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ABSTRACT 

 Theoretical models of working memory state that basic processing speed 

may drive individual differences in this ability. In addition, recent research 

suggests that working memory deficits in ADHD, a key feature of the disorder, 

can also be attributed slower processing speed. However, research on this 

relationship has relied mainly on correlational methods, and thus a causal 

relationship between speed and working memory ability has not been established. 

The current study uses a novel working memory paradigm, in which the 

processing speed of the distractor items can be manipulated within subjects, to 

determine whether slowing speed reduces working memory recall in children with 

ADHD and typically developing children. Findings indicate that working memory 

recall is causally driven by processing speed in both groups, indicating that 

processing speed is a plausible cause of individual differences in the ability of 

children and ADHD-related deficits. 
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Introduction 

 Children identified as having attention deficit hyperactivity disorder 

(ADHD) have been found to face substantial barriers to academic success. 

ADHD, which is estimated to affect around 7.7% of children aged 4 to 17 

nationwide, is one of the most common mental health diagnoses occurring during 

children’s school-aged years in the United States (Fulton et al., 2009). The 

behavioral syndrome of ADHD is marked by inattentive behavior, inability to 

sustain attention or effort on tasks, disorganization, impulsive choices or actions, 

and excessive levels of activity (Diagnostic and Statistical Manual of Mental 

Disorders (4th ed., text rev.; DSM-IV-TR; American Psychiatric Association, 

2000). For a diagnosis of ADHD to be determined, these behaviors must occur 

across different contexts (often in both home and educational settings) and an 

individual must experience substantial impairment in social, academic or work-

related functioning. Not surprisingly, academic underachievement has been 

frequently and consistently identified in children diagnosed with ADHD (Bussing 

et al., 2012; Loe & Feldman, 2007) and has been predicted by this diagnosis over 

and above other externalizing behavior problems (Frick et al., 1991). Children 

diagnosed with ADHD have been found to score significantly lower on tests of 

reading and math achievement relative to their same-age peers, with a large, 

robust effect size (d=.71) across studies (Frazier, Youngstrom, Glutting & 

Watkins, 2007). Academic impairment contributes to an estimated annual cost of 

$15 to $20 billion for educational interventions alone for children with ADHD in 
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the United States (Doshi et al., 2012), highlighting the need for further 

clarification of the causes of these children’s academic difficulties. 

Cognitive neuroscience research investigating the underlying causes of the 

observed impairment in ADHD has led to theoretical models that point to both 

abnormalities in the functioning of sub-cortical dopaminergic systems, leading to 

problems with motivation, reward, and temporal processing, as well as the 

disruption of higher-order cognitive functions mediated by the prefrontal cortex, 

such as executive attention, inhibitory control and working memory (Coghill, 

Nigg, Rothenberger, Sonuga-Barke & Tannock, 2005; Castellanos & Tannock, 

2002). Deficits in working memory, in particular, present a highly plausible 

explanation for the academic difficulties faced by children with ADHD.  Working 

memory (WM) is a multifaceted capacity that allows an individual to maintain, 

store and concurrently process information (Miyake and Shah, 1999) such as 

maintaining number values while executing a math problem or keeping relevant 

knowledge on line while reading a passage. Thus, it has been shown to be critical 

for a variety of skills necessary for academic success (Engle, Kane & Tuholski, 

1999; Engle, Tuholski, Laughlin & Conway, 1999; Gathercole and Pickering, 

2000). WM impairment has been identified and consistently replicated in group 

comparisons of children and adults with ADHD and non-ADHD counterparts 

(Kasper, Alderson, & Hudec, 2012; Schoechlin & Engle, 2005) and working 

memory deficits have, in fact, been linked to both academic and classroom 

behavioral problems in both ADHD and non-ADHD populations (Alloway, 

Gathercole,  Kirkwood, & Elliott, 2009; Alloway, Gathercole, Holmes, Place, 
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Elliott, Hilton, 2009; Gathercole and Pickering, 2000; Gremillion & Martel, 2012; 

Miller et al., 2013). 

Yet, since WM involves a multitude of other more basic cognitive 

abilities, such as selective attention (Cowan, 1988), general executive functioning 

ability (Unsworth & Engle, 2007), long term memory retrieval (Lewandowsky, 

Geiger, Morrell & Oberauer, 2010; Shipstead & Engle, 2012), and the efficient 

processing of tasks that are completed concurrent with memory maintenance 

(Unsworth, Redick, Heitz, Broadway & Engle, 2009), individual differences in 

any of these sub-components of WM could drive individual differences in 

children’s overall WM capacity.  

Recently, a strong link between basic processing speed, or the general 

efficiency with which a given individual can successfully execute cognitive tasks 

(Kail & Salthouse, 1994), and WM ability has been established in findings on 

developmental (Fry & Hale, 2000; Bayliss, Jarrold, Baddeley, Gunn and Leigh, 

2004), individual (Schmiedek et al., 2007), and ADHD-related (Karalunas & 

Huang-Pollock, 2013) differences in WM ability. As children with ADHD 

generally display less efficient processing overall (Karalunas, Huang-Pollock & 

Nigg, 2012; Metin, Roeyers, Wiersema, van der Meere, Thompson & Sonuga-

Barke, 2013), these findings suggest that deficits in processing speed may be 

largely responsible for WM deficits in ADHD, and, ultimately, academic 

impairment. However, the hypothesis that processing speed drives individual 

differences in WM ability has thus far been supported mainly by correlational 

evidence, and has not been explicitly experimentally investigated. Equally 
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plausible is the intuitive hypothesis that executive function deficits, for which 

ADHD is largely known, prevent children with ADHD from optimally utilizing 

controlled attention to maintain memory items, as would be predicted by the 

model of WM as executive attention (Engle, 2002). 

 The current study seeks to establish a causal account of the relationship 

between slower processing speed and lower WM ability, and to determine 

whether the relationship between speed and WM ability is the same in children 

with ADHD and typically-developing children. To meet these goals, a WM task 

in which processing speed can be experimentally manipulated will be designed. 

There are two key challenges in doing so. First, processing speed has traditionally 

been operationalized as mean reaction time (Hale & Jansen, 1994). However, any 

experimental manipulation that speeds or slows reaction time (RT) must also 

control for the presence of speed-accuracy trade-offs. That is, when an individual 

takes time to fully process a stimulus in a speeded task, prioritizing accuracy over 

speed, he or she will on average respond more slowly than another individual who 

does the reverse. In this example, it is easy to see why concluding that the second 

individual is able to process information more quickly than the first ignores 

critical information. A method is needed to integrate both speed and accuracy to 

obtain a single estimate of performance. The Ratcliff diffusion model (Ratcliff & 

McKoon, 2008) is one way to do so. The diffusion model is a computational 

model for two-choice decision tasks and derives its parameters from RT 

distributions from both error and correct responses. Specifically, the model’s 
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parameter of drift rate (v) serves as an index of processing efficiency that is 

independent of speed-accuracy trade off settings. 

Second, any experimental manipulation that degrades or improves the 

speed of processing in the context of a working memory paradigm must also 

control for the confounding effects of time-based decay of memory. That is, 

manipulations that slow or speed response times also alter overall task length, 

confounding processing speed with the amount of time that items must be 

remembered (Towse & Hitch, 1995). Correcting this confound requires that the 

amount of time memory items must be maintained between conditions be 

controlled as well. Therefore, to experimentally determine whether individual 

differences in processing speed drive individual differences in WM ability, the 

speed at which a component of a WM measure can be processed (as indexed by v) 

will be manipulated in the following study, while controlling for the amount of 

time memory items must be maintained.  

To outline the background and theoretical implications of the current 

study, WM’s basic features and importance for academic competence in both 

typically-developing children and children with ADHD will be reviewed. 

Following this, two major explanations for WM variation, that of executive 

attention and that of basic processing speed, will be explored in detail. The 

evidence for both views and the relevance of each theory to understanding WM 

deficits in ADHD will be highlighted. Finally, the current study’s design, as a way 

to explicitly test the explanation the processing speed causes individual 

differences in WM ability in both typically developing children and children with 
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ADHD will be outlined, and the implications of possible patterns of results for 

both major theories will be discussed. 
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I. Working memory, its measurement and function 

While theoretical models of WM posit different structural components and 

causes of individual variation, there are some general agreements within the field 

on the broad definition of the construct and its functional role in human cognitive 

performance.  Working memory is generally conceptualized as the ability to 

encode items, such as numbers, letters, or words, into a limited-capacity memory 

store and to retain these items during concurrent processing, which may either 

involve completing an unrelated secondary task (e.g., reading a sentence or 

making a perceptual decision) or the manipulation of the encoded information 

(Baddeley, 2012; Miyaki & Shah, 1999; Oberauer, Lewandosky, Farrell, Jarrold 

& Greaves, 2012; Unsworth & Engle, 2007). In this way, major models of WM 

distinguish this ability from that of short term memory, in which recently encoded 

information is retained, but without any concurrent processing demands other 

than simple maintenance of the memory items (Baddeley 2012; Lewandosky, 

Geiger, Morrell & Oberauer, 2010; Unsworth & Engle, 2007). WM allows for the 

manipulation of information in addition to its retention, and the separation of 

these two constructs is warranted by psychometric findings that WM appears to 

be uniquely associated with reasoning ability and higher-order cognition; WM, 

but not short term memory, has been strongly and reliably linked to reasoning 

ability and general fluid intelligence, appearing to be a domain-general function 

of the prefrontal cortex (Engle, Tuholski, Laughlin & Conway, 1999; Conway, 

Cowan, Bunting, Therriault & Minkoff, 2002), while short term memory storage 
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ability is generally linked to other abilities within the domains (e.g., verbal, 

spatial) of the memory items (Baddeley, 2012). 

The theoretical distinction between working memory and short term 

memory is explicitly operationalized in one of the most commonly used and 

empirically validated measures of working memory ability, the complex span 

paradigm (Conway, Kane, Bunting, Hambrick, Wilhelm & Engle, 2005; Daneman 

& Carpenter, 1980). This category of measures, first created by Daneman and 

Carpenter (1980), involves the presentation of memory items that are interspersed 

with attention-demanding tasks designed to tax WM. While a “simple span” task 

only involves the presentation of memory items, such as words or numbers, and 

thus indexes short term storage ability, the “secondary processing” task in 

complex span paradigms fulfills the construct’s requirement that a WM measure 

involve concurrent processing of information (Conway et al., 2005). Daneman 

and Carpenter’s (1980) reading span task requires participants to remember words 

while reading and comprehending sentences that are interspersed between the to-

be-remembered items.  In another commonly used variant, the operation span task 

(Turner and Engle, 1989), participants solve basic math problems while 

attempting to remember words. Generally, the processing task is completed prior 

to the presentation of each item in the set to be remembered. 

