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Abstract

This dissertation presents applications of mathematical control theory to better under-
stand and prevent infectious disease transmission in epidemiology. Control of structured
epidemic models with age heterogeneity and spatial heterogeneity are formulated and an-
alyzed separately. Age structured model is crucial for disease transmission such as HIV.
We introduce continuous age structure in both course of infection of individuals and the
transmission rate in the population. Not only we analyzed the disease transmission under
such detailed age-structured model, we further applied game theory to identify the ratio-
nal behavior accordingly. Notice that disease often spread into population form a disease
reservoir nearby, we also researched a simplified spatial model in one dimension regarding
how to control disease from spreading into nearby community. In both age and spatially
structured model, we provide mathematical analysis of the existence and derived necessary
conditions of the possible optimal strategy. Numerical simulations are also included to show
ways to calculate the optimal strategy. In order to fundamentally prevent the disease spread
from disease reservoir to the community nearby, we further investigate the controllability
problems of the disease reservoir in two dimension, including the confinment and steering
problems. The asymptotic shape of the reachable set are also analyzed.
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Chapter 1

Introduction

Infectious disease are dangerous. We need to understand how to protect ourselves from
them. Epidemiology is about the studies of the origin, patterns, and effects of health and
disease condition in a target population. It has long been studied as an important public
health topic for modern society. John Snow is famous for his 19th century cholera epidemics
outbreak investigations and is known as the father of (modern) epidemiology, see [91, 38].
His identification of the Broad Street pump as the cause of the Soho epidemic by marking
data of the infected people on a map and further noticing the significantly higher death
rates in two areas supplied by Southward Company. Snow later used chlorine in order
to clean the water and remove the handle of the pump. These ended the outbreak. Such
historical event in the history of public health shows a vivid picture of the modern science of
epidemiology. This type of population-based health management has been further studied
since, from investigating the transmission within the identified population and locating the
origin of outbreak to further implement and evaluate interventions that are designed to
improve the health of that population, see [62, 61, 44].

People have been studying disease transmission dynamic at population scale (considered
as continuum, see [62]) by mathematical modeling using differential equations. Theoretical
paper by Kermack and McKendrinck about infectious disease models, has developed early
theory in mathematical epidemiology models, see [19, 58]. Since then mathematical models
have been increasingly used to elucidate the transmission of diseases, usually based on
compartment models, see [14], are crucial in gaining important knowledge of the underlying
aspects of the infectious diseases the spread and to evaluate the potential impact of control
programs in reducing the risk of infection. More structured models can deal explicitly
with time and heterogeneity like age and space. Models can further include infectious
disease management component, which can be specified by certain parameters. Such models
can be used to predict the impacts of various interventions like vaccination and education
[81, 39, 12].

Due to resource limitation and the constraints of daily life, infectious disease man-
agement requires making trade-offs between expensive control measures and the costs of
infection. It’s often come into a form of optimization problem balancing the again of
staying health by investment in disease control measures and the cost of infection. In-
tervention strategies can be modeled with the goal of understanding how they will influence
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the diseases battle. Education, vaccination campaigns, preventive drugs administration
and surveillance programs are all examples of prevention methods for disease prevention.
As financial resources are limited, it is nature to seek insight into optimal control under
constraints imposed by limited resources. Finding the optimal strategy depends on the
balance of economic and epidemiological parameters that reflect the nature of the disease
transmission system and the efficiency of the control method.

Simple optimization methods have been used to study many epidemiology questions, see
[43, 30]. But some questions require more sophisticated approaches. In particular, questions
that include some format of explicit time, age, or space dependence in the management
strategy may require some form of dynamic programing and optimal control.

Optimal control is a process of verify controllability, determining control and the corre-
sponding state trajectory for a dynamical system over a period of time in order to minimize
a performance index [60]. Historically, it is an extension of the calculus of variations.
The generalization of the calculus of variation to optimal control was strongly motivated
by military applications such as missile control since 1950s. There are in general two di-
verse approach to optimal control problem. The Pontryagin Maximum Principle and the
Hamilton-Jacobi-Bellman with dynamical programming. The former principle has provided
research with suitable conditions for optimization problem with constraints presented as so-
lution of differential equations, which will be the prospect we will take on here. Along with
the rapid development of computer science and computational science, applications of the
optimal control theory to various complex problem can be tackled. Selected examples are, in
physical systems as optimal guidance of rockets, in aerospace as satellite launchers, in eco-
nomics and management as energy distribution policies, as well as in biology and medicine
as oncology, radiotherapy, etc. Applications in management of infectious disease have yet
not been spotted much, see [7]. However, structured epidemic models with control measure
with continuous dependence on age and space seem to be a nature fit for applying optimal
control.

The useful containment of diseases depends on both the capacity to recognize its trans-
mission characteristics and the efficiency to apply optimal medical and logistic policies.
Here we want to investigate structured epidemic model with age and spatial heterogeneity,
which can better disclose the detailed structure of disease transmission. Although there
has been research papers with such heterogeneous structure, but problem as how to impose
efficient control accordingly has rarely been studied.

The main goal of this dissertation is to demonstrate with some sample situations that
how optimal control theory can be applied to resolve problems from epidemiology for disease
management. The second chapter of the dissertation is to formulate structured epidemi-
ological models, giving a special importance to HIV disease as a special example of the
age heterogeneity. We formulate the disease management question for each individual as
an optimal control problem requiring the maximization/minimization of some objective
function that depends on the infected individuals and control costs, given some initial con-
ditions. Due to the feedback of the control and the disease prevalence in the population,
we eventually applied game theory to answer such management question.

Further, notice that lots of disease came from disease reservoir, see [95, 94], we ask
whether it would be possible to prevent disease from spreading out of the disease reservoir
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at the first place. This lead to propose a spatial structured disease transmission model
in simply one dimensional space to incorporate the disease reservoir effect. After basic
analysis of such disease spreading dynamic, we propose possible control measures to assess
and forecast the disease burden. We proved the existence of optimal control and provided
numerical simulations.

At last, motivated by the control of disease transmission in moving troops [90], we will
build a more realistic model of disease reservoir in two dimension and study the control-
lability. This lead to necessary studies of nature question such as confinement or steering
problem in two dimension, and possible asymptotic shape of the configuration.
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Chapter 2

Rational behavior in a
continuously-age-structured
epidemic game

In this chapter, we investigate rational age-dependent behaviors that reduce exposure rates
in epidemiological games with steady-state infectious disease transmission. A generalized
Kermack–Mckendric model is formulated with continuous age structures for both age since
date-of-birth and age since date-of-infection. Necessary conditions are derived for the best
response of individuals to the risk of infection, and a numerical scheme is proposed to
calculate the game equilibrium provided population-scale dynamics reach a steady-state.
The existence, uniqueness, and stability analysis of the population-scale dynamics are also
investigated. We apply our model to the issue of HIV transmission in MSM or IDU commu-
nities and find that when life is valued equally each day, equilibrium investments in social
distancing are strongly correlated to the ages of greatest risk. However, if life is valued by
reproductive success, it is by all means always important to invest in early age after be-
come active in the disease contact network by reducing partner switches often. Our results
provide insight into epidemic games that each individual is forced to engage in, especially
the rational behavior which could be advised to the public. On the other hand, our work
also lends a sample method which can be adapted to better understand ways to potentially
spread a product or idea throughout the population.

2.1 Background

Epidemics of infectious diseases like flu, smallpox, cholera, HIV, malaria, and measles,
have been major health issues around the world [4]. Since the 1960’s, we have managed
many infectious diseases with sanitation, hygiene, vaccination, and antibiotics. But some
infectious diseases like HIV and malaria continue to reduce global health, in part because of
poor treatment options and the absence of effective vaccines [89]. This leaves behavior-based
interventions as primary tool for managing risk.

Although it seems natural for an individual to formulate such best behavior choice
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as an optimization problem balancing benefits and costs to cope with epidemic [78]. An
individual’s risk of infection depends on the prevalence of disease in a community, which
depends on the behavior choices of all people in that community. Thus, there is a feedback
loop between behavior of the population and disease prevalence. People have proposed the
use of games in epidemiology to model such feedbacks under a variety of epidemiological
assumptions [25, 28, 78, 82, 84].

However, none of the previous epidemic game models is suitable for disease like HIV to
capture the long term effect of age-dependency. For one, HIV has long term infection and
the heath condition of people changes naturally with aging process. Also, the behavior of
people involved changes with their age. While, the ability of each infected individual to
transmit the disease also varites according to their stage of infection. Hence, among various
heterogeneous structures, the transmission of HIV has unneglitable great dependents on
age-structure.

Previous research has intensively studied on age-structured models for disease trans-
mission dynamics. Some divid the population into discrete age groups [14]. Others like
[52, 53] incorporated age as a continuous variable. But few studies have been conducted
for age-structured epidemic games. [40] studied discrete compartments for young and old
people without aging. Reluga in [84] and [82] described models with aging between discrete
and continuous age groups.

Here, we propose our game as a population game with continuous age structure. Our
susceptible-infected (SI) disease-transmission model has the population-scale dynamics gov-
erned by generalizing the Kermack–McKendric equations [56]. In addition to age-since-
birth, we also consider age-since-infection to represent the infectivity change over the course
of longterm infection. Lastly, we incorporate a general form of transmission rate among peo-
ple to reflect various contact pattern in communities and individuals’ age-dependent activity
level. Within this population game, we attempt to identify the rational behavior that corre-
spond to Nash equilibria, where every individual is playing their best strategy, conditional
on the average behavior of other individuals. Although, this modified model could allow
us to study strategy set with continuously-age-dependency, this is not a differential-game,
as all the analysis is undertaken at certain steady-state of the disease-transmission system.
This type of epidemic game with multiple continuously-age-dependency is not only relevant
for HIV, but also of importance for other disease whos transmission is sensitive respect
stage of infection.

The paper is organized as follows. In section 2, we propose our model game of invest-
ment choice to achieve behavioral changes and epidemiological dynamics, definitions of best
response and game equilibrium condition. The corresponding necessary conditions for best
response as well as game equilibrium are also derived. A numerical scheme for calculating
Nash equilibria is designed for this type of epidemic game in section 3. Section 4 presents
and analyzes various type of results from implementation for different cases of transmission.

2.2 The mathematical model

We begin by building an age-structured model of infectious disease transmission where
infected individuals remain infected for the duration of their lives. The population-scale,
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dynamics are governed by a pair of coupled McKendrick–Von Foerster equations, see [58].
Let S(a, t) be the age-density of age-a susceptible people at time t. We make the simple
assumption that births introduce susceptible individuals into the population at a constant
rate r. Individuals then age at a constant rate. We also assume mortality rates in the
population are age-dependent but density-independent, being specified by µ(a). To avoid
complications associated with infinite-horizons, we assume there exists a maximum age amax

such that µ(a) =∞ for all a > amax.
Susceptible individuals may be infected when exposed to other infected individuals. The

rates of infection can depend on the contact pattern and the ages of the infected individuals
involved, as well as their stage of the infection at the time of exposure. Let I(a, t, z) be
the age-density of age-a infected people who has been infected for time z at time t. Where
necessary, we will refer to a as the “age-since-birth” and z as the “age-since-infection”.
The mortality rate among infected people is independent of density, but depends on both
the age-since-birth and the age-since-infection, as γ(a, z). We constrain the background
mortality rate µ(a) and mortality rate of infected people γ(a, z) such that both are positive
and strictly increasing for sufficiently large a, where µ(a) ≤ γ(a, 0) ≤ γ(a, z) for all a ≥ 0
and z ≥ 0. The disease transmission rate β(a, aI , z) represents the transmission rate from
infected people at age aI with age-since-infection z to susceptible people at age a. The
infection pressure λ(a, t) is, by definition, the probability per unit of time that an susceptible
at age a gets infected, which we will assume to be a linear function of the age-density of
infections I(a, t, z). We then have the disease dynamic as

∂S

∂t
+
∂S

∂a
= −µ(a)S − λ(a, t)S , S(0, t) = r , (2.2.1a)

∂I

∂t
+
∂I

∂a
+
∂I

∂z
= −γ(a, z)I , I(a, t, 0) = λ(a, t)S(a, t) , (2.2.1b)

λ(a, t) =

∫ amax

0

∫ aI

0
β(a, aI , z)I(aI , t, z)dzdaI . (2.2.1c)

This model is a generalization the theory originally formalized by Kermack and Mck-
endric [56, 57]. It is very similar to the model of Inaba in [53], except that our model uses
bilinear incidence instead of standard incidence. This is also a generalization with more
detailed age-structure of the disease dynamic model studied in [82]. System 2.2.1 can be
used to study the dynamics of several infectious diseases including HIV and syphilis. Al-
though no sex structure has be builded in this model, it is still suitable for the MSM or IV
drug use communities. In many public health cases where 2.2.1 maybe applied, behavior
choice is an important aspect of disease control. Changes in behavior can affect disease
transmission dynamics in different ways, such as altering individuals’ resistance to infection
[12, 80, 88], the progression of disease [45], and the contact network governing the spread
of disease [39, 45, 96]. Such behavioral changes, if adopted by a large population, might
further feed back on the infection and recover rates of the disease in a community [43],
which also impacts disease prevalence. On the other hand, changes in behavior often come
at a price. The behaviors that put people at risk (sex and drug use) have a high personal
value to the participating individuals [11]. In such cases, people’s choices trade off the value
of the risky activity against future costs of the activity [32, 39]. Hence, people’s choices of
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behavior can be interpreted as balancing the risk of illness against the costs of prevention.
Suppose cS(a) represents an individual’s investment strategy in order to gain the de-

sired behavior changes at age a (utility per unit time). Correspondingly, the aggregated
investment strategy of the population at age a is described by cS(a). To measure the ef-
fectiveness of behavior against risk of infection at age a, we introduce the relative exposure
rates σ(a, cS(a)), which lies in [0, 1] and decreases when cS(a) increases. Based on the
economic hypothesis of diminishing marginal returns, we also assume σ is convex in cS .
This measurement also applies to the aggregated strategy of the population cS(a). With
symbols listed in Table 3.2, the population-scale disease-transmission dynamic of our model
with behavioral intervention is governed by

∂S

∂t
+
∂S

∂a
= −µ(a)S − σ(a, cS(a))λ(a, t)S , (2.2.2a)

S(0, t) = r , (2.2.2b)

∂I

∂t
+
∂I

∂a
+
∂I

∂z
= −γ(a, z)I , (2.2.2c)

I(a, t, 0) = σ(a, cS(a))λ(a, t)S(a, t) , (2.2.2d)

λ(a, t) =

∫ amax

0

∫ aI

0
β(a, aI , z)I(aI , t, z)dzdaI . (2.2.2e)

Authors in [19] show that this class of epidemic models, with both demography and
non-permanent immunity, can also formulated mathematically as a scalar renewal equation
for the infection pressure instead. Breda and Visetti [20] have also recently studied the
existence and stability of the steady-state solutions for similar systems. We provide a
similar analysis with detailed computations in the appendix to this chapter.

Now, suppose the infection pressure λ(a, t) is given by a time-independent (while possibly
age dependent) stationary infection pressure λ̃(a). In the face of this endemic risk, the
probability that an individual at age a is susceptible or infected (pS(a, t) and pI(a, t, z)
respectively) is described by

∂pS
∂t

= −∂pS
∂a
− µ(a)pS − σ(a, cS(a))λ̃(a)pS , (2.2.3a)

pS(a, t0) = δ(a) , (2.2.3b)

∂pI
∂t

= −∂pI
∂a
− ∂pI

∂z
− γ(a, z)pI , (2.2.3c)

pI(a, t, 0) = σ(a, cS(a))λ̃(a)pS(t, a) . (2.2.3d)

where δ(·) refers to the Delta-function while t0 serves as the date-of-birth. Since the infection
pressure is stationary, all rates are independent of t0 and t. Hence, without lose of generality,
we assume t0 = 0. Integrating the hyperbolic System (2.2.3) along characteristics, where
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t− a is constant, gives us

∂pS
∂a

= −µ(a)pS − σ(a, cS(a))λ̃(a)pS , (2.2.4a)

pS(0) = 1 , (2.2.4b)

∂pI
∂a

+
∂pI
∂z

= −γ(a, z)pI , (2.2.4c)

pI(a, 0) = σ(a, cS(a))λ̃(a)pS(a). (2.2.4d)

For an individual in this population, the goal might be to find a strategy cS(a) that
will maximize their lifetime expected utility, given that each individual is born susceptible.
Suppose the positive functions uS(a) and uI(a, z) are the expected utility gains per unit
time at age a of being healthy or having been infected for time z respectively. We need to
assume a discounting rate h for estimating the accumulated utility gains in long term. At
any given age a, the net utility gain of being health is described as uS(a) − cS(a). While
on the other hand, the expected utility gain of being infected at age a will be the utility
gain uI(a, z) accumulated over all ages of infection z with the corresponding probabilities
pI(a, z). Hence, given the stationary infection pressure λ̃, the expected lifetime accumulated
payoff as a functional of a chosen investment strategy cS(·),

U(cS ; λ̃)
.
=

∫ amax

0
e−ha

{
[uS(a)− cS(a)]pS(a) +

∫ a

0
uI(a, z)pI(a, z)dz

}
da . (2.2.5)

We naturally restrict the rate of utility gain for susceptible uS(a) is never less than that of
an infected individual of the same age (uI(a, z) ≤ uS(a) for all ages a and z).

But an individual’s strategy must be consistent with the actions of all other players,
due to the feed back loop between behavior and disease prevalence. As one individual is
seeking to find investment strategy cS(a), others are looking for the aggregated investment
strategy cS(a) of the population as a whole, which eventually drives the stationary infection
pressure to be λ̃(a).

