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ABSTRACT 

 
 The two-method measurement design was applied to answer substantive questions 
pertaining to hypertension and several lifestyle-based risk factors; specifically, analyses involved 
estimating the cross-sectional association of three blood pressure parameters (systolic blood pressure 
(SBP); diastolic blood pressure (DBP); and pulse pressure (PP)) and four known hypertension risk 
factors (physical conditioning; dietary intake; body fat; and tobacco use). The two-method 
measurement design, a recent statistical advancement in the area of planned missingness approaches, 
measures constructs using several indicators of variable cost and validity. Cheaper, less valid 
measures of a construct and more expensive, valid measures of the same construct collectively serve 
as manifest indicators. All participants provide data for the cheap measures; a small proportion of 
participants also provide data for the expensive measures. When at least a subsample of participants 
provide complete data, bias correction models allow for the modeling of measurement bias (i.e., 
reduced construct validity) associated with the cheap measures; resulting parameter estimates are 
efficient and unbiased.  
 A simulation paradigm was used to apply the two-method measurement design to empirical 
NHANES data. The performance of the two-method measurement design was compared to that of 
financially-equivalent complete case designs. For two of the four predictors – body fat and tobacco 
use – application of the two-method measurement design produced statistical power advantages 
beyond those yielded by the financially-equivalent complete cases models. Under a hypothetical 
budget constraint of $20,000, complete case body fat data could be collected from N=333 
participants; however, the two-method measurement design behaved as if the complete case sample 
sizes were N=1469, N=1625, and N=1565 for testing the effects between body fat and SBP, DBP, 
and PP, respectively. Under the same budget of $20,000, complete case tobacco use data could be 
collected from N=363 participants; the two-method measurement design behaved as if the sample 
sizes were N=1513, N=655, and N=872 for testing the effects between tobacco use and SBP, DBP, 
and PP, respectively. Application of the two-method measurement design was comparatively less 
effective for the physical conditioning and dietary intake variables. A potential explanatory factor 
involves the general lack of association between cheap and expensive measure indicators for these 
two variables. 
 In general, the strength of association between the independent and dependent variables was 
inversely correlated with the increase in statistical power produced by the two-method measurement 
design (results consistent with previous research). Results have implications for future application 
guidelines. To maximize the utility of the two-method measurement design, cheap and expensive 
measures for a given construct should be highly correlated. It is recommended that researchers 
collect small amounts of data from candidate cheap measures to determine, a priori, the set of cheap 
measures that best correlates with expensive measure data. It is also helpful if researchers are able to 
anticipate, to some degree, effect sizes between independent and dependent variables of interest; this 
offers researchers the opportunity to more accurately tailor data collection to achieve maximal cost-
effectiveness.  
 Recent interest in the efficiency of health prevention programs, as well as limited external 
funding sources, has placed an increased emphasis on cost-effective research within many behavioral 
health disciplines. Whenever researchers have the opportunity to collect data for a particular 
construct using several measures of variable cost and construct validity, the two-method 
measurement design offers the potential for cost-effective data collection and unbiased and efficient 
parameter estimation.  
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CHAPTER 1 

 
Introduction and Research Questions 

 
 The number of deaths attributable to cardiovascular disease (CVD) has substantially 

declined over the past several decades. The Centers for Disease Control and Prevention (CDC) 

report that, since 1950, age-adjusted CVD mortality rates have fallen approximately 60 percent 

(CDC, 1999). This striking decline prompted the CDC to recognize the successful reduction of 

CVD-related deaths as one of the most important public health achievements of the 20th Century 

(CDC, 1999). Declining CVD mortality rates are attributed to both primary and secondary 

prevention efforts. Primary prevention efforts, designed to prevent or delay the onset of CVD, 

are credited with reducing the prevalence of several modifiable CVD risk factors. Secondary 

prevention efforts, designed to stop or slow the progression of existing health conditions, have 

successfully increased risk factor screening within the population (Natarajan & Nietert, 2003). 

 However, despite the substantial decline in CVD mortality, heart disease and stroke 

remain the first and third most common causes of death, respectively, in the United States (CDC, 

1999). Furthermore, research indicates that prevalence rates for several CVD risk factors are 

increasing at an alarming rate. Since the early 1960s, the prevalence of obesity among adults in 

the United States has more than doubled, rising from 13 percent to over 30 percent (Flegal, 

Carroll, Ogden, & Johnson, 2002). Similar trends are found among children and adolescents; 

since the late 1980s and early 1990s, the prevalence of overweight youth increased from 

approximately 12 to 16 percent (Munter, He, Cutler, Wildman, & Whelton, 2004). A 

corresponding increase in diabetes prevalence has occurred; in 2000, 8 percent of Americans 

were diabetic, up from 5 percent in the late 1970s (Gregg et al., 2005). Behavioral health data 
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offer insight into the causes driving the increase in risk factor prevalence. The proportion of 

Americans reporting no regular physical activity increased approximately 8 percent between 

1990 and 1997 (Arnett et al., 2002). Dietary compensations for decreasing activity levels have 

not occurred; during the same time period, total energy intake (kcal) remained constant among 

men, but increased significantly among women (Arnett et al., 2002).  

 Hypertension, a well-substantiated CVD risk factor, benefited from public health 

prevention efforts in the latter half of the 20th Century; significant declines in hypertension 

occurred between the 1970s and early 1990s (Peterson, Czerwinski, & Siervogel, 2003; Qureshi, 

Suri, Kirmani, & Divani, 2005). Within the past decade, however, declining hypertension 

prevalence trends have reversed; since the early 1990s, the prevalence of pre-hypertension and 

hypertension has substantially increased, with minority populations bearing a disproportionate 

burden of illness (Fields et al., 2004; Qureshi et al., 2005). Especially alarming are the significant 

increases in pre-hypertension observed among adolescents and young adult populations (Munter 

et al., 2004; Qureshi et al., 2005). Currently, over 100 million Americans are pre-hypertensive or 

hypertensive, reflecting prevalence rates nearing 40 percent of the population (Qureshi et al., 

2005).  

 Therefore, while CVD mortality rates have decreased substantially since the 1950s, the 

prevalence of several known CVD risk factors are on the rise. Experts cautiously note that 

current epidemiological trends may erase much of the progress made in reducing CVD mortality 

during the past several decades (Mensah & Brown, 2007). In the absence of successful, large-

scale public health efforts, Mensah and Brown (2007) describe three current population-based 

trends with the potential to reverse declining CVD-related death rates: (1) the rapidly aging 
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population; (2) the dramatic increases in obesity and type 2 diabetes prevalence; and (3) the 

decline in prevalence of adults who display no CVD-related risk factors. In addition to the 

cascade of public health repercussions resulting from increased incidence of CVD, the enormous 

rise in CVD-related health care costs will have important economic implications for the United 

States. Future challenges regarding the reduction of CVD prevalence involve reducing racial and 

socioeconomic health disparities, establishing state- and local-level policies to promote healthy 

behaviors, and identifying emerging CVD risk factors (CDC, 1999).  Re-organizing resources 

and launching efficient national-level initiatives to prevent morbidity and mortality requires 

knowledge of the complex associations among CVD predictors and outcomes (CDC, 1999). 

Additional research is necessary to identify the underlying mechanisms that account for current 

epidemiological patterns; namely, the simultaneous decline in CVD mortality in light of 

increasing CVD risk factor prevalence.   

Research supports that hypertension partially mediates the relationship between 

behavioral risk factors and CVD (Cook et al., 2007; Wong et al., 2003). Thus, the recent 

dramatic increase in hypertension may be indicative of an impending reversal of CVD morbidity 

and mortality rates. Furthermore, since hypertension is an immediate CVD precursor, additional 

research is needed to determine how the prevalence rates of more distal CVD risk factors (e.g., 

health behaviors) affect more immediate CVD risk factors. This dissertation focuses on the 

cross-sectional association of hypertension and four known lifestyle-based CVD predictors: (1) 

physical conditioning; (2) dietary intake; (3) body fat; and (4) tobacco use. Analyses focus on 

estimating the degree of association between these predictors and three hypertension-related 

outcome measures: systolic blood pressure, diastolic blood pressure, and pulse pressure. 



 4
 
 To assess these relationships, a two-method measurement framework is adopted. The 

two-method measurement design represents a recent statistical advancement in the area of 

planned missingness approaches. In a basic sense, planned missingness designs help researchers 

make the best use of limited resources by collecting maximum data for minimum costs. The two-

method measurement design involves collecting complete data from a small proportion of 

participants and partial data from a much larger proportion of participants. Constructs are 

measured using several indicators of variable cost and construct validity. Cheaper, less valid 

measures of a construct and more expensive, valid measures of the same construct collectively 

serve as manifest indicators. All participants provide data for the cheap measures; a small 

proportion of participants also provide data for the expensive measures. Because the two-method 

measurement design capitalizes on the cost-effectiveness of collecting a substantial portion of 

partial data, data from more participants are able to be collected for the same cost as collecting 

complete data from a smaller sample. When at least a subsample of participants provide 

complete data, bias correction models allow for the modeling of measurement bias (i.e., reduced 

construct validity) associated with the cheap measures. The missing data generated from 

implementation of the two-method measurement design are handled appropriately using current 

missing data procedures; resulting parameter estimates are efficient and unbiased.  