Complex span tasks are not the only WM measures commonly used in 

research. WM updating tasks such as the n-back, in which participants must 

modify or manipulate memory items after they are presented, are also widely used 

and have been demonstrated to index the same construct (Schmiedek, 
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Hildebrandt, Lovden, Wilhelm & Lindenberger, 2009). Though updating tasks 

present alternative operational definitions of WM, major research efforts 

investigating causes of individual variation in the construct (e.g., see Unsworth & 

Engle, 2007; Barrouillet & Camos, 2012; Bayliss et al., 2004; Schmiedek et al., 

2007) utilize complex span or paradigms derived from it. Furthermore, the 

complex span paradigm’s construct validity and reliability has been repeatedly 

demonstrated (Broadway & Engle, 2010; Redick et al., 2012) and, likely because 

of its strong validity, complex span has become the most common WM measure 

to be used in applied fields outside of cognitive psychology (Conway et al., 2005). 

A second general consensus in the research literature on WM is the 

function that it serves in human cognitive performance. Because WM allows 

individuals to not only remember information, but utilize that information in the 

service of ongoing cognitive processes, it has been theorized that this capacity is 

what allows humans to execute complex cognitive functions like reading and 

math (Baddeley & Hitch, 1974). Indeed, WM capacity has been shown to predict 

reading comprehension over and above comparable short term memory tasks 

(Daneman & Merikle, 1996) and has been linked to complex cognitive skills as 

diverse as spatial ability (Miyake, Friedman, Rettinger, Shah & Hegarty, 2001),  

mathematical competency (Nyroos & Wiklund-Hornqvist, 2012: Geary, Hoard, 

Byrd-Craven, Nugent, & Numtee, 2007), verbal ability (Alloway, Gathercole, 

Kirkwood, & Elliott, 2009), general capacity for reasoning (Kyllonen & Christal, 

1990), and overall academic achievement (Gathercole & Pickering, 2000). A 

robust relationship between WM ability and general intelligence has also been 
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established and replicated in a number of studies (Engle, Tuholski, Laughlin & 

Conway, 1999; Engle, Kane & Tuholski, 1999; Unsworth et al., 2006), 

underscoring the importance of WM as a key underpinning of both domain-

general capacities and more specific academic skills. 

Indeed, WM deficits (which have been consistently established in ADHD; 

Kasper et al., 2012; Schoechlin & Engle, 2005) both mediate the relationship 

between ADHD status and mathematics achievement (Gremillion & Martel, 

2012),  and are strongly related to children with ADHD’s ability to detect the 

central theme of reading passages, a key skill for reading comprehension (Miller 

et al., 2013). Children with ADHD also show greater difficulty developing 

automatic, skilled performance on a cognitive task with high WM load, but not on 

a task with lower WM demands (Huang-Pollock & Karalunas, 2010). Though 

there is strong evidence that WM deficits substantially drive academic problems 

seen among children with ADHD, what drives individual differences in WM 

deficits is not clear.  However, basic research on individual differences in 

executive attention and global processing speed provides two likely explanations. 
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II. Models of WM and competing theories of individual variation: 

Attention 

Working memory’s architecture has been debated since the construct was 

first defined, and thus, so too have the causes underlying its variation across 

individuals. The first major model of working memory, known as the multiple-

components model, was proposed by Baddeley and Hitch (1974) as an 

improvement on prior models of short term memory. This model posits that WM 

is a multi-component system comprised of a “central executive” control 

mechanism and two “slave systems” that, based on the demands of this executive, 

maintain and execute processing demands within their domain. The first of the 

two systems, the phonological loop, maintains verbal memory representations 

(letter, numbers, words) through memory rehearsal processes, while the second, 

the visuospatial sketchpad, is comprised of a passive store for visuospatal memory 

representations and another active maintenance mechanism similar to the 

rehearsal process in the phonological loop (Baddeley and Logie, 1999). In both 

short term stores, memory items that are not actively maintained are lost to decay. 

The role of the central executive is to control these two systems, (thus the “slave” 

term) optimally in the service of ongoing cognitive processes. In this 

conceptualization, working memory variation occurs chiefly because of 

limitations within the slave system’s capacity for maintaining memory items, and 

thus protecting them from decay (Baddeley and Logie, 1999).  
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Despite the empirical support that has accumulated for the multiple-

component model since its initial proposal (reviewed in Baddeley, 2012), newer, 

alternative models posit a single capacity of controlled attention as a limiting 

factor for WM, rather than separate short term stores for different types of 

representations. Cowan’s (1999) embedded process model laid the framework for 

these theories by presenting evidence of a single, domain-general memory store 

(assumed to be long term memory), within which exists a limited-capacity “focus 

of attention”. This focus of attention can only hold a limited number of items, 

determined to be about 4 (Oberauer & Kliegl, 2006; Cowan, 2001), and 

“activates” a further subset of items in WM by temporarily moving them in and 

out of the focus, which serves to maintain them for WM’s access, but which is 

subject to temporal decay (Cowan, 2001). This structural model of WM has also 

received strong support from neuroimaging investigations of WM’s components 

that contrast it with the multiple-component model (e.g., Chein & Fiez, 2010). 

A preeminent model that incorporates the assumptions of a long term 

memory store and capacity-limited focus of attention and that makes explicit 

predictions about the cause of individual differences is the theory of working 

memory as executive attention (Engle, 2002; Unsworth and Engle, 2007). Engle 

(2002) developed this theory of individual variation based on an accumulation of 

evidence suggesting that WM ability is strongly correlated with functions of the 

prefrontal cortex and the ability to effortfully control attention, in particular. In 

this view, WM ability reflects an individual’s capacity to voluntarily control 
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attention in the service of retaining memory items, and is thus related to 

individuals’ general capacity for executing goal-directed behavior.  

 Unsworth and Engle (2007) further elaborated the theory by proposing a 

structural model of working memory that distinguishes between primary memory 

(PM), or the store of items held within the focus of attention, and secondary 

memory (SM). In SM, WM items that have been displaced from the conscious 

focus of attention are transferred to the larger, long term memory store. As in the 

original embedded process model, PM’s capacity is limited to a small number of 

items, so additional items displace original items to the long term store. 

Concurrent processing tasks, which compete for the focus of attention, further 

displace memory items from PM, and all items that are displaced must be 

retrieved back into PM from long term memory when recall is required. This 

model is supported by findings that memory tasks, which involve concurrent 

processing, involve recruitment of the medial temporal lobe, implicated in long 

term memory, while tasks that do not involve concurrent processing demands do 

not, theoretically because, in these tasks, items are not displaced from the focus of 

attention to the same degree (Chein, Moore & Conway, 2011). Therefore, 

Unsworth and Engle (2007) argue that WM capacity reflects an individual’s 

ability to actively maintain items within the focus of attention (PM) and, when 

they are displaced by novel items or concurrent processing, to conduct a 

controlled search for the displaced items within the long term store (SM). Both 

components of WM ability, in theory, require executive functioning, or the 
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general capacity to utilize controlled cognitive processes in the service of meeting 

a goal (i.e., maintaining memory items during processing). 

 Support for the theory that WM variation occurs because of variation in 

individuals’ capacity for voluntarily controlling attention, and thus, depends on 

the functioning of the prefrontal cortex (Kane & Engle, 2002), has come from 

studies that involve comparing high- and low-WM capacity individuals’ in other 

indices of cognitive control. High-WM individuals are faster to shift attention to a 

target in antisaccade tasks, where one must resist the automatic tendency to shift 

attention to a distracting stimulus that always appears on the opposite side of the 

target in a display, while WM ability is not related to performance an prosaccade 

trials, which require only the automatic response (Kane, Bleckley, Conway & 

Engle, 2001). WM ability has also been strongly linked to performance on the 

Stroop task, a measure that requires one to voluntarily ignore an automatic 

response in favor of a conscious goal (Kane & Engle, 2003; Meier & Kane, 

2013). Additionally, studies with diverse methodologies that have found high-

WM capacity individuals tend to be more adept at maintaining task goals than 

their low-WM capacity counterparts (Marcovitch, Boseovshi, Knapp & Kane, 

2010; Redick & Engle, 2011).  

Impairment in executive attention provides an intuitive account of WM 

deficits in ADHD, as it is a disorder that, perhaps more than any other, is strongly 

associated with executive dysfunction (Castellanos & Tannock, 2002; Coghill et 

al., 2005). Thought to result from dysregulation of dopaminergic loops between 

the striatum and prefrontal cortex (Castellanos & Tannock, 2002), children with 
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ADHD have been found to have considerable deficits in executive attention and 

other related neuropsychological functions. Willcutt, Doyle, Nigg, Faraone and 

Pennington (2005), in a meta-analytic review of studies investigating the role of 

executive deficits in ADHD, determined that, while executive function deficits are 

not uniformly present in children with ADHD, executive functions from various 

domains have been consistently found to be impaired. The executive attention 

processes outlined by Engle (2002) have also explicitly been shown to be affected 

in ADHD; ADHD status and symptoms are negatively related to both antisaccade 

performance (Carr, Nigg & Henderson, 2006; Goto et al., 2010; Nigg, Butler, 

Huang-Pollock & Henderson, 2002) and stroop task performance (Barkley, 

Grodzinsky & Dupaul, 1992; Ikeda, Okuzumi & Kokubun, 2013), suggesting that, 

if executive attention is a main contributor to WM ability, ADHD-related WM 

deficits could be related to problems with this function. This claim has, in fact 

been made by several ADHD researchers (Alderson, Hudec, Patros & Kasper, 

2013; Rapport et al., 2008) 

While this line of research demonstrates the considerable amount of 

support that the theory of WM as executive attention has received, and the 

plausibility of the application of this model to explain WM deficits in ADHD, 

empirical research on the causes of developmental differences in WM ability has 

provided another potential explanation for ADHD-related deficits in WM. 
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III. Models of WM and competing theories of individual variation: 

Speed 

Several developmental studies have documented the relationship between 

WM maturation and perhaps the most basic psychometric construct that exists: 

simple speed of processing. Processing speed, or the general efficiency with 

which a given individual can successfully execute cognitive tasks, is typically 

defined as the reaction time to complete simple tasks that involve minimal 

contributions from higher cognitive functions (Fry & Hale, 2000). The speed with 

which an individual completes simple cognitive tasks from diverse domains (e.g., 

letter classification and mental rotation) tends to be highly correlated (Hale & 

Jansen, 1994), suggesting that processing speed is a domain-general function. 