U(cS ; cS , λ̃) =

∫ amax

0
e−ha

{
[uS(a)− cS(a)]pS(a) +

∫ a

0
uI(a, z)pI(a, z)dz

}
da (2.2.6a)

∂pS
∂a

= −µ(a)pS − σ(a, cS(a))λ̃(a)pS , pS(0) = 1, (2.2.6b)

∂pI
∂a

+
∂pI
∂z

= −γ(a, z)pI , pI(a, 0) = σ(a, cS(a))λ̃(a)pS(a), (2.2.6c)

cS(a) ≥ 0, (2.2.6d)

∂S

∂a
= −µ(a)S − σ(a, cS(a))λ̃(a)S, S(0) = r, (2.2.6e)

∂I

∂a
+
∂I

∂z
= −γ(a, z)I, I(a, 0) = σ(a, cS(a))λ̃(a)S(a) (2.2.6f)

λ̃(a) =

∫ amax

0

∫ a

0
β(a, aI , z)I(aI , z)dzdaI . (2.2.6g)
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Symbol Interpretation

S(a) density (number per unit area) of susceptible people at age a
I(a, z) density (number per unit area) of infected people at age a

with age-since-infection z
pS(a) the probability that an individual at age a is susceptible
pI(a, z) the probability that an individual at age a is infected

with age-since-infection z
r birth rate (number per unit time) of the population

µ(a) background mortality rate (per unit time)
of the population at age a

γ(a, z) mortality rate (per unit time) of infected people at age a
with age-since-infection z

β(a, aI , z) transmission rate per infected individual at age aI
infected for time z to age-a susceptibles
(per person per unit time)

h discounting rate (per unit time)
uS(a) the expected utility gains per unit time at age a of being healthy
uI(a, z) the expected utility gain at age a of being infected

with age-since-infection z
cS(a) the aggregated investment strategy of the population

at age a (utility per unit time)
cS(a) the investment strategy of the individual

at age a (utility per unit time)
σ(a, cS(a)) the relative exposure rate (dimensionless) depending on

age a and investment cS(a)
λ(a) the infection pressure (per unit time) in the population at age a

Table 2.1: List of all symbols used in System (2.2.6). We assume all ages (a and z) are
measured in the same units as time (t).

2.3 Model Analysis

Given the utility U(cS ; cS , λ̃), we want to find what types of equilibria the population game
possesses, how to calculate these equilibria, and how those equilibria depend on model
parameters.

2.3.1 Necessary conditions for best responses and game equilibrium

If there is a stationary infection pressure λ̃(a) of system (2.2.2) which is driven by the aggre-
gated investment strategy of the population cS(a), then the best-response correspondence
can be defined as

cBS (cS , λ̃)
.
= argmax

cS
U(cS ; cS , λ̃) . (2.3.1)
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Nash equilibria are strategies which are best responses to themselves. A strategy c∗S is
a Nash equilibrium if it is a solution of the set inclusion relation

c∗S ∈ cBS (c∗S , λ̃) . (2.3.2)

In this population game, each individual needs to maximize the utility by trading off the
lifetime cost of illness and cost of prevention. So, the problem of finding a Nash equilibrium
can be formulated iteratively as constrained optimization to identify best response in each
iteration. There are two different approach to solve this type of optimization problem
where constraints consisting of ordinary and partial differential equations. One way of
computing the optimal control is first discretizing the constraints and utility function and
then solve the finite-dimensional optimization problem which is known as discretize-then-
optimize approach [59]. Alternatively, we can derive the continuous optimality system
using adjoint calculus based on the Lagrangian form, then discretize this system and find
the optimal control. This is the optimal-then-discretize approach.

Here we take the second approach. To derive the optimality condition, notice that our
Lagrangian has an integral form because of the continuous state-space individuals occupied.
Denote our utility function U(pS , pI , cS) as functional of pS(·), pI(·, ·) and cS(·). Given
cS(·), for the two differential equation type of constraints on pS(·) and pI(·, ·) respectively,
we denote the curve defined by the solutions of the differential equations for pS and pI with
matching terminal conditions as C(pS(·), pI(·, ·), cS(·)) = 0. The Lagrangian of our utility
function has general form

L = U(pS , pI , cS)− 〈V,C(pS , pI , cS)〉, (2.3.3)

where V = (VS , VI , VcS ) is the adjoint functions of (pS(·), pI(·, ·), cS(·)) and 〈·, ·〉 is inner
product. Applying the standard adjoint calculus, details shown in Appendix A, we derived
the necessary conditions on the continuous level for a given λ̃(a) as following

−dVS
da

= uS − cBS + σ(a, cBS )λ̃[VI(0)− VS ]− [h+ µ]VS , (2.3.4a)

VS(amax) = 0, (2.3.4b)

−dVI
da
− dVI

dz
= uI − [h+ γ]VI , (2.3.4c)

VI(amax, z) = 0, (2.3.4d)

0 =

{
∂σ

∂cS
|cBS −

1

λ̃[VI(0)− VS ]

}
cBS , cBS ≥ 0 . (2.3.4e)

The adjoint variables VS(a) and VI(a, z) represent the shadow prices which give the
marginal utility gains of relaxing the corresponding probabilities pS and pI when the system
reaches the optimal solution. On the other hand, we want to point out that the integrated
form of System (2.3.4) can also be interpreted as the expected value (utility gains) of a
certain age state.
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Integrating along the characteristic lines of Eq. (2.3.4), we see for infected people with
a certain age a and age-since-infection z,

VI(a, z) =

∫ amax−a

0
e−

∫ w
0 γ(a+v,z+v)dv︸ ︷︷ ︸

PA

×∫ w

0
uI(a+ v, z + v)e−hvdv︸ ︷︷ ︸

EV

γ(a+ w, z + w)︸ ︷︷ ︸
PD

dw .
(2.3.5)

PA is the probability of living w more years, PD is the probability a sick individual at
exactly w years later in life, and EV represents the expected value during the next w years
of being infected but alive. Then integrating over all the possible w up to the maximum
year yet to live amax − a, this gives the expected value of infected individual at age a and
age-since-infection z. Similarly, the solution VS , which depends on the stationary infection
pressure λ̃(a) as well as the individual’s behavior cS , is described by

VS(a; cS , λ̃) =

∫ amax

a
e−

∫ α
a λ̃(τ)σ(τ,cS(τ))+µ(τ)dτ︸ ︷︷ ︸

PH

[
λ̃(α)σ(α, cS(α)) + µ(α)

]
︸ ︷︷ ︸

PR

×


PI︷ ︸︸ ︷

λ̃(α)σ(α, cS(α))

λ̃(α)σ(α, cS(α)) + µ(α)
VI(α, 0)e−h(α−a) +

PD︷ ︸︸ ︷
µ(α)

λ̃(α)σ(α, cS(α)) + µ(α)︸ ︷︷ ︸
EV I

+

∫ α

a
[uS(v)− cs(v)] e−h(v−a)dv︸ ︷︷ ︸

EV H

dα . (2.3.6)

PH represent the probability of staying healthy from age a up to a future age α. PRdα
is the probability to be removed from susceptible state due to either infection or death
at exact future age α. PI is the conditional probability of getting infected but still alive,
PD instead represent the conditional probability of getting infected and die. Hence, EV I
is the expected value of getting infected at age α and EVH is the expected value (net
utility gains) of staying healthy from age a up to the future age α. The discounting rate is
considered and included respectively. Integrating over all possible future ages α up to the
maximum gives us the expected value of susceptible individual at age a.

2.3.2 Numerical computation to identify game equilibria

After defining the best response condition Eq. (2.3.1) and game equilibrium condition
Eq. (2.3.2), and taking the optimality conditions (2.3.4) into account, we can reformulate
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the task of finding game equilibrium candidates as finding cBS (a) such that

cS = cBS (2.3.7a)

−dVS
da

= uS − cBS + σ(a, cBS )λ̃(a)[VI(0)− VS ]− [h+ µ]VS , (2.3.7b)

VS(amax) = 0, (2.3.7c)

−dVI
da
− dVI

dz
= uI − [h+ γ]VI , (2.3.7d)

VI(amax, z) = 0, (2.3.7e)

0 =

{
∂σ

∂cS
|cBS −

1

λ̃[VI(0)− VS ]

}
cBS , cBS ≥ 0, (2.3.7f)

∂S

∂a
= −µS − σ(a, cS)λ̃S, S(0) = r, (2.3.7g)

∂I

∂a
+
∂I

∂z
= −γI, I(a, 0) = σ(a, cS)λ̃S, (2.3.7h)

λ̃(a) =

∫ amax

0

∫ a

0
β(a, aI , z)I(aI , z)dzdaI . (2.3.7i)

We can now compute the game equilibria since the best response cBS for given infection
pressure λ̃ can calculated from Eq. (2.3.3). Therefore, we do not need to compute neither of
the original variables pS and pI in order to evaluate the payoff function U , nor its gradient
for searching direction of the optimizer cBS . But we do need to keep the state equations
of the disease dynamics, because the aggregated behavior strategy may induce a different
infection pressure.

Our approach is to focus on numerically solving the System (2.3.7) iteratively. All
individuals in the population game are solving a constrained optimization problem, when
the population dynamic reaches a stationary solution with a known infection pressure λ̃.
We can try to identify game equilibria by first taking care of way to compute the disease
infection pressure λ̃, where Eqs. (2.2.2) is satisfied for a given aggregated strategy. Usually
we can start by assuming no one is making any special behavior changes in the community,
meaning cS = 0. Notice that the differential equations in Eqs. (2.2.2) have characteristic
lines that never intersect each other. We derive the following steady-state condition on
infection pressure, which can be applied to any given aggregated investment strategy of the
population cS later on in each iteration. Integrate along characteristics of the population
dynamics Eqs. (2.2.2),

S(a) = re−
∫ a
0 µ(τ)+σ(cS(τ),τ)λ̃(τ)dτ , (2.3.8a)

I(a, z) = σ(a− z, cS(a− z))λ̃(a− z)S(a− z)e−
∫ z
0 γ(a−z+τ,τ)dτ , (2.3.8b)

λ̃(a) =

∫ amax

0

∫ aI

0
β(a, aI , z)I(aI , z)daIdz. (2.3.8c)
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If we define integral function F of λ̃(a) for given cS(a) as

F
.
=

∫ amax

0

∫ aI

0
β(a, aI , z)λ̃(aI − z)σ(aI − z, cS(aI − z))×

re−
∫ aI−z
0 λ̃(τ)σ(τ,cS(τ))+µ(τ)dτe−

∫ z
0 γ(aI−z+τ,τ)dτdzdaI , (2.3.9)

then the steady-state condition for infection pressure λ̃(a) is

λ̃(a) = F [λ̃(a); cS(a)]. (2.3.10)

To compute λ̃(a) using Eq. (2.3.10), we can use fixed-point iteration choosing proper numer-
ical integration scheme, such as Guass quadrature on triangular domain [21]. Alternatively,
λ̃(a) can be achieved by solving the differential-integral equations in Eq. (2.2.2) numerically
using iterative method.

Next, to calculate the best response cBS (cS , λ̃), we plug λ̃(a) into Eqs. (2.3.4) and apply
proper numerical method to solve the differential equations. Notice that since the value
function VI(a, z) is independent of strategy choice and disease prevalence, we can precom-
pute it and store the value VI(a, 0) as the lifetime expected value of getting sick at age a at
the beginning. Hence, we only need to compute VS(a) and cBS (a) = cS(a) in each iteration.

The game equilibrium condition Eq. (2.3.2) indicates that when one individual finds
the best investment strategy cBS (a), others must adopt the same as the aggregated invest-
ment strategy of the population cS(a) = cBS (a). Therefore, in order to identify the game
equilibrium c∗S , we need to update cS to be cBS (cS , λ̃). Up to now, we stated all the steps
in one iteration, then we go back to compute the new λ̃(a) as in the next iteration until
convergence. The stopping criteria can be setup as the convergence of cBS (a).

As long as the disease dynamic has a unique endemic steady state λ̃ > 0, identifying a
game equilibrium is equivalent as locating stationary infection pressure λ̃ in equations

F [λ̃; c∗S ] = λ̃, where c∗S ∈ cBS (c∗S , λ̃), for all a ≥ 0. (2.3.11)

Therefore, the stopping criteria can set as the convergence of λ̃ as alternative to cBS . For the
implementation, we suggest mesh size comparable with the data. The numerical integration
scheme should be suitable for triangular domain.

Notice that Eq. (2.3.10) always has λ̃ = 0 as a stationary solution. Hence, c∗S(a; λ̃ = 0) =
0 is always a Nash equilibria. This case matches our intuition that when there is no disease,
we can all agree that the best strategy is to do nothing. But we are more interested in
finding non-trivial game equilibria which corresponds to positive infection pressure λ̃(·) > 0.
Currently, the existence of general non-trivial game equilibria has not been established, but
it depends in part on the details of the transmission pattern and also costs of disease. We
can always attempt to run this iterative numerical scheme to compute the game equilibria
if it converges to a unique one, then check it for the optimality condition. But, there is no
guarantee.

For our model problem, the existence and uniqueness of non-trivial Nash equilibria is
closely related to the properties of the transmission rate β(a, aI , z). Here, we list some
analysis and results for transmission rate in some special but commonly seen forms in the
following section.
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2.4 Application for three transmission scenarios

We begin investigating the HIV risk management with our model by first study the simplest
transmission rate as a uniform scaler. Later we will parametrize more detailed transmission
pattern to acquire age-dependent transmission rate. Within each transmission scenario, we
will study the population dynamic steady-state and its properties first before moving on
to identify our game analysis. So, the all following content will be organized in such order
respectively.

2.4.1 Parametrization

Before getting into details, there are several assumptions we have to specify. For our
problems, we consider the relative exposure rate

σ(a, cS(a)) =
1

1 +m(a)cS(a)
, (2.4.1)

where m(a) measure the efficiency of the investment cS(a) on social distancing strategy at
different age a. Here, we simply take m(a) = 100. Within each iteration of searching for a
game equilibrium, the necessary condition (2.3.4) for local optimality yields that the best
response cBS (a; λ̃), for any particular age a, must be either equal to 0 or satisfies

−m(a)

[1 +m(a)cBS ]2
=

1

λ̃(a)[VI(a, 0)− VS(a)]
, cBS (a; λ̃) ≥ 0 , (2.4.2)

which yields

cBS (a; λ̃) = max

0,
−1 +

√
m(a)λ̃(a)[VS(a)− VI(a, 0)]

m(a)

 . (2.4.3)

To further parametrize our model, we give details regarding demography, transmis-
sion, removal rates and costs. Based on the CDCs mortality schedule for the US in 2003
(Arias, 2006), the mortality rate for generic individuals in the US can be approximated by
µ(a) = exp(k0 + k1a), where k0 = −9.46, k1 = 0.085 with assumption that the average life
expectancy at birth is amax = 80, see [87]. We also take the birth rate as r = 1 in order
to normalize our population structure. Disease transmission will be presented separately in
each of the following cases. The mortality rate of infected people γ(a, z) = µ(a) for all z.
Here, we assume there is no mortality rate increse due to infection, Instead, we incorporate
such changes in health as a drop in utility gains for infected people. We define utility gains
of being susceptible as

uS(a) = min{1, 1− (a− 30)/(amax − 30)} ,

where the change at age a = 30 is to model the slow loss of function due to the aging process.
On the other hand, due to the disease progression pattern of HIV, there is an approximately
10 years period for infected individual with HIV to live without any symptoms before
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progressing to the final AIDS stage. Assume the utility gains as being infected uI(a, z) only
drop to 10 percent of the corresponding uS(a) once individual progresses into AIDS period,
and keep decreasing thereafter,

uI(a, z) =

{
uS(a) if z < 10 ,

uS(a)/(1 + 10(z − 10)2) if z ≥ 10 .

The background annual discount rate is set around three percent h = 0.03 as published on
the WHO report.

2.4.2 Scalar infection pressure in constant transmission case

We start discussion regarding our numerical computation of Nash equilibria with a simple
case, where the transmission rate is assumed to be a scalar constant. We know that this
is a fair assumption for diseases transmission that are not sensitively depend on both the
age-since-birth and the age-since-infection of people invoveled. That being the case, we
have the infection pressure in our model being independent of age at steady state of the
disease transmission dynamic. An example solution of this type is shown in Figure 2.1.
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Figure 2.1: Example game solution when the infection pressure is independent of age. The
plot on top shows the Nash equilibrium strategy σ(c∗S) at steady state infection pressure
λ̃ = 0.4254, given the transmission rate is scalar constant β = 0.01 defined in (2.4.6). The
corresponding investment strategy and net utility gain are listed on the bottom.

To compute the positive stationary infection pressure, recall Eq. (2.3.10), we cancel λ̃
on both side of the equation to achieve a form that admit only non-zero stationary infection
pressure λ̃ as its solution.

F (λ̃)
.
=

∫ amax

0

∫ a

0
βσ(cS(a− z))re−

∫ a−z
0 σ(cS(τ))λ̃+µ(τ)dτ

e−
∫ z
0 γ(a−z+τ)dτdzda = 1.

(2.4.4)
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Figure 2.2: Expected values for the example game solution when the infection pressure is
independent of age. This plot illustrateds expected values for age a infected people VI(a, 0)
and susceptible people VS(a) adapting different strategies when facing steady state infection
pressure λ̃. Parameters are the same as in Figure 2.1. The first shows the case of being
disease free. The following two comparison shows drastic increase of expected value for
susceptible people from engaging in the rational behavior when facing the endemic.

Notice that F (λ̃)→ 0 as λ̃→∞, we expect to find at least one positive root of F (λ̃) = 1,
provided that F (0) > 1. With this intuition and detailed analysis in Appendix B, we state
the following conclusions about the steady state solution regarding the population-scale
disease dynamic.