 The two-method measurement design represents an important advancement in fields of 

research that rely on comparatively cheaper, less valid measures (e.g., self-report measures). 

Typically, the validity of self-report measures is assessed using a piecemeal approach in which 

researchers collect small amounts of data from self-report measures as well as from more valid, 

expensive measures; these two categories of data are used to assess convergent and/or 
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discriminate validity of the self-report measures. Provided an acceptable level of validity, 

researchers proceed with full-scale data collection using the self-report measures; often, the 

small amount of data collected from more valid indicators is discarded following preliminary 

assessment of cheap measure validity. The two-method measurement design is based on 

modified data collection principles; namely, cheaper, less valid measures, as well as more valid, 

expensive measures, are used to collect data. By using expensive measures to model the bias 

associated with the cheap measures, the two-method measurement design ensures that 

researchers do not discard any valuable data. In this respect, the two-method measurement 

design represents an innovative and comparatively efficient research design that concurrently 

capitalizes on the affordability of the cheaper measures and the validity of the expensive 

measures. Thus, it is important that the knowledge base pertaining to the two-method 

measurement design be extended by applying the design to diverse research scenarios.  

 The utility of the two-method measurement design is established for bivariate models 

involving simulated data (Graham, Taylor, Olchowski, & Cumsille, 2006). However, this design 

has not yet been applied to more complex models or models tested with empirical data. Thus, 

this dissertation involves the application of a new methodology to answer a substantive question 

pertaining to hypertension and related risk factors. The main model of interest includes seven 

variables; three dependent variables (systolic blood pressure (SBP), diastolic blood pressure 

(DBP), and pulse pressure (PP)) are predicted by four independent variables (physical 

conditioning, dietary intake, body fat, and tobacco use). Cheaper, less valid indicators of each 

independent variable are represented by self-report data. Estimated VO2 max, total nutrient 

scores, body fat percentage and technician-obtained anthropometric measures, and serum 
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cotinine represent the expensive, more valid indicators of physical conditioning, dietary intake, 

body fat, and tobacco use, respectively.  

 A simulation paradigm (Graham, Cumsille, & Elek-Fisk, 2003; Graham et al., 2006) is 

used to apply the two-method measurement design to empirical data. The performance of the 

two-method measurement design is compared to that of financially-equivalent complete cases 

designs. Given the extension of the recently developed two-method measurement design to a 

new, diverse set of structural equation models, practical application guidelines are discussed. 

Research questions answered by this dissertation are formally stated below.  

1. What is the degree of association between established hypertension risk factors (physical 
conditioning, dietary intake, body fat, and tobacco use) and SBP, DBP, and PP in a large, 
nationally representative sample? 
 
2. For each independent variable, what is the optimal ratio of partial to complete data that 
yields the most efficient and unbiased regression coefficients under the two-method 
measurement design? 
 
3. What effect does the number of expensive measures for an independent variable, as well 
as the strength of correlation between cheap and expensive measures, have on the 
performance of the two-method measurement design?  
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CHAPTER 2 

 
Review of the Literature 

 
 
The Two-Method Measurement Design  

 The two-method measurement design belongs to a larger class of planned missingness 

designs in which researchers deliberately collect partial (incomplete) data for at least a 

subsample of participants (Graham et al., 2006). The resulting missing data are handled 

appropriately using full-information maximum likelihood (FIML) procedures found in most 

structural equation modeling packages1. With FIML procedures, missing data and parameter 

estimation are addressed simultaneously. Whereas multiple imputation is a two-step process in 

which missing data are handled prior to parameter estimation, FIML procedures achieve the 

same result in one analysis. Maximum likelihood refers to the fact that parameter estimates are 

calculated based on the probability that observed scores would occur given a particular 

population parameter estimate.  

 FIML procedures are well-suited to missing data that are missing at random (MAR); data 

are considered MAR if the cause of missingness is a variable that has been measured and 

included in analyses (Graham et al., 2003). A special case of MAR missingness occurs when the 

cause of missingness is uncorrelated with the variable containing missingness; missing values 

meeting this criteria are referred to as missing completely at random (MCAR) (Graham et al., 

2003). For the two-method measurement design (and other planned missingness designs), 

missing values are under the researcher’s control; the decision as to what participants provide 

partial versus complete data is random. Therefore, the MCAR assumption (specifically, that the 
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cause of missingness is uncorrelated with the variable containing missingness) is met under this 

design (Graham et al., 2006); accordingly, missing data generated generated by the two-method 

measurement design are appropriately analyzed using FIML procedures. 

 The two-method measurement design involves two categories of measures: relatively 

cheap, less valid indicators of a particular construct, and expensive, more valid indicators of the 

same construct (Graham et al., 2006). Thus, this design is applicable to situations in which two 

(or more) indicators of a given construct exist but differ substantially in their cost, ease of 

implementation, and/or construct validity. In such situations, and given a fixed budget scenario, 

researchers are seemingly faced with two options: (1) exhaust their resources (time and money) 

collecting a large amount of data using the cheaper, less valid measures or (2) exhaust their 

resources collecting a relatively small amount of data using the more expensive, valid measures. 

Neither option is ideal. Reduced construct validity resulting from cheap measure data has the 

potential to yield biased parameter estimates. Reduced statistical power resulting from a smaller 

amount of expensive measure data increases the likelihood of type II error.  

 Essentially, the two-method measurement design makes possible the combining of cheap 

and expensive measure data to simultaneously capitalize on the increased validity associated 

with the expensive measures and the affordability associated with the cheap measures. Under the 

two-method measurement design, the expensive, valid measures are used to model and control 

for the response bias associated with the cheaper measures (Graham et al., 2006). This research 

design directly addresses the primary drawback associated with collecting exclusively cheap 

measure data: reduced construct validity. If researchers can control for reduced construct validity 

                                                                                                                                                             
1 Missing data are also commonly handled by multiple imputation; however, for the two-method measurement 
design, FIML procedures are preferred because missing data are addressed concurrently with parameter estimation.  
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using expensive measure data, they are no longer restricted to choosing between the two 

options previously described. Rather, they are able to expand their options to consider designs in 

which data are collected using both types of measures. Because of the opportunity for blended 

data collection, the two-method measurement design allows researchers to benefit from the 

desirable traits of each of measure (validity of the expensive measures, affordability of the cheap 

measures) without making sacrifices due to undesirable traits (cost of the expensive measures, 

reduced validity of the cheap measures). 

 The concept behind the two-method measurement design is illustrated by the bias factor 

model (Graham et al., 2006), shown below in Figure 1. The bias factor model is a structural 

equation model template in which the latent construct of substantive interest (the common factor 

comprised of cheap and expensive measures) predicts one or more dependent variables. Cheap 

and expensive measures load on the common factor (i.e., independent variable); additionally, 

cheap measures load on a second factor representing measurement bias. In this manner, the bias 

factor model specifies two sources of correlation between cheap measures and one source of 

correlation between expensive measures (Graham et al., 2006).  
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Figure 1 
Basic Bias Factor Model  
 

 
 
 One important requirement for the bias factor model is that at least a subset of 

participants has both cheap and expensive measure data (i.e., complete data); this requirement is 

necessary for successful missing data analysis. When at least a subset of the sample has complete 

data, the remainder of the sample is permitted to have partial data in the form of exclusively 

cheap measure data. Given that only a subset of participants provide complete data, the two-

method measurement design increases the cost-effectiveness of data collection; for the same cost 

as collecting complete case data from a certain number of participants, the two-method 

measurement design provides researchers with the equivalent of substantially more complete 

cases with which to test effects. Thus, the two-method measurement provides a statistical power 

advantage over the financially-equivalent complete case designs.  

 Accordingly, it is necessary to determine the optimal ratio of partial to complete data that 

yields the best parameter estimates when the two-method measurement design is applied. If the 

optimal ratio is very large, researchers will collect cheap measure data from all participants and 

expensive measure data from just a very small fraction of participants. If the optimal ratio is less 

Independent 
Variable  Dependent 

Variable  

Cheap  
Measure 1 

Cheap 
Measure 2 

Response  
Bias 

Expensive 
Measure 1 

Expensive  
Measure 2 



 

 

11
extreme, researchers will collect cheap measure data from all participants and expensive 

measure data from a comparatively larger group of participants. The optimal ratio is not static 

across data scenarios; rather, it varies as a function of the cost differential between the cheap and 

expensive measures and the strength of association between the independent and dependent 

variables of interest (Graham et al., 2006).  

  The statistical benefits derived from the two-method measurement design are quantified 

using a measure referred to as the Effective N Increase Factor; essentially, the Effective N refers 

to the number of complete cases necessary to produce the same standard error obtained under the 

most efficient two-method measurement design (Graham et al., 2006). The Effective N Increase 

Factor is computed by dividing the Effective N by the number of complete cases allowable under 

a specific data collection budget (Graham et al., 2006) (please refer to the following equation): 

NCasesCompleteNominal

NEffective
FactorIncreaseNEffective =  

 
 Using simulated data and bivariate models, Graham and colleagues (2006) obtained 

Effective N Increase Factors ranging from 1.09 to 3.47, depending on the data scenario, 

reflecting the advantage of the two-method measurement design over a complete cases design. 

