
𝑥 − 𝑥𝑘

𝜎
)𝑓 (

𝑦 − 𝑦𝑘

𝜎
)𝑓 (

𝑧 − 𝑧𝑘

𝜎
)                    (𝐴. 4) 

where the shape function is a characteristic of the distance from the wall. f has compact support 

in [−𝜎, 𝜎] and has the normalization 

∫ 𝑓2(𝑥)𝑑𝑥 = 1
𝜎

−𝜎

                                                           (𝐴. 5) 

The amplitude 𝑐𝑘 is given by  

𝑐𝑖
𝑘 = 𝑎𝑖𝑗휀𝑗

𝑘                                                                     (𝐴. 6) 

where 𝑎𝑖𝑗 is the Cholesky decomposition of the Reynolds stress tensor 

(

 
 
 

√𝑅11 0 0

𝑅21
𝑎11

√𝑅22 − 𝑎21
2 0

𝑅31
𝑎11

𝑅32 − 𝑎21𝑎31
𝑎22

√𝑅33 − 𝑎31
2 − 𝑎32

2

)

 
 
 
                            (𝐴. 7) 
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and 휀𝑗
𝑘 are independent random variables taken from any distribution with zero and unit 

variance. 휀𝑗
𝑘 ∈ {−1,1} with equal probability to take one value or the other. This distribution is 

chosen because it has a lower flatness than any other distribution. 

A.2. Statistical properties of the synthesized signal 

At any location 𝑥, the synthesized signal u(x,t) can be seen as a random process of time. The 

recycling of the eddies ensures that the random variables 휀𝑗
𝑘 and 𝑥𝑘 remain identically 

distributed during the simulation. At any given time 𝑡, the position of each eddy k follows a 

uniform distribution over B and its intensity is either 1 or -1 with equal probability. Since the 

synthetic signal is a function of the random variable 휀𝑗
𝑘 and 𝑥𝑖

𝑘 (which keep the same probability 

density function for all times), it is a stationary random process. 

The mean value of the velocity signal given by equation A.3 is given by the following function 

〈𝑢𝑖〉 = 𝑈𝑖 +
1

√𝑁
∑〈𝑎𝑖𝑗휀𝑗

𝑘𝑓𝜎(𝑥)(𝑥 − 𝑥
𝑘)〉

𝑁

𝑘=1

                                        (𝐴. 8) 

The random variables 𝑥𝑗
𝑘 and 휀𝑗

𝑘 involved in the mean 〈𝑎𝑖𝑗휀𝑗
𝑘𝑓𝜎(𝑥)(𝑥 − 𝑥

𝑘)〉 are independent thus  

〈𝑎𝑖𝑗휀𝑗
𝑘𝑓𝜎(𝑥)(𝑥 − 𝑥

𝑘)〉 =  〈𝑎𝑖𝑗휀𝑗
𝑘〉〈𝑓𝜎(𝑥)(𝑥 − 𝑥

𝑘)〉                                    (𝐴. 9) 

The term 〈𝑎𝑖𝑗휀𝑗
𝑘〉 simplifies further to 〈𝑎𝑖𝑗휀𝑗

𝑘〉 = 𝑎𝑖𝑗〈휀𝑗
𝑘〉 = 0 since the intensities of the eddies is 

either 1 or -1 with equal probability. Substituting these relations into Eq. (A.8), the mean of the 

velocity signal 𝑢𝑖 is simply the input mean velocity 𝑈𝑖 

〈𝑢𝑖〉 = 𝑈𝑖                                                                         (𝐴. 10) 

and the fluctuations 𝑢𝑖
′ around the mean velocity are  

𝑢𝑖
′ = 

1

√𝑁
∑𝑎𝑖𝑗휀𝑗

𝑘𝑓𝜎(𝑥)(𝑥 − 𝑥
𝑘)

𝑁

𝑘=1

                                            (𝐴. 11) 