This global or general processing speed improves exponentially during childhood 

and throughout mid adolescence (Hale, 1990; Kail, 1993).  

In the case of WM, a strong correlation between developmental 

improvements in processing speed and WM capacity has been established and 

replicated by several research groups. Kail and Park (1994), using a large cross-

national sample of Korean and North American children, ages, 7 to 14, found that 

age-related improvements in processing speed were directly related to both speed 

of articulation – itself a determinant of short term and working memory span – 

and working memory span. Fry and Hale (2000), in a review of prior research on 

links between speed, working memory, and general intelligence  found that the 

vast majority of variance in WM ability accounted for by age – all but 3% – was 
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variance shared with processing speed. These analyses strongly suggest that 

global processing speed mediates the relationship between age and WM ability 

(Fry & Hale, 2000), a relationship that has been demonstrated to be independent 

of whether speed of processing is measured in a visual or verbal domain (Bayliss, 

Jarrold, Baddeley, Gunn and Leigh, 2005).  

The time-based resource-sharing (TBRS) model creates a structural 

framework to explain these findings. This model posits that items in WM decay 

unless they are constantly refreshed by a capacity-limited attentional focus (i.e., 

attentional “bottleneck”), that secondary tasks prevent refreshing, and, thus, that 

memory recall on complex span tasks is directly related to the ratio of available 

refreshing time to time spent distracted by the secondary task (Portrat, Camos & 

Barrouillet et al., 2009). Support for this account comes from studies in which 

both the difficulty of and time available for secondary tasks is manipulated. When 

either the amount of time available for processing of the secondary task is 

increased, or the difficulty of the secondary task is decreased, both of which 

provide more free time for the refreshing of the memory items, memory recall 

improves (Barrouillet & Camos, 2012). For example, Gaillard, Barrouillet, 

Jarrold, & Camos (2011) demonstrated that when 11-year old children are given a 

more difficult distractor task than 9-year-old children (adding 2 to a digit in each 

interval rather than adding 1), effectively equating the time spent completing the 

distractor for both age groups, age-based differences in memory recall are greatly 

reduced. This finding provides a convincing explanation for processing speed’s 

influence on memory span: older children can process distractor tasks in shorter 
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amounts of time, which allows them more free time for refreshing and in turn 

prevents the decay of memory items. 

However, in these experimental manipulations, relatively long intervals (in 

some conditions as much as 1940 ms) are left between the end of the distractor 

task and presentation of the next item (Gaillard et al., 2011). Typical complex 

span tasks, by contrast, leave little, if any, time explicitly free for refreshing or 

articulatory rehearsal beyond the time during the presentation of memory items 

(Redick et al., 2012). Thus, in studies that support TBRS (e.g, Gaillard et al., 

2011; Barrouillet, Bernardin & Camos, 2004), it is not clear whether such results 

would be replicated under more typical complex span conditions. Because of this 

difference, the TBRS paradigm may reflect short term memory rather than 

working memory in some conditions, as there are very low demands for 

concurrent processing, which most major WM theories posit as a fundamental 

characteristic of the construct (Baddeley 2012; Lewandosky, Geiger, Morrell & 

Oberauer, 2010; Unsworth & Engle, 2007). In addition, the empirical studies 

supporting the model have thus far used mean RTs as an index of how long 

individuals spend processing secondary tasks relative to refreshing memory items. 

However, RT lengths are affected by multiple processes in addition to the task 

processing component, including motor preparation, other cognitive processes 

that may take place between the stimulus onset and the decision, and 

speed/accuracy trade-offs (Ratcliff & McKoon, 2008). Despite these limitations in 

the current literature testing TBRS, the model provides a causal framework to 
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explain why differences in processing speed exert a strong influence on WM 

ability. 
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IV. Capturing differences in speed: reaction time components and 

individual differences in WM 

The relationship between processing speed and WM ability in the 

individual, rather than developmental, differences literature underscores the need 

for precise formal definitions of the construct of processing speed. Individual 

difference studies using mean reaction time data from traditional psychometric 

measures of speed have failed to find results consistent with the hypothesis that 

individual variation in speed drives individual variation in adults’ WM ability 

(Redick, Unsworth, Kelly & Engle, 2012). However, using mean reaction time 

data collapses an index of cognitive processing speed with a multitude of indices 

of other processes, such as motor response time, lower level perceptual processes, 

and response conservatism (Ratcliff & McKoon, 2008). Doing so can obscure the 

relationship between processing speed and other variables, such as WM ability, 

because of the influence of these extraneous factors on RT. A more detailed 

review of computational methods used to index the speed of cognitive processing 

is necessary to frame the findings of individual difference studies on the 

relationship between speed and WM. 

The use of mathematical models to explain inter- and intra-individual 

variability in reaction times has contributed to research on both neural processes 

underlying simple decision making and human processing efficiency on simple 

decision tasks (Smith & Ratcliff, 2004). These models generally share a set of 

biologically-validated assumptions about how humans make simple decisions: 1) 

quantitative evidence for each possible response in the decision task accumulates 
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over time in some manner, which, as animal research has suggested, reflects an 

increase in neural firing within areas corresponding to that response (Schall, 

2003), until a response threshold of activation, predetermined by the individual, is 

reached by one of the response accumulators and that response is chosen, 2) this 

evidence gathering process is inherently noisy, so between- and/or within-trial 

variability in the accumulation process must be used to account for the substantial 

within-condition and within-subject variability in reaction times, 3) evidence for 

one decision decreases activity in the accumulators of opposing decisions, 

presumably through lateral inhibition processes and 4) reaction times contain a 

“nondecision” component, which comprises of lower-level perceptual and motor 

processes unrelated to the cognitive processing of the decision (Smith & Ratcliff, 

2004). These models can both explain the basic processes that underlie simple 

decision making and be used to index individual differences in these processes 

when fit to empirical data. 

Traditional accumulator models, such as the leaky competing accumulator 

model (LCA: Usher & McClelland, 2001), have framed decision processes as 

competitions between discrete accumulators. In the LCA, each response 

accumulator gains activation as evidence for that response is acquired, but loses 

activation both to time-based decay and lateral inhibition from other 

accumulators. Eventually, in trials where error variance has not pushed an 

incorrect accumulator higher than the correct accumulator, the accumulator for 

the correct response reaches the response threshold first. An individual’s drift 

rate, or the rate at which evidence accumulates for the correct response 
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accumulator (Usher & McClelland, 2001) indexes, depending on the dependent 

variable of interest, the quality of the stimuli in the decision (i.e., difficulty of the 

decision) or the efficiency with which an individual can correctly execute a 

simple decision (Ratcliff & McKoon, 2008). Using the assumptions of lateral 

inhibition, time-based decay and variability in both, the LCA accounts for what 

amount to two key goalposts of decision-making models: the ubiquitous positive 

skew of human reaction time distributions and the phenomenon of fast errors 

under conditions that stress speed and slow errors in conditions that stress 

accuracy (Smith & Ratliff, 2004).  

A model that simplifies some assumptions of the LCA while still 

explaining these reaction time phenomena adequately, and one that has been used 

extensively outside of the field of mathematical psychology, is the Ratcliff drift 

diffusion model (Ratcliff & McKoon, 2008). This model frames a two-choice 

decision as a single evidence accumulation process that drifts between two 

response boundaries (correct and incorrect) until a response is generated by 

contact with one (See Figure 1). In this way, the model accounts for lateral 

inhibition implicitly; evidence for one decision degrades evidence for the other 

automatically as the single diffusion process drifts away from the latter boundary. 

The drift rate (v) is the average rate at which the process moves toward the correct 

boundary, and errors occur when within-trial variability (captured in a drift 

variability parameter) causes the drift process to terminate at the incorrect 

boundary. Drift rate of the diffusion process to the correct response varies with 

both experimental manipulations, in which more difficult tasks slow drift rate 
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relative to easier tasks, and with individual differences in speed of processing, as 

faster drift rates being associated with generally faster populations (Ratliff & 

McKoon, 2008). Consistent with the idea that drift rate provides an index of 

global processing efficiency, this parameter has also been shown to increase with 

maturation (Ratcliff, Love, Thompson & Opfer, 2012). The parameter indexing 

the distance between the correct and error response boundaries, boundary 

separation (a), accounts for speed-accuracy tradeoffs; individuals who seek less 

confirmatory evidence before initiating a decision have narrower boundaries, 

allowing the diffusion process to terminate at a boundary sooner, but leading to 

more terminations at the incorrect boundary from noise. As in all decision models 

(Smith & Ratcliff, 2004), the model also includes a parameter that indexes the 

time spent completing processes not associated with cognitive processing, 

nondecision time (Ter).  

Fitting the diffusion model to empirical data and using the parameter value 

of drift rate to index cognitive speed as a means of operationalizing processing 

efficiency has several key advantages over the analysis of mean reaction times. 

First, the a parameter controls for possible confounds related to individuals’ 

speed-accuracy trade-off settings which, if not considered, may weaken 

relationships between speed and other measures. In one example, with all other 

parameters equal, individuals with narrow boundaries will have faster reaction 

times. Under the traditional mean reaction time mode of analysis, they could then 

be assumed to have high speed, despite the fact that their error rates are much 

higher than those with wider boundaries. The diffusion model accounts for both 
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speed of response and accuracy of response within a single framework, preventing 

contradictory or deceptive results where speed and accuracy data do not align, and 

utilizing information from incorrect trials which are typically disregarded, 

providing a more advanced index of processing efficiency than simple analysis of 

mean or median reaction times. In a related empirical example, older adults have 

been found to display longer reaction times not because of slower drift rates, but 

because of conservative responding (wider boundaries) (Ratcliff, Thapar & 

McKoon, 2004).  

Secondly, factoring out components of reaction time not related to the 

processing of the decision (i.e., Ter) isolates cognitive efficiency from portions of 

RT related to extraneous factors. These non-decisional components are assumed 

to include the encoding of stimuli and motor preparation processes, but in theory, 

Ter should account for all processes, cognitive, perceptual or otherwise, occurring 

during the reaction time that are not directly involved in the decision process 

(Ratcliff & McKoon, 2008). In the case of a secondary task within a complex 

span WM measure (in which little to no time is left to explicitly refresh memory 

items), Ter would also include the component of the RT during which an 

individual refreshes memory items, either before or after the decision is made 

(Figure 1B). Within the TBRS model, then, Ter would represent the portion of RT 

during which the attentional bottleneck is not taken up by the distractor decision 

and could be used for refreshing. Thus, along with v, Ter should be related to 

memory recall; greater observed Ter during the RT to distractor tasks should 
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correspond to greater memory retention, as the participant has more time to 

refresh relative to the amount of time that is spent processing the distractor task.  