Effective N Increase Factors greater than 1.0 indicate that, for the same cost, the two-method 

measurement design yields better (lower) standard errors than are possible using complete cases 

analysis. The higher the Effective N Increase Factor, the greater the benefits derived from the 

two-method measurement design.  

 
 
Current Application of the Two-Method Measurement Design 
 
 To evaluate the utility of the two-method measurement design across a variety of data 
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scenarios, Graham and colleagues (2006) altered the cost differential between the cheap and 

expensive measures, as well as the effect size between the independent and dependent variables. 

Regardless of cost differential and effect size, results indicated that the best design (the design 

producing the lowest standard errors for key parameter estimates) was always a version of the 

two-method measurement design (Graham et al., 2006). Standard errors obtained from 

financially-equivalent complete case models were comparably larger as a result of reduced 

sample size.  

 Findings from Graham et al. (2006) indicate that the two-method measurement design 

has the potential to provide researchers with substantial benefits in light of resource constraints. 

However, given its recent development, applications of the two-method measurement design 

have been limited to relatively simple models involving simulated data. It is important to 

examine how the two-method measurement design performs when applied to empirical data and 

within the context of complex models.  

 This dissertation represents the first application of the two-method measurement design 

involving empirical data. The proposed model assesses the impact of physical conditioning, 

dietary intake, body fat, and tobacco use on blood pressure parameters. The four predictors are 

comprised of a variable number of manifest indicators that differ in strength of intercorrelation; 

as a result, this dissertation also examines how the absolute number of cheap and expensive 

measures, as well as the intercorrelations among manifest indicators, impact the performance of 

the two-method measurement design.  
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Hypertension: Definition, Prevalence, and Causal Factors 
 
 Hypertension is clinically defined as chronically elevated blood pressure at or above 140 

mm Hg (systolic) or 90 mm Hg (diastolic) (Silverthorn, 2001). Systolic blood pressure (SBP) 

represents the highest pressure in the circulatory system and reflects the pressure with which the 

ventricles contract (Silverthorn, 2001). Diastolic blood pressure (DBP) represents the lowest 

pressure in the circulatory system, occurring just prior to the next contraction of the heart 

muscle. Blood pressure is a direct function of three main cardiovascular determinants: arteriolar 

resistance, cardiac output, and blood volume. Internal and external factors that impact these three 

facets of the cardiovascular system have the ability to alter blood pressure (Silverthorn, 2001).  

 A third blood pressure parameter – pulse pressure (PP) – also offers insight into 

cardiovascular health. Mathematically, PP represents the difference between systolic and 

diastolic blood pressures (i.e., PP = SBP – DBP); physiologically, it serves as an indicator of 

arterial stiffness. In youth, arterial wall stress is supported predominately via elastin fibers; with 

advancing age and arterial pressure, arterial walls increasingly rely on stiffer collagen fibers for 

support (Nichols, 2005). Increased arterial stiffness, attributable to increased levels of collagen 

fibers, alters pressure wave velocity within the cardiovascular system; as a result, pressure waves 

are refracted much more quickly. Instead of wave refraction occurring during diastole, waves are 

refracted during periods of systole (Nichols, 2005). Rapid wave refraction results in increased 

SBP and duration of systole (Nichols, 2005), both of which are detrimental to cardiovascular 

health. Prolonged periods of systole delay relaxation of the heart, promote left ventricular 

hypertrophy, and place individuals at increased risk of heart failure (Cheitlin, 2003). 

 The utility of PP as a predictor of CVD is contentiously debated in the literature; multiple 
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studies report that PP is strongly predictive of cardiovascular outcomes (Haider, Larson, 

Franklin, & Levy, 2003); however, other studies suggest that PP is a comparatively less useful 

indicator of cardiovascular efficiency, as its predictive ability is inconsistent across 

cardiovascular risk profiles (Pastor-Barriuso, Banegas, Damian, Appel, & Guallar, 2003). The 

complexity surrounding PP as a predictor of CVD stems from its linear dependence on SBP and 

DBP; an increase in PP is achieved via an increase in SBP or a decrease in DBP or both (Pastor-

Barriuso et al., 2003). The underlying SBP and DBP values dictating an individual’s PP have 

important implications for PP as a CVD predictor. Increased PP attributable to elevated SBP is 

positively associated with CVD risk; on the other hand, increased PP attributable to reduced 

DBP is negatively associated with CVD risk (Pastor-Barriuso et al., 2003). Thus, it is suggested 

that PP be interpreted in the context of SBP and DBP, and not as a stand-alone indicator of CVD 

risk (Pastor-Barriuso et al., 2003).  

 Hypertension severity is categorized using a classification system developed by the Joint 

National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood 

Pressure (Chobanian et al., 2003). Stage 1 hypertension is defined as chronically elevated blood 

pressure at or between 140-159 mm Hg (SBP) and/or 90-99 mm Hg (DBP). Stage 2 

hypertension, a more severe form of hypertension, refers to chronically elevated blood pressure 

at or above 160 mm Hg (SBP) and/or 100 mm Hg (DBP). Additionally, in light of the rapidly 

increasing prevalence of hypertension, a new “pre-hypertensive” category was recently created 

to include individuals with blood pressure at or between 120-139 mm Hg (SBP) and/or 80-89 

mm Hg (DBP) (Chobanian et al., 2003). This new classification category reflects an increased 

emphasis on healthy lifestyle changes to prevent at-risk individuals from reaching the Stage 1 



 

 

15
hypertension threshold. Normotensive individuals - those without hypertension - have blood 

pressure levels below 120 mm Hg (SBP) and 80 mm Hg (DBP) (Chobanian et al., 2003). 

 An estimated 100 million Americans (almost 40 percent of US adults) are pre-

hypertensive or hypertensive (Qureshi et al., 2005). Furthermore, a substantial proportion of pre-

hypertensive adults are likely to become hypertensive; one recent study found that over 93 

percent of pre-hypertensive individuals also have at least one additional CVD risk factor (Liszka, 

Mainous, King, Everett, & Egan, 2005), dramatically increasing the likelihood of reaching the 

Stage 1 hypertension threshold. Hypertension prevalence estimates differ substantially as a 

function of age, race, and gender. Controlling for lifestyle factors that contribute to the 

development of high blood pressure, the onset of hypertension increases linearly with age; 

approximately 50 percent of adults between the ages of 60-69 are hypertensive while almost 75 

percent of adults over the age of 70 are hypertensive (Burt, Whelton, Roccella, Brown, Cutler, 

Higgins, et al., 1995). Adults who reach the age of 50 hypertensive-free have a 90 percent chance 

of eventually developing the disorder in their lifetime (Vasan et al., 2002). Given recent 

epidemiological trends, hypertension prevalence is also likely to increase among young people; 

since 1988, mean SBP and DBP have increased 1.4 mm Hg and 3.3 mm Hg (both p < 0.001), 

respectively, among adolescents (Muntner et al., 2004). Hypertension prevalence is 

disproportionately higher among women and minority populations. African American and 

Hispanic adults are more likely to be affected than non-Hispanic whites (Fields et al., 2004; 

Qureshi et al., 2005). Higher prevalence estimates for certain minority populations (e.g., 

Mexican Americans) may appear in the future as the median age of these subpopulations 

increase (Fields et al., 2004).  
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 Blood pressure is a potent predictor of CVD; this association is evident even within 

normotensive ranges of blood pressure (age- and sex-standardized), suggesting that there is no 

detectable risk threshold for blood pressure as a CVD precursor (Lewington et al., 2002). A 

meta-analysis of 61 prospective studies suggests that the causal association between 

hypertension and CVD mortality is stronger than previously thought (Lewington et al., 2002). 

After extensive adjustment for additional CVD risk factors, hypertensive adults are 2.37 times as 

likely to suffer a myocardial infarction, stroke, or congestive heart failure compared to 

normotensive adults (Liszka et al., 2005); even pre-hypertensive adults who have yet to reach the 

Stage I hypertension threshold are 1.32 times as likely to experience a CVD event than their 

normotensive peers (Liszka et al., 2005). For every 20 mm Hg increase in SBP, or 10 mm Hg 

increase in DBP, mortality rates attributed to stroke, ischemic heart disease, and other 

cardiovascular events increase two-fold among adults age 40-69 (Lewington et al., 2002).  

 For approximately 90 percent of hypertensive adults, no single etiological cause is 

determined (Beevers, Lip, & O'Brien, 2001). Rather, high blood pressure may reflect 

environmental factors (e.g., diet, activity level), genetic factors (e.g., kidney function), or 

interactions between factors (Appel et al., 2006). Past research has found a moderate heritability 

for hypertension. Specifically, the prevalence of hypertension is approximately two times higher 

among individuals with at least one hypertensive parent compared to peers without a 

hypertensive parent (Beevers et al., 2001). Twin concordance data also supports the notion of a 

genetic predisposition to hypertension (Beevers et al., 2001). However, it is important to 

consider the impact of shared lifestyle on familial hypertension. Shared diet, similar physical 

activity patterns, and pervasive attitudes toward general health are likely common within 



 

 

17
families; thus, heritability may be confounded with shared lifestyle, obscuring the actual 

impact of genetic factors on the development of hypertension.  