The Reynolds stresses 〈𝑢𝑖
′𝑢𝑗
′〉 of the synthesized signal are calculated below. The linearity of the 

statistical mean is used to obtain. 
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〈𝑢𝑖
′𝑢𝑗
′〉 =  

1

𝑁
∑∑𝑎𝑖𝑚𝑎𝑗𝑛〈휀𝑚

𝑘 휀𝑛
𝑙 𝑓𝜎(𝑥)(𝑥 − 𝑥

𝑘)𝑓𝜎(𝑥)(𝑥 − 𝑥
𝑙)〉

𝑁

𝑙=1

𝑁

𝑘=1

            (𝐴. 12) 

 

Using the independence between the positions 𝑥𝑗
𝑘 and the intensities 휀𝑗

𝑘 of the eddies, Eq. A.12 

becomes 

〈𝑢𝑖
′𝑢𝑗
′〉 =  

1

𝑁
∑∑𝑎𝑖𝑚𝑎𝑗𝑛〈휀𝑚

𝑘 휀𝑛
𝑙 〉〈𝑓𝜎(𝑥)(𝑥 − 𝑥

𝑘)𝑓𝜎(𝑥)(𝑥 − 𝑥
𝑙)〉

𝑁

𝑙=1

𝑁

𝑘=1

                     (𝐴. 13) 

If 𝑘 ≠ 𝑙 or 𝑚 ≠ 𝑛 the random variables 휀𝑚
𝑘  and 휀𝑛

𝑙  are independent and hence 〈휀𝑚
𝑘 휀𝑛

𝑙 〉 =

 〈휀𝑚
𝑘 〉〈휀𝑛

𝑙 〉 = 0. If 𝑘 = 𝑙 and 𝑚 = 𝑛, then 〈휀𝑚
𝑘 휀𝑛

𝑙 〉 =  〈(휀𝑚
𝑘 )2〉 =  1 by definition of the intensities 

of the eddies. Hence, we write 

〈휀𝑚
𝑘 휀𝑛

𝑙 〉 =  𝛿𝑘𝑙𝛿𝑚𝑛                                                             (𝐴. 14) 

Using the above result, Eq A.13 simplifies to  

〈𝑢𝑖
′𝑢𝑗
′〉 =  ∑ 𝑎𝑖𝑚𝑎𝑗𝑚〈𝑓𝜎

2(𝑥 − 𝑥𝑘〉

𝑁

𝑘=1 

                                (𝐴. 15) 

The probability density function (PDF) of 𝑥𝑘 is needed in order to compute the mean of the 

quantity in Eq. (A.15). 𝑥𝑘 follows a uniform distribution over 𝐵, hence by definition its 

probability density function is given by the following 

𝑝1(𝑥) =  𝑓(𝑥) = {

1

𝑉𝐵
, 𝑖𝑓 𝑥 ∈ 𝐵

0,  otherwise

                                 (𝐴. 16) 

Hence we have 

𝐼1 = ∫ 𝑝(𝑦)𝑓𝜎
2(𝑥 − 𝑦)𝑑𝑦

ℝ3
=
1

𝑉𝐵
∫𝑓𝜎

2(𝑥 − 𝑦)𝑑𝑦
𝐵

                      (𝐴. 17) 
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Besides by definition of B, 

𝑥 ∈ 𝑆, 𝑦 ∉ 𝐵 ⇒ (𝑥 − 𝑦) ∉ supp(𝑓𝜎)                                       (𝐴. 18)  

Hence the integral over B on Eq. A.17 can be replaced by an integral over ℝ3. Using the 

definition of 𝑓𝜎 and the normalization of 𝑓, 𝐼1 rewrites 

𝐼1 = 
1

𝑉𝐵
∫ 𝑓𝜎

2(𝑥 − 𝑦)𝑑𝑦
ℝ3

= 1                                               (𝐴. 19) 