Define basic reproduction number R0 = G(0) from Eq. (2.4.4),

R0
.
=

∫ amax

0

∫ a

0
βσ(cS(a− z))re−

∫ a−z
0 µ(τ)dτe−

∫ z
0 γ(a−z+τ)dτdzda. (2.4.5)

If R0 < 1, there exist an unique disease-free equilibrium. If R0 > 1, there exist an unique
endemic equilibrium. Not only R0 is an indicator of the existence and uniqueness of the
steady-state solution, but also grant the stability of the disease-free equilibrium as: If
R0 < 1, the disease-free equilibrium is stable. If R0 > 1, the disease-free equilibrium is
unstable.

For the game equilibrium, we observe from numerical simulation and Eq. (2.4.3) that the
best response cBS is uniquely defined by λ̃ at any given age a. Moreover it is a non-decreasing
function of λ̃. Notice that the disease-free infection pressure is unstable, although we have
no conclusion about the stability of the endemic infection pressure, but the uniqueness of
the endemic equilibria is sufficient to guarantee the converged best response is the only
endemic game equilibria. Therefore, we have conclusions about existence and uniqueness
of game equilibrium as following: If R0 < 1, there exist an unique game equilibrium c∗S = 0
with disease-free infection pressure λ∗ = 0. If R0 > 1, there exist an unique non-travil game
equilibrium c∗S > 0 with endemic infection pressure λ∗ > 0.

This type of model with a scalar transmission rate can be efficiently simulated numer-
ically and provide a simple prediction for a epidemiology game. However, the density of
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Figure 2.3: Population density of susceptible people S(a) and infected people I(a, z) at
endemic game equilibria as steady state infection pressure λ∗ = 0.4254, given the transmis-
sion rate is constant β = 0.01. The drop in density of susceptible people S at early age is
due to disease infection, while the latter drop is due to nature aging process. The density
of infected people provide forecast for potential targeted age group to conduct education
and disease prevention.

infected people indicated in Figure 2.3 is not realistic for diseases as HIV. Notice that most
infected people being children in the community does not match the real data we see around
the world. Children should bear low risk until the age of maturity. This brought our atten-
tion to address the issue that risk should be age dependent. Moreover, transmission rate
should not be assumed as constant but varies with people’s state of infection as well as
people’s chronological age, where the latter one may have influence on the choice of contact
network. Hence, heterogeneous structure should be incorporated in transmission rate.

We model the transmission rate with age heterogenety in a form of

β(a, aI , z)
.
= Θ(a, aI)φ(z) , (2.4.6)

where Θ(a, aI) represents the contact patten (per unit time) between age-since-birth a sus-
ceptibles and age-since-birth aI infected people, and φ(z) is the relative infectivity (proba-
bility of transmission, per contact with a susceptible) at age-since-infection z. The underline
assumption here is that there is no correlation between age-since-infection and contact pat-
tern.

2.4.3 Age-structured infection pressure in the fully separable transmis-
sion case

Here, we consider a transmission rate which is separable respect to age-since-birth for people
involved under the assumption of fully random mixing contact pattern. Such transmission
pattern is suitable in male homosexual population under the bathhouse assumption [41, 79],
meaning all the contacts were fairly indiscriminate, casual and promiscuous. We performed
numerical experiment for HIV restricted for this subgroup of population. This is a study
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of importance since 97% the new grow of AIDS cases in the United State are in this group
according to database provided by the CDC in 2010. Hence, given the population being
uniformly distributed with respect to age since birth, for our simulation we suppose

Θ(a, aI) = ξ(a)ξ(aI), (2.4.7)

where ξ(·) represent the contact rate counting as partner acquisition rate in the population
with respect to age-since-birth. Here, we also take into account that infected people may
progress with HIV at different speeds, which satisfy a normal distribution N (7.5, 1) to get
the relative infectivity φ(z) from the viral load data of HIV [79]. An example solution of
this type is listed in Figure 2.4 and Figure 2.5.

For this separable transmission rate case, the steady state infection pressure Eq. (2.3.10)
can be reduced to

λ̃(a) = ξ(a)

∫ amax

0

∫ aI

0
ξ(aI)φ(z)I(aI , z; λ̃(aI − z))dzdaI . (2.4.8)

Hence, we can conquer the task similar as previous by reforming the infection pressure as
λ̃(a) = A · ξ(a). The interfere of disease free equilibria can be automatically eliminate by
noticing that constant A satisfies∫ amax

0

∫ aI

0
ξ(aI)φ(z)ξ(aI − z)σ(cS(aI − z))

× re−
∫ aI−z
0 Aξ(τ)σ(cS(τ))+µ(τ)dτe−

∫ z
0 γ(aI−z+τ)dτdzdaI = 1. (2.4.9)

Define the right hand side of Eq. (2.4.9) as function of A, denote as G(A). Similar to the
previous part, we state the following conclusions regarding disease transmission leaving the
details in the Appendix B.

Define basic reproduction number R0 = G(0) as

R0
.
=

∫ amax

0

∫ aI

0
ξ(aI)φ(z)ξ(aI − z)σ(aI − z, cS(aI − z))

× re−
∫ aI−z
0 µ(τ)dτe−

∫ z
0 γ(aI−z+τ,τ)dτdzdaI .

(2.4.10)

If R0 < 1, there exist an unique disease-free equilibrium for the dynamic which is also stable.
If R0 > 1, there exist an unique endemic equilibrium, together with the unstable disease-
free equilibrium. Numerical results by iterative method indicate the endemic equilibrium is
stable, but no rigorous proof is achieved yet.

Although, the best response equation Eq. (2.4.3) yields a uniquely defined cBS (a; λ̃(a))
as solution, we still have hard time proving the uniqueness of the endemic Nash equilibria.
However, the fact that the disease-free infection pressure being unstable and the uniqueness
of the endemic infection pressure λ̃(a) guarantee that our numerical solution is the unique
game equilibria as long as the numerical solution converge.
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2.4.4 Age-structured infection pressure in the non-separable transmission
case

As mentioned earlier, the random mixing patten can be applied in certain community,
however, once the population is stratified by sex, age and maybe further activity class it
is necessary to consider assortative mixing within and between the different strata of the
population. Here we investigate a general transmission case, where the contact patten is
non-separable to address the assortative mixing. But we still restrict our model without
differentiate sex and activity classes. Suppose the transmission rate takes the form of

Θ(a, aI) =
max{0, 1− k(a− aI)2}∫ amax

0 max{0, 1− k(a− aI)2}daI
ξ(a)ξ(aI)β̄ , (2.4.11)

where ξ(·) represent the contact rate counting as partner acquisition rate in the population
with respect to age-since-birth, parameter k represents the assortativity of mixing with
respect to age-since-birth and β̄ is a constant to rescale transmission rate between per
contact and per partner. Here, we still assume people mixed randomly within the preferred
age range for both susceptibles and infected people. An example solution of this type is
listed in Figure 2.7 and Figure 2.8.

When the transmission rate is still separable between contact pattern and age-since-
infection, the steady state condition given by Eq. (2.3.10) yields

λ̃(a) =

∫ amax

0
Θ(a, a0)λ̃(a0)σ(cS(a0))re−

∫ a0
0 λ̃(τ)σ(τ,cS(τ))+µ(τ)dτ

×
{∫ amax−a0

0
φ(z)e−

∫ z
0 γ(a0+τ)dτdz

}
da0. (2.4.12)

Due to the complexity of the transmission rate, there is no theoretical analysis regarding
the existence and uniqueness of the endemic state for the disease transmission dynamic, let
alone the endemic game equilibrium. Unlike the fully separable case which can be reduced
to the scalar case shown in Eq. (2.4.8), the general transmission kernel lacks the needed
symmetry. However, our numerical simulation shows the possible existence of the unique
endemic game equilibrium by approaching it with fix point iteration as the the general
nonlinear solver. Like most iterative algorithm, our algorithm is sensitive with respect to
the initial guess as well. For random initial guess, the algorithm easily converge to the
disease free steady state. Notice that the general kernel given by Eq. (2.4.11) is related to
the separable kernel Eq. (2.4.7), we suggest the homotopy approach by taking the solution of
the corresponding fully separable case as the convenient initial guess. For arbitrary kernel,
homotopy approaches (ref.) may be suggested.

2.5 Results and analysis

The following figures illustrate example solutions of epidemic game with separable and non-
separable transmission case. At the game equilibrium, Individuals are better off adapting
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Figure 2.4: Parameterization of fully separable transmission rate and an example solution
of steady state infection pressure at game equilibrium. On the left is the plot for Viral
loads and relative infectivity. Variation in viral loads over the course of a typical untreated
individual’s HIV infection [3]. On the right list the contact rate [41] and the steady state
infection pressure at game equilibrium. The age period of being sexually active matches
the age range associates with positive risk of infection pressure. The correlation of the
magnitude of the two shows that the infection pressure has the approximate shape of the
contact rate which may only up to rescaling.
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Figure 2.5: Example game solution when the transmission rate is fully separable and the
infection pressure is independent of age. Upper left plot shows the rational behavior σ(c∗S)
with steady state infection pressure λ∗(a) shown in figure 2.4 at game equilibrium where
transmission rate β is defined in Eq. (2.4.6). The corresponding investment strategy and
net utility gain are listed on the bottom. Plot on the right illustrated expected values
for infected people VI(a, 0) and susceptible people VS(a) adapting different strategies when
facing different steady state infection pressures, where λ0 stands for steady state infection
pressure when no one makes investment and λ∗ represent the game equilibrium infection
pressure. The comparison shows drastic increase of expected value for susceptible people
by engaging in the rational behavior when facing the endemic.
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Figure 2.6: Parameterization of non-separable transmission rate defined in Eq. (2.4.11).
This plot shows the contact pattern of assortative mixing, where k = 0.01 and β = 40.
Relative infectivity φ(z) is the same as in Figure 2.4.
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Figure 2.7: Example steady state infection pressure at game equilibrium. These plots
illustrate the steady state infection pressure at game equilibrium (top) as well as the contact
rate (middle) [41] and equilibrium investment strategy (bottom). The age period with
positive risk of infection pressure shows correlation with age being sexually active, while
the changes in magnitude of the two are not exactly synchronized. But changes seem more
at the same pace as shown in the investment strategy and the infection pressure.
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Figure 2.8: Example solution of the population game with non-separable transmission rate
and age-dependent infection pressure. The upper plot shows the rational behavior σ(c∗S(a))
with steady state infection pressure λ∗(a) at game equilibrium for transmission rate defined
in (2.4.11). The corresponding investment strategy and net utility gain are listed on the
bottom.
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Figure 2.9: Expected values for the example solution of the population game with non-
separable transmission rate and age-dependent infection pressure. This plot illustrates
expected values for infected people VI(a, 0) and susceptible people VS(a) adapting differ-
ent strategies when facing different steady state infection pressures, where λ0 stands for
steady state infection pressure when no one makes investment and λ∗ represent the game
equilibrium infection pressure. The comparison shows drastic increase of expected value for
susceptible people by engaging in the rational behavior when facing the endemic.
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the game equilibrium strategy compare to laissez-faire strategy where one does not make
investment.

In comparison of the two predictive infection disease model, we observe that: At the
game equilibrium, people spend more in the fully separable transmission model Eq. (2.4.7)
than in the assortative mixing model represented by our general non-separable transmission
case Eq. (2.4.11), where the assortativity is more concentrated around the age of high risk.
Besides, people are more strongly mixed in the separable model, where the risk and the
investment are more even across the ages. Young people in the assortative mixing model
engaged in more activities among people with similar age, so they face lower risk compare
to the separable case where the partners are evenly distributed across age. Because of the
higher average number of partners in separable fully random mixing model, young people
would have higher risk of infection. If one decide to take no action, the expected value will
be a lot less which could be even close to the case of being infected. However, one should
keep in mind that the result is generalized from the fully separable transmission model with
the bathhouse assumption, which count per new partner as per activity at risk. Previous
research shows couples have less risk of HIV transmission even one party is infected, see
[51]. Therefore, one can manage risk by reducing number of switch in partners.

2.6 Discussion

It has been the purpose of this paper to model epidemic games with behavior changes
as the premier choice of disease prevention and to address the computational aspects of
such matters in the proposed generalized SI model with continuous age structure which
also tracking the time since infection continuously. The efficient and precise algorithms for
computing game equilibrium strategy has real-world meanings. In our paper we elaborated
how to formulated and solve a model of social behavior in a HIV-like epidemic. Designing
a rational response to an epidemic at its steady state can depend on determining infection
pressure as we have discussed. Our results place an emphasis on the search for efficient
and quick methods that give good approximations when applied to real-world problems
such as HIV. Result of simulation support one’s intuition. But theoretical analysis of
such game equilibrium still remains as open questions, along with the question regarding
endemic steady state analysis of the disease dynamics for general transmission kernel. It
would be great to draw the attention of both mathematicians and epidemiologists to such
questions in order to move forward. Further work will be applying our model for analyze
potential impact of different interventions and the model could be generalized to incorporate
more heterogeneous structures, such as various activity level groups combine with more
complicated mixing pattern.
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Chapter 3

Social planner problem of disease
reservoir in an epidemic

Public policies intended to induce behavioral change, specifically incentives to reduce inter-
personal contacts or to build up medical facilities, play a prominent role in public disease
response strategies when facing major epidemics. Elementary theories consider strong mix-
ing hypotheses, but spatial segregation can strongly influence transmission patterns and
potentially policy design [1]. In this work, we explore the impact of spatial heterogene-
ity on infections disease management policy. Different from social planner results usually
published, we not only compare desired policy and outcomes under central and decentral-
ized social planner conditions, but also provide rigorous mathematical analysis regarding
the controllability and corresponding model adjustment. Optimality conditions are derived
for the controlled social planner case with an efficient numerical algorithm proposed. Our
results provide insight into epidemic control that each individual and the government are
forced to engage in, especially the rational behavior which could be advised to the public.
On the other hand, our work also apply to the case of controlling the infectious disease of
plant as well as how to better manage potentially spread a product or idea throughout the
population with spatial heterogeneity.

3.1 Introduction

Disease reservoirs from animals and other environmental sources present a risk to human
populations. A systematic literature survey [95] suggests that many new species of human
pathogens have a global distribution and are mostly associated with human interactions
with spatially segregated animal or environmental reservoirs.

Disease reservoirs are important and often spatially separated from large human com-
munities to which they pose the highest risk. Take dengue fever as an example. It is
transmitted to people by the bite of a dengue virus infected Aedes mosquito but cannot be
spread directly from person to person [2]. Monkeys may serve as a reservoir in some parts
of Asia and Africa[48]. Similar examples are current Ebola epidemic and Cholera epidemic
[77, 93]. In the geographic analysis of disease transmission, infection risks decrease as the
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distance from reservoirs increase and infected individuals decreases [17]. If we want to de-
sign efficient disease controls that reduce risk to communities, we should take into account
this spatial structure.

There exist various spatial epidemiology models. Popular approaches to spatial epidemi-
ology include models that involve actual geographical entities and those do not. The explicit
spatial approach include mapping the spatial distribution of infectious diseases based on
distributions of vectors, reservoirs and disease incidence [17]. A variety models have been
used, such as lattice models [68, 92, 35], individual-based model [49], continuous space mod-
els represented by diffusion equations [27, 34, 55, 71], integro-differential equations [69, 83]
and integro-diference equations [54, 62, 85]. Spatial structure can also be incorporated im-
plicitly as in network models [13, 36, 73] and metapopulation models [65, 46, 86]. More
detailed reviews on spatial epidemiology can be found in [17, 46, 47, 49, 67, 75].

People have studied the optimal control of spatially structured epidemics, but not the
management of the on-going risk from disease reservoirs. Regarding the application of
disease control, optimal control theory has been use to model epidemic scenarios in previous
work [7, 63]. The types of control functions imposed in the objective functional, vary
between linear (’bang-bang’) control [15, 62] and the usual quadratic [18, 54, 74] form to
guarantee the existence of the optimal solution. But here we look into the case where a
switching cost term is present as penalty in the objective functional.

Our goal is to characterize the most cost-effective spatially-explict strategy for local
reductions in disease transmission rate at steady state epidemic. In this paper, we take
the distributed-contact approach to study the continuous spatiotemporal spread of disease
among a population of susceptible (S) and infected (I) individuals in presence of a disease
reservoir. Our result shows that chattering effect of the control may happen when there
are no switching penalty in the objective cost functional. With the switching costs, we can
construct suitable optimal strategy for various epidemic scenarios.

In Section 2, we present the model in a general framework and form the associated
optimal control problem. Principles in optimal control theory are applied in Section 3 and
4 to characterize the optimal strategy. For illustration, Sections 5 to 7 provide numerical
approximations of optimal spatial strategies with various epidemic parameters. Discussion
and conclusion are provided at the end.

3.2 Integral kernel model and model adjustment

To investigate the control problem of the disease transmission when a disease reservoir is
near the susceptible community, we simplify the problem to model the space as a finite
interval. This is suitable when the region where the disease put risk on is large. And
the disease reservoir is indeed bounded in a region near the population. For the disease
transmission model, notice that numerous infectious disease confer no long-term immunity,
we take the SIS model with constant total population.