 Several lifestyle-based risk factors for hypertension are well-substantiated. The following 

sections provide an overview of the literature pertaining to the four hypertension predictors 

considered here. Additionally, because the two-method measurement design emphasizes the use 

of multiple measures for assessing constructs, common methods of measurement are presented 

and critiqued for each risk factor.  

 

Physical Conditioning and Hypertension 

 An individual’s level of physical conditioning reflects several related, yet fundamentally 

different, constructs. Physical condition is not solely demonstrated by a person’s level of 

physical activity, although physical activity certainly contributes to level of physical 

conditioning. Similarly, physical condition does not exclusively refer to an individual’s fitness 

level, although physical fitness capabilities undoubtedly influence physical condition. These two 

elements – physical activity and physical fitness – are neither synonymous nor mutually 

exclusive. Individuals may be both physically active and physically fit. However, it is also 

plausible that highly physically fit individuals are not physically active; conversely, extremely 

physically active individuals may be physically unfit. Therefore, physical condition is a 

composite idea, reflecting several related dimensions of aerobic performance.   

  Physical activity refers specifically to bodily movements, produced by skeletal muscles, 

that result in energy expenditure (Casperson, Powell, & Christenson, 1985). A person’s total 

energy expenditure is a continuous variable (Casperson et al., 1985), and is influenced by 
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function of mode, frequency, and intensity of that person’s physical activity. Physical activity 

may be segmented into a series of mutually exclusive categories any number of ways (e.g., work-

related physical activity versus leisure-time physical activity; light versus moderate versus 

vigorous physical activity), provided these categories sum to yield the total energy expenditure 

attributable to physical activity (Casperson et al., 1985).2 On the other hand, physical fitness 

represents a set of natural attributes common to all people; these attributes relate to the ability to 

perform physical activity and are categorized into several fitness measures including 

cardiorespiratory fitness, muscular strength, and flexibility (Casperson et al., 1985). 

 Physical activity and physical fitness are related to one another in a fairly complex 

manner. A large body of literature documents a moderate dose-response relationship between the 

two dimensions of physical conditioning. High-intensity physical activity is moderately 

correlated with cardiorespiratory fitness (measured by VO2 max) (males: r=0.33; females: r = 

0.27) (Talbot, Metter, & Fleg, 2000). However, the degree of association is substantially weaker 

for moderate-intensity physical activity (males: r = 0.12; females: r = 0.17) and non-significant 

for low-intensity physical activity (males: r = 0.08; females: r = 0.06) (Talbot et al., 2000). 

Multiple regression reveals that high-intensity physical activity accounts for just over 10 percent 

and 7 percent of the variance in VO2 max among males and females, respectively (Talbot et al., 

2000). However, after controlling for age and BMI, only 1.6 percent and 1.8 percent of the 

variance in VO2 max among males and females, respectively, is explained by high-intensity 

physical activity (Talbot et al., 2000). These findings suggest that intensity of physical activity 

                                                 
2 The terms physical activity and exercise are often used interchangeably; however, subtle differences in definitions 
highlight the distinction between the two concepts. Like physical activity, exercise also refers to bodily movement 
by skeletal muscles, resulting in energy expenditure (Casperson et al., 1985). Yet, exercise differs from physical 
activity in that exercise refers specifically to a category of “planned, structured, and repetitive bodily movement” 
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makes a small, yet non-trivial, contribution to cardiorespiratory fitness (Talbot et al., 2000). 

 Evidence that physical activity and physical fitness represent two related, yet different, 

concepts comes from studies in which the predictive value of the two constructs are assessed 

simultaneously for health outcomes. When controlling for one another, physical activity and 

physical fitness are both inversely associated with all-cause mortality (Myers et al., 2004). In 

fact, physical activity and physical fitness outperform smoking, hypertension, hyperlipidemia, 

and diabetes in their ability to predict mortality (Myers et al., 2004). However, physical fitness is 

a comparatively stronger predictor of cardiovascular risk and all-cause mortality compared to 

physical activity (Dvorak et al., 2000; Myers et al., 2004; Sternfeld et al., 1999). 

 Physical activity and physical fitness are both strongly associated with blood pressure. 

The association between physical activity and reduced blood pressure has been substantiated 

across age, sex, and racial strata; however, despite numerous national initiatives to promote 

physical activity, the proportion of individuals who report engaging in no physical activity 

approaches 50 percent for several subpopulations (Mensah, Hokdad, Ford, Greenlund, & Croft, 

2005). While the U.S. Department of Health and Human Services (USDHHS) recommends a 

minimum of 30 minutes of physical activity most days of the week (USDHHS, 2002), much 

lower levels of physical activity confer cardiovascular benefits. For example, sedentary 

hypertensive participants who participated in as little as 30-60 minutes per week of moderate 

physical activity experienced significant reductions in both SBP and DBP (Ishikawa-Takata, 

Ohta, & Tanaka, 2003). Furthermore, research supports that cardioprotective effects may be 

obtained through intermittent bouts of physical activity; three short 10-minute periods of 

physical activity per day are associated with significant reductions in blood pressure (Staffileno, 

                                                                                                                                                             
performed in an attempt to maintain or increase level of physical fitness (Casperson et al., 1985, p.127)). 
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Braun, & Rosenson, 2001).  

 Physical fitness is also strongly protective against hypertension. After extensive 

adjustment for potential confounders, an inverse dose-response relationship exists for 

cardiorespiratory fitness and hypertension. Moderately fit and highly fit women have a 39 and 65 

percent lower risk, respectively, of developing hypertension, compared to women with low 

cardiorespiratory fitness (Barlow et al., 2006). In fact, among women, cardiorespiratory fitness is 

as strong a predictor of hypertension as being pre-hypertensive, overweight, or over the age of 55 

(Barlow et al., 2006). Similar patterns exist for males. Unfit men exhibit higher SBP and DBP 

compared to moderately fit or highly fit males (Carnethon, Gulati, & Greenland, 2005).  

 Unfortunately, low cardiorespiratory fitness is common among both adolescents and 

adults. In the United States, over 33 percent of adolescents and approximately 14 percent of 

adults are considered unfit (Carnethon et al., 2005). Despite the lack of gender differences in the 

prevalence of low cardiorespiratory fitness among adolescents (Carnethon et al., 2005), a 

disturbing trend exists for adolescent females. With increasing age, adolescent females display 

lower levels of cardiorespiratory fitness. This trend is reversed for adolescent males; namely, 

adolescent males display increased cardiorespiratory fitness in the later teenage years (Pate, 

Wang, Dowda, Farrell, & O'Neill, 2006). As adults, females are significantly less likely to be 

physically fit compared to adult males (Carnethon et al., 2005). Additionally, the prevalence of 

low cardiorespiratory fitness is higher among black and Hispanic populations compared to non-

Hispanic white populations (Carnethon et al., 2005). 

 Measuring physical conditioning. Self-reports represent the most commonly used type of 

physical activity measure in related research (Sallis & Saelens, 2000). Major benefits include 
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their affordability, ease of data collection, ability to appropriately assess physical activity 

behavior within diverse populations (e.g., very young children, the elderly), and capacity to 

address physical activity across multiple contexts (Sallis & Saelens, 2000). Additionally, self-

report recalls of physical activity do not alter physical activity behavior (Sallis & Saelens, 2000), 

reducing the likelihood of testing threat in experimental designs. Self-report physical activity 

data are more valid when collected by interviewers versus data obtained through self-

administered surveys (Sallis & Saelens, 2000). Additionally, self-reports of vigorous physical 

activity are generally more valid than self-reported moderate physical activity (Sallis & Saelens, 

2000).  

 Conversely, self-report physical activity measures have several noteworthy 

disadvantages. For example, these measures are often impacted by participants’ attempts to 

provide socially desirable responses. One study found social desirability to be the strongest 

predictor of self-reported frequency of physical activity (Warnecke et al., 1997). Additional 

problems associated with these measures include the high probability of recall error and the 

potential for terminology ambiguity to affect participant responses (Sallis & Saelens, 2000). Self-

report physical activity measures typically fail to collect data on low-level physical activities, 

increasing the likelihood of floor effects (i.e., a person’s level of physical activity is not captured 

using a self-report measure because their activity level is lower than the lowest score available) 

(Tudor-Locke & Myers, 2001). Findings also indicate that self-reports of physical activity are 

inaccurate estimates of the total amount of physical activity in which an individual engages 

(Sallis & Saelens, 2000); thus, if researchers are interested in measuring participants’ total 

amount of physical activity (as opposed to more isolated instances such the number of times per 
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week an individual lifts weights), it may be more appropriate to employ relatively more objective 

physical activity measures. Finally, due to the dearth of information regarding the internal 

consistency of self-report physical activity measures (Patterson, 2000), it is often difficult to 

judge reliability or compare findings across studies.  