Finally using the above result into Eq A.15 the cross correlation tensor writes 

〈𝑢𝑖
′𝑢𝑗
′〉 = 𝑎𝑖𝑚𝑎𝑗𝑚 = 𝑅𝑖𝑗                                                (𝐴. 20) 

since 𝑎𝑖𝑗 is the Cholesky decomposition of 𝑅𝑖𝑗. Hence the Reynolds stresses of the velocity 

fluctuations generated by SEM reproduce exactly the input Reynolds stresses 𝑅𝑖𝑗. 
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Appendix B 

Instructions for running the test cases 

Instructions for setting up the test case (RANS) 

1. The first step in the procedure is the construction of the relevant grid for the Reynolds 

Averaged Navier Stokes (RANS) simulation.  

a. Grid Resources can be found at the following place: 

http://turbmodels.larc.nasa.gov/ 

b. All information is available with the use of different RANS models for the 

relevant grids. 

c. For the test cases presented the: flat plate zero pressure gradient and the NACA 

0012 grid have been used. The modifications for the grids for conformation with 

the CHOPA code have been done in GridGen and Pointwise. 

d. Rules of thumbs for construction of grid:  

i. 4 points are required in the spanwise direction as CHOPA RANS model is 

a quasi 2-D code. 

ii. Domains need to be split for the application of the correct boundary 

conditions. The boundary condition files have been made available in the 

relevant folders. 

iii. The grid should be aligned in such a way that it conforms to (streamwise x 

wall normal x spanwise) (x,y,z) (This can be checked in Tecplot) 

http://turbmodels.larc.nasa.gov/
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iv. The output of GridGen should be the volumes and the file should be a 

*.grd file. 

 

2. Once the RANS grid is constructed and the boundary condition file (*.bc) is obtained 

from GridGen direct the CHOPAGUI to the relevant *.grd and *.bc files. 

a. Follow the steps in the CHOPA manual (Chapter 2) to get the input files for 

CHOPA. 

b. Copy the following files: *.inp, *.grd, *.bc file to the relevant folder: (e.g. For the 

flat plate case the folder is E:\Bell Stuff\Test Cases\Case Files\Flat Plate Trailing 

Edge\Flat_Plate_RANS, while for the NACA 0012 case it is: E:\Bell Stuff\Test 

Cases\Case Files\NACA 0012 Trailing Edge\NACA 0012_RANS. 

c. Ensure that the executable file is present in the same folder as the above files, also 

make the relevant changes to the *.sh file to direct to the correct name.  

d. Ensure that the number of processors specified in the *.in, *.bc and the *.sh file 

are consistent. 

 

3. You are now ready to run the RANS case. Keep track of the output file to see if the 

simulation is running. It should probably be run for at least 100,000 iterations to get the 

correct steady state results. The results can be compared to the solutions in the PSU 

solutions folder. Tecplot has been used to visualize the results. 

 

Instructions for setting up the test case (NLDE) 

1. The relevant fine grid needs to be constructed for use in the NLDE domain of the grid 

(i.e. the region near the trailing edge) 

a. The grid metrics need to be obtained using literature available on the subject (LES 

grids) 
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b. The following metrics need to be ensured: ∆𝑥+~50,100, ∆𝑦+ < 1, ∆𝑧+ < 20 so 

that the eddies supplied by the Synthetic Eddy Method are adequately resolved.  

c. The general grid configuration is 2 blocks, on each side of the body in question 

(i.e. Flat plate and the suction and pressure side for NACA 0012 airfoil). 

d. Rules of thumbs for construction of grid:  

i. 4 points are required in the spanwise direction as CHOPA RANS model is 

a quasi 2-D code. 

ii. Domains need to be split for the application of the correct boundary 

conditions. The boundary condition files have been made available in the 

relevant folders. 

iii. The grid should be aligned in such a way that it conforms to (streamwise x 

wall normal x spanwise) (x,y,z) (This can be checked in Tecplot) 

iv. The output of GridGen should be the volumes and the file should be a 

*.grd file. 