Advocates of diffusion model analysis of human cognitive data have 

demonstrated the benefits of using drift rate as an index of cognitive efficiency 

over traditional analysis (Ratcliff & McKoon, 2008; Ratcliff, Thapar & McKoon, 

2004), and, in turn, have spurred the investigation of how individuals’ drift rate 

relates to WM ability. For example, Schmiedek and colleagues (2007) fit 135 

adult participants’ reaction time and accuracy data from a battery of these tasks to 

the diffusion model. Schmiedek et al. (2007) formed a latent variable on to which 

estimates of individuals’ drift rate on each simple task were loaded and used 

structural equation modeling to investigate the relationship between drift rate, the 

other diffusion model parameters, and individuals WM capacity. Their findings, 

that over 42% of the variance in WM capacity was explained uniquely by 

individuals’ drift rate (the most out of all model parameters) strongly suggests that 

individual differences in WM ability, as in the developmental literature, can be 

attributed to simple efficiency of processing. This work both demonstrates how 

the use of alternative techniques for operationalizing cognitive speed may provide 

a more nuanced measure of the construct and underscores findings from the study 

of WM development that suggest that WM variation depends largely on basic 

processing speed. 
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V. Using diffusion modeling to understand the role of speed in 

individual differences and ADHD-related WM impairment 

In addition to deficits in executive processes, less efficient global 

processing of information has also been a common finding in children with 

ADHD. Reaction times of children with ADHD on a variety of tasks are 

characteristically slower and more variable than those of typically-developing 

children, and responses are more likely to be inaccurate (Castellanos et al., 2005; 

Hervey et al., 2006; Klimkeit, Mattingly, Sheppard, Lee & Bradshaw, 2005). 

Studies of children with ADHD’s reaction times to simple tasks have found 

evidence for reduced speed (Holdnack, Moberg, Arnold, Gur & Gur, 1995; Katz, 

Brown, Roth & Beers, 2011; Shanahan et al., 2006), suggesting that this 

phenomenon may be due to lower overall processing efficiency.  

However, alternative explanations for slow and variable reaction time 

include the theory that children with ADHD have slowed motor responses. 

Children with ADHD have been consistently identified as having problems with 

the coordination of movement (Pitcher, Piek, & Hay, 2003; Rommelse et al., 

2009), suggesting that slowed and variable responding may occur due to problems 

in the execution of motor responses rather than the slowing of the cognitive 

processes that precede them. As problems with motor coordination and 

preparation would also lead longer reaction times through increased time spent on 

responding (i.e., longer Ter), this explanation makes similar predictions about the 

mean reaction times of children with ADHD as the theory that they have lower 

processing efficiency, highlighting the need for a methodology that can 
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distinguish between the unique contributions of cognitive and motor processes to 

reaction time. 

Similarly to the assessment of speed in aging populations, speed-accuracy 

tradeoffs may also be a concern when assessing speed of processing in ADHD. 

Consistent findings of response inhibition deficits in children with ADHD 

(Wilcutt et al., 2005) suggest that children with ADHD may display more 

“impulsive” processing, or, in the context of the diffusion model, narrower 

boundaries. In light of the alternative explanation of motor coordination problems 

as the cause of slowed RTs and the possible confound of speed-accuracy trade-

offs in ADHD, the utility of using alternative techniques for analyzing reaction 

times in this population, such as that used by Schmiedek et al. (2007), is clear. 

The application of mathematical models for reaction time analysis, and the 

drift diffusion model (Ratcliff & McKoon, 2008) in particular, has largely 

supported the view that ADHD effects on reaction time speed and variability are 

due to less efficient processing overall. Karalunas, Huang-Pollock and Nigg 

(2012) found evidence of slower drift rates on a two-choice decision task in two 

independent and geographically distinct samples of children with ADHD and age-

matched controls, while other components of reaction time distributions did not 

display reliable group differences. The finding of slowed drift rate in ADHD has 

since been replicated in another study using different two-choice tasks (Metin et 

al., 2013), indicating that inefficient processing appears to be a robust, general 

cause of ADHD-related performance deficits. Furthermore, a meta-analysis of 

ADHD individuals’ reaction times to continuous performance tasks (CPTs) using 
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the EZ-diffusion model (Wagenmakers, van der Maas & Grasman, 2007), a 

closely related variant, also found that performance deficits on CPTs, which are 

often assumed to index attentional focus, could be attributed to slowed drift rate 

instead (Huang-Pollock, Karalunas, Tam & Moore, 2012). As this evidence 

suggests that children with ADHD have slower drift rates in general, and drift rate 

has been found to be strongly linked to individual differences in WM capacity 

(Schmiedek et al., 2007), an alternative to the executive attention account of WM 

deficits in ADHD appears to be possible; less efficient information processing in 

ADHD, indexed by slower drift rates, impairs WM ability in this population.  

Evidence for this account has, in fact, been identified. Karalunas and 

Huang-Pollock (2013) found that drift rate partially mediated the relationship 

between ADHD status and WM performance. The similarity of this study’s results 

with the findings of Schmiedek et al. (2007) strongly suggests that efficiency of 

processing on simple cognitive tasks is highly predictive of WM ability and 

indicates that observed inefficiency of processing in ADHD may be a cause of 

WM deficits.  

However, as most studies linking efficiency of processing to WM ability 

in ADHD and in other individual differences (e.g., Karalunas & Huang-Pollock, 

2013; Schmiedek et al., 2007; Bayliss et al., 2005) thus far have been entirely 

correlational, a causal relationship has not yet been established between speed and 

span. Since the causal direction of this relationship is not yet clear, proponents of 

the model of WM as executive attention have posited that the link between drift 

rate on simple tasks and WM ability may, at least partially, be an artifact of 
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inconsistent attention or “mind wandering” during simple tasks in individuals 

with poor attentional control (McVay & Kane, 2012). The experimental literature 

on the TBRS model has provided some evidence that processing speed 

differences cause WM ability differences by limiting the amount of time one has 

to refresh memory items, but studies that support this model are limited by two 

factors. First, tasks used in studies supporting the TBRS model (Gaillard et al., 

2011; Barrouillet, Bernardin & Camos, 2004) leave more time available for 

refreshing than typical complex span tasks. Second, these studies have indexed 

speed as mean reaction times, rather than utilizing a formal model, such as the 

diffusion model, that takes latency of responses, accuracy of responses, and other 

sub-components of RT into account. Furthermore, there have not been 

experimental attempts to demonstrate the causal relationship between speed and 

WM in ADHD, limiting this model’s ability to explain WM deficits specific to 

this population. The current study is designed to address these limitations and 

gaps in the literature by directly testing whether manipulating processing speed, 

as indexed by drift rate in the diffusion model, causally influences WM ability in 

children with ADHD in a manner consistent with the TBRS model. 
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VI. Current Study 

While the theory of WM as executive attention provides a compelling 

framework with which to explain ADHD-related WM impairment (Alderson, 

Hudec, Patros & Kasper, 2013; Rapport et al., 2008), an alternative explanation 

holds that deficits in basic processing efficiency, as indexed by drift rate, are the 

cause of the maladaptive individual differences in WM ability often found in 

children with ADHD (Karalunas & Huang-Pollock, 2013). Therefore, while the 

role of processing efficiency in WM ability has not been causally determined, 

doing so may be vital to understanding the core causes of WM deficits in children 

with ADHD. The current study is designed to experimentally test the hypothesis 

that individual differences in processing efficiency, as indexed by drift rate, 

establishes limits on WM capacity and is the cause of ADHD-related WM 

deficits. 

The study uses a newly designed WM measure; a modified version of a 

well-validated complex span task in which the drift rate of the secondary task 

(“numerosity task”; (Ratcliff & McKoon, 2008) can be easily manipulated by 

changing the difficulty of the secondary task. In this way, the efficiency with 

which the secondary task can be processed is increased or decreased, and the 

effects of this manipulation can be directly observed independently of speed-

accuracy trade off effects. To control for task duration, which may influence 

memory recall by simply increasing or decreasing the amount of time items must 

be remembered (Towse & Hitch, 1995), the paradigm equates the time 

participants are given to complete the distractor tasks across difficulty conditions. 
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By allowing participants a limited amount of time to complete successive 

distractor trials, the task provides no free time for refreshing only, fulfilling the 

concurrent processing constraint of the construct not met by the common 

experimental paradigm used in research on the TBRS model. 

In addition to controlling for speed-accuracy trade-offs and providing an 

advanced estimate of processing efficiency, diffusion modeling provides an 

estimation through Ter of the amount of time during the secondary task that is not 

directly spent on the decision process itself. Though most commonly interpreted 

as an index of stimulus encoding time and the time for motor preparation, Ter 

represents the proportion of RT that is not directly spent on the decision process, 

and so, in the context of a complex span task in which no time is left explicitly for 

the refreshing of memory items, could theoretically also represent the amount 

time spent refreshing (See Figure 1B). This becomes important because if drift 

rate is slowed in the difficult condition, the distractor decision would fill the 

attentional bottleneck for a greater amount of time, leaving less time available for 

refreshing between decision processes in the distractor block (See Figure 1C). A 

second way, if refreshing does occur during the Ter proportion of RT between 

decision processes, that decreases in drift could negatively impact memory recall 

in the context of the current task would be by decreasing the opportunities for 

refreshing in between decision processes; slower drift would lead to increased RT 

for each decision, so that during a time-limited block of distractor trials, there 

would be fewer opportunities between successive decision processes to refresh the 

to-be-recalled information (See Figure 1C/D). 
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Both possibilities are consistent with TBRS model, as both hold that the 

amount of refreshing an individual can engage in is reduced by decreases in drift 

rate and corresponding increases in the time it takes the attentional bottleneck to 

process distractor decisions. However, they produce distinct predictions. If 

reduced drift decreases the proportion of time during the distractor block that 

individuals are able to refresh, mean RTs would remain relatively similar between 

high and low drift rate conditions, but the proportion of RT spent on non-decision 

processes (i.e., Ter/RT) would decrease. If reduced drift rate instead reduces the 

number of opportunities between decision processes that individuals have to 

refresh, mean RT would be longer in the slow drift rate condition, but Ter would 

not change (see Figure 1 C/D). In either case, individuals may be able to 

compensate for increases in the time the decision process takes up by reducing 

response caution (a); as drift slows and the attentional bottleneck is increasingly 

occupied by time spent on the distractor task, this time could be reduced by 

lowering a. Thus, these patterns of parameter value differences between the 

difficulty conditions may further support the TBRS model’s account of how speed 

influences WM ability. 