 In contrast to self-report indicators, many objective measures of physical activity exist, 

including calorimetry, doubly labeled water, direct observation, accelerometers, and pedometers 

(Tudor-Locke & Myers, 2001). Within the class of objective physical activity measures, motion 

sensing technology (i.e., accelerometers and pedometers) is gaining popularity. Accelerometers 

and pedometers are commercially available; may be worn in several locations on the body; and 

do not require participants to manually record physical activity data. Furthermore, they are well-

suited to individuals for which language barriers or illiteracy may render self-reports impractical 

(Tudor-Locke & Myers, 2001).  

 Accelerometers record individuals’ activity levels in terms of activity counts (described 

as the product of movement frequency and movement intensity); from these data, researchers 

derive estimates of total energy expenditure (Tudor-Locke & Myers, 2001). However, 

accelerometers require specific software for calibration and data analysis; consequently, data 

collection is often tedious and requires technical expertise (Tudor-Locke & Myers, 2001). 

Additionally, the high cost of accelerometers serves as a major drawback in large-scale physical 

activity research; the price of an accelerometer is enormously expensive compared to that of 

pedometers ($50-$400 versus $10-$30 per unit, respectively) (Tudor-Locke & Myers, 2001). As 

a result, pedometers are becoming increasingly common in physical activity research. 

Pedometers are able to detect slight changes in physical activity patterns that self-report 
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measures may fail to capture. Additionally, pedometers demonstrate excellent step-counting 

accuracy at typical walking speeds (3.0 miles per hour or faster) (Melanson et al., 2004); this is 

important as walking represents one of the most popular forms of physical activity among adults 

(Wood, 2002).  

 However, experts caution that objective measures should not be considered gold standard 

methods for assessing physical activity (Patterson, 2000). This suggestion stems from the fact 

that multiple internal and external influences (e.g., chemical substances, emotional state, mode of 

activity) may compromise the validity of objective physical activity measures (Patterson, 2000; 

Tudor-Locke & Myers, 2001). In light of the drawbacks associated with both self-report and 

objective measures of physical activity, it is recommended that researchers employ a 

combination of methods (e.g., pedometers and self-report measures) to assess physical activity 

(Tudor-Locke & Myers, 2001). Similarly, Patterson (2000) suggests comparing data obtained 

from self-report and objective measures not to establish criterion validity for the self-report 

measures, but rather to evaluate convergent validity for both types of measures.  

 Unlike physical activity, physical fitness is generally assessed using relatively more 

complicated methodologies. VO2 max, derived from maximal exercise testing, is considered a 

gold standard cardiorespiratory fitness measure (Noonan & Dean, 2001). Maximal exercise tests 

assess individuals’ maximum oxygen consumption, which is reflective of the body’s ability to 

transport and utilize oxygen for energy production (Hartung, Krock, Crandall, Bisson, & Myhre, 

1993). However, several practical drawbacks exist regarding maximal exercise testing. Among 

individuals for which pain and exhaustion (rather than physical exertion) determine testing 

performance, VO2 max measures may be invalid (Noonan & Dean, 2001). The time and expense 



 24
 
associated with collecting VO2 max data present major difficulties in large-scale epidemiological 

investigations (Yamani et al., 1995). Additionally, collection of valid VO2 max data requires 

high levels of participant motivation (Noonan & Dean, 2001).  

 In light of these obstacles, several other categories of exercise tests have been developed 

to measure cardiorespiratory fitness. One alternative category – predictive submaximal exercise 

testing – allows researchers to estimate participants’ VO2 max without requiring them to reach 

levels of maximum exertion. Participants’ heart rate and oxygen consumption (VO2) are 

measured at two more levels of physical work; using regression equations, estimated VO2 max is 

determined by extrapolating the heart rate-oxygen consumption association to individuals’ age-

predicted maximum heart rate (Noonan & Dean, 2001). Multiple submaximal exercise tests exist 

(e.g., walking, cycle ergometer, and shuttle run tests); however, it is important to select an 

appropriate testing protocol to ensure participants’ are not under- or over-stressed (Noonan & 

Dean, 2001). Many types of submaximal exercise tests produce data within a few minutes; 

several types do not require costly equipment such as treadmills (e.g., the 20-meter shuttle test) 

(Noonan & Dean, 2001). Furthermore, VO2 max and estimated VO2 max have been found to 

demonstrate excellent concurrent validity (Noonan & Dean, 2001). As such, submaximal 

exercise testing is highly applicable to large-scale investigations.  

 

Dietary Intake and Hypertension 
 
 Dietary intake is strongly associated with blood pressure and is capable of evoking acute, 

as well as long-term, cardiovascular responses. Broad-level dietary patterns, as well as specific 

micronutrients, are important predictors of hypertension and other CVD risk factors. Research 
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demonstrates that nutrient intake affects biological factors such as kidney function and heart 

rate activity. Additionally, recent work suggests that nutrients affect cardiovascular health by 

impairing, maintaining, or improving endothelial function; more specifically, a healthy diet 

promotes endothelial-induced vasodilation and slows the atherosclerotic process (Brown & Hu, 

2001). Maintaining endothelial function is crucial to general cardiovascular health, as abnormal 

endothelial function is an early risk factor for eventual CVD (Brown & Hu, 2001); evidence 

suggests that endothelial dysfunction is likely a mediating factor in the progression from 

hypertension to heart failure (Lapu-Bula & Ofili, 2007).   

Regarding broad dietary patterns, the American Dietetic Association recommends a 

vegetarian diet to substantially lower the risk of developing hypertension, obesity, diabetes, and 

cancer (Mangels, Messina, & Melina, 2003). Additionally, the American Heart Association 

endorses reduced alcohol consumption and sodium intake as important points of intervention for 

reducing hypertension prevalence (Appel et al., 2006). Daily consumption of a multivitamin is 

associated with beneficial cardiovascular outcomes (McKay, Perrone, Rasmussen, Dallal, & 

Blumberg, 2000), as is consuming a diet rich in whole grains (Appel et al., 2005; Behall, 

Scholfield, & Hallfrisch, 2006). When saturated fat, salt, and cholesterol are concurrently 

reduced, protein-rich diets, as well as diets rich in unsaturated fats, are significantly associated 

with reductions in SBP and DBP (Appel et al., 2005). In contrast, certain broad-level dietary 

patterns negatively impact cardiovascular health. Disordered eating patterns (e.g., anorexia 

nervosa, binge-eating disorder) are associated with increased risk for hypertension and other 

negative cardiovascular outcomes (Johnson, Cohen, Kasen, & Brook, 2002). Diets high in 

energy density are directly related to BMI, suggesting an increased risk for hypertension (Kant & 
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Graubard, 2005).    

 Consumption of fruits and vegetables, characteristic of a vegetarian diet, increases the 

bioavailability of folate (Brouwer et al., 1999). Dietary folate is associated with reduced plasma 

concentrations of homocysteine, a naturally occurring substance known to reduce bioavailability 

of the vasodilator, nitric oxide (Brouwer et al., 1999; Symons, Rutledge, Simonsen, & Pattathu, 

2006). Fruit and vegetable consumption also increases levels of antioxidant vitamins (especially 

vitamins C and E), shown to inversely correlate with coronary heart disease risk (Brown & Hu, 

2001). Again, evidence supports improved endothelial function as the explanatory mechanism; 

vitamins C and E are associated with improved vasodilation and reduced arterial stiffness 

(Plantinga et al., 2007). 

Significant reductions in SBP and DBP following long-term consumption of a diet rich in 

whole grains are attributed to the protective effects of fiber (Behall et al., 2006). A recent meta-

analysis reports that fiber supplementation significantly reduces DBP; fiber supplementation is 

also associated with a reduction in SBP, though this association is generally non-significant 

(Streppel, Arends, van't Veer, Grobbee, & Geleijnse, 2005). While the exact mechanism through 

which fiber exerts its beneficial effects is unknown (Streppel et al., 2005), preliminary research 

suggests that fiber may attenuate insulin responses in the body (Wolever, Campbell, Geleva, & 

Anderson, 2004). Prolonged hyperinsulinemia (consistent with levels associated with type II 

diabetes) is associated with reduced nitric oxide-dependent endothelial dilation (Arcaro et al., 

2002; Campia et al., 2004). Hyperinsulinemia likely results from the body’s inability to respond 

to insulin; indeed, insulin resistance is a defining feature of type II diabetes and is predictive of 

eventual development of type II diabetes even among non-diabetics (Elder, Prigeon, Wadwa, 
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Dolan, & D'Alessio, 2006; Osei, Rhinesmith, Gaillard, & Schuster, 2004). Recent research 

indicates that consumption of a daily recommended level of insoluble fiber enhances whole-body 

insulin sensitivity (Weickert et al., 2006); thus, dietary fiber may promote vasodilation through 

improved insulin regulation and metabolism.  