 

2. Once the NLDE grid is constructed and the boundary condition file (*.bc) is obtained 

from GridGen direct the CHOPAGUI to the relevant *.grd and *.bc files. 

a. Follow the steps in the CHOPA manual (Chapter 2) to get the input files for 

CHOPA. 

b. Copy the following files: *.inp, *.grd, *.bc file to the relevant folder: (e.g. For the 

flat plate case the folder is E:\Bell Stuff\Test Cases\Case Files\Flat Plate Trailing 

Edge\Flat_Plate_NLDE, while for the NACA 0012 case it is: E:\Bell Stuff\Test 

Cases\Case Files\NACA 0012 Trailing Edge\NACA 0012_NLDE. 

c. Ensure that the executable file is present in the same folder as the above files, also 

make the relevant changes to the *.sh file to direct to the correct name.  
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d. Ensure that the number of processors specified in the *.in, *.bc and the *.sh file 

are consistent. 

 

3. Copy the *.g file from you RANS case solution folder along with the *.q file you are 

using to get your base flow, to the NLDE case folder. 

4. Rename the RANS solution files (*.g to *.gbase) and (*.q to *.qbase) to designate them 

as the relevant base flow solutions. 

5. In the *.bc (boundary condition file) for the NLDE case please change the appropriate 

boundary condition to 73 (at the inflow plane) if you want to activate the Synthetic Eddy 

Method to generate the turbulent fluctuations in the flow.  

6. You can generate the PSJFWH.in file to get the appropriate data for the FW-H patches 

using the GUI but please note the multiple grid points have to be entered manually into 

the file, to conform to the patches that you would like to examine the data on.  

 

Instructions for conversion to PSU-WOPWOP 

1. Once you have obtained the flow solutions from the NLDE simulation, you will have a 

sample folder that contains the binary flow information on the FW-H surfaces you have 

specified.  

2. The code to convert the FWH*_node.bin file to the Patch file needed for input to PSU-

WOPWOP is contained in the following place: E:\Bell Stuff\Test Cases\Conversion Code 

\Read_patch_data. 

3. In the delare_patch.f90 file change the path of the folder in the file to direct it to the 

sample folder and the files there to get the relevant patches.  

4. Run the program to get the Patch files in the same folder as the Conversion code (Patch 

data). 
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5. The code to converr the FWH*_q.bin file to the  Loading data file needed for input to 

PSU-WOPWOP is contained in the following place: E:\Bell Stuff\Test Cases\Conversion 

Code\Read_FWH_data\Read_FWH_data 

6. In the declare.f90 file change the path of the folder in the file to direct it to the sample 

folder and the files there to get the relevant loading data. 

7. Also the path of the *_0_base.q needs to be changed in the same file.  

8. Run the program to get the Loading files in the same folder as the Conversion code 

(Loading data) 

 

Instructions for PSU-WOPWOP 

1. Once you have obtained the Patch and loading files from the Conversion code copy these 

files to the WOPWOP folder. 

2. Make a casefile with the correct settings by consulting the WOPWOP manual and direct 

the WOPWOP code to the casefile.nam. 

3. You should be ready to run the PSU-WOPWOP code to obtain the noise results. 
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Appendix C 

PSU-WOPWOP test cases 

To solve the Ffowcs Williams-Hawkings equation PSU-WOPWOP uses a time-domain integral 

formulation developed by Farassat [55]. This formulation excludes the quadrupole term of the 

FW-H equation and is valid for any rigid-body surface motion. A slight modification is needed 

for flexible surfaces. A non-rotating permeable surface implementation is done for the particular 

test cases that are mentioned in this thesis. If the integration surface is permeable and at a 

moderate distance from the body the important quadrupole terms are accounted for by the 

surface integration. The CFD grid is used as the basis for the acoustic patch data surface used by 

PSU-WOPWOP. If the grid is too coarse, only the lowest frequencies will be captured, and 

aliasing of the higher-frequencies may occur. 