 If low processing efficiency is a plausible major factor that impairs WM 

ability in children with ADHD, children with ADHD will display a similar effect 

of processing speed on memory recall to typically-developing children. If the WM 

ability of children with ADHD is not majorly influenced by speed of processing 

and instead is due to executive attention, a smaller or non-significant effect in this 

group would be predicted. 
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Hypotheses 

Hypothesis 1: There will be a main effect of difficulty on v in which difficult 

secondary tasks will result in slower v than easy secondary tasks.  

Hypothesis 2: If processing speed (as indexed by v) is a causal factor in 

determining WM capacity, then WM span on blocks with easy secondary tasks 

(fast v condition) will be greater than memory recall on blocks with difficult 

secondary tasks (slow v condition). However, if speed is not a causal factor in 

determining WM capacity, this relationship would not be observed. 

Hypothesis 3: If an association between drift and WM is seen, then the TBRS 

model of WM suggests that this relationship exists because slowed speed 

decreases the amount of time that attention can be devoted to memory refreshing. 

If this is true, in the current task, this could occur either because reduced drift rate 

decreases the proportion of time during the distractor block that can be spent 

refreshing, indexed by the ratio of Ter to mean RT, or by increasing RT, and thus 

reducing the number of opportunities for refreshing between decision processes. 

If the former explanation is correct, the proportion of RT taken up by nondecision 

processes (Ter/RT) will be lower in the difficult condition than the easy condition, 

and be lower in the group with slower drift rates (expected to be the ADHD 

group). If the latter is correct, the nondecision time is expected to remain constant, 

but the mean of RT is expected to be higher in the difficult condition and in the 

group with slower drift rates. 

Hypothesis 4. It is expected that ADHD-related deficits in WM are determined 

by the same mechanism as individual differences in WM capacity. Therefore, 
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both typically-developing children and children with ADHD will display a similar 

effect of v on WM, demonstrating that processing speed, rather than another 

factor (e.g., executive attention) drives WM ability in both groups. 
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Methods 

 

Sample 

Children, ages 8 through 12, were recruited from a community sample as 

part of an ongoing study on attention and learning processes in school-age 

children with and without ADHD. Children identified as having ADHD (N=72: 

47 male) were required to meet DSM-IV criteria for ADHD including age of 

onset, duration, cross situational severity, and impairment as determined by a 

parental report on the Diagnostic Interview Schedule for Children version IV 

(DISC-IV) (Shaffer, Fisher, & Lucas, 1997). At least one parent and one teacher 

report of behavior on the Attention, Hyperactivity, or ADHD subscales of the 

Behavioral Assessment Scale for Children (BASC-2: Reynolds & Kamphaus, 

2004) or the Conners’ Rating Scales (Conners': Conners, 2001) was required to 

exceed the 85
th

 percentile (T-score>61) was also required.  Children prescribed a 

psychostimulant medication were required to cease taking their medication at 

least 24 hours in advance of the day of testing.  

Non-ADHD controls (N=27: 10 male) had never been diagnosed or treated 

for ADHD in the past. They did not meet criteria for ADHD on the DISC-IV and 

were below the 79
th

 percentile (T-score≤58) on all of the above listed rating 

scales. To equate IQ levels between the ADHD and control groups so that group 

differences could not be attributed to differences in general intelligence, potential 

non-ADHD controls with an estimated IQ>115 were excluded from participating 

in the study. In addition, children in both groups with an estimated IQ<80 were 

also excluded.  
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The presence of common childhood disorders, such as anxiety, depression, 

oppositional defiant disorder, and conduct disorder was assessed using the DISC-

IV, but the presence of these conditions was not exclusionary. The sample 

demographics were as follows: (reflecting regional demographics): 72.7% 

Caucasian/non-Hispanic, 8.1% Caucasian/Hispanic, 2% other Hispanic, 7.1% 

African American, 1% Asian, 6.1% mixed and 3% unknown/missing.  

Cognitive Screening Measures. A 2-subtest short form (Vocabulary, 

Matrix Reasoning) of the Wechsler Intelligence Scale for Children—IV (WISC-

IV: Wechsler, 2003) provided an estimated IQ for participants. The correlation of 

the 2 subtest short form with the full 12-subtest battery is 0.87 (Sattler, 2008).  

Experimental Task  The experimental task used was a modified version of 

the symmetry span task obtained from Randall Engle and colleagues and modified 

for use in school aged children and for the particular goals of the task (Unsworth, 

Heitz, Schrock, & Engle, 2005). In order, children completed a short term visual 

spatial recall block, a numerosity decision block, and a complex span test block, 

described below. 

Recall block. In the first block, children viewed a 4x4 grid in which one 

square at a time randomly turned red (the target) at a presentation time of 2000ms. 

Children were told to remember the location of the target, and the number of to-

be-remembered targets varied from two to nine, with three trials presented at each 

set size in random order. The partial credit load scoring system, in which children 

receive 1 point for each target correctly recalled in the correct position (Conway 

et al., 2005) was used as an index of short term memory as a baseline 
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measurement to ensure the effectiveness of the secondary distractor task in the 

complex span blocks of the task negatively impacts memory retention.  

Numerosity decision block. Based on the numerosity decision task 

(Ratcliff & McKoon, 2008; Ratcliff, Love, Thompson & Opfer, 2012), in the 

second block participants were presented with arrays of asterisks (“candy”) on a 

10 × 10 invisible grid within a square box (see example stimulus, Figure 2) and 

were asked to determine whether the arrays contained a “large” (>50) or “small” 

(<50) amount of candy. Children were shown examples of “large” (100 asterisks) 

and small (21 asterisks) “boxes of candy”, and were told to click the right button 

on the computer mouse if the box contains a small amount and the left mouse 

button if the box contains a large amount. Children were told to weight speed and 

accuracy of response equally, “It is very important that you get as many correct as 

you can and also make your decisions as fast as you can”.  

One hundred arrays were presented sequentially, in random order, and no 

arrays are repeated. Fifty trials in the sequence were from the difficult (slow v) 

condition, with half containing 41-45 asterisks (small) and half containing 56-60 

asterisks (large). The remaining 50 trials were from the easy (fast v) condition, 

with half containing 31-35 asterisks (small) and half containing 66-70 asterisks 

(large). The number of asterisks in each difficulty condition was adopted from 

prior research investigating the effect of task difficulty on drift rate in different 

age groups (Ratcliff et al., 2012). 

Each individual trial began with a 400ms blank screen, used as a negative 

mask. Following the mask, the trial array is presented and remains the only item 
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on the screen until a response was recorded. Immediately following the response, 

the word “Correct” or “Wrong” was presented in blue text below the stimulus 

array for 1000ms.  

Complex span block. In the final block, items in the memory recall task 

were interleaved with rounds of numerosity discrimination tasks. Before the 

presentation of each memory item, participants were given 3 seconds to complete 

as many numerosity discrimination trials (which were selected at random) as 

possible. After each decision, the array was followed by a blank screen for 100ms. 

The next array then appeared, and the process is repeated until the 3 second cutoff 

point is reached. At the cutoff point, the next to-be-remembered visual spatial 

target was presented immediately, without allowing the participant to respond to 

the final array presented. The cutoff procedure was employed to ensure that all 

distractor rounds were of the same length, and specifically that difficult distractor 

rounds do not last longer than easy distractor rounds. In this way, the task controls 

for time spent completing the distractor task. No feedback was given on the 

numerosity decisions in this block because error feedback may be especially 

distracting. If there were more errors in one of the two experimental conditions, 

error feedback could become a confounding factor.  

Participants completed four trials of each set size (ranging from two to 

seven memory items) in random order, making twenty four recall trials in all. 

Twelve of the trials presented were randomly selected to contain difficult 

numerosity distractor decisions while the remaining twelve contained easy 

distractor decisions. The partial credit load scoring system was also used as the 



39 
 

dependent variable of memory recall. Response time and accuracy data from the 

trials in the distractor rounds were fit to the diffusion model (procedure described 

below) to obtain an estimate of drift rate for the secondary task in each condition. 

Prior to the experimental block, participants completed a practice block that 

contained three trials at a set size of two. 

Procedure 

  In both age groups, participants completed the experimental paradigm and 

cognitive screening measures as part of a larger battery of cognitive tasks and 

neuropsychological tests that includes other measures of working memory. 

Children’s parents were compensated with a gift card of at least $30 and children 

were allowed to choose a small toy (<$1) from a prize box.  

Diffusion Model Fitting 

 After data collection, the response time and accuracy data from the 

secondary task were fit to the diffusion model to obtain estimates of the v 

parameter for each participant in each condition (easy/difficult) using the Fast-dm 

modeling program (Voss & Voss, 2007), downloaded from the authors’ website: 

http://www.psychologie.uni-heidelberg.de/ae/meth/fast-dm. Fast-dm estimates 

diffusion model parameters by fitting a cumulative distribution function (CDF) of 

correct trials (represented as “RT”) and errors (represented as “-RT”) to a CDF 

predicted by the best-fitting set of diffusion model parameters for each condition. 

After initial parameter values are determined using the EZ-diffusion diffusion 

model program (Wagenmakers, Van Der Maas, & Grasman, 2007), Fast-dm uses 

a simplex-downhill method to fit the predicted and observed distributions in three 
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successive attempts with increasingly strict fit criteria until the best possible 

model-fit (as indexed by p-value) is achieved. As Fast-dm was able to fit all 

participants’ data to the model well (all ps>.16), no participants were excluded 

from analysis due to poor model fit.   

Data Analysis Plan 

 Demographics. Initial analyses comparing the ADHD and control groups 

on parental education and income were conducted using one-way ANOVAs, with 

group membership as the independent variable and each demographic variable as 

a dependent variable. To compare the groups’ race and ethnicity status, Chi 

Square tests were used.  

 Validation of the Measure. For the new complex span paradigm to be 

validated as working memory measure, rather than a measure of short term 

memory (which includes memory recall but not concurrent processing of 

secondary tasks) it must be determined that the secondary numerosity decision 

task degrades memory retention. To ensure that the secondary distractor task in 

the complex span block negatively impacts memory retention, individual’s scores 

on the recall-only block of the task and on the complex span block were converted 

into percentages that reflect the amount of items remembered out of the total 

amount of items displayed. Following this, recall on the recall-only block and 

recall on the complex span block were compared using a repeated-measures 

ANOVA. If, as expected, participants remember a significantly greater percent of 

items in the recall-only block than on the complex span block, this would indicate 
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that the numerosity decision task affects memory retention and lends support to 

the paradigm as a valid measure of working memory.  