In the model problem, we consider an uniformly distributed homogeneous population on
one-dimensional finite spatial space represented by Ω = [−1, 1]. Let S(x, t) be the density
of susceptible and I(x, t) represent infected people respectively in location x at time t.
To introduce the spatial structure, see [19, 75], we assume the background transmission
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rate at location x to be η(x), where η(x) ∈ [0, η̄] is a decreasing function representing the
disease reservoir, and the recovery rate of the infected people to be γ. The population-scale
disease-transmission dynamics is governed by

∂I

∂t
= [η(x) + λ(x, t)]S(x, t)− γI(x, t) , (3.2.1a)

∂S

∂t
= −∂I

∂t
, (3.2.1b)

I(x, 0) = I0 , Ix(−1, t) = Ix(1, t) = 0 , (3.2.1c)

S(x, 0) = 1 , (3.2.1d)

S(x, t) + I(x, t) = 1 . (3.2.1e)

Under the distributed-contacts hypothesis [83], approximate infection pressure λ(x, t)
for any give time t as λ(x, t) =

∫
Ω κ(x, y)I(y, t)dy , where κ is the distributed contact kernel.

Consider the steady state density of the infected I(x), as detailed in [72], with isotropic
kernels [i.e., κ(∆) = κ(−∆)], one have the following

[η(x) + αIxx + βI](1− I)− γI = 0 , (3.2.2)

where α = 〈∆2〉/2 =
∫

Ω ∆2κ(∆)d∆ is the positive diffusion coefficient. This type of model
was first proposed in [75].

Consider the distributed control function denote as

σ(a, u(x)) = exp{−a u(x)} , (3.2.3)

where the investment u(·) is nonnegative and uniformly bounded from above by M , and
parameter a represent the effectiveness of the strategy u(·) in reducing the transmission.
The steady state population-scale disease-transmission dynamics is now governed by

e−a u(x)[η(x) + αIxx + βI](1− I)− γI = 0 , (3.2.4a)

Ix(−1) = Ix(1) = 0 . (3.2.4b)

Given the approximated stationary modified infection pressure λ̃(x) ≈ e−au(x)(αIxx(x)+
βI(x)), define the expected accumulated payoff as a functional of a chosen investment strat-
egy u(·) as J (u; I), we reformulate our best planner’s problem as a minimization problem,

min
u(x)∈[0,M ]

J (u(x); I(x)) (3.2.5a)

e−a u(x)[η(x) + βI + αI ′′](1− I)− γI = 0 , (3.2.5b)

I ′(−1) = I ′(1) = 0 . (3.2.5c)

In this paper, we will focus on the analysis of System (3.2.5) with a proper choice of
J (u; I).

26



Symbol Interpretation

S(x, t) density of susceptible people at location x and time t
I(x, t) density of infected people at location x and time t

with age-since-infection z
η(x) background transmission rate (per person per unit time)

of the population at location x
λ(x, t) the infection pressure of the population at location x and time

t
γ recovery rate (per unit time) of infected people

α the spatial diffusion parameter (utility per unit time)
β transmission rate per infected individual to susceptibles

(per person per unit time)
u(x) the investment strategy at location x (utility per unit time)
a the scaling factor for effectiveness of the strategy

in reducing the transmission rate (dimensionless)
c the expected utility costs per unit time of being infected
ε the weight of the penalty term for switching

in the objective functional

Table 3.1: List of all symbols used in System (3.3.5).

3.3 Analysis for the planner’s problem

Equation in (3.2.4) is the steady state condition for solutions of the nonlinear heat equation
(3.2.1). Although it is hard to give general solutions of this nonlinear equation, we still
could conduct sufficient analysis for solutions in the region of our interest I(x) ∈ [0, 1] due
to the biological meaning of our model variables.

Lemma 1. For every solution I(x) ∈ H1([−1, 1]) of the steady-state equation in (3.2.5):
I(x) 6= 1 , for all x ∈ [−1, 1], provided the parameter γ 6= 0.

Proof. Suppose there exist a point x0 ∈ [−1, 1] with I(x0) = 1. Notice that I(x) ∈
H1([−1, 1]) and plug I(x0) = 1 into the Eq. (3.2.5), then −γ = 0, which contradict to
our assumption that γ 6= 0.

This result suggests that we can try to prove that there is a positive solution I(x) ∈ (0, 1),
since the solution will never cross I(·) = 1. We believe that with an adequate initial guess
I0(x) ∈ (0, 1), the steady state solution won’t intersect or be larger than I(·) = 1.

3.3.1 Existence of steady state solution of disease dynamic

The steady state conditions for the disease dynamic equation specify a two point boundary
value problem for a system of differential equations. Generally, the existence of solutions to
such problems must be handled on a case-by-case basis. Therefore, we rewrite Eq. (3.2.4)
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as

αI ′′(x)
.
= F (x, I(x)) = ea u(x)γ

I(x)

1− I(x)
− βI(x)− η(x) , (3.3.1a)

I ′(−1) = I ′(1) = 0 . (3.3.1b)

Without lost of generality, we assume α = 1.
Here, we give the condition for the parameters value to guarantee the existence of

steady state solution of the disease dynamic equation (3.3.1). For the detailed proof and
computation, we refer to Appendix A.

Theorem 2. Suppose all the parameters in Eq. (3.3.1) are non-negative, η(x) continuous
and there exist η̄ > 0 such that 0 ≤ η(x) ≤ η̄. Then, there exist solution I(x) ⊂ [0, 1)
of Eq. (3.3.1), provided the non-negative control function u(x) ∈ C([−1, 1]) or if u(x) is
bounded on Ω.

Proof. We take the upper and lower solution approach, see [33] for detailed definition. To
simplify the problem, one can check that

µupper
.
= − η̄ − β + γ

2β
+

√( η̄ − β + γ

2β

)2
+
η̄

β
, and µlower

.
= 0 , (3.3.2)

are constant upper and lower solutions respectively of Eq. (3.3.1). To verify that µupper < 1,

we can take square of both said of the rearranged
√( η̄−β+γ

2β

)2
+ η̄

β < 1 + η̄−β+γ
2β . Af-

ter canceling the same terms, the only requirement for the inequality to hold is γ > 0,
which is naturally satisfied by the model set up. Therefore, there exist an solution I(x) ∈
[µlower, µupper] ⊂ [0, 1]. To see these, we only need to show that µupper indeed is an upper
solution. Suppose we have a possible constant upper solution µ,

µ′′ = 0 ≤ F (x, µ) = ea u(x)γ
µ

1− µ
− βµ− η(x) .

Then, µ only need to satisfy

0 ≤ F (x, µ;u = 0, η = η̄) = γ
µ

1− µ
− βµ− η̄ . (3.3.3)

Notice that the first term in the right hand side is a hyperbola, with coefficient γ > 0, we
can always find µ ∈ (0, 1) big enough to over come the linear negative terms in condition
(3.3.3), which in particular being µ = µupper.

3.3.2 Existence of the optimal control with penalty term

To construct the expected accumulated payoff J as a functional of a chosen investment
strategy u(x). One can always rescale the cost for the control u(·) as unit price. Then the
cost of being sick can be assume to be a positive constant c, which is independent of the
location x, To account the potential costs of control strategy switching, we introduce the
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term u2
x(·) as a penalty term for building various facilities with a positive relaxed weight

coefficient ε > 0. Finally, we can formulate the expected accumulated payoff J as

J ε(u; I)
.
=

∫ 1

−1
c I(x) + u(x) +

ε

2
(u′(x))2 dx , (3.3.4)

where we naturally assume the cost of being sick c > 0 is a constant independent of the
location. Finally, we reformulate our best planner’s problem as a minimization problem,

min
u(x)∈[0,M ]

J ε(u; I) =

∫ 1

−1
c I(x) + u(x) +

ε

2
(u′(x))2 dx , (3.3.5a)

e−a u(x)[η(x) + βI + αI ′′](1− I)− γI = 0 , (3.3.5b)

I ′(−1) = I ′(1) = 0 . (3.3.5c)

In order to prove the existence of an optimal pair x 7→ (u∗(x), I∗(x)) of our control
problem. We prove first the convergence of the minimizing sequence in Lemma 3. Then we
show there is some corresponding solution sequence In, which converge to I∗. At the end,
we show there exist an optimal pair (u, I) in Theorem 4.

Lemma 3. Suppose {un} is the minimizing sequence of the admissible control for the
steady state optimization problem (3.3.5), then there exist admissible control u such that
un → u uniformly on L2([1, 1]).

Proof. Notice that the penalty term of u′ garantee that there is a constant C such that∫ 1

−1
(u′)2 dx ≤ C . (3.3.6)

Constant C can be constructed from any minimizing sequence {un} since u is supposed to be
the minimizer. By the Poincar inequality [37], un ∈ H1([−1, 1]) and u′n ∈ L2([−1, 1]). un is
Hölder continuous with Holder constant 1/2 [37]. Hence, un → u uniformly on L2([−1, 1]).

For any given control un, pick one In that solves:

αI ′′ = ea un(x)γ
In

1− In
− βIn − η(x) , (3.3.7)

I ′(−1) = I ′(1) = 0 , (3.3.8)

which has the minimal Hε(un, In).
Without the penalty term, notice that if control un(x) ∈ [0, ū] is uniformly bounded, we

consider directly σn = σ(un) = exp aun. So, σn ∈ [δ, 1] where δ > 0. Then
∫

Ω−
1
a lnσ(un)dx

is bounded. Hence σn, 1/σn ∈ L∞([−1, 1]), σn ⇀ σ, 1/σn ⇀ 1/σ weakly. On the other hand,
there exist constant C0 > 0, such that ||I ′′(x)|| < C0. Then I ′ ∈ C([−1, 1]) and In → I
uniformly.

Theorem 4. There exist an optimal pair (u, I) in L2([−1, 1]) for optimization problem
(3.3.5).
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Proof. Given the convergence of the minimizing sequence {un} and the corresponding {In},
we need to show that for the pair (u, I), I satisfies same equation Eq. (3.3.7) with u. Consider
Eq. (3.3.7) in a different form

αI ′n(x2)− αI ′n(x1) =

∫ x2

x1

ea un(ν)γ
In(ν)

1− In(ν)
− βIn(ν)− η(ν)dν , (3.3.9)

Since 1/σn ⇀ 1/σ weakly, which means ea un ⇀ ea u weakly, and In → I uniformly, we can
pass the limit into the integral. Hence, then pair (ea u, I) satisfy Eq. (3.3.7). Notice that
our objective function Hε is lower semicontinuous due to the convexity, we have (u, I) is an
optimal pair for the problem (3.3.5).

3.4 Optimality condition for the optimal control

Recall our optimal control problem (3.3.5). We denote the state equation (3.3.1) as C(I, u) =
0, which is the appropriate formulation of the steady state solution of our PDE with initial
data in the domain B that guarantee existence of solution defined in Theorem 2. We can
now state our PDE-constrained optimization problem of the form

min
I∈B,u∈U

J ε(I, u) subject to C(I, u) = 0 . (3.4.1)

Here u ∈ U is the control living in a Banach space U .
The Lagrangian function for (3.4.1) is given by

L(I, u, f) = J ε(I, u)+ < f,C(I, u) > . (3.4.2)

By standard optimality theory we obtain the following result, see details in Appendix.

Proposition 3.4.1. Assume that J ε : B × U → R, C : B × U → B are continuously
differentiable. If (I, u) is a local solution of (3.4.1), then there exists a Lagrange multiplier
(adjoint state) f ∈ B∗ with

LI(I, u, f) = J εI (I, u) + (CI)
∗(I, u)f = 0 (Adjoint equation) , (3.4.3a)

Lu(I, u, f) = J εu(I, u) + (Cu)∗(I, u)f = 0 (Stationarity equation) , (3.4.3b)

C(I, u) = 0 (State equation) . (3.4.3c)

To be precise, we have adjoint equation

−αf ′′ + (−β + eauγ
1

(1− I)2
)f + c = 0 , f ′(−1) = f ′(1) = 0 , (3.4.4)

Stationarity equation

−aeauγ I

1− I
f + 1− εu′′ = 0 , u′(−1) = u′(1) = 0 , (3.4.5)

and State equation at the steady state of the disease dynamic

e−a u[η + βI + αIxx](1− I)− γI = 0 , (3.4.6a)

I(0, x) = I0 ∈ B , Ix(t,−1) = Ix(t, 1) = 0 . (3.4.6b)
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Remark. Similarly, we can consider the distributed control function where σ(a, u(x)) =
exp{−a u(x)}. affecting only the infection pressure λ(t, x), which modify the infection
pressure as σ(x)λ(t, x). Then the optimization problem will be modified as

min
u(x)≥0

J ε(u; I) =

∫ +1

−1
c I(x) + u(x) +

ε

2
u2
x(x) dx , (3.4.7a)

[η(x) + e−a u(x)(βI(x) + αIxx(x))](1− I(x))− γI(x) = 0 , (3.4.7b)

Ix(−1) = Ix(1) = 0 . (3.4.7c)

Then, we can follow similar argument to proof the existence of optimal pair for this modified
problem and derive the corresponding optimality conditions.

3.5 Numerical algorithm and results

The general principle for computing the desired optimal control is iteratively adopting
Newtown’s method. Here we present a brief description of the computation step. For
detailed algorithm, see Appendix B.

Algorithm 1. (Numerical algorithm).
Input: parameters for the disease dynamic and initial guess of the control.
Output: the optimal control and the associated infected population.
Given: Tolerance level for accuracy,

1. Compute I(u), H(u) for the current guess u.

2. Compute an adjoint state f .

3. Check if u and I(u) is KKT point.

4. Compute the tangential step δu from Eq. 3.4.5.

5. Update u if needed.

Analysis of parameters in the disease dynamic

First, we investigate the influence of background infection rate when no control function is
at present, see Figure. 3.1. With minor disease invasion force R0 < 1, we still see the spread
of disease from the reservoir. The higher the background infection rate ηmax, the wider and
higher infection outside the boarder of reservoir.

Besides the dominating effect of the disease invasion force which was represented by the
basic reproduction number, we also notice from Figure. 3.2 that the diffusion parameter
determines how wide the disease will spread outside the disease reservoir, even when the
disease transmission is minor factor R0 < 1.
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Figure 3.1: Example solutions regarding various background infection rate of disease reser-
voir without control function.
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Figure 3.2: Example solutions regarding various basic reproduction number R0 and diffusion
rate α of disease reservoir without control function. Additional parameters used a = 10, c =
1, and γ = 1.0.

Optimal control and the cost under various diffusion coefficients

Knowing the basic row of the background parameters in the disease dynamic, we consider the
efficiency of our optimal control. By observing Figure. 3.3 and Figure. 3.4, our algorithm is
robust for a wide range of parameters. The computed optimal control sufficiently reduced
the infected population. With continuously applied optimal control, the disease can be
almost confined within the disease reservoir, provided the diffusion remain small.
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Figure 3.3: Sample solution for the model problem based on various diffusion coefficients α
at R0 = 2, a = 10 and ηmax = 0.5.

In Figure. 3.5, one can observe the sufficient improvement of the total cost by adapting
the optimal control.

Influence of the basic reproduction number on the optimal control

The basic reproduction number R0 dominant the disease spread in the whole area without
control, seefig:RInf. However, by compare Figure. 3.3 and Figure. 3.4 accordingly, we can
still find the optimal control to reduce the disease spread out of the reservoir if the diffusion
is relatively small, as also shown in Figure. 3.6.

3.6 Chattering effect analysis as ε→ 0

Here, in Figure. 3.7, we demonstrate numerically the important role of the introduced
penalty term in the cost functional defined in Eq. (3.3.5).

As the weight of the penalty term decrease to zero, one has the linear expected accu-
mulated payoff J (u(x); I(x)) would be

J (u; I)
.
=

∫ 1

−1
c I(x) + u(x) dx . (3.6.1)

For the original nonlinear control problem (3.3.1), the set of velocities may not be convex.
If u(x) ∈ [0,M ], it may sometime be convenient to chatter between u = 0 and u = M .
In the following, we show such chattering effect may happen with this linear payoff. This
leads to replace Eq. (3.3.1) with the chattering system, which is linear with respect to the
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Figure 3.4: Sample solution for the model problem based on various diffusion coefficients α
at R0 = 0.5, a = 10 and ηmax = 0.5.
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Figure 3.6: Sample solution of the Planner’s Problem for R0 = 2 V.S. R0 = 0.5, where
α = 0.001, a = 10 and ηmax = 0.5.
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Figure 3.7: Sample solution for the comparison on weight of penalty term, ε = 1(left) V.S.
ε = 0.01(right), where ηmax = 0.5, R0 = 1.5, α = 0.01 and a = 10.

control variable θ(x),

αI ′′(x) =
γI(x)

1− I(x)
+ θ(x)(eaM − 1)

γI(x)

1− I(x)
− βI(x)− η(x) , (3.6.2a)

I ′(−1) = I ′(1) = 0 . (3.6.2b)

As we analyze the optimal control problem at the steady state of the disease dynamic,
we rewrite Eq. (3.2.4) as a first order system with column vector x 7→ (ξ1(x) , ξ2(x))T =
(I(x) , I ′(x))T ,

min
θ∈[0,1]

∫ 1

−1
c ξ1(x) + θ(x)M dx , (3.6.3a)

ξ̇1 = ξ2 , (3.6.3b)

ξ̇2 =
1

α
[
γξ1

1− ξ1
+ θ(eaM − 1)

γξ1

1− ξ1
− βξ1 − η] , (3.6.3c)

ξ2(−1) = ξ2(1) = 0 . (3.6.3d)

For this new problem, since the control θ enters linearly both in the cost functional and the
dynamic system, the existence of an optimal control θ is a classical result given in many
textbooks on optimal control, see [23].

Let x 7→ θ∗(x) be an optimal control and t 7→ I∗(x) = I(x, u∗) = ξ∗1(x) be an optimal
trajectory correspondingly for the minimization problem. By the Pontryagin’s maximum
principle, we have the necessary conditions for this chattering control, where θ = 0 or θ = 1
correspond to a genuine control u = 0 or u = M .