Consumption of foods rich in magnesium and potassium is also inversely associated with 

blood pressure. Magnesium supplementation produces small, but significant, reductions in SBP 

and DBP; blood pressure reductions are especially noteworthy among hypertensive adults 

(Kawano, Matsuoka, Takishita, & Omae, 1998). Research suggests that magnesium competes 

with calcium for membrane-binding sites along the vascular smooth muscle, thus promoting 

vasodilation (Kawano et al., 1998). Dietary potassium is also protective against hypertension 

(Appel et al., 2006). Research indicates that potassium supplementation is associated with 

increased production and release of the vasodilator, nitric oxide, within endothelial cells (Zhou, 

Kosaka, & Yoneyama, 2000). 

 In addition to long-term cardiovascular effects, dietary intake also induces acute 

physiological responses. For example, consumption of a single high-fat meal induces higher SBP 

and DBP reactivity to stress (Jakulj et al., 2007), indicating that dietary intake has the potential to 

alter the body’s normal response to stressors. The acute physiological responses stemming from 

nutrient intake often involve endothelial function. Endothelial function is frequently assessed by 

measuring vascular reactivity (i.e., changes in cardiovascular function resulting from acute 

stressors (Beevers et al., 2001)). One common method for assessing cardiovascular reactivity, 

and thus, endothelial health, is flow-mediated dilation (FMD) (West, 2001). FMD of the brachial 

artery is assessed by briefly depriving the upper or lower arm of oxygen (by way of an inflated 
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blood pressure cuff). After removal of the cuff, increased blood flow through the brachial artery 

prompts the endothelium to increase arterial diameter; FMD is represented as the percent change 

between baseline arterial diameter and arterial diameter following removal of the cuff (West, 

2001). Healthy arteries respond to increased blood flow by increasing in diameter; unhealthy or 

damaged blood vessels, on the other hand, demonstrate reduced dilation (i.e., lower FMD) 

(West, 2001). 

 FMD allows researchers to investigate the acute effects of dietary intake on blood 

pressure. Research shows that consumption of a single high-fat meal is associated with reduced 

endothelial functioning during the postprandial state (Ferreira et al., 2004; Vogel, Corretti, & 

Plotnick, 1997). Additionally, the specific type of fatty acid consumed has important 

implications for acute endothelial responses; consumption of a single meal high in saturated fat 

significantly reduces FMD three hours following consumption, whereas a single meal high in 

polyunsaturated fat does not (Nicholls et al., 2006). Research also indicates that certain dietary 

combinations acutely impact endothelial function in complex ways. For example, when small 

amounts of polyunsaturated fats are consumed at the same time, acute endothelial dysfunction 

associated with consumption of a single high-fat meal is effectively reversed (Cortes et al., 

2006).     

 Measuring dietary intake. Dietary intake data are commonly collected via self-report 

measures (e.g., food records (3-, 4-, or 7-day), food frequencies, 24-hour dietary recalls) 

(Contento, Randell, & Basch, 2002). Self-report dietary intake measures differ drastically in their 

cost, ease of implementation, and respondent burden; food records and 24-hour dietary recalls 

are generally expensive and labor-intensive, potentially limiting their utility in large-scale studies 
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(Contento et al., 2002). Food frequency questionnaires (FFQs) collect data regarding average 

portion size and frequency of consumption for a given list of foods; FFQs have become 

increasingly popular in nutrition research as a result of their affordability and ease of data 

processing (Contento et al., 2002). However, several studies indicate that FFQs are not valid 

dietary intake measures at the individual level (Anderson, Tomten, Haggarty, Lovo, & Hustvedt, 

2003). Anderson and colleagues (2003) suggest that the reduced validity associated with FFQs 

results from under- or over-reporting both portion size as well as food consumption frequency.  

 FFQs are often calibrated using comparatively more expensive 24-hour dietary recalls 

(Subar et al., 2003); with this measure, participants provide a detailed report of all food and 

beverages consumed in the 24 hours immediately preceding data collection. While 24-hour 

dietary recalls are often more valid than FFQs, they are nonetheless associated with biased 

estimates of dietary intake. On average, men and women underreport total energy intake by up to 

14 and 20 percent, respectively, when measured using 24-hour dietary recalls. When assessed 

using FFQs, men and women underreport total energy intake by up to 36 and 38 percent, 

respectively (Subar et al., 2003). 

 Several individual-level factors influence the validity of dietary intake measures. Among 

women, fear of negative evaluation is significantly associated with underreporting of energy 

intake on FFQs as well as 24-hour dietary recalls (Tooze et al., 2004). Men who eat fewer than 

five times per day are also significantly more likely to underreport energy intake on both 

measures. For both men and women, social desirability is significantly associated with 

underreporting of energy intake for 24-hour dietary recalls, but not FFQs (Tooze et al., 2004). 

Typically, 24-hour dietary recalls are interviewer-administered whereas FFQs are commonly 
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self-administered. However, a sub-category of 24-hour dietary recalls – computer-assisted self-

administered dietary interviews – eliminates the need for interviewers, potentially reducing the 

likelihood of social desirability bias. Self-administered dietary interviews are cheaper and less 

intrusive than traditional 24-hour dietary recalls and incorporate external cues such as prompting 

or portion size props to assist participants in providing valid dietary intake data (Kohlmeier, 

Mendez, McDuffie, & Miller, 1997). 

 Researchers argue that in order to detect causal associations involving dietary intake and 

health outcomes, valid and objective measures of exposure are necessary (Bingham, 2002). 

Compared to self-report measures, nutritional biomarkers may represent comparatively more 

objective indicators of dietary intake; however, few studies incorporate this class of measures 

(Subar et al., 2003). A major disadvantage associated with nutritional biomarkers is their relative 

lack of availability; currently, subcutaneous adipose tissue samples, doubly labeled water, 24-

hour urine nitrogen, and 24-hour urine potassium provide valid measures of fatty acid intake, 

energy expenditure, protein intake, and potassium intake, respectively (Bingham, 2002). 

However, valid biomarkers are generally unavailable for measuring the intake of additional 

macro- and micronutrients. As nutritional biomarkers are developed, it is important to assess not 

only their reliability, but also their correspondence with actual exposure to dietary agents 

(Marshall, 2003). To be of maximal utility, nutritional biomarkers should be specific for 

exposure to a single dietary component (Marshall, 2003). 
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Body Fat and Hypertension 

 Body fat is directly associated with multiple negative health outcomes, including 

hypertension, cardiovascular mortality, cancer incidence, cancer mortality, and all-cause 

mortality (Gong, Agalliu, Lin, Stanford, & Kristal, 2007; Hu, Juneja, Maihle, & Cleary, 2002; 

Lee, Blair, & Jackson, 1999). Research shows that associations between excess body fat and 

negative CVD risk factors (e.g., elevated SBP, DBP, and triglycerides, and decreased HDL-

cholesterol) are detectable as early as age 9 (Thompson et al., 2007). This is especially alarming 

given that adolescents identified as overweight before the age of 18 are 11 to 30 times more 

likely to be obese as young adults (Thompson et al., 2007). Therefore, the earlier the detrimental 

effects of excess body fat on the cardiovascular system begin, the more likely these effects will 

continue throughout a person’s lifetime.  

Among men and women, increase in body mass index (BMI; [weight (kg) / height (m)2]) 

over an eight-year period positively predicted increases in SBP and DBP (Wilsgaard, Schirmer, 

& Arnesen, 2000). In addition to prospective BMI increases, baseline BMI also predicts future 

blood pressure change; given a uniform increase in BMI, women with higher initial BMIs show 

greater prospective increases in SBP and DBP than their peers with lower baseline BMIs 

(Wilsgaard et al., 2000). Associations between body fat and blood pressure are also observed 

among younger populations. Among youth ages 8-17, increases in mean BMI between 1988-

1994 and 1999-2000 accounted for a substantial proportion of variance in the corresponding 

increases in SBP and DBP during the same time period (Munter et al., 2004). 

 Recent reviews highlight the metabolic, physiologically-active nature of adipose tissue 

(Chudek & Wiecek, 2006; Singhal, 2005), and provide evidence of the ability of fat tissue to 
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invoke atherosclerosis. Adipose tissue secretes a class of inflammatory interleukins and 

cytokines, including leptin, adiponectin, interleukin-6, and tumor necrosis factor (Fain, 2006). 

Excess body fat is associated with enhanced secretion of interleukins and cytokines, as well as 

elevated plasma concentrations of additional pro-inflammatory proteins (e.g., C-reactive protein 

(CRP), derived from the liver) (Mohamed-Ali et al., 1999; Tchernof, Nolan, Sites, Ades, & 

Poehlman, 2002). Chronic low-grade inflammation and persistent activation of immune 

response, characterized by elevated concentrations of cytokines and other pro-inflammatory 

proteins, is thought to mediate the relationship between excess adiposity and atherosclerosis 

(Chudek & Wiecek, 2006; Singhal, 2005).  

 Research also indicates that excess body fat contributes to endothelial dysfunction 

(Mizia-Stec, 2006); evidence exists for several explanatory mechanisms. Inflammatory responses 

stemming from excess adiposity interfere with the ability of the endothelium to dilate in response 

to increased blood flow (Arcaro et al., 1999). Additionally, recent evidence suggests that insulin 

resistance may mediate the observed association between obesity and endothelial dysfunction 

(Singhal, 2005). Insulin resistance is associated with reduced secretion of the vasodilator, nitric 

oxide (Cersosimo & DeFronzo, 2006), and thus contributes to endothelial dysfunction.  