 Hypothesis Testing. To test the main hypotheses and exploratory 

hypotheses of the study, four 2 × 2 (Difficulty × Group) repeated-measures 

ANOVAs were conducted on v, a, and Ter on the distractor task rounds and 

memory recall. All ANOVAs had Difficulty condition (2: easy/difficult) as a 

within-subjects factor and Group (2: ADHD/control) as a between-subjects factor.  

For the first ANOVA (v), main effects of difficulty condition and ADHD 

status were expected, with participants displaying faster v in the easy condition 

than the difficult condition (supporting Hypothesis 1) and controls having 

significantly faster v than children with ADHD (supporting Hypothesis 4). No 

specific interaction effects on v were expected.  

For Ter, no effects of Difficulty or Group were expected (Hypothesis 2A). 

For a, no effect of group was expected. However, in line with the TBRS model, a 

main effect of Difficulty was anticipated, in which participants strategically 

decrease a in the difficult condition to increase refreshing time (Hypothesis 2B).  

For the ANOVA on memory recall, main effects of difficulty condition 

and ADHD status were expected. For the main effect of ADHD status, it was 

expected that typically-developing children would display greater memory recall 

than children with ADHD, supporting Hypothesis 4. For the main effect of 

difficulty condition, it was expected that memory recall in the easy condition 

would be greater than memory recall in the difficult condition. This would lend 

support to Hypothesis 3A, that increasing the difficulty and thus decreasing the 
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processing efficiency of the secondary distractor task in a working memory 

measure, even when controlling for processing time, can decrease memory 

retention.  Importantly, no Diagnosis × Group interaction was expected, 

supporting the prediction that processing speed is directly related to WM ability in 

both typically-developing children and children with ADHD (Hypothesis 5A). 

An exploratory analysis investigating the independent effects of each 

diffusion model parameter on memory recall was also conducted. A multiple 

regression analysis was run in which individuals’ v, a, and Ter (averaged across 

difficulty conditions) were entered as predictors and memory recall (also 

averaged) was entered as the dependent variable. It was anticipated that, as in 

prior research (e.g. Karalunas & Huang-Pollock, 2013), v and memory recall 

would be positively related. In line with the TBRS model, it was also expected 

that a would be negatively related to WM ability (as reduced a would increase 

opportunities for refreshing and thus memory recall ability) and Ter would be 

positively related to WM ability, as this would indicate greater time spent on 

refreshing processes during the secondary task block. 
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Results 

Preliminary Group Analyses. Table 1 provides descriptive statistics. 

Comparisons of symptom counts indicated that children with ADHD displayed 

more inattentive, F(2)=267.98,p<.001, and hyperactive/impulsive, 

F(2)=54.65,p<.001, symptoms than controls. There were no statistically 

significant group differences in FSIQ, F(2)=1.30,p=.275, or age, 

F(2)=1.31,p=.277. 

Validation of WM Measure. A Span Type (2: Simple/Complex) × Group 

(2: ADHD/Control) repeated measures ANOVA comparing the percentage of 

items recalled on the recall-only vs. complex span portions of the task confirmed 

that participants recalled fewer items while concurrently performing the 

numerosity-discrimination task, F(1,97)=83.98,η
2
=.46,p<.001, thus validating this 

portion of the task as a measure of WM. A smaller interaction effect was also 

discovered, F(1,97)=5.64,η
2
=.06,p=.02, in which children with ADHD displayed 

greater performance decrements when the secondary task was added than 

typically-developing children (see Figure 3). However, inspection of the post hoc 

analyses indicated that both children with ADHD, F(1,71)=106.44,η
2
=.60,p<.001, 

and typically developing controls, F(1,26)=26.43,η
2
=.50,p<.001, displayed 

performance decrements in the complex, relative to simple span block. 

Practice Numerosity Decision Trials. RT, accuracy, and diffusion model 

parameter data from the numerosity practice block is displayed in Figure 4. 

Children were slower to respond on the practice trials in the difficult condition 

than those in the easy condition, F(1,97)=35.18,η
2
=.27,p<.001, and children with 
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ADHD displayed slower RTs overall, F(1,97)=9.21,η
2
=.09,p=.003. Children were 

also less accurate in the difficult condition, F(1,97)=177.69,η
2
=.65,p<.001, and 

children with ADHD were less accurate overall, F(1,97)=119.70,η
2
=.10,p=.001. 

While children with ADHD displayed more variable RTs overall, 

F(1,97)=109.27,η
2
=.09,p=.002, there were no differences between, 

F(1,97)=1.17,η
2
=.01,p=.28, or interactions with, F(1,97)=.10,η

2
<.01,p=.76, 

difficulty condition. No interactions were detected in mean RT, 

F(1,97)=.09,η
2
<.01,p=.77, or accuracy, F(1,97)=1.73,η

2
=.02,p=.19. 

Only 50 trials in each difficulty condition were presented during the 

practice block and thus only 50 trials per condition were entered into Fast-dm. 

Traditionally, diffusion model estimates are made when there are at least 80 trials 

available, although Fast-dm has been demonstrated to recover parameters well 

from as few as 20 RTs (Voss & Voss, 2007). Thus, some caution may be 

warranted because the lower trial numbers may have led to unstable estimates of 

parameters. Regardless, all fits appeared to be adequate (all p > .45). Diffusion 

model estimates in the practice block revealed that children displayed slower drift 

rate, F(1,97)=57.63,η
2
=.64,p<.001, narrower boundary separation, 

F(1,97)=29.36,η
2
=.23,p<.001, and longer nondecision times, 

F(1,97)=23.18,η
2
=.19,p<.001, in the more difficult, relative to the easy condition. 

Children with ADHD displayed slower drift rate, F(1,97)=18.68,η
2
=.16,p<.001, 

and wider boundary separation, F(1,97)=7.74,η
2
=.07,p=.006, than controls, but 

did not differ in nondecision time, F(1,97)=.10η
2
<.01,p=.75. No significant 

interactions were identified (all ps>.056).  
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Comparison of diffusion model parameters in the practice block with those 

during the complex span task revealed that children displayed slower drift rate, 

F(1,97)=288.44,η
2
=.63,p<.001, and shorter nondecision time, 

F(1,97)=239.68,η
2
=.71,p<.001 , in the complex span block. An interaction was 

detected, F(1,97)=6.74,η
2
=.07,p=.011, in which children with ADHD lowered 

boundary separation in the complex span block, F(1,72)=8.74,η
2
=.11,p=.004, but 

typically developing controls did not show a significant effect, 

F(1,26)=2.72,η
2
=.10,p=.11. 

Numerosity Decision during Complex Span Task. RT and accuracy data 

from the numerosity discrimination task when it was embedded in the complex 

span task are displayed in Table 2 and Figure 5. Children with ADHD were less 

accurate, F(1,97)=13.62,η
2
=.12,p<.001, and had more variable RTs, 

F(1,97)=5.71,η
2
=.06,p=.019, than controls. There were no effects of group in 

mean RT, F(1,97)=.39,η
2
=.004,p=.53. Effects on all diffusion model parameters 

are displayed in Figure 6. As expected, children with ADHD displayed slower 

drift rates than their typically-developing counterparts, 

F(1,97)=14.92,η
2
=.13,p<.001, though there were no significant group differences 

in boundary separation, F(1,97)=.004,η
2
<.001,p=.95, or non-decision time, 

F(1,97)=2.91,η
2
=.03,p=.09. Furthermore, as predicted by the TBRS model, the 

proportion of RT spent on non-decision processes (PropTer=Ter/mean RT) was 

diminished in the - lower drift rate - ADHD group relative to controls, 

F(1,97)=4.60,η
2
=.05,p=.035 (see Figure 7). 
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Compared to the easy discrimination trials, the more difficult numerosity 

discriminations yielded increased error rates, F(1,97)=384.41,η
2
=.80,p<.001, and 

RT variability, F(1,97)=25.10,η
2
=.21,p<.001, but did not lengthen mean RT, 

F(1,97)=3.07,η
2
=.03,p=.08. A condition x group interaction in accuracy, 

F(1,97)=9.40,η
2
=.09,p=.003, revealed that differences between the groups in 

accuracy in the easy condition, F(1,97)=16.73,η
2
=.15,p<.001, were larger than 

those in the difficult condition,  F(1,97)=7.45,η
2
=.07,p=.008. There were no 

interactions between group status and difficulty condition in RT, 

F(1,97)=.82,η
2
=.008,p=.37, or RT variability, F(1,97)=.15,η

2
=.02,p=.149. 

The difficult, relative to the easy condition slowed drift rate, 

F(1,97)=302.52,η
2
=.76, p<.001 and decreased boundary separation, 

F(1,97)=31.41,η
2
=.25,p<.001, suggesting the presence of a strategic 

speed/accuracy trade-off effect to compensate for slower drift. There was no 

significant effect of condition on Ter, F(1,97)=3.51,η
2
=.04,p=.064. However, the 

proportion of RT that could be spent on refreshing (i.e. PropTer) was much 

smaller in the difficult condition, F(1,97)=9.52,η
2
=.09,p=.003, in line with the 

TBRS model’s assertion that tasks requiring longer processing time decrease this 

ratio. An unexpected significant interaction with group was also detected in drift 

rate, F(1,97)=13.52,η
2
=.12,p<.001, in which the group difference in drift rate in 

the easy condition, F(1,97)=16.32,η
2
=.14,p<.001, was larger than in the difficult 

condition, F(1,97)=9.33,η
2
=.09,p=.003. There were no comparable interactions 

with group in the boundary parameter, F(1,97)=1.80,η
2
=.02,p=.18, in Ter, 

F(1,97)=.068,η
2
=.001,p=.80, or in PropTer, F(1,97)=.14,η

2
=.001,p=.71.  
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 WM performance. Consistent with study hypotheses, a main effect of 

difficulty condition on WM performance was detected, 

F(1,97)=6.52,η
2
=.06,p=.012, with children displaying poorer recall in the difficult 

condition (Figure 8). As expected, children with ADHD also displayed poorer 

recall overall than control children, F(1,97)=23.77,η
2
=.79,p<.001. Crucially, no 

interaction between difficulty condition and group status was detected, 

F(1,97)=.40,η
2
=.004,p=.53, suggesting that for both groups, working memory 

capacity was similarly affected by changes in processing efficiency. 