A common approach is to define the Hamiltonian, as follows

H = c ξ1 + θM + λ1 ξ2 + λ2
1

α
[
γξ1

1− ξ1
+ θ(eaM − 1)

γξ1

1− ξ1
− βξ1 − η] , (3.6.4)

where λi, i = 1, 2 are often referred to as the adjoint variables.
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Applying the PMP one can show that there exist non-zero row vector x 7→ (λ1(x) , λ2(x))
such that the adjoint equations are in the following form

− λ̇1 = λ2
1

α
[

γ

(1− ξ1)2
+ θ(eaM − 1)

γ

(1− ξ1)2
− β] + c , (3.6.5a)

− λ̇2 = λ1 , (3.6.5b)

λ1(−1) = λ1(1) = 0 . (3.6.5c)

θ∗ = arg min
θ∈[0,1]

H(ξ1, ξ2, λ1, λ2, θ) . (3.6.6)

Since the Hamiltonian H is linear in control θ, we define

Φ(x) = λ2
eaM − 1

α

γξ1

1− ξ1
+M . (3.6.7)

H = Φ(x)θ(x) + c ξ1 + λ1 ξ2 + λ2
1

α
[
γξ1

1− ξ1
− βξ1 − η] , (3.6.8)

Hence, the necessary condition leads to the following form of the θ∗ by PMP

θ∗(x) =

{
1 if Φ(x) < 0 ,
0 if Φ(x) > 0 .

(3.6.9)

Φ(·) can be seen as the switching function and its zeros can be interpreted as the switching
times. If the switching function contains only isolated zeros, the problem is regular and
we can achieve an optimal control by finite switch of the two extreme states of the control.
However, if Φ(·) is zero along an open interval, then such interval is the singular arc, along
which Φ̇(x) = ψ(ξ1, ξ2, λ1) = 0.

Hence, for a monotone decreasing background infection rate η(x) ≥ 0,

• θ = 0 7→ I(x; θ = 0):

ξ̇1 = ξ2 , (3.6.10a)

ξ̇2 =
1

α
[
γξ1

1− ξ1
− βξ1 − η] , (3.6.10b)

ξ2(−1) = ξ2(1) = 0 . (3.6.10c)

• θ = 1 7→ I(x; θ = 1):

ξ̇1 = ξ2 , (3.6.11a)

ξ̇2 =
1

α
[eaM

γξ1

1− ξ1
− βξ1 − η] , (3.6.11b)

ξ2(−1) = ξ2(1) = 0 . (3.6.11c)
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• θ ∈ (0, 1) 7→ I(x; θ):

ξ̇1 = ξ2 , (3.6.12a)

ξ̇2 =
1

α
[
γξ1

1− ξ1
+ θ(eaM − 1)

γξ1

1− ξ1
− βξ1 − η] , (3.6.12b)

λ̇1 = −λ2
1

α
[

γ

(1− ξ1)2
+ θ(eaM − 1)

γ

(1− ξ1)2
− β]− c , (3.6.12c)

λ̇2 = −λ1 , (3.6.12d)

ξ2(−1) = ξ2(1) = 0 , λ1(−1) = λ1(1) = 0 , (3.6.12e)

ψ(ξ1, ξ2, λ1) = λ1(
eaM − 1

α
)2(

γξ1

1− ξ1
)2 +

γM

(1− ξ1)2
ξ2 = 0 . (3.6.12f)

For special case where the background infection rate η(x) = η̄ being constant, we can
explicitly compute the control and the corresponding cost. Notice that in such case the
infected population I and the optimal control u are constants as well, we can use the
standard lagrangian multiplier approach

• θ = 0 7→ I(θ = 0):

I0 =
−(γ − β + η̄) +

√
(γ − β + η)2 + 4βη̄

2β
, (3.6.13a)

J0 =
c

β
[−(γ − β + η̄) +

√
(γ − β + η̄)2 + 4βη̄] , (3.6.13b)

where as η̄ → +0,

I0 →
{

0 if β < γ
1− γ

β if β > γ
, (3.6.14)

J0 →
{

0 if β < γ
2c(1− γ

β ) if β > γ
. (3.6.15)

• θ = 1 7→ I(θ = 1):

I1 =
−(γeaM − β + η̄) +

√
(γeaM − β + η̄)2 + 4βη̄

2β
, (3.6.16a)

J1 =
c

β
[−(γeaM − β + η̄) +

√
(γeaM − β + η̄)2 + 4βη̄] + 2M . (3.6.16b)

where as η̄ → +∞, I1 → 1. (Taylor series of (1 + x)0.5 = 1 + 1
2x+ o(x2).)
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• θs ∈ (0, 1) 7→ I(θs):

θs =
cγ(eaM − 1)− 2βM

γ(eaM − 1)M

√
η̄M

cγ(eaM − 1)− βM
− γ − β + η̄

γ(eaM − 1)
(3.6.17a)

Is =

√
η̄M

cγ(eaM − 1)− βM
, (3.6.17b)

Js = 2cIs + 2Mθs (3.6.17c)

λs = − 2M

cγ(eaM − 1)− 2βM

√
cγ(eaM − 1)− βM

η̄M
. (3.6.17d)

Hence, if η̄ is small, the optimal control is u = 0 (θ = 0). If η̄ is large, the optimal control is
u = M (θ = 1). For other intermediate values of η̄, one could expect the chattering control
θs ∈ (0, 1) as defined in Eq. (3.6.17).
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Figure 3.8: Example optimal control θ for background infection rate η. This is an sample
case to show the possible rise of chattering case, where parameters are taken as β = 0.5, γ =
1, a = 10,M = 0.22, c = 1.

3.7 Comparison with wall blocking strategy for uniform pop-
ulation

Consider building a wall to block the spread of disease from the reservoir. We consider a
simple form control u(x) as a Gaussian shape function,

u(x) = Cr ∗ e−
(x−µ)2

2∗σ2 . (3.7.1)

38



We observe from figure 3.9 that the wall can efficiently block the transmission when
R0 < 1. When R0 is large, even with small diffusion parameter, a simple wall placed at the
boarder can not stop the transmission spread out the disease reservoir.
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Figure 3.9: Sample solution for model problem based on various R0, where ηmax = 0.1,
R0 = 1.5 and a = 10.

However, the Allee effect question shows the possibility that this model fail to capture
the possible wall blocking strategy in reality. Demographic and mathematical model studies
show that the existence of an Allee effect can prevent biological invasions [42].

3.8 Discussion

Here we proposed a spatial model for disease control problem with disease reservoir. We
analyzed the underlying dynamic when the control is imposed. Optimal pair of the disease
control problem has been proved to exist with suitable choice of the cost functional. Later
sections are served to show ways of calculating the optimal control pair in the various
applicable scenarios. With carefully, designed the control strategy, one can hope to confine
the infectious disease within a close distance around the reservoir. Although our model
study one dimensional space, which may seem simple at first sight, it is applicable for large
regions which can be simplified as uniform on the other direction as an approximation.
Future work can be expending the model to two dimension case, which we will try to tackle
in the following chapter.
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Chapter 4

Control problems for a class of set
valued evolutions

In this chapter, we studies controllability problems for the reachable set of a differential
inclusion. These were originally motivated by models of control of a flock of animals.
Conditions are derived, for the existence or nonexistence of a strategy which confines the
reachable set within a given bounded region, at all sufficiently large times. Steering problems
and the asymptotic shape of the reachable set are also investigated.

4.1 Introduction

The analysis and control of evolution equations on a general metric space has been the topic
of several investigations [8, 9, 66]. In particular, this provides a convenient setting for the
control of the evolution of a set S(t), depending on time.

Aim of this paper is to analyze a specific class of control problems for a moving set. A
version of this model, involving conservation laws, was first proposed by R. Colombo and
M. Mercier [31] to describe the controlled motion of a flock of animals. Let ρ = ρ(t, x) denote
the density of individuals at time t at the location x ∈ IR2. The conservation equation takes
the form

ρt + div(ρv) = 0. (4.1.1)

It is assumed that individuals choose their velocity v with two goals in mind:

(i) spread out toward less crowded areas,

(ii) move away from a repelling source, located at a variable position ξ(t) ∈ IR2.

To model (i), a meaningful choice is to set

v = v(ρ,∇ρ) = − ∇ρ√
ρ2 + 1

c2
|∇ρ|2

, (4.1.2)
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for some constant c > 0 determined by the maximum speed. This yields the conservation
law

ρt − div

 ρ∇ρ√
ρ2 + 1

c2
|∇ρ|2

 = 0. (4.1.3)

The equation (4.1.3), which coincides with the relativistic heat equation, was studied in [5].
The Cauchy problem has globally defined, unique solutions.

To model (ii), let ξ = ξ(t) ∈ IR2 be the position of the repelling source. For example,
this could be the position of a dog, controlling a flock of sheep. The velocity of an individual
(a sheep) located at x will be described as

v(x, ξ) = ϕ(|x− ξ|) x− ξ
|x− ξ|

. (4.1.4)

A natural set of assumptions on the function ϕ is:

(A1) The map ϕ : IR+ 7→ IR+ is a non-increasing function, with ϕ(s)→ 0 as s→ +∞.

For example, one may take
ϕ(r) = ae−br. (4.1.5)

In alternative, one can also consider

ϕ(r)
.
=

{
α if r ≤ σ ,
0 otherwise ,

(4.1.6)

or
ϕ(r)

.
= min

{
β , αr−γ

}
. (4.1.7)

It will be convenient to represent the function v in (4.1.4) as

v(x, ξ) = ∇xΦ(|x− ξ|) , Φ(r)
.
=

∫ r

0
ϕ(s) ds , (4.1.8)

where the gradient is taken w.r.t. the x-variable. Čombining the two terms (4.1.2)-(4.1.4),
the conservation law (4.1.1) takes the form

ρt − div

 ρ∇ρ√
ρ2 + 1

c2
|∇ρ|2

 = div
(
ρ∇Φ(x, ξ(t))

)
. (4.1.9)

Following [31], we regard (4.1.9) as a controlled PDE, where ξ(·) is the control function.
In the present paper, instead of the density function ρ itself, we focus on the control of

the support of ρ. This will be denoted as

S(t)
.
= Supp(ρ(t, ·)) =

{
x ∈ IR2 ; ρ(t, x) > 0

}
,

where the overline indicates the closure of a set.
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For the equation (4.1.3) with smooth initial data ρ(0, x) = ρ0(x), a major result proved
in [6] states that the support of the density ρ(t, ·) expands with speed c in all directions.
Namely,

S(t) =
{
x ∈ IR2 ; d(x, S(0)) ≤ ct

}
= S(0) +B(0, ct) . (4.1.10)

Here and in the sequel, B(y, r) and B(y, r) denote respectively the open and closed disc
centered at y with radius r.

Motivated by (4.1.10), we introduce a model for the evolution of the region S(t) ⊂ IR2

occupied by a flock of animals at time t, formulated in terms of a differential inclusion.
Intuitively for x, ξ ∈ IR2, it is natural to consider the set of velocities

G(x, ξ)
.
= B

(
ϕ(|x− ξ|) x− ξ

|x− ξ|
, c

)
However, the multifunction G defined in this way would fail to be upper semicontinuous (at
points x, ξ such that either x = ξ or else ϕ is discontinuous at s = |x− ξ|). Throughout the
following, we shall thus work with the upper semicontinuous convex valued regularization
of the above multifunction. This is obtained by setting

G(x, ξ)
.
=

{
y ;

∣∣∣∣y − λ x− ξ|x− ξ|

∣∣∣∣ ≤ c for some λ ∈ [ϕ(s+), ϕ(s−)]

}
if x 6= ξ , (4.1.11)

G(x, x) = B
(
0 , ϕ(0) + c

)
. (4.1.12)

Under the assumptions (A1), one easily checks that the multifunction G in (4.1.11)-(4.1.12)
is upper semicontinuous with compact, convex values. Moreover, it satisfies the uniform
bound

G(x, ξ) ⊆ B(0 , ϕ(0) + c) for all x, ξ ∈ IR2 . (4.1.13)

Calling S0 the region occupied at time t = 0, we let S(t) be the reachable set for the
differential inclusion

ẋ ∈ G(x, ξ(t)) , x(0) ∈ S0 . (4.1.14)

In other words,

S(t)
.
=
{
x(t) ;x(0) ∈ S0 , ẋ(τ) ∈ G (x(τ), ξ(τ)) for a.e. τ ∈ [0, t]

}
. (4.1.15)

As a first model, one may consider any continuous function ξ : [0,∞[ 7→ IR2 as an admissible
control. If ξ(·) denotes the position of a dog initially located at ξ0, that can run at a
maximum speed σ, a more realistic model would include the assumption

(A2) The control function t 7→ ξ(t) ∈ IR2 is Lipschitz continuous, with

|ξ̇(t)| ≤ σ , ξ(0) = ξ0 . (4.1.16)

As for the fire confinement problem [22, 24], this model leads to some natural questions.
1 - Global confinement. Assume that the initial set S0 is bounded. Is it possible to keep
the set S(t) uniformly bounded for all positive times?
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We thus seek conditions which provide the existence (or nonexistence) of a radius R > 0
and a control ξ(·) such that

S(t) ⊆ B(0, R) for all t ≥ 0 . (4.1.17)

A related question is the following. Let two points P1, P2 ∈ IR2 be given, together with
radii r1, r2 > 0. Assuming that S0 ⊆ B(P1, r1), is it possible to find a control ξ(·) that, at
some later time τ > 0, one has S(τ) ⊆ B(P2, r2)?
2 - Steering with constant speed. Assume we want to steer the flock, say in the direction
of the x1-axis, with constant speed λ ≥ 0. When is this possible?

Here we wish to understand in which cases there exists a radius R > 0 and a control
t 7→ ξ(t) such that

S(t) ∈ B(tλe1, R) for all t ≥ 0 . (4.1.18)

By e1 we denote the unit vector parallel to the x1-axis.
3 - Quasi-stationary domains. A further problem is to identify the family of compact
sets S0 for which the following stabilization property holds: For every ε > 0, there exists a
control ξ(·) such that the corresponding sets S(t) in (4.1.15) satisfy

dH(S(t) , S0) ≤ ε for all t ≥ 0 . (4.1.19)

In the analysis of controllability properties, a key role is played by rotating controls,
where the point ξ(t) rotates along a circle γ with constant speed. For this reason, in
the last section we study this situation in more detail. In the setting we are considering,
from general results about periodic orbits of dynamical systems [64, 70] it already follows
that the map t 7→ S(t) converges to a time periodic function as t → +∞, w.r.t. the
Hausdorff distance. In the present case, a stronger result can be shown. Namely, in a
set of rotating coordinates, for all times t sufficiently large the boundary of the set S(t)
is a Lipschitz curve that admits a polar coordinate representation r = r(t, θ). Moreover,
as t → ∞, one has the uniform convergence r(t, θ) 7→ r∞(θ), for a smooth function r∞,
characterized as the unique 2π-periodic orbit of a suitable ODE. Šection 2 of this paper
contains a standard approximation theorem. Given a probability measure µ on IR2 and a
corresponding “averaged” multifunction x 7→ G(x, µ), we consider the differential inclusion

ẋ(t) ∈ G(x(t), µ) , S(0) = S0 . (4.1.20)

One can then construct a sequence of control functions ξn(·) such that the corresponding
reachable sets Sn(t) for (4.1.14) are “almost contained” in the reachable sets for (4.1.20).

In Section 3 we give some necessary and some sufficient conditions in order that the
global confinement problem or the steering problem admit a solution. Finally, Section 4
analyzes in more detail the case where stabilization is achieved by means of a uniformly
rotating control function ξ(·). In this case, it is shown that the reachable set S(t) converges
in a strong sense to periodic multifunction.

For the basic theory of multifunctions and differential inclusions we refer to [10, 50]. A
survey of different models describing the motion of flocks of animals can be found in the
recent paper [16].
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4.2 Averaging and approximation results

Let G = G(x, ξ) be a bounded, upper semicontinuous multifunction on IR2 × IR2 with
compact, convex values. To fix the ideas, assume

G(x, ξ) ⊆ B(0,M) for all x, ξ ∈ IR2. (4.2.1)

Call P the family of all probability measures on IR2. For µ ∈ P, consider the “averaged”
multifunction

G(x, µ)
.
=

∫
G(x, ξ) dµ(ξ)

.
={∫

g(ξ) dµ(ξ) ; g measurable , g(ξ) ∈ G(x, ξ) for all ξ

}
.

(4.2.2)

Lemma 1. The multifunction x 7→ G(x, µ) in (4.2.2) is bounded, upper semicontinuous,
with compact convex values.
Proof. 1. Introducing the constant M = ϕ(0)+c, by the uniform bound (4.1.13) it is clear
that G(x, µ) ⊆ B(0,M) for all x ∈ IR2. Moreover, since all sets G(x, ξ) are convex, G(x, µ)
is convex as well.
2. To show that each set G(x, µ) is closed, consider a sequence of points

yn =

∫
gn(ξ) dµ(ξ) ∈ G(x, µ).

with yn → y as n→∞. Taking a subsequence, we can assume the weak convergence gn ⇀ g
in  L1

µ, for some function g. The convexity of all sets G(x, ξ) implies g(ξ) ∈ G(x, ξ). Hence

y = lim
n→∞

∫
gn(ξ) dµ(ξ) =

∫
g(ξ) dµ(ξ) ∈ G(x, µ),

proving that the set G(x, µ) is closed, hence compact.
3. Finally, we check that the map x 7→ G(x, µ) is upper semicontinuous. Fix a point x̄ and
let ε > 0 be given. By the upper semicontinuity of the map (x, ξ) 7→ G(x, ξ), we can find a
measurable function ξ 7→ r(ξ) > 0 such that

G(x, ξ) ⊂ B(G(x̄, ξ) , ε/3) for all x ∈ B(x̄, r(ξ)). (4.2.3)

Choose δ > 0 such that

µ
(
{ξ ; r(ξ) ≤ δ}

)
<

εM

3
. (4.2.4)

We claim that this choice yields

G(x, µ) ⊆ B(G(x̄, µ) , ε) for all x ∈ B(x̄, δ). (4.2.5)

Indeed, assume that x ∈ B(x̄, δ) and consider an arbitrary element

y =

∫
g(ξ) dµ(ξ) ∈ G(x, µ) ,
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for some function ξ 7→ g(ξ) ∈ G(x, ξ). Calling π ◦ g(ξ) the perpendicular projection of g(ξ)
on the compact convex set G(x̄, ξ), by (4.2.3)-(4.2.4) we have

d(y,G(x̄, µ)) ≤
∫
r(ξ)>δ

∣∣∣g(ξ)− π ◦ g(ξ)
∣∣∣dµ+

∫
r(ξ)≤δ

∣∣∣g(ξ)− π ◦ g(ξ)
∣∣∣dµ

<
ε

3
+ 2M · µ

(
{ξ ; r(ξ) ≤ δ}

)
< ε .