Once the conversion has been carried out from the ADS in CHOPA to PSU-WOPWOP 

recognizable format the specific casefile needs to be generated. The FW-H equations formulated 

in PSU-WOPWOP consider the airfoil moving in a stationary medium (air in this case). Thus the 

appropriate velocity addition should be used in the conversion when writing the perturbations 

from CHOPA. Also when setting up the casefile in PSU-WOPWOP the patches need to be 

attached to the airfoil and should move in the direction of the airfoil at the freestream Mach 

number. 

Listed below are the casefiles that are used for the two test cases. 

C.1 Example: Flat Plate Trailing Edge casefile 

&EnvironmentIn 

 

   nbSourceContainers = 1 
   nbObserverContainers = 1 
   ASCIIOutputFlag = .true. 
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   OASPLdBFlag = .true. 
   OASPLdBAFlag = .true. 
   spectrumFlag = .true. 
   SPLdBFlag = .true. 
   SPLdBAFlag = .true. 
   acousticPressureFlag = .true. 
   pressureGradient1AFlag = .false. 
   sigmaflag = .false. 
   loadingNoiseSigmaFlag = .false. 
   thicknessNoiseSigmaFlag = .false. 
   densitySigmaFlag =.true. 
   momentumSigmaFlag = .true. 
   pressureSigmaFlag = .true. 
   totalNoiseSigmaFlag = .true. 
   normalSigmaFlag = .true. 
   MachSigmaFlag = .false. 
   velocitySigmaFlag =.false. 
   accelerationSigmaFlag =.false. 
   areaSigmaFlag =.false. 
   MdotrSigmaFlag = .false. 
   iblankSigmaFlag =.false. 
   pressureFileName = "pressure" 
 
   debugLevel = 12 
 
   thicknessNoiseFlag = .true. 
   loadingNoiseFlag = .true. 
   totalNoiseFlag = .true. 
 / 
 

 &EnvironmentConstants 
   rho = 1.225     
   c = 343.0 
 / 
 
 &ObserverIn 
   nt   = 1000 
 
   !xLoc = 0.7889 
   !yLoc = -1.0 !-0.03 !-1.0 
   !zLoc = 0.0 
 
   !xLoc = 0.7889 
   !yLoc = 1.0 !-0.03 !-1.0 
   !zLoc = 0.0 
 
   !filename = "observergrid.inp" 
   radius = 1.00 
   nbTheta = 360 
   nbPsi = 1 
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   thetaMin = 0.00 
   thetaMax = 6.28318531 
   psiMin = 0.000 
   psiMax = 0.000 
 
   tMin = .002851! .00001 
   tMax = 0.012851!0.020431!0.042113!0.007851!.00295 !0.0001 
   !tMax = 0.016851!0.009851!0.016251!.00295 !0.0001 
   !nbBase = 1 
 / 
&CB 
 
   translationType = "knownFunction" 
   VH = -34.000, 0.0, 0.0 
/ 
 !&ObserverIn 
  ! nt   = 100 
  ! xLoc = 0.7889 
  ! yLoc = 1.0 !-0.03 !-1.0 
  ! zLoc = 0.0 
  ! tMin = .002851! .00001 
  ! tMax = 0.003851!0.020431!0.042113!0.008851!.00295 !0.0001 
  ! !tMax = 0.015351!0.009851!0.016251!.00295 !0.0001 
  ! !nbBase = 1 
 / 
!&CB 
 
   !translationType = "knownFunction" 
   !VH = -34.000, 0.0, 0.0 
/ 
 
&ContainerIn 
  Title = "flat plate" 
  !patchGeometryFile="./inputfile/constantGeometry_compact.dat"   
patchGeometryFile="Patch_data_1.bin","Patch_data_2.bin","Patch_data_3.bin","Patch_data_4.
bin"   
patchLoadingFile="Loading_data_1.bin","Loading_data_2.bin","Loading_data_3.bin","Loading_
data_4.bin" 
 