 Measuring body fat. Health researchers have measured body fat for several decades, 

using assessment tools of variable reliability and validity. Perhaps the most easily obtained and 

often used body fat measure is BMI; the major benefit of BMI is the ease with which data are 

collected. While more state-of-the-art body fat measures are available (e.g., hydrostatic weighing 

and dual-energy x-ray absorptiometry), they are often impractical for large samples due to their 

higher cost and level of skill required for operation (Sampei, Novo, Juliano, & Sigulem, 2001). 
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As an alternative, BMI offers researchers an inexpensive and quick method for measuring 

adiposity.  

 However, existing literature is contentious regarding the validity of BMI as an indicator 

of body fat. It is important to note that BMI does not directly measure body fat (Piers, Soares, 

Frandsen, & O'Dea, 2000); rather, BMI approximates body fat based on participants’ height and 

weight, and not based on the composition of participants’ bodies (Heyward & Wagner, 2004). 

Several studies have found that BMI correlates strongly with gold standard body fatness 

measures, and thus represents a valid body fat indicator (Mei et al., 2002; Steinberger et al., 

2005); however, body fat classifications (i.e., under-, normal-, or overweight) based exclusively 

on BMI may be invalid at the individual level (Piers et al., 2000). Among adults, BMI has poor 

sensitivity and poor predictive value of overweight and obese status compared to more invasive 

methods of body fat assessment (Piers et al., 2000). The poor sensitivity of BMI means that a 

percentage of actually overweight or obese individuals are not identified through the use of BMI 

alone. Conversely, a poor predictive value for BMI means that a non-trivial percentage of 

individuals identified as overweight or obese by BMI do not actually fall under these categories 

(Piers et al., 2000). Factors such as age and menarcheal status also affect BMI validity (Sampei 

et al., 2001).    

 Another relatively sophisticated body fat analysis method, bioelectrical impedance 

analysis (BIA), is gaining popularity in large-scale epidemiological studies. Advantages 

associated with BIA include its affordability, portability, safety, reliability, commercial 

availability, and ease of use (Guo, Chumlea, & Cockram, 1996; Houtkooper, Lohman, Going, & 

Howell, 1996). As a result, BIA is well-suited for epidemiological research involving large 
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sample sizes (Guo et al., 1996).  

 The collection of BIA data is non-invasive and typically lasts less than one minute 

(Houtkooper et al., 1996; NCHS, 2002b). A small alternating electrical current is introduced into 

a participant’s body at a particular site (typically through electrodes placed on the palm); the 

current is mild enough that it is non-detectable to participants. Current flows through the body 

and the resulting voltage is measured at a second site (typically through electrodes placed on the 

ankle) (Heyward & Wagner, 2004). Impedance is measured as the opposition to electrical flow 

(Heyward & Wagner, 2004), and varies as a function of an individual’s body geometry, size, and 

electrical properties (Foster & Lukaski, 1996). Impedance measures are broken down into two 

separate components: resistance and reactance. Resistance represents absolute opposition to 

current flow, while reactance is a measure of opposition to current flow due to the ability of cell 

membranes to hold electrical charge (Foster & Lukaski, 1996; Heyward & Wagner, 2004).  

 As current flows from entry to exit electrodes, it encounters tissues and fluids with 

variable levels of electrical conductivity. Electrical current is conducted most efficiently through 

tissues with high water and electrolyte contents. As a result, blood, muscle, and internal organs 

assist in carrying the charge from entry to exit electrodes; on the other hand, adipose tissue is 

anhydrous and contains very little water (Heyward & Wagner, 2004). Thus, the more body fat an 

individual has, the higher their impedance to current flow. Resistance and reactance data, as well 

as anthropometric data, are included as predictors in one of multiple existing regression 

equations to predict total body water (TBW), fat mass (FM), fat-free mass (FFM), or body fat 

percentage (BF)3. It is important that BIA equations are applied to samples representative of 

                                                 
3 TBW represents all intracellular and extracellular fluid in the body. FM refers to all extractable lipids contained in 
adipose and other tissues. FFM includes all non-lipid fluids and tissues, including water, muscle, bone, organs, and 
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those from which the equations were derived. A large body of literature indicates that BIA 

data are much more valid predictors of body composition than are anthropometric measures, 

such as BMI (Kotler, Burastero, Wang, & Pierson Jr., 1996; Kyle, Genton, Karsegard, Slosman, 

& Pichard, 2001).   

 

Tobacco Use and Hypertension 
 

Tobacco use is capable of producing short- and long-term cardiovascular effects. 

Consistent findings support that nicotine produces an acute blood pressure reaction immediately 

following tobacco exposure. Long-term tobacco use is also strongly associated with 

cardiovascular morbidity and mortality (Mahmud & Feely, 2003; Streppel, Boshuizen, Ocke, 

Kok, & Kromhout, 2007; Teo et al., 2006). However, studies have cast doubt on nicotine-

induced blood pressure responses as the cause of negative CVD outcomes following long-term 

tobacco use. Support for this theory comes from studies confirming that the negative 

cardiovascular effects stemming from long-term tobacco use vary as a function of intake method 

(e.g., cigarette smoke, smokeless tobacco, and transdermal nicotine patches).  

Cigarette use is associated with comparatively more CVD risk factors than smokeless 

tobacco. Long-term cigarette use is significantly correlated with eight CVD risk factors (elevated 

BMI, waist circumference, waist-hip ratio, plasma triglycerides, plasma insulin, SBP, C-reactive 

protein, and reduced HDL cholesterol) whereas smokeless tobacco is only significantly 

associated with two risk factors (increased waist-hip ratio and plasma triglycerides) (Wallenfeldt, 

Hulthe, Bokemark, Wikstrand, & Fagerberg, 2001). Furthermore, cigarette use is significantly 

                                                                                                                                                             
connective tissue. BF represents FM as a percent of total body weight. (All definitions adapted from Heyward & 
Wagner, 2004).  
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associated with widespread atherosclerosis, whereas smokeless tobacco use is not (Wallenfeldt et 

al., 2001). Other studies have found similar results. For example, Westman (1995) found 

evidence of an acute increase in SBP and DBP following smokeless tobacco use, but 

substantially weaker evidence of a correlation between long-term smokeless tobacco use and 

chronic hypertension. Research into the effects of additional forms of tobacco use on CVD risk 

factors has produced comparable results. Compared to both nasal and transdermal nicotine use, 

cigarette smoking is more strongly associated with elevated heart rate, blood pressure, and 

concentration of plasma-based proteins that promote blood coagulation (including fibrinogen, 

and β-thromboglobulin) (Benowitz, Hansson, & Jacob III, 2002).  

Because long-term cardiovascular effects vary with tobacco use intake method, it is 

suggested that the association between tobacco use and elevated CVD risk is not attributable to 

nicotine (Wallenfeldt et al., 2001); rather, components found in cigarette smoke other than 

nicotine may explain the negative effects of cigarette use on cardiovascular health. Several 

alternative hypotheses involving carbon monoxide have been put forth. While short-term 

exposure to carbon monoxide does not acutely impact cardiovascular parameters (Zevin, 

Saunders, Gourlay, Jacob III, & Benowitz, 2001), long-term carbon monoxide exposure may 

facilitate physiological processes that increase the likelihood of CVD morbidity or mortality.  

Research supports that long-term carbon monoxide exposure directly promotes 

atherosclerosis. Level of cigarette smoking is directly associated with plasma concentrations of 

multiple pro-inflammatory proteins (Lind et al., 2004). Compared to heavy smokers with low 

concentrations of pro-inflammatory proteins, heavy smokers with high pro-inflammatory protein 

concentrations are 1.57 times more likely to experience a cardiac event and 1.50 times more 
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likely to die from a cardiac event (Lind et al., 2004). Research suggests that 

carboxyhemoglobin (COHb%), a carbon monoxide-hemoglobin complex formed in red blood 

cells following inhalation of cigarette smoke, is a mediating factor. COHb% is significantly 

correlated with both level of cigarette smoking and concentration of pro-inflammatory proteins 

(Lind et al., 2004). Thus, these findings suggest that carbon monoxide interacts with hemoglobin 

to increase COHb% levels; in turn, elevated COHb% levels invoke elevated concentrations of 

pro-inflammatory proteins, thus accelerating the atherosclerotic process. 

 Measuring tobacco use. Tobacco use is generally assessed using self-report measures or 

biochemical indicators. Self-report measures have the ability to assess a wide range of tobacco-

related behaviors, including past and current use, and future use intentions. The flexibility and 

low cost associated with self-report tobacco use measures make them attractive option for 

researchers. 