Individual Differences Regression Analysis. To replicate the findings of 

Schmiedek et al. (2007) and Karalunas & Huang-Pollock (2013), who found 

strong associations between individual differences in drift rate on separate 

laboratory tasks and WM ability, a regression analysis was conducted using the 

diffusion model estimates of performance during the complex span task to predict 

memory recall on the same task. Table 3 displays the correlation matrix of all 

model parameters and WM performance, averaged between difficulty conditions. 

The regression model, in which all three model parameters of interest were 

entered as predictors of WM, explained a significant portion of variance in WM 

ability, F(3,98)=5.68,R
2
=.15,p=.012. However, only drift rate was a significant 

predictor, b=.40,t(98)=4.06, p<.001, while boundary separation, b=.04,t(98)=.38 

p=.71, and nondecision time, b=-.11,t(98)=-1.07, p=.29, had no effect on WM.  
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Discussion 

Past correlational research has suggested that ADHD-related WM 

impairment is driven by slower processing speed in individuals in ADHD 

(Karalunas & Huang-Pollock, 2013). The current study sought to experimentally 

test the hypotheses that manipulating processing speed, as operationalized by drift 

rate in an evidence accumulation model framework, causally impacts WM 

performance, and that this relationship is similar in children with ADHD and 

typically developing children. As expected, an experimental manipulation that 

slowed processing speed within subjects also decreased WM recall, a relationship 

that was present both in children with ADHD and their typically-developing 

counterparts. This pattern of results provides experimental support for theories of 

individual and ADHD-related differences in WM ability that emphasize the causal 

role of basic processing efficiency (e.g., Barrouillet & Camos, 2012; Fry & Hale, 

2000; Karalunas & Huang-Pollock, 2013; Schmiedek et al., 2007). The study also 

sought to clarify how slowed processing efficiency on simple tasks may causally 

impact WM ability in both groups. The Time-Based Resource-Sharing model 

(Portrat et al., 2009), which posits that WM ability is constrained by the speed 

with which an individual can complete secondary processing tasks, provides such 

a causal explanation; slower speed increases time that must be spent processing 

concurrent tasks, and thus leaves less time available for individuals to refresh 

memory items. This explanation was upheld by analyses demonstrating that the 

proportion of time available for refreshing, relative to the proportion of time that 
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must be spent processing concurrent tasks, was reduced when processing speed 

was reduced. 

In order to test these questions, a novel WM paradigm, based on prior 

“complex span” paradigms (Daneman & Carpenter, 1980; Conway et al., 2005), 

was created. Children were presented to-be-remembered visual targets 

interspersed with numerosity decision trials, which varied in difficulty. As 

expected, memory recall was strongly degraded when children completed the 

secondary task while maintaining the targets in short term memory storage, and 

this was seen regardless of diagnostic status. Furthermore, increasing the 

difficulty of the secondary task lead to decreased accuracy and slowed drift rates, 

indicative of decreased processing speed, on the distractor trials. 

Consistent with predictions, manipulating the difficulty of the distractor 

task not only slowed processing efficiency on distractor trials, but also diminished 

WM performance on the separate recall component of the task. This finding 

demonstrates that processing efficiency can causally influence WM performance, 

and thus shows that processing efficiency is a plausible cause of WM capacity 

differences due to developmental immaturity (Bayliss et al., 2004: Fry & Hale, 

2000), individual variability (Schmiedek et al., 2007), or ADHD-related 

impairment (Karalunas & Huang-Pollock, 2013). The finding that processing 

efficiency drives WM ability could not be attributed to increases in the absolute 

amount of time items must be held in WM, as earlier time-based models of WM 

would posit (e.g., Towse & Hitch, 1995), because an explicit control in the 

experimental design held this time constant. 
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Other models have suggested that it is instead the ability to control 

attention that drives individual differences in WM capacity (Engle, 2002; 

Unsworth and Engle, 2007). However, those models would not have predicted a 

direct effect of changes in processing efficiency/speed on recall. That is, 

proponents of the attentional control models of WM have suggested that the 

predictive relationship of speed to WM capacity is primarily driven by the long 

RTs at the extreme end of an individual’s RT (which are prominent in the 

determination of drift rate), and which they attributed to the presence of 

attentional lapses (McVay & Kane, 2012).  However, this particular interpretation 

of the long tail suggests that any manipulation that increases the difficulty of a 

task and slows RT (such as the one used in the current study) does so because that 

manipulation causes more frequent attentional lapses. Such a suggestion does not 

seem logically plausible.  Instead, the current study demonstrates the presence of 

a causal link between cognitive processing speed (as indexed by drift rate) and 

WM performance, and thus does not support this model. 

Another alternative account of this result from the perspective of executive 

attention theories of WM may posit that the more difficult distractor task taxed 

executive functions more or demanded greater attention than the easy distractor 

task. If this position is accurate, lower WM recall in the more difficult, slower 

processing efficiency, condition could be attributed to subjects displaying poorer 

attentional control while performing more difficult tasks. However, even if greater 

task difficulty somehow taxed attentional processes to a greater degree, this would 

be unlikely to affect memory recall on complex span tasks. A long-standing tenet 
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of cognitive psychology, supported by a wealth of empirical tests, is that effortful, 

attentional processes are serial in nature (Shiffrin & Schnieder, 1977). This 

assumption is shared by TBRS (Portrat et al., 2011) and executive attention 

(Unsworth & Engle, 2007) theories of WM ability, which both hold that, during 

the completion of secondary processing tasks, all items in WM are removed from 

the focus of attention. Therefore, whether attentional control is taxed to a greater 

degree during the more difficult numerosity discrimination trials is irrelevant to 

memory, which occurs only after attention is re-directed to the memory items. 

Any effects of attentional control deficits related to task difficulty that remove 

memory items from this attentional focus would imply parallel processing – 

which is an unlikely possibility for attention-demanding tasks (Shiffrin & 

Schnieder, 1977) and which violates the assumptions of the executive attention 

theory of WM itself (Unsworth & Engle, 2007). 

 Specific to ADHD-related WM variation, it was predicted that the causal 

influence of speed would be similar between the group of typically-developing 

children and children with ADHD, and this was in fact the case. Accounts of 

ADHD-related WM deficits highlight the role of top-down executive control 

(Alderson, Hudec, Patros & Kasper, 2013; Rapport et al., 2008) and predict that 

the processing efficiency manipulation would have a marginal effect on WM 

performance in the clinical group, but this was not the case. Therefore, the current 

study confirms prior correlational research findings suggesting that efficiency of 

processing, when measured by drift rate in an evidence accumulation model 
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framework, drives WM deficits in children with ADHD (Karalunas & Huang-

Pollock, 2013). 

Using the novel paradigm, the study was also able to test the validity of 

the TBRS model, in particular, for explaining how differences in drift rate may 

change WM performance, both in typically and atypically developing 

populations. In this model, items in WM are maintained by the process of 

returning them to an “all or none” serial focus of attention for brief “refreshing” 

periods in between the completion of concurrent processing tasks (Portrat et al., 

2009). Individual differences in WM performance can then be understood in 

relation to the ratio of time individuals are able to spend refreshing relative to 

time spent completing concurrent tasks (Barrouillet & Camos, 2012). The model 

has been supported by prior experimental work (Portrat et al., 2009; Gaillard et 

al., 2011), though the previous work often allowed participants greater periods of 

time to refresh or rehearse memory items than is typical of WM paradigms 

(Conway et. Al., 2005) and did not operationalized processing efficiency with 

formal evidence accumulation models.  

In the context of the current study, it was proposed that refreshing 

processes in between decisions on the numerosity task would be captured by the 

model parameter of Ter, as this parameter indexes the component of RT spent on 

any non-decision processes before and after simple decisions are made (Ratcliff & 

McKoon, 2008; see Figure 1B), and as no time was explicitly provided between 

trials for refreshing. Specifically, it was assumed that decreases in drift rate could 

impact WM recall in two ways. First, slowed drift rate could decrease the 
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proportion of RT that was spent refreshing memory items, leaving RT length 

unaffected. If this was the case, then the manipulation would decrease the amount 

of time that the attentional bottleneck could be devoted to refreshing processes 

relative to the amount of time it could be focused on completing the distractor 

decisions (Figure 1C). A second possibility was that slower drift rate could result 

in increased RT, but the amount of time spent refreshing between decisions would 

not change (Figure 1D). This effect would reduce memory recall by limiting the 

number of opportunities an individual would have to refresh between decision 

processes. The former possibility predicted that RT would remain constant 

between difficulty conditions and groups that differed in drift rates (e.g., ADHD 

vs. control), but that the proportion of RT taken up by Ter would decrease with 

increasing difficulty, and be lower in the group with lower drift rate. The latter 

possibility predicted that RT would increase with difficulty and would be longer 

in the group with slower drift rate and lower WM ability. 

To test these alternate possibilities, the proportion of time spent on non-

decision processes (Ter) was divided by the total time spent responding to the 

distractor trials (mean RT) for each participant to obtain a rough estimate of the 

refreshing/decision-processing ratio (“PropTer”). As predicted by the first 

explanation, both groups displayed decreases in this parameter in the difficult 

condition, and children with ADHD, the group with slower drift rate and lower 

WM recall, displayed lower ratios overall. Furthermore, there were no differences 

in mean RT length between difficulty conditions or groups, making the second 

causal explanation unlikely. Thus, the results point to a single clear and testable 
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explanation for how drift rate reductions affect WM maintenance that is 

consistent with the TBRS model.  

Potentially relevant to this explanation, a speed/accuracy trade-off effect 

in the boundary separation parameter was also observed. Children in both groups 

reduced their caution in the difficult condition, an effect that typically decreases 

decision times at the cost of reduced accuracy (Ratcliff & McKoon, 2008). This 

decrease, in the context of the above explanation, can be seen as a strategic choice 

by participants to allow more time for refreshing; if participants notice that 

decreased processing efficiency in the difficult condition constrains the amount of 

time they have to refresh memory items, becoming less cautious at their decision-

making, and thus shortening the amount of time they must spend processing the 

secondary task, would partially counteract this effect. While it has been argued by 

some groups (e.g., Conway et al., 2005) that individuals do not “trade off” 

between processing and storage functions in complex span tasks (for example, 

accepting poor performance on the distractor trials in favor of putting more effort 

into memory maintenance), these results suggest that the opposite is true. Conway 

et al. (2005) point to individual differences studies finding that individuals who 

perform well on the secondary task also perform well in memory recall as 

evidence for a lack of trade-offs. However, this relationship could be explained 

equally well be the pattern of findings in the current study; individuals who are 

faster at the secondary tasks would have improved memory recall simply because 

they are better able to refresh memory items, though within-subjects trade-offs in 

secondary task performance may very well occur. 
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Beyond questions of WM ability and task strategy, the boundary 

separation findings are also relevant to recent work on speed/accuracy trade-offs 

in ADHD. Multiple groups have found evidence that children with ADHD display 

difficulty implementing controlled speed/accuracy trade-offs when explicit 

(Mulder et al., 2010) or implicit (Weigard & Huang-Pollock, 2014) task demands 

value either a cautious or speed-emphasizing mode of responding. However, the 

current results demonstrate that, at least in the context of the study task, 

individuals with ADHD were able to respond to task demands, which valued 

shorter decisions allowing more time for refreshing, by implementing 

speed/accuracy trade-offs to the same degree as their typically-developing peers. 