This establishes (4.2.5), and hence the upper semicontinuity of the multifunction x 7→
G(x, µ).

Given a probability measure µ and a compact set S0 as initial data, we denote by Sµ(t)
the reachable sets for the differential inclusion (4.1.20). Moreover, B(A, ε) will denote the
closed ε-neighborhood around a set A. In our analysis of confinement and steering problems,
the following approximation result will be repeatedly used.
Theorem 1. In the above setting, for any T, ε > 0 there exists a smooth control function
ξ : [0, T ] 7→ IR2 such that the reachable sets Sξ, Sµ for the differential inclusions (4.1.14),
(4.1.20) satisfy

Sξ(t) ⊆ B(Sµ(t) , ε) for all t ∈ [0, T ] . (4.2.6)

Proof. 1. Assume S0 ⊆ B(0,M0) for some constant M0. In view of (4.2.1) for t ∈ [0, T ],
all trajectories starting in S0 will satisfy the a priori bound

|x(t)| ≤M0 +MT for all t ∈ [0, T ] . (4.2.7)

Hence, changing the values of the multifunction G(x, ξ) for |x| > M0 +MT does not affect
the solutions of the differential inclusion. For simplicity, we shall thus assume that G is
constant for |x| large, namely

G(x, ξ) = B(0,M) for all |x| ≥M0 +MT , ξ ∈ IR2.

In essence, the analysis can be restricted to the compact disc B(0, M0 +MT ) ⊂ IR2.
2. By upper semicontinuity, there exists δ] > 0 small enough such that the following holds.
If G] is any multifunction such that

G](x) ⊆ co

 ⋃
|x′−x|≤δ]

B
(
G(x′, µ) , δ]

) , (4.2.8)

then the reachable sets S](t) for the differential inclusion

ẋ(t) ∈ G](x(t)) , S(0) = S0 , (4.2.9)

satisfy
S](t) ⊆ B(Sµ(t) , ε/2) for all t ∈ [0, T ] . (4.2.10)
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3. We now approximate µ by a purely atomic measure µ]. More precisely, denote by δy
the Dirac measure concentrating a unit mass at the point y ∈ IR2. We can then find points
yk ∈ IR2 and coefficients λk ∈ [0, 1] with

∑m
k=1 λk = 1 such that the probability measure

µ]
.
=

m∑
k=1

λk δyk (4.2.11)

yields a multifunction

G](x)
.
= G(x, µ]) =

m∑
k=1

λkG(x, yk) (4.2.12)

satisfying (4.2.8). In particular, this implies (4.2.10).
4. Using the upper semicontinuity of the multifunctions G(·, yk) and G] in (4.2.12), we can
choose δ > 0 small enough so that the following holds. If G1, . . . , Gm are multifunctions
such that

Gk(x) ⊆

 ⋃
|x′−x|≤2δ

G(x′, yk)

 , k = 1, . . . ,m , (4.2.13)

then the reachable sets S∗(t) for the differential inclusion

ẋ(t) ∈ G∗(x(t))
.
=

n∑
k=1

λkGk(x(t)) , S(0) = S0 , (4.2.14)

satisfy
S∗(t) ⊆ B(S](t) , ε/4) for all t ∈ [0, T ] . (4.2.15)

5. The control function ξ(·) can now be constructed as follows. Choose an integer n large
enough so that TM/n < δ and divide the time interval [0, T ] into n equal subintervals,
inserting the points ti = iT/n, 0 ≤ i ≤ n. Each interval Ii = [ti−1, ti] is further partitioned
into subintervals Ii,k whose lengths are proportional to the coefficients λk, k = 1, . . . ,m in
(4.2.11). We then define

ξn(t) = yk for t ∈
n⋃
i=1

Ii,k . (4.2.16)

The reachable sets for the differential inclusion

ẋ ∈ G(x, ξn(t)) , x(0) ∈ S0 (4.2.17)

will be denoted by Sn(t).
6. Let x(·) be any solution of (4.2.17). By (4.2.1), for t ∈ [ti−1, ti] it follows

|x(t)− x(ti−1)| ≤ M · T
n
. (4.2.18)
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Consider the polygonal approximation

x∗(t)
.
= x(ti−1) + (t− ti−1) · x(ti)− x(ti−1)

ti − ti−1
for all t ∈ [ti−1, ti] .

By definition x∗(ti) = x(ti) for all i = 0, . . . , n. If t ∈ [ti−1, ti], then

|x∗(t)− x(t)| ≤ 2M(t− ti−1) ≤ 2MT

n
. (4.2.19)

Moreover, our previous construction yields

ẋ∗(t) =
x(ti)− x(ti−1)

ti − ti−1
∈

m∑
k=1

λk ·

 ⋃
|x′−x(ti−1)|≤δ

G(x′, yk)


⊆

m∑
k=1

λk ·

 ⋃
|x′−x∗(t)|≤2δ

G(x′, yk)

 .

(4.2.20)

Recalling (4.2.13)-(4.2.15), we thus obtain

x∗(t) ∈ B(S](t), ε/4). (4.2.21)

Choosing n so large that 2MT
n < δ

4 , using (4.2.19), (4.2.21), and then (4.2.10), we obtain

x(t) ∈ B
(
S](t),

ε

4
+
ε

4

)
⊆ B

(
Sµ(t), ε

)
.

Since x(·) was an arbitrary solution of the differential inclusion (4.2.17), we have shown
that the control function ξ(t) = ξn(t) in (4.2.16) yields the desired estimate (4.2.6).
7. To achieve the proof, we need to modify the piecewise constant function ξn(·), making
it smooth on the entire interval [0, T ]. Relying again on the upper semicontinuity of the
reachable sets, if the new function ξ(·) coincides with the ξn(·) on a set of times having suf-
ficiently small Lebesgue measure, after this modification the bound (4.2.6) will be replaced
by

Sξ(t) ⊆ B(Sµ(t) , 2ε) for all t ∈ [0, T ] .

Since ε > 0 was arbitrary, this completes the proof.

4.3 Confinement strategies

4.3.1 A necessary condition

We start by deriving a necessary condition for the existence of a confining strategy. The
following result shows that, if the initial set S0 is already large, then, no matter how fast the
controller ξ can move, it cannot prevent the reachable sets S(t) from becoming arbitrarily
large, as t→ +∞. Consider the variables

A
.
= πr2 , Φ

.
=

∫
Br

div v = 2πr ϕ(r).
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We regard Φ as a function of A, so that

Φ(A) = 2π

√
A

π
ϕ

(√
A

π

)
=

∫ A

0

[
d

dA
Φ(A)

]
.

Motivated by the previous computations, in the following theorem, we let s 7→ ϕ̂(s) be the
non-decreasing rearrangement of the function

A 7→ d

dA
Φ(A) =

√
π

A
ϕ

(√
A

π

)
+ ϕ′

(√
A

π

)
In other words, ϕ̂ : [0,∞[7→ IR is the unique (up to a set of zero measure) non-decreasing
function such that, for every k ≤ 0,

meas
(
{A ≥ 0 ; ϕ̂(A) ≤ k}

)
=

meas

({
A ≥ 0 ;

√
π

A
ϕ

(√
A

π

)
+ ϕ′

(√
A

π

)
≤ k

})
.

(4.3.1)

Theorem 2. Assume that, for some constant A0, the non-increasing rearrangement ϕ̂
satisfies

g(A)
.
= 2c

√
πA+

∫ A

0
ϕ̂(s) ds > 0 for every A > A0 . (4.3.2)

Then, if the initial set S0 has measure m2(S0) > A0, uniform confinement is not possible.
Indeed, for any choice of the control ξ(·) one has

m2(S(t)) → ∞ as t→∞. (4.3.3)

Proof. The area of the set S(t) evolves in time according to

d

dt
m2(S(t)) = c ·m1(∂S(t)) +

∫
S(t)

div v . (4.3.4)

Here ∂S denotes the boundary of the set S, while m1 is the one-dimensional Hausdorff
measure, normalized so that m1(γ) gives the usual length of a smooth curve γ.

If m2(S(t)) = πr2(t) for some r(t), then the isoperimetric inequality yields

m1(∂S(t)) ≥ 2πr(t) = 2
√
πm2(S(t)). (4.3.5)

This provides a lower bound on the first term on the right hand side of (4.3.4).
To achieve a bound on the second term we observe that, by the definition of ϕ̂,∫

S
div v ≥ inf

{∫
S′

div v;S′ ⊂ IR2 ,m2(S′) = m2(S)

}
=

∫ m2(S)

0
ϕ̂(ζ) dζ . (4.3.6)

Using (4.3.5) and (4.3.6) in (4.3.4), we obtain

d

dt
m2(S(t)) ≥ g

(
m2(S(t))

)
,

where g : ]A0, ∞[ 7→ IR+ is the continuous, strictly positive function introduced at (4.3.2).
A standard comparison argument for ODEs now yields (4.3.3).
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Example 1. Consider the case where ϕ(r) = ae−br, as in (4.1.5). Calling r = |x|, we
have

div v(x) =

(
ϕ(r)

r
+ ϕ′(r)

)
=
(1

r
− b
)
ae−br =

(√ π

A
− b
)
ae−b
√
A/π

Hence div v(x) ≤ 0 if and only if |x| ≥ b−1. For every set S ⊂ IR2 we thus have∫
S

div v ≥
∫
|x|≥1/b

div v = − 2πϕ(1/b) = − 2πa

e
.

In particular, if the initial set S0 has area m2(S0) > πa2/c2e2, then its perimeter satisfies
c ·m1(∂S0) ≥ 2c

√
πm2(S0) > 2πa/e, and the corresponding sets S(t) become arbitrarily

large: m2(S(t))→∞ as t→∞.
Example 2. For the function ϕ(r) defined at (4.1.6) we have∫

S
divv ≥ − 2πασ .

A similar computation shows that, if the initial set S0 has area m2(S0) > πα2σ2/c2, then
its perimeter satisfies c ·m1(∂S0) ≥ 2c

√
πm2(S0) > 2πασ, and m2(S(t))→∞ as t→∞.

Example 3. In the case ϕ(r) = min{β, αr−γ}, setting r∗
.
= (α/β)1/γ we compute

div v(x) =

{
β/r if |x| < r∗ ,

α(1− γ)|x|−γ−1 if |x| > r∗ .

Notice that, if γ ≤ 1 , then div v(x) > 0 for all x ∈ IR2. In this case the measure m2(S(t))
will be always increasing in time, and uniform confinement is impossible. On the other
hand, if γ > 1, then∫

S
divv ≥

∫
|x|≥r∗

divv = − 2πr∗ ϕ(r∗) = − 2πα1/γβ1−1/γ .

If the initial set S0 has aream2(S0) > πα2β2−2/γ/c2, then its perimeter satisfies c·m1(∂S0) ≥
2c
√
πm2(S0) > 2πα1/γβ1−1/γ , and m2(S(t))→∞ as t→∞.

4.3.2 A steering problem

Next, we consider the problem of steering the set S(t), initially inside a disc B(P1, r1), to
another disc B(P2, r2). To state a positive result in this direction, an auxiliary function
needs to be introduced.

Fix a radius r0 ≥ 0, and consider a probability distribution µ uniformly distributed
along the circumference centered at the origin with radius r0. Consider the “averaged”
vector field

w(x)
.
=

∫
|ξ|=r0

ϕ(|x− ξ|) x− ξ
|x− ξ|

dµ(ξ) . (4.3.7)
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Clearly this vector field is radially symmetric, having the form

w(x) = φ(|x|, r0)
x

|x|
. (4.3.8)

The function φ can be computed using the divergence theorem. Indeed, for every 0 < r < r0

we have

2πr φ(r, r0) =

∫
|ξ|=r0

(∫
B(0,r)

div v(x, ξ)

)
dµ(ξ) =

∫
B(0,r)

div v(x, P ) , (4.3.9)

where P is any point having distance r0 from the origin. Taking P = (r0, 0) ∈ IR2, the right
hand side of (4.3.7) is computed by

φ(r, r0) =
1

2πr

∫ r0+r

r0−r
2s

(
ϕ(s)

s
+ ϕ′(s)

)
arccos

(
s2 + r2

0 − r2

2r0s

)
ds . (4.3.10)

Theorem 3. Assume that ϕ : IR+ 7→ IR+ satisfies (A1) and let φ be the function defined
at (4.3.7)-(4.3.8). Let 0 < r2 ≤ r1 and assume that

inf
ρ>r

φ(r, ρ) < − c for all r ∈ [r2, r1] . (4.3.11)

Let the initial condition satisfy S0 ⊆ B(P1, r1) for some point P1. Then, for any point P2 ∈
IR2 there exists a smooth control function t 7→ ξ(t) and T > 0 such that the corresponding
set satisfies S(T ) ⊆ B(P2, r2).
Proof. 1. Let the assumption (4.3.11) hold. Then for every r ∈ [r2, r1] there exists ε > 0
and a probability measure µρ(r), uniformly distributed along the circumference ∂B(P1, ρ(r))
centered at P1 with radius ρ(r) > r+ ε, such that the following holds. At some time τ > 0,
every solution to the differential inclusion

ẋ ∈ G(x, µρ(r)) , x(0) ∈ B(P1, r + ε)

satisfies
x(τ) ∈ B(P1, r − ε).

2. Since the interval [r2, r1] is compact, by a covering argument we can find τ, ε > 0 and
radii Rk with

r1 = R0 > R1 > · · · > RN = r2

such that the following holds. For every k = 1, . . . , N , every solution to the differential
inclusion

ẋ ∈ G(x, µρ(Rk)) , x(0) ∈ B(P1, Rk)

satisfies
x(τ) ∈ B(P1, Rk+1 − ε).

By Theorem 1, for every k there exists a control function ξk : [0, τ ] 7→ IR2 such that every
solution to the differential inclusion

ẋ ∈ G(x, ξk(t)) , x(0) ∈ B(P1, Rk)
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satisfies
x(τ) ∈ B(P1, Rk+1).

Consider the control function ξ : [0, Nτ ] 7→ IR2 defined as the concatenation

ξ(t)
.
= ξk(t− (k − 1)τ) t ∈ [(k − 1)τ, kτ ] .

Then every solution of the differential inclusion

ẋ ∈ G(x, ξ(t)) , x(0) ∈ B(P1, r1)

satisfies
x(Nτ) ∈ B(P1, r2).

This already proves the theorem in the case P2 = P1.
3. Next, consider the unit vector e = (P2 − P1)/|P2 − P1| and choose an integer m large
enough so that

δ =
|P2 − P1|

m
< r1 − r2 .

By the previous step, for every j ≥ 1 there exists a control function ξj : [0, Nτ ] 7→ IR2 such
that every solution of

ẋ ∈ G(x, ξj(t)) , x(0) ∈ B(P1 + (j − 1)δe, r1)

satisfies
x(Nτ) ∈ B(P1 + (j − 1)δe, r2) ⊂ B(P1 + jδe, r1).

After m + 1 steps, the concatenation of these controls ξj(·) yields a control ξ(·) satisfying
the requirements of the theorem, with T = (m+ 1)Nτ .
Next, we provide a sufficient condition for the solvability of the steering problem. Given
a probability measure µ on IR2, we recall that G(x, µ) denotes the averaged velocity set
defined at (4.2.2).
Theorem 4. Assume that ϕ : IR+ 7→ IR+ satisfies (A1). Consider any bounded open
set Ω ⊂ IR2 with smooth boundary, and any velocity vector e. Assume that there exits a
probability distribution µ such that, calling n(x) the unit outer normal to Ω at the boundary
point x, one has〈

n(x) , v − e
〉
< − c for all x ∈ ∂Ω , v ∈ G(x, µ) . (4.3.12)

If S0 is any compact set contained in Ω, then there exists a continuous control function
t 7→ ξ(t) such that the corresponding reachable set in (4.1.15) satisfies

S(t) ⊂ Ω + te for all t ≥ 0 . (4.3.13)

Proof. 1. Define the multifunction G−(x, ξ)
.
= G(x, ξ) − e. Assume that there exists a

control function ξ−(·) such that every solution of

ẋ ∈ G−(x, ξ−(t)) , x(0) ∈ S0 (4.3.14)
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satisfies
x(t) ∈ Ω for all t ≥ 0 . (4.3.15)

Since G is translation invariant, i.e. G(x, ξ) = G(x+te, ξ+te), the control ξ(t) = ξ−(t)+te
then satisfies the conclusion of the theorem. To prove Theorem 4, it thus suffices to construct
a control function ξ− such that (4.3.15) holds, for every solution of (4.3.14). ˇ2. Call
d(x, ∂Ω) the signed distance of a point x to the boundary of Ω. By assumption, d(·, ∂Ω) is
smooth in a neighborhood of ∂Ω and satisfies{

d(x, ∂Ω) < 0 if x ∈ Ω ,

d(x, ∂Ω) > 0 if x /∈ Ω ,

Consider the sublevel sets
Λ−c

.
= {x ; ψ(x) ≤ −c}.