!patchGeometryFile = "Patch_data_1.bin" 
!patchLoadingFile="Loading_data_1.bin" 
 
  nbBase = 1 
  dTau = 5e-4 
  !tauMin = 0.0 
  !tauMax = 0.0 
  !nTau = 1 
/ 
 
&CB 
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   translationType = "knownFunction" 
   VH = -34.000, 0.0, 0.0 
/ 

    

C.2 Example: NACA 0012 Trailing Edge casefile 

&EnvironmentIn 
 
   nbSourceContainers = 1 
   nbObserverContainers = 1 
   ASCIIOutputFlag = .true. 
    
   OASPLdBFlag = .true. 
   OASPLdBAFlag = .true. 
   spectrumFlag = .true. 
   SPLdBFlag = .true. 
   SPLdBAFlag = .true. 
   acousticPressureFlag = .true. 
   pressureGradient1AFlag = .true. 
   sigmaflag = .false. 
   loadingNoiseSigmaFlag = .false. 
   thicknessNoiseSigmaFlag = .false. 
   densitySigmaFlag =.false. 
   momentumSigmaFlag = .false. 
   pressureSigmaFlag = .false. 
   totalNoiseSigmaFlag = .false. 
   normalSigmaFlag = .false. 
   MachSigmaFlag = .false. 
   velocitySigmaFlag =.false. 
   accelerationSigmaFlag =.false. 
   areaSigmaFlag =.true. 
   MdotrSigmaFlag = .false. 
   iblankSigmaFlag =.false. 
   pressureFileName = "pressure" 
 
   debugLevel = 12 
 
   thicknessNoiseFlag = .true. 
   loadingNoiseFlag = .true. 
   totalNoiseFlag = .true. 
 / 
 
 &EnvironmentConstants 
   rho = 1.225     
   c = 343.0 
 / 
 
 &ObserverIn 
   nt   = 700 
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   !xLoc = 0.7889 
   !yLoc = -1.0 !-0.03 !-1.0 
   !zLoc = 0.0 
 
!   xLoc = 1.0 
!   yLoc = 1.0 !-0.03 !-1.0 
!   zLoc = 0.0 
 
   !filename = "observergrid.inp" 
   radius = 5.00 
   nbTheta = 360 
   nbPsi = 1 
   thetaMin = 0.00 
   thetaMax = 6.28318531 
   psiMin = 0.000 
   psiMax = 0.000 
 
   tMin = 0.014577 !.002851! .00001 
   tMax = 0.021577 !0.07851!0.020431!0.042113!0.007851!.00295 !0.0001 
   !nbBase = 1 
/ 
 !&ObserverIn 
  ! nt   = 100 
  ! xLoc = 0.7889 
  ! yLoc = 1.0 !-0.03 !-1.0 
  ! zLoc = 0.0 
  ! tMin = .002851! .00001 
  ! !tMax = 0.015351!0.009851!0.016251!.00295 !0.0001 
  ! !nbBase = 1 
  
/ 
 
&ContainerIn 
  Title = "NACA 0012_500_coarse" 
  !patchGeometryFile="./inputfile/constantGeometry_compact.dat"  
patchGeometryFile="Patch_data_NACA 0012_1.bin","Patch_data_NACA 
0012_4.bin"!,"Patch_data_NACA 0012_3.bin","Patch_data_NACA 0012_4.bin" 
  patchLoadingFile="Loading_data_NACA_0012_1.bin", "Loading_data_NACA_0012_4.bin"!, 
"Loading_data_NACA_0012_3.bin", "Loading_data_NACA_0012_4.bin" 
  nbBase = 1 
  dTau = 5e-4 
  !tauMin = 0.0 
  !tauMax = 0.0 
  !nTau = 1 
/ 
 
&CB 
   translationType = "knownFunction" 
   VH = -34.000, 0.0, 0.0 
/    