Future research on this process in ADHD should seek to clarify which situations 

create difficulty for individuals with ADHD to implement the process, and why 

these situations differ from those in which impairment is observed. 

 The analysis of PropTer, despite being a direct test of the TBRS model’s 

ability to account for the data, is nonetheless limited by the fact that the model 

parameter Ter has never before been interpreted as an index of refreshing time. In 

the context of the current task, theoretically, any time spent refreshing between 

distractor trials should theoretically be picked up by Ter, this parameter has 

traditionally been seen as an index of other nondecision processes present in RT, 

including stimulus encoding and motor preparation (Ratcliff & McKoon, 2008).  

Future research that integrates evidence accumulation models like the diffusion 

model with resource-sharing accounts of WM should attempt specific, falsifiable 

tests of this explanation before it can be accepted.  



56 
 

These data also replicate several effects from prior literature and displays 

a handful of unexpected, but relevant, findings. First, the regression analysis 

conducted in which diffusion model parameters were allowed to predict WM 

ability replicates prior studies that have linked individual differences in drift rate 

to those in WM (Karalunas & Huang-Pollock, 2013; Schmiedek et al., 2007), and 

thus provides additional evidence for the link between these individual-difference 

constructs. Second, the main effects of ADHD status on drift rate and WM ability 

replicate two now well-established findings from prior literature on the disorder; 

that individuals with ADHD display substantial impairment in WM (Kasper et al., 

2012; Schoechlin & Engle, 2005), and display reduced drift rate relative to their 

typically-developing peers, indicative of abnormalities in basic information 

processing (Karalunas et al., 2012; 2014; Metin et al., 2013). In addition to 

providing more evidence in favor of these established findings, the results also 

indicate that the experimental task, while novel, provides valid measures of 

individuals’ drift rate estimates and WM ability. 

While not expected, tests to validate the measure as an index of WM 

revealed a significant interaction in which children with ADHD displayed greater 

reductions in WM performance when the secondary processing task was added 

than their typically-developing peers (though typically developing children also 

displayed large decrements). This interaction effect may simply indicate that 

children with ADHD display more difficulty remembering items when there are 

concurrent processing demands relative to when these demands are minimal (e.g., 

only refreshing/rehearsing memory items). This interpretation would be consistent 
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with the related theories that WM tasks must involve both concurrent processing 

and storage components (Conway et al., 2005; Daneman & Carpenter, 1980) and 

that children with ADHD display primary deficits in WM rather than short term 

memory recall in general (Castellanos & Tannock, 2002; Willcutt et al., 2005). 

Another unexpected interaction indicated that drift rate differences between the 

groups were larger in the easy condition than the difficult condition. While this 

effect may simply reflect a floor effect in children with ADHD’s scores in the 

difficult condition or could have emerged as a peculiarity of decision tasks 

completed during memory maintenance, it also could indicate that differences in 

drift rate between children with ADHD an their typically-developing peers could 

be somewhat dependent on task difficulty. Future research extending findings on 

the effects of ADHD or other neurocognitive disorders on diffusion model 

parameters may be advised manipulate task difficulty levels to further explore this 

possibility.   

The primary finding of the study, that ADHD-related WM deficits can be 

attributed to basic processing efficiency, has practical implications beyond causal 

theoretical models of ADHD. As the substantial academic difficulty faced by 

children with ADHD (Frazier, Youngstrom, Glutting & Watkins, 2007) can be 

attributed in large part to WM impairment (Alloway et al., 2009; Gathercole and 

Pickering, 2000; Gremillion & Martel, 2012), targeted methods for addressing 

speed-related WM problems in the classroom may provide ways to help children 

with ADHD improve their academic competence. For instance, reasonable 

accommodations that reduce concurrent processing demands in children with 
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ADHD, such as external supports (e.g., pen and paper for note taking and math 

problems, sheets that contain reminders of concepts or formulas) and access to 

technology (e.g., calculators), may be particularly helpful for reducing the impact 

of WM impairment on achievement. In contrast, attempts to improve WM ability 

through the training of attention (e.g., Klingberg, 2010) may be less fruitful 

because they do no address processing speed, as a core determinant of WM 

ability. 

In sum, the current study used novel methods to produce findings that 

have direct relevance to basic theories of WM, models of ADHD, and clinical 

practice with children displaying ADHD-related academic impairment. First, for 

theories of WM, the current study demonstrates that manipulating basic 

processing efficiency can causally alter WM performance, and thus validates 

theories denoting processing speed as the cause of individual and developmental 

differences in WM (Barrouillet & Camos, 2012; Fry & Hale, 2000; Karalunas & 

Huang-Pollock, 2013; Schmiedek et al., 2007). The findings also suggest a 

specific explanation for how speed drives WM ability, consistent with a major 

current model of WM (TBRS: Portrat et al., 2009), that highlights the crucial role 

of time-limited memory refreshing processes to WM maintenance. Second, the 

study demonstrates that, despite the intuitive nature of explanations attributing 

ADHD-related WM deficits to deficits in attention or other executive processes 

(Alderson et al., 2013; Rapport et al., 2005), a more likely possibility is that WM 

deficits in ADHD occur, at least in part, because of deficits in basic processing 

efficiency. Finally, by providing a coherent, causal account of WM deficits in 
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ADHD, the study can help inform clinical practice; clarification of the underlying 

mechanisms of this impairment may lead to novel accommodations and 

interventions that allow children with ADHD to succeed academically despite 

limitations in this crucial function. 
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Appendix: Figures and Tables 

 

 

 

 

 

 

Figure 1A. Schematic of the diffusion decision process (Ratcliff, 2002) 

 

 

 

 

 

 

 

 



77 
 

 

 

 

 

 

 

 

Figure 1B. Proposed components of nondecision time 
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Figure 1C/D. Effect of reduced drift on time available for refreshing between 

decision processes for both TBRS explanations outlined in the text. Explanation 

A:  Reduced drift rate decreases the amount of time available for refreshing 

between each decision process. Note that the same number of decisions are made 

in the block, and thus that there are equal numbers of opportunities for refreshing 

between conditions, but the length of these pauses between decisions is reduced, 

thus decreasing the total amount of time available for refreshing. Explanation B: 

Reduced drift increases total RT, providing fewer between-decision opportunities 

for refreshing. However, the amount of time available for refreshing in the pauses 

remains the same. 
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Figure 2. Example stimulus from numerosity discrimination task 
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Figure 3. Differences between simple and complex span on the new measure in 

percentage of items correctly recalled (error bars reflect standard error of the 

mean); Control = dashed line, ADHD = solid line 
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Figure 4. Effects of difficulty on traditional indices and diffusion model 

parameters in the practice block (error bars reflect standard error of the mean); 

Control = dashed line, ADHD = solid line 
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Figure 5. Effects of difficulty on traditional performance measures during the 

complex span task (error bars reflect standard error of the mean); Control = 

dashed line, ADHD = solid line 

 

 

 



83 
 

 

 

 

 

Figure 6. Effects of difficulty on diffusion model parameters during the complex 

span task (error bars reflect standard error of the mean); Control = dashed line, 

ADHD = solid line 
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Figure 7. Effects of difficulty on the proportion of RT available for refreshing 

(error bars reflect standard error of the mean); Control = dashed line, ADHD = 

solid line 
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Figure 8. Effects of difficulty on WM performance (error bars reflect standard 

error of the mean); Control = dashed line, ADHD = solid line 
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Table 1. Description of groups. Means, with standard deviation in parentheses. 

All ratings scales reported in T-scores. 

 

 Control ADHD 

N(Males:Females) 27(10:17) 72(47:25) 

#Subtypes (H,I,C)  2,31,39 

Age 9.76(1.27) 9.94(1.76) 

Estimated FSIQ 106.52(7.38) 102.66(13.50) 

Hyperactivity/Impulsivity   

   Total # of symptoms 0.30(.61) 5.68(2.64)*** 

   Parent  BASC-2  45.37(3.05) 66.83(13.46)*** 

   Parent Conners  45.37(3.05) 68.06(14.28)*** 

   Teacher BASC-2  43.19(2.75) 58.24(12.43)*** 

   Teacher Conners  45.56(2.33) 56.92(11.40)*** 

Inattention    

   Total # of symptoms 0.30(.47) 7.86(1.67)*** 

   Parent BASC-2  42.70(6.97) 66.31(8.21)*** 

   Parent Conners  46.48(3.59) 68.85(10.62)*** 

   Teacher BASC-2  43.56(5.00) 60.32(7.33)*** 

   Teacher Conners  47.22 (4.42) 57.17(10.56)*** 

   

Comorbidity (DISC: past year)   

MDD 0 4 

GAD 0 5 

ODD/CD 2/0 29/8 

*p<.05, *** p<.001 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

 

 

 

 

 

 

 

Table 2. Mean RT (ms), accuracy rates, and standard deviations in both 

conditions and practice round. Standard deviations in parentheses reflect between-

participant score variability, not within-participant RT variability. 

 

 Control ADHD 

Practice Trials   

   RT 1081(398.60) 1032(275.64) 

   Accuracy  .83(.17) .78(.17) 

   SD-RT 379(166.02) 425(160.81) 

Easy Trials    

   RT 829(158.14) 861(156.08) 

   Accuracy .88(.08) .77(.13)*** 

   SD-RT 378(117.77) 445(99.84) 

Difficult Trials    

   RT 859(173.60) 870(174.34) 

   Accuracy .69(1.47) .63(1.67)* 

   SD-RT 434(129.04) 476(103.73)* 

*p<.05, *** p<.001 
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Table 3. Correlations of individuals’ diffusion model parameters and WM ability 

 

    v  a  t0  WM 

drift rate (v)     .06  .30*       .374*** 

boundary separation (a)     -.085  .07 

nondecision time (t0)        .01 

*p<.05, *** p<.001 

 

 