Thanks to the assumption (4.3.12), we can find c > 0 such that the set Λ−c is strongly
invariant for the differential inclusion

ẋ ∈ G−(x, µ). (4.3.16)

In fact, choosing a sufficiently small constant c, satisfying

max
x∈S0

ψ(x) < − c < 0,

the following stronger statement is true. Every solution t 7→ x(t) of (4.3.16) with x(0) ∈ Λ−c/2
satisfies

x(t) ∈ Λ−c/2 for all t ≥ 0 , x(1) ∈ Λ−c .

By Theorem 1, there exists a control function ξ− : [0, 1] 7→ IR2 such that every solution of

ẋ ∈ G−(x, ξ−(t)) , x(0) ∈ Λ−c/2

satisfies
x(t) ∈ Λ−c/4 for all t ∈ [0, 1] , x(1) ∈ Λ−c/2 .

Extending ξ−(·) by periodicity, so that ξ−(t+ 1) = ξ−(t), we obtain a ξ− : IR+ 7→ IR2 with
the desired property. Namely, every solution of (4.3.14) satisfies (4.3.15). This achieves the
proof.

Example 4. Assume that, for some 0 < r < r0 and δ > 0, the function φ in (4.3.10)
satisfies

φ(r, r0) = − c− δ. (4.3.17)

Let µ0 be the probability measure uniformly distributed along the circumference {x =
(x1, x2) ; |x| = r0}, and let µ− be the probability measure uniformly distributed along the
half circumference {x = (x1, x2) ; |x| = r0 , x1 ≤ 0}. Let Ω

.
= B(0, r). By (4.3.17) one has

c

c+ δ

〈
n(x) , ∇Φµ0(x)

〉
= − c for all x ∈ ∂Ω . (4.3.18)

52



Choose η > 0 such that〈
n(x) , ∇Φµ−(x)− ηe1

〉
< 0 for all x ∈ ∂Ω . (4.3.19)

Then the assumptions of Theorem 4 are satisfied with

µ
.
=

c

c+ δ
µ0 +

δ

c+ δ
µ− , e =

ηδ

c+ δ
e1 .

4.4 Asymptotic shape of a rotating solution

In this section we study in more detail the evolution of the set S(t), in case where the point
ξ(t) moves along a circumference, with constant angular speed ω.

To fix the ideas, assume that

ξ(t) = R(cosωt , − sinωt),

with ω = ε−1 very large. Consider a set of rotating coordinates, determined by the or-
thonormal frame {e1(t), e2(t)}, with e1(t) = (cosωt , − sinωt).

Consider the vector fields

w(x)
.
=

(
−x2

x1

)
, (4.4.1)

v(x)
.
= ϕ(|x− ξ|) · x− ξ

|x− ξ|
, ξ = (ξ1, ξ2) = (R, 0). (4.4.2)

In the above system of rotating coordinates, the sets S(t) are determined as the reachable
sets for the differential inclusion

ẋ ∈ B

(
1

ε
w(x) + v(x) , c

)
. (4.4.3)

For a suitable class of initial data S0, as t→∞ we expect that S(t)→ S, for some invariant
set S. In polar coordinates, this set has the representation

S =
{

(r cosα, r sinα) ; r ≤ ρε(α)
}
,

where α 7→ ρε(α) provides a periodic solution to the ODE

dρ

dα
= gε(α, ρ) . (4.4.4)

With reference to Fig. 4.1, left, if the point x = (ρ cosα, ρ sinα) moves according to ẋ =
v+(x), then its polar coordinates satisfy (4.4.4). The function gε is determined by

gε(α, ρ) =
cos θ

|x|
= sup

|y|≤c

〈
x , ε−1w(x) + v(x) + y

〉
|x|2 · |ε−1w(x) + v(x) + y|

= ε · sup
|y|≤c

〈
x , v(x) + y

〉
|x|2 · |w(x) + εv(x) + εy|

.

(4.4.5)
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For ε = 0 we have g0(α, ρ) ≡ 0 and every constant function is a periodic solution. To
find periodic solutions for ε > 0 we use a bifurcation technique. Call r 7→ Fε(r) the return
map for (4.4.4). Calling α 7→ ρε(α, r) the solution of (4.4.4) with initial data ρ(0) = r,
consider the function

F (r, ε)
.
= ρε(2π, r)− r . (4.4.6)

Zeroes of F correspond to periodic solutions. Since F (r, 0) ≡ 0 for all r, by standard
bifurcation theory we have

(i) If ∂F
∂ε (r̄, 0) 6= 0 , then in a neighborhood of the point (r̄, 0) the only solutions of

(4.4.6) are those with ε = 0.

(ii) If
∂F

∂ε
(r̄, 0) = 0 and

∂2F

∂r∂ε
(r̄, 0) 6= 0, then there exists a nontrivial branch of solutions

of the form r = r∗(ε), with

r∗(0) = r̄ ,
∂r∗

∂ε
(0) = − ∂2F

∂ε2
(r̄, 0) ·

(
∂2F

∂r∂ε
(r̄, 0)

)−1

.

Consider the formal asymptotic expansions

gε(α, ρ) = εg1(α, ρ) + ε2g2(α, ρ) + o(ε2) , (4.4.7)

ρε(α, r) = r + ερ1(α, r) + ε2ρ2(α, r) + o(ε2) , (4.4.8)

r∗(ε) = r̄ + ε r1 + ε2r2 + o(ε2) . (4.4.9)

The conditions in (ii) for the existence of a nontrivial branch of solutions, bifurcating from
the trivial branch at (r̄, 0), can be written as

∂F

∂ε
(r̄, 0) = ρ1(2π, r̄) = 0 , (4.4.10)

∂2F

∂ε∂r
(r̄, 0) =

∂ρ1

∂r
(2π, r̄) 6= 0 . (4.4.11)

Inserting (4.4.7)-(4.4.8) in (4.4.4) and equating coefficients, to first order we obtain

ρ1(2π, r) =

∫ 2π

0
g1(β, r) dβ . (4.4.12)

Hence (4.4.10) yields ∫ 2π

0
g1(β, r̄) dβ =

∫ 2π

0

∂gε
∂ε

(β, r̄) dβ = 0 . (4.4.13)

Moreover, (4.4.11) yields∫ 2π

0

∂

∂r
g1(β, r̄) dβ =

∫ 2π

0

∂2gε
∂ε∂r

(β, r̄) dβ 6= 0 . (4.4.14)
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Introducing the vector x(α, r)
.
= (r cosα, r sinα), from (4.4.5) and the definitions of the

vector fields w,v at (4.4.1)-(4.4.2), it follows

g1(α, ρ) = c+
1

ρ

〈
v(x(α, ρ)) , x(α, ρ)

〉
.

Defining the function

ψ(r,R)
.
=

∫ 2π

0

〈
v(x(α, r)) ,

x(α, r)

r

〉
dα , (4.4.15)

the conditions (4.4.13) and (4.4.14) can be written as

ψ(r̄, R) = − 2π c . (4.4.16)

d

dr
ψ(r,R)

∣∣∣∣
r=r̄

6= 0 . (4.4.17)

Theorem 5. Assume that there exists a unique radius r̄ for which (4.4.16) hold, and for
such value r̄ assume that the inequality (4.4.17) holds as well. Then, for every ε > 0 small
enough, the following holds.

(i) The ODE (4.4.4) has a unique periodic solution r = r∗(α).

(ii) The region S∗
.
=
{

(r cosα, r sinα) ; 0 ≤ r ≤ r∗(α), α ∈ [0, 2π]
}

is positively

invariant for the differential inclusion (4.4.3).

(iii) If, in addition, ψ(r) > −2πc for all 0 < r < r̄, then for any initial set S0 ⊆ S∗, the
corresponding reachable set S(t) satisfies

lim
t→∞

dH(S(t), S∗) = 0 . (4.4.18)

Moreover, for all t sufficiently large the set S(t) admits a polar coordinate represen-
tation

S(t) =
{
r(cos θ, sin θ) ; 0 ≤ r ≤ r(t, θ)

}
(4.4.19)

with limt→∞ r(t, θ) = r∗(θ) uniformly for θ ∈ [0, 2π].

Proof. 1. By standard results of bifurcation theory [29], the existence and uniqueness of
the periodic solution are an immediate consequence of the assumptions.
2. The positive invariance of the set S∗ follows from the definition (4.4.5). Indeed, calling
TS∗(x) the tangent cone to the set S∗ at any boundary point x, (4.4.5) implies

B
(
w(x) + εv(x) , cε

)
⊆ TS∗(x) . (4.4.20)

Moreover, for every x ∈ S∗,

B
(
−w(x)− εv(x) , cε

)
∩ TS∗(x) 6= ∅ . (4.4.21)
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Figure 4.1: Left: construction of the vector fields v+, v−. Right: any trajectory of ẋ = v+(x) (solid
curve) approaches the periodic orbit providing the boundary of S∗. Any trajectory of ẋ = v−(x)
(dashed curve) enters the set Ω0.

Since the right hand side of (4.4.3) is a Lipschitz continuous multifunction, by (4.4.20) every
trajectory of (4.4.3) starting at a point x0 ∈ S∗ remains inside S∗ for all times t ∈ [0, ∞[ . On
the other hand, by (4.4.21), for every point x0 ∈ S∗ there exists a trajectory t 7→ x(t) ∈ S∗
defined for t ∈ ] −∞, 0] with x(0) = x0. Together, these two properties yield the positive
invariance of S∗.
3. In the remainder of the proof we assume that ψ(r) < 2πc for all 0 < r < r̄. Since
ψ(r) → 0 as r → 0+ and ψ(r̄) = −2πc, by continuity we can find δ > 0 such that
ψ(r) < 2π(c− δ) for all r ∈ [0, r̄].

It is convenient to introduce the vector fields v+, v−, as in Fig. 4.1. At a given point x,
these are defined as the tangents to the circumferences centered at w(x) + εv(x) and with
radii εc, ε(c− δ), respectively. By Pythagoras’ theorem,

|v+(x)| =
√
|w(x) + εv(x)|2 − ε2c2,

|v−(x)| =
√
|w(x) + εv(x)|2 − ε2(c− δ)2,

(4.4.22)

and the vectors v+(x), v−(x) are well defined as soon as the right hand sides of (4.4.22)
are ≥ 0.

Observe that the above assumptions on the function ψ in (4.4.15) imply that, for every
ε > 0 sufficiently small, the following holds.

• The vector field v+ has a unique periodic solution. This is precisely the boundary of
the domain S∗. In polar coordinates, it corresponds to a periodic solution of (4.4.4).

• The vector field v− has no periodic solution inside S∗.

Consider any point x0 ∈ S∗, and denote by t 7→ x(t, x0) the solution of

ẋ = v−(x) , x(0) = x0 .

Notice that this trajectory is well defined, as long as it does not touch the set

Ω−0
.
=
{
x ; |w(x) + εv(x)| ≤ ε(c− δ)

}
⊂ Ω0

.
=
{
x ; |w(x) + εv(x)| ≤ εc

}
.

Since S∗ is positively invariant, we have x(t) ∈ S∗. By the Poincaré-Bendixson theorem,
x(·) must either approach a periodic orbit, or a point where v− = 0. By assumption, there
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are no periodic orbits inside S∗. We conclude that there exists a time τ ≥ 0 such that∣∣∣w(x(τ)) + εv(x(τ))
∣∣∣ ≤ ε(c− δ

2). Hence, x(τ) lies in the interior of Ω0.

By the above arguments, for every initial set S0 ⊆ S∗ there exists τ ≥ 0 such that
S(τ, S0) ∩ intΩ0 6= ∅.
4. For ε� 1, Ω0 =

{
x ; |w(x)+εv(x)| ≤ εc

}
is convex and diffeomorphic to disk B(o, εc).

Consider the one-to-one map x 7→ H(x)
.
= w(x) + εv(x). Notice that v(x) is smooth and

lim|x|→∞ |v(x)| = 0,

JH(x) =

(
0 −1
1 0

)
+ εJv(x) , (4.4.23)

hence, JH(x) is invertible and continuous when ε is very small. H(x) is the diffeomorphism
we need, provided ε� 1. There exist a point x0 ∈ Ω0 which is the preimage of the origin.

H(x) = w(x) + εv(x) ≈ JH(x0)(x− x0) + o(ε) ≈
(

0 −1
1 0

)
(x− x0) + o(ε) .

5. By a straightforward comparison argument, if S(τ, S0) ⊇ S1, then S(τ+t, S0) ⊇ S(t, S1).
To prove the convergence (4.4.18), by the previous step it is thus not restrictive to assume
that S0 ⊆ Ω0. By definition, Ω0 is the set of stationary points for the differential inclusion
(4.4.3). In other words, if x̄ ∈ Ω0, then x(t) ≡ x̄ is a solution to (4.4.3). The assumption
S0 ⊆ Ω0 thus implies

S(t, S0) ⊇ S(s, S0) ⊃ S0 for all t ≥ s ≥ 0 . (4.4.24)

Therefore, the closure of the union

S∞
.
=
⋃
t≥0

S(t, S0) ⊆ S∗

must be a positively invariant set, consisting of all the trajectories of v+ starting inside Ω0.
Hence the boundary ∂S∞ should be a periodic orbit of v+. By uniqueness, we conclude
that S∞ = S∗.
6. Finally, we show that the stronger convergence (4.4.19) holds.

Denote by Γ∗
.
= ∂S∗, Γ(t)

.
= ∂S(t) the boundaries of S∗ and S(t), respectively. By the

previous analysis we know that Γ∗ is a smooth curve and that

lim
t→+∞

dH(Γ(t),Γ∗) = 0 . (4.4.25)

To prove the Lipschitz regularity of the curve Γ(t) we use the fact that each S(t) satisfies
an interior ball condition [26]:

There exists a constant ρ > 0 such that, for all t ≥ 1, every point P ∈ S(t) is contained
in some closed disc D ⊆ S(t) of radius ρ.

For convenience, we consider the transformation mapping the point P = r(cos θ, sin θ)
to the point P ′ = r

r∗(θ)(cos θ, sin θ), where r∗(·) yields the polar representation of the curve

Γ∗. Relying on this change of coordinates, it is not restrictive to assume that the set S∗
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is the closed unit disc, so that Γ∗ = {x ∈ IR2 ; |x| = 1}. The images of the sets S(t) in
these new coordinates will satisfy an interior ball condition, possibly with a different radius
ρ > 0.

By (4.4.25), for any ε > 0 we can find tε sufficiently large such that

Γ(t) ⊆
{
x ∈ IR2 ; 1− ε ≤ |x| ≤ 1

}
for all t ≥ tε .

Choosing ε = ρ/2, we claim that, for t ≥ tε, the curve Γ(t) can be written in polar
coordinates as

Γ(t) =
{
r(t)(θ)(cos θ, sin θ) ; θ ∈ [0, 2π]

}
(4.4.26)

for some Lipschitz continuous function r(t). Indeed, fix an angle α, and define

r(t)(α)
.
= max

{
r ≥ 0 ; λ(cosα, sinα) ∈ S(t) for all λ ∈ [0, r]

}
.

Referring to Fig. 4.2, consider the point

P = r(t)(α)(cosα, sinα) ∈ Γ(t).

Let B1, B2 be the two closed discs with radius ρ, tangent to Γ∗ and containing P as a
boundary point. Consider the open region Σ, bounded between Γ∗ and the two discs. By
construction, if Q ∈ Σ, then Q /∈ Γ(t), because there exists no disc of radius ρ containing Q
and contained in S(t). The above argument shows that, for every t ≥ tε, the set Γ(t) admits
the polar coordinate representation (4.4.26), where the function r(t) satisfies an estimate of
the form

1− ε ≤ r(t)(β) ≤ r(t)(α) + C |β − α| .

for some uniform constant C, valid for all times t ≥ tε and all angles α, β. Hence r(t) is
Lipschitz continuous with Lipschitz constant C.

Γ
∗

B

P

1−ε 1

(t)Γ

α

0

1

B
2

Figure 4.2: No point of Γ(t) can lie in the shaded area, because the interior ball condition would
otherwise be violated.
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Example 6. Consider the “scare function” ϕ(r) = ae−br as in (4.1.5), assuming a >
c, b > 1. We wish to understand for which radii r̄, 0 < r̄ < R, the conditions (4.4.16)-(4.4.17)
hold. First, a direct computation yields

d
drψ(r) =

d

dr

(∫ 2π

0

〈
v(x(α, r)) ,

x(α, r)

r

〉
dα

)

=

∫ 2π

0

d

dr

(
ϕ(|x− ξ|)
|x− ξ|

(r −R cosα)

)
dα

=

∫ 2π

0

ϕ(|x− ξ|)
|x− ξ|

(
1− (b+

1

|x− ξ|
)
(r −R cosα)2

|x− ξ|2

)
dα

≤
∫ 2π

0

ϕ(|x− ξ|)
|x− ξ|

(
1− (b+

1

R+ r
)
(R− r)2

(R+ r)2

)
dα

≤
∫ 2π

0

ϕ(|x− ξ|)
|x− ξ|

(
1− b(R− r)2

(R+ r)2

)
dα < 0 ,

(4.4.27)

provided r <
√
b−1√
b+1

R.

Hence, ψ(r) is strictly monotone decreasing in (0,
√
b−1√
b+1

R), which make condition (4.4.17)

holds.
Now we check condition (4.4.16). Recall the equivalent formula of ψ(r) in (4.3.10).

ψ(r) = 2πφ(r,R) =
2

r

∫ R+r

R−r
ϕ(s)(1− bs) arccos

(
s2 +R2 − r2

2Rs

)
ds . (4.4.28)

For any fixed R, we first need to make sure ψ(r) < 0, which require 1 − bs < 0, for all
s ∈ (R− r,R+ r). So, together with the monotone condition (4.4.27), we have

R− r > R−
√
b− 1√
b+ 1

R =
2R√
b+ 1

>
1

b
, (4.4.29)

provided b > max

{
1,
(

1+
√

1+8R
4R

)2
}

.

Then we can always choose parameter a large enough to make sure minψ(r) < −2πc.

2πa

r

(
se−bs

) ∣∣R+r

R−r =
2π

r

∫ R+r

R−r
ϕ(s)(1− bs) ds < ψ(r) < − 2πc , (4.4.30)

provided a > crmax
{

(be)−1, ψ(R+ r)/a, ψ(R− r)/a
}

.

Notice that ψ(r)→ 0 when r → 0, we claim there is a r̄ ∈ (0,
√
b−1√
b+1

R) satisfy condition

(4.4.27) such that ψ(r̄) = −2πc.
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Appendix

Details of Chapter 2

Analysis of the disease dynamics with continuous-age-structure

Recall the population-scale dynamics (2.2.2), we assume β(a, aI , z) has a simple form:

β(a, aI , z)
.
= ξ(a) q(aI , z). (0.1)

This will induce the general separable inter-cohort form of the infection pressure

λ(a, t) = ξ(a)

∫ amax

0

∫ aI

0
q(aI , z)I(aI , t, z)dzdaI , (0.2)

where ξ ∈ L∞(0, amax), q ∈ L2(0, amax) × (0, amax), q(aI , z), ξ(a) ≥ 0. For convenience, we
denote

K(a)
.
= e−

∫ a
0 µ(τ)dτ . (0.3)

which is the survival probability, meaning the probability at birth of surviving to age a, and
for given cS(a),

σ(a)
.
= σ(a, cS(a)) . (0.4)

Integrating S along the characteristics, we obtain

S(a, t) = rK(a)e−
∫ a
0 λ(τ,t−a+τ)σ(τ)dτ , for t ≥ a. (0.5)

Further more, using Eq. (0.5) and integrating I along the characteristics, we have

I(a, t, z) = rK(a− z)σ(a− z)λ(a− z, t− z)e−
∫ a−z
0 σ(τ)λ(τ,t−a+τ)dτ

e−αz−
∫ a
a−z µ(τ)dτ , for t ≥ a .

(0.6)

If we define

W (t)
.
=

∫ amax

0

∫ aI

0
q(aI , z)I(aI , t, z)dzdaI , (0.7)
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then Eq. (0.6) can be represented by

I(a, t, z) = rK(a)σ(a− z)ξ(a− z)W (t− z)

e−
∫ a−z
0 σ(τ)ξ(τ)W (t−a+τ)dτe−αz , for t ≥ a .

(0.8)

Existence and uniqueness of steady state solution

For steady state analysis, we only consider t → ∞ and α = 0, plug Eq. (0.8) into
Eq. (0.2), we obtain

W (t) =

∫ amax

0

∫ aI

0
rK(aI)q(aI , z)σ(aI − z)ξ(aI − z)W (t− z)

e−αz−
∫ aI−z
0 σ(τ)ξ(τ)W (t−aI+τ)dτ dzdaI .

(0.9)

1. The disease-free equilibrium corresponding to the trivial solution W (t) = W ∗ = 0 is:{
S(a) = rK(a) ,

I(a, z) = 0 .
(0.10)

2. The endemic equilibrium provided by W (t) = A > 0. Constant A is given by rearrange
the integration of Eq. (0.9) along the characteristic first, then cancel the repeated non-
zero constant A on both side of the equation, we obtain:

F (A)
.
=

∫ amax

0
e−A

∫ a0
0 σ(τ)ξ(τ)dτ{∫ amax−a0

0
q(a0 + z, z)rK(a0 + z)σ(a0)ξ(a0)e−αzdz

}
da0 ,

(0.11)

the desirable A has to be the solution for F (A) = 1 if the solution exist. Notice that
dF (A)
dA < 0, F (A) is monotone decreasing. So, it is sufficient to impose F (A = 0) > 1 as the

condition for the existence and uniqueness of the endemic steady state solution.
To summarize, define the basic epidemic reproduction number R0 as

R0
.
=

∫ amax

0

∫ aI

0
q(aI , z)rK(aI)σ(aI − z)ξ(aI − z)e−αzdzdaI = F (0) . (0.12)

Theorem 0.1. If R0 < 1, there exist an unique disease-free equilibrium. If R0 > 1, there
exist an unique endemic equilibrium.

Stability of the disease-free equilibrium and basic reproduction number R0

For the stability of steady-state solution, we consider functional derivative in calculus
of variation, see reference [76] for example.

W (t) = W ∗ + εω(t), (0.13)
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we linearize W (t) = L(W (t)) around the steady state W ∗, such that

ω(t) =
d

dε
L(W ∗ + εω(t))|ε=0, (0.14)

where the linear operator L is the integration of W (t) in Eq. (0.9). To simplify the notation,
we denote

Ψ(aI , z)
.
= rK(aI)q(aI , z)σ(aI − z)ξ(aI − z)e−αz. (0.15)

ω(t) =

∫ amax

0

∫ aI

0
ω(t− z)Ψ(aI , z)e

−W ∗
∫ aI−z
0 σ(τ)ξ(τ)dτdzdaI

−W ∗
∫ amax

0

∫ aI

0
Ψ(aI , z)e

−W ∗
∫ aI−z
0 σ(τ)ξ(τ)dτ{∫ aI−z

0
σ(τ)ξ(τ)ω(t− aI + τ)dτ

}
dzdaI . (0.16)

In the case of the disease-free equilibrium Eq. (0.10), Eq. (0.16) will take a much simple
form, by changing the integration order, we obtain

ω(t) =

∫ amax

0

{∫ amax

amax−z
Ψ(aI , z)e

−W ∗
∫ aI−z
0 σ(τ)ξ(τ)dτdaI

}
ω(t− z)dz

=

∫ amax

0
Φ(z)ω(t− z)dz ,

(0.17)

where Φ(z) is defined as the corresponding the convolution kernel.
To study the local asymptotic stability of this disease-free equilibrium, we consider the

characteristic equation by substituting ω(t) = est, s ∈ C in Eq. (0.17).

est =

∫ amax

0
Φ(z)es(t−z) = est

∫ amax

0
Φ(z)e−sz. (0.18)

Hence, we have the characteristic equation

1− Φ̂(s) = 0 , where Φ̂(s) =

∫ +∞

0
e−szΦ(z)dz . (0.19)

Theorem 0.2. If R0 < 1, the disease-free equilibrium is stable. If R0 > 1, the disease-free
equilibrium is unstable.

Proof. First, recall the definition of R0 in Eq. (0.12), notice that

Φ̂(0) =

∫ amax

0
Φ(z)dz = F (0) = R0 . (0.20)

If R0 < 1, Φ̂(0) < 1. Then, suppose s ∈ C has a positive real part,

|Φ̂(s)| = |
∫ amax

0
e−szΦ(z)dz| ≤

∫ amax

0
e−Re(s)zΦ(z)dz ≤ Φ̂(0) < 1 . (0.21)

Hence, the characteristic equation (0.19) has no non-zero root with positive real part.
If R0 > 1, Φ̂(0) > 1. Notice that Φ̂(s) is a monotone decreasing function and Φ̂(s)→ 0

as s → ∞, which means characteristic equation 1 − Φ̂(s) = 0 has exactly one root located
on the positive real line. Hence, the disease-free equilibrium is unstable in this case.
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Derivation of optimality conditions using adjoint-calculus

To use the standard adjoint-variable approach for problem (2.2.6) as in [59], we first need
to reformulate the constraint on pS and pI in a weak form. The idea is to do integration-
by-parts on the adjoint function to get the initial and boundary condition involved. We
reformulate the constraint C(pS , pI , cS) = 0 as

〈V,C(pS , pI , cS)〉 = 0 (0.22)

for all continuous V ∈ C0(R)× C0(R2)× C0(R), where the inner product

〈V,C〉 =

∫ amax

0
e−haVS(a)

[
dpS
da

+ µ(a)pS + σ(cS(a))λ̃(a)pS

]
da

+

∫ amax

0
e−ha

∫ a

0
VI(a, z)

[
dpI
da

+
dpI
dz

+ γ(a, z)pI(a, z)

]
dzda

+

∫ amax

0
e−haVcS (a)cS(a)da.

(0.23)

The e−ha is weighting of the inner product that so that the adjoint variable can be inter-
preted as present-values of each state at the corresponding age. Integrating by parts,

〈V,C〉 =−
∫ amax

0
e−ha

{
dVS
da
−
[
h+ µ(a) + σ(cS(a))λ̃(a)

]
VS

}
pS(a)da

+
∣∣∣amax

0
e−haVS(a)pS(a) +

∫ amax

0

∣∣∣amax

a=0
e−haVI(a, z)pI(a, z)χ[0,a](z)dz

+

∫ amax

0

∣∣∣a
z=0

e−haVI(a, z)pI(a, z)da+

∫ amax

0
e−haVcS (a)cS(a)da

−
∫ amax

0

∫ a

0
e−ha

{
∂VI
∂a

+
∂VI
∂z
− [h+ γ(a, z)]VI

}
pI(a, z)dzda .

(0.24)

So our Lagrangian finally has the form

L =

∫ amax

0
e−ha

{
[uS(a)− cS(a)]ps(a) +

∫ a

0
uI(a, z)pI(a, z)dz

}
da

+

∫ amax

0
e−ha

{
∂VS
∂a
−
[
h+ µ(a) + σ(cS(a))λ̃(a)

]
VS

}
pS(a)da

+ VS(0)pS(0)− e−hTVS(T )pS(T )

+

∫ amax

0

∫ a

0
e−ha

{
dVI
da

+
∂VI
∂z
− [h+ γ(a, z)]VI

}
pI(a, z)dzda

+

∫ amax

0
e−haVI(a, 0)σ(cS(a))λ̃(a)pS(a)da

+

∫ amax

0
e−haVcS (a)cS(a)da.

(0.25)

71



Thus, optimizing the Lagrangian now corresponds to setting all the functional derivatives
with respect to pS , pI and cS equal to zero:

0 =
δL [pS ]

δpS
, 0 =

δL [pI ]

δpI
, 0 =

δL [cS ]

δcS
. (0.26)

The inequality constraint for cS(a) ≥ 0 provide additional requirement:

either cS = 0 , VcS ≥ 0 , or cS(a) > 0 , VcS = 0 . (0.27)

Now we compute the strong form to the above system. Starting with the equation for
−e−haVI(a, z), we differentiate the Lagrangian with respect to pI to obtain∫ amax

0

∫ a

0
e−ha

{
uI +

∂VI
∂a

+
∂VI
∂z
− [h+ γ]VI

}
δpIdzda = 0 , for all δpI(a, z). (0.28)

This is clearly the weak formulation of

− dVI
da
− dVI

dz
= uI(a, z)− [h+ γ(a, z)]VI(a, z) , VI(amax, z) = 0. (0.29)

Similarly, for the equation for −e−haVS(a), we differentiate the Lagrangian with respect to
pS , and get∫ amax

0
e−ha

{
[uS − cS ] +

∂VS
∂a
−
[
h+ µ+ σλ̃

]
VS + VI(a, 0)σλ̃

}
δpSda = 0,

for all δpS(a).

(0.30)

This is exactly the weak formulation of the terminal value problem

−dVS
da

= uS(a)− cS(a) + σ(cS(a))λ̃(a)[VI(a, 0)− VS(a)]

− [h+ µ(a)]VS(a), VS(amax) = 0.
(0.31)

Finally, we have the equation for cS as{
∂σ

∂cS
− 1

λ̃(a)[VI(a, 0)− VS(a)]

}
cS = 0 , cS ≥ 0 . (0.32)

Therefore, the evolution for the adjoint variables is described by equations as follows

−dVS
da

= uS(a)− cS(a) + σ(cS(a))λ̃(a)[VI(a, 0)− VS(a)]

− [h+ µ(a)]VS(a)
(0.33a)

−dVI
da
− dVI

dz
= uI(a, z)− [h+ γ(a, z)]VI(a, z) (0.33b)

If c∗S(a) is a Nash equilibrium, then c∗S = 0 or it must be a positive solution of the equation

∂σ

∂cS
− 1

λ̃(a)[VI(a, 0)− VS(a)]
= 0. (0.34)
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Details of the numerical scheme used in simulation

Our main interest deals with a numerical approximation to the continuous problem given
in section 4, that describes the dynamics of the disease transmission in the framework of
the utility maximization for each individual when engaged in epidemic games.

We assume the spatial domain for (a, z) to be given by triangle Ω = [0, amax] × [0, a].
Notice that our dynamic Eqs. (2.3.7) have characteristic lines a(z) = z + a0 which never
intersect over time, we discretized our triangular domain by means of uniform triangular
mesh. For the numerical integration involved in our algorithm, we pick the first order
Gauss quadrature for triangular domain which evaluate the function at the barycenter of
each triangle with weight 0.5 as shown in [21].

First, VI(a, z) can be integrated on its own which is independent of any strategy an
individual might choose. Given the terminal condition V (amax, z) = 0, we can use the
exponential Euler method to solve this differential equation alone each characteristic line
backwards in time to get VI(a, z). Only VI(a, 0) at the barycenter of each triangular element
need to be stored for further computation.

Second, we can compute the best response cBS and VS(a) for any given infection pressure
λ̃ in general using optimality condition (2.3.4) that we derived previously. With VI(a, 0)
precomputed already, these can be implemented by computing cS(a) first at each time
step , then use the exponential Euler method backwards in time to calculate VS(a − dt).
Additionally, with cBS and λ̃ known, we can compute S(a) using the exponential Euler
method. Density of infected people I(a, z) can also be computed with the exponential
Euler method along characteristics.

Finally, we need to clarify how to compute the steady-state infection pressure λ̃, given the
aggregated investment strategy of the population cS(a). Recall the steady-state condition
(2.3.10), which takes different form depends on the transmission type. So, we listed different
numerical method accordingly for efficiency concern. In general, all the methods we picked
here have taken in to account the advantage that our dynamic equations has characteristic
lines.

Scalar transmission case

For the case β(a, aI , z) = β, which is a scalar constant, we recall the condition (2.4.4)
for desired λ̃. It shows that λ̃ should also be a scalar. We rearrange the double integral
in Eq. (2.4.4) to first integrate along each characteristic lines which do share the same
coefficient of λ̃, then integrate along different initial value a0 for each characteristic line.
This provide us a new form of function F as

F (λ̃) =

∫ amax

0
e−λ̃

∫ a0
0 σ(cS(τ))dτ×∫ amax−a0

0
βσ(cS(a0))re−

∫ a0
0 µ(τ)dτe−

∫ z
0 γ(a0+τ,τ)dτdzda0.

We could furthermore use vector inner product to replace the out layer integral if we store
e−λ̃

∫ a0
0 σ(t,cS(t))dt and the left part as two vectors for each a0. Notice that F (λ̃) is monotone
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decreasing function of λ̃. The rest can be done by root finding of F (λ̃) − 1 = 0, using
bisection or optimization techniques.

Separable transmission case

For such case as β(a, aI , z) := Θ(a, aI)φ(z). As we analyzed previously, the steady-state
infection pressure λ̃(a) = A · φ(a) where A has to satisfy the condition (2.4.9). Similar as
the previous case, notice the existence of characteristic lines a(z) = a0 + z for I(aI , z). We
rearrange the double integral in Eq. (2.4.9) as

F (A) =

∫ amax

0
e−A

∫ a0
0 ξ(τ)σ(cS(τ))dτ

∫ amax−a0

0
ξ(a0 + z)φ(z)ξ(a0)σcS(a0))×

re−
∫ a0
0 µ(τ)dτe−

∫ z
0 γ(a0+τ,τ)dτdzda0.

We compute the inner integral of z for each a0 along characteristic first and store it in a
vector. The rest will be the same following the scalar case. The results are shown in the
figures accordingly.

General transmission case

Here the transmission rate β(a, aI , z) can be given as a matrix or a multivariable function
which might not provide our λ̃(a) any special structure. We have to evaluate it according
to general condition (2.3.10). But we do want to point out here that we can still rearrange
the double integral to integrate variable z along characteristic line first if possible, provided
that β(a, aI , z) is independent of z as our example in section 4.3

λ̃(a) =

∫ amax

0
Θ(a, a0)λ̃(a0)σ(cS(a0))re−

∫ a0
0 λ̃(τ)σ(cS(τ))+µ(τ)dτ×∫ amax−a0

0
φ(z)e−

∫ z
0 γ(a0+τ,τ)dτdzda0.

Here we can only speed up the algorithm by replacing the integral with vector produce
accordingly.

At the end we do want to summarize our iterative method step by step. We always start
by initially imposing cS(a) = 0, then we compute the steady-state λ̃ to get an idea that
how bad the disease will play in the population without any social distancing investment.
Then, we compute the best response cBS (cS , λ̃). Update cS = cBS , repeat the iteration until
they converge to c∗S . Alternatively, we can also set the stopping criteria by checking the
convergence of λ̃ to λ∗ if there exists a unique steady state infection pressure. Both ways,
we should identify the game equilibria c∗S(c∗S ;λ∗).
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