 On the other hand, biochemical indicators (e.g., serum cotinine) quantify recent exposure 

to tobacco; as such, these measures assess a more specific facet of tobacco use. Nicotine is the 

predominant alkaloid in tobacco (Perez-Stable, Benowitz, & Marin, 1995). For any given dose of 

nicotine entering the body, approximately 70 percent is converted into cotinine, the major 

metabolite of nicotine; cotinine remains in the bloodstream for a substantially longer period of 

time than nicotine as a result of its 16-hour half-life (Vartiainen, Seppala, Lillsunde, & Puska, 

2002). Smoker status is usually identified via cotinine concentrations greater than 14 ng/ml 

(Vartiainen et al., 2002; Wagenknecht, Burke, Perkins, Haley, & Friedman, 1992)); passive 

(second-hand) smoke typically produces serum cotinine levels ranging from 0.5 ng/ml to 10 

ng/ml. Studies show that even non-smokers co-habitating with smokers have serum cotinine 
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levels below 7.5 ng/ml (Emmons et al., 1994). Therefore, determination of smoker status via the 

typical cotinine threshold of 14 ng/ml is not likely to misclassify actual non-smokers as current 

smokers based on environmental tobacco exposure. 

 Studies typically find moderate levels of concordance between self-report and 

biochemical tobacco use measures. Perez-Stable and colleagues (1995) determined the 

correlation between self-reported tobacco use and serum cotinine to be r = 0.695 and r = 0.576 

among men and women, respectively. However, research shows that misclassification of smoker 

status based on self-report data is common for a small percentage of participants. Vartiainen and 

colleagues (2002) reported that approximately 4 percent of respondents who reported not having 

smoked in the previous 24 hours had serum cotinine levels indicating recent tobacco exposure. 

Other studies have found similar results. In a study of young adults, 145 of 3445 self-reported 

non-smokers had serum cotinine levels above 14 ng/ml (a misclassification rate of 4.2 percent) 

(Wagenknecht et al., 1992). Additionally, misclassification rates were significantly greater 

among several subpopulations; African-American participants (compared to white participants), 

those with a high school education or less, and reported former smokers were respectively two-, 

three-, and four times more likely to have discordant self-report and serum cotinine data 

(Wagenknecht et al., 1992). The majority of misclassified smokers had cotinine levels below 50 

ng/ml, suggesting that self-report tobacco use measures may be less valid among light smokers 

compared to heavy smokers (Vartiainen et al., 2002; Wagenknecht et al., 1992). Therefore, while 

a fairly high degree of association exists between self-report and biochemical tobacco use 

measures, self-report data may underestimate the prevalence of current tobacco use by up to 4 

percent or more among several subpopulations.  
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CHAPTER 3 
 

Method 
 

Data 
 

Overview of NHANES 

 The National Health and Nutrition Examination Survey (NHANES) represents an 

ongoing surveillance effort by the National Center for Health Statistics (NCHS); the overall 

goals of NHANES are to monitor health-related incidence and prevalence rates, identify trends in 

risk behaviors, and explore the relationship between nutrition and health (NCHS, 2001a). 

Beginning in 1960, National Health Examination Survey (NHES) data were collected across a 

series of three separate national-level surveys (NHES I, II, and III); in 1970, the NHES was re-

formatted with a new emphasis on the health effects of nutrition behaviors within the American 

population (NCHS, 2001a). Accordingly, NHES was re-named NHANES; four separate 

NHANES surveys (NHANES I, II, HHANES, and NHANES III) were conducted between 1971 

and 1994. In 1999, NHANES was adapted to serve as a continuous, annual survey; during 

consecutive 12-month periods, cross-sectional health and nutrition data are collected from 

approximately 5,000 participants (NCHS, 2001a). NHANES uses a stratified, multi-stage 

probability cluster design to recruit subjects from approximately 15 locations across the United 

States each year. The sampling strategy ensures oversampling of minorities, low-income 

populations, adolescents, and individuals over the age of 60 so that data are representative of the 

non-institutionalized national population (NCHS, 2001a). 

 Following determination of eligibility and completion of informed consent, participants 

visited a Mobile Exam Center (MEC) that travels with NHANES staff to each data collection 
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site. MECs consisted of four linked trailers outfitted with state-of-the-art health examination 

equipment; each MEC was partitioned to ensure participant privacy. At the beginning of each 

MEC visit, participants were provided with bar-coded ID bracelets to facilitate their progression 

through all necessary data collection components (NCHS, 2001a). Data were collected from 

participants by way of three main MEC components. During an extensive interview portion, self-

report data were collected for a wide range of demographic, socioeconomic, health, and nutrition 

variables. Following completion of the interview, more detailed health and dietary data were 

collected during the physical examination and laboratory portions of NHANES. Physical 

examinations were performed by trained and qualified health technicians and included dental, 

dermatological, vision, hearing, and mental health screenings; additional data were collected by 

way of a detailed 24-hour dietary recall, collection of anthropometric measures, and a 

cardiorespiratory fitness assessment. During the laboratory portion of NHANES, participants 

provided blood, urine, and hair samples for the purposes of quantifying health status biomarkers. 

MECs conducted two 4-hour data collection sessions per day; data from approximately 10 

participants were collected per session (approximately 20 participants per day) (NCHS, 2001a). 

MEC examinations lasted approximately 3.5 hours, but varied depending on the participant’s 

age. To accommodate participants, MEC appointments were scheduled on weekday mornings, 

afternoons, and evenings, as well as during weekends (NCHS, 2001a). Following completion of 

the examination and laboratory portions, participants were provided with a preliminary report of 

immediately available exam and lab results; a MEC physician reviewed the findings and 

discussed any abnormal results. Approximately 12-16 weeks following data collection, 
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participants received the remainder of test results via mail; seriously abnormal results were 

reported to participants via telephone by NCHS (NCHS, 2001a).  

 

Data Management 

 Public use NHANES data were made available by the NCHS in two-year series; this 

dissertation incorporates NHANES data from the 1999-2000 and 2001-2002 series, reflecting 

four years of data. Individual NHANES questionnaire, examination, and laboratory data files, as 

well as related documentation (e.g., codebooks), were downloaded from main NHANES data 

dissemination website (http://www.cdc.gov/nchs/about/major/nhanes/datalink.htm). Data 

merging within and across NHANES series was performed using SAS 9.1. Preliminary analyses, 

including initial regressions, data management, and data reduction, were performed using 

STATA 8.0. Model simulations and FIML-missing data procedures were performed using 

LISREL 8.5.  

 
 
Sample Characteristics 

 Pooled NHANES data from the 1999-2000 and 2001-2002 series yielded a total sample 

of N=21,004. Children under the age of 12 were excluded from analyses due to data collection 

procedures; NHANES protocol specified that proxy data be provided by an adult member of the 

household for children under the age of 6; children between the ages of 6-11 reported their own 

data with the help of an adult member of the household (NCHS, 2002c). The ability of young 

children to provide detailed physical activity and dietary intake data is questionable. Similarly, it 

is feasible that proxy reports of physical activity and dietary intake do not reflect children’s 
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actual behaviors. Thus, the decision to exclude youth under the age of 12 was made in an attempt 

to limit analyses to participants who were most likely to reliably report behaviors.  

 Adults over the age of 65 were also excluded from current analyses. The decision to 

exclude older adults and elderly participants was based on the dependent variables of interest 

(SBP, DBP, and PP). The correlation between age and blood pressure varies across the lifespan. 

While SBP increases with age, research supports a threshold age range at which the increase of 

DBP with advancing age is no longer linear (Chobanian et al., 2003). Additionally, a recent 

meta-analysis found that among adults over the age of 60, DBP is inversely correlated with total 

mortality (Staessen et al., 2000). Including participants of advanced age in analyses would likely 

have attenuated parameter estimates involving the four lifestyle-based independent variables and 

DBP. Support for this decision was also found in hypertension literature in which analyses are 

commonly stratified by age group. Following exclusion of participants under the age of 12 or 

over the age of 65, the sample decreased to N=12,490.  

 Participants who reported taking medication to lower their blood pressure (N=1,017), or 

who indicated that a doctor had told them that they had experienced angina, heart attack, stroke, 

coronary heart disease, or ischemic heart disease (N=217) were excluded from further analyses. 

These exclusion criteria have been previously employed to decrease the likelihood of reverse 

causality (i.e., established disease causes hypertensive status) (Lewington et al., 2002). Finally, 

N=611 pregnant women were excluded from analyses. The final sample used for analyses 

included N=10,645 participants. Demographic characteristics of the final sample are displayed 

below in Table 1.  
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Table 1 
Descriptive Statistics: Combined Sample Data from 1999-2000 and 2001-2002 NHANES Series 
  N %  
Total Sample  10,645 100  
     
Gender     
 Male 5,376 50.5  

 Female 5,269 49.5  
     

 12-20 4,985 46.8  
 21-30 1,510 14.2  
 31-40 1,485 13.9  
 41-50 1,359 12.7  
 51-65 1,306 12.3  

Race / 
Ethnicity 

    

 Non-Hispanic White 3,807 35.7  
 Non-Hispanic Black 2,467 23.2  
 Hispanic 3,958 37.2  
 Other race (inc multiracial) 413 3.9  

Household 
Income 

    

 $0 - $19,999 2,246 24.5  
 $20,000 - $44,999 2,934 32.0  
 $45,000 - $74,999 2,015 22.0  
 > $75,000 1,963 21.4  

Education*      
 Less than high school diploma 2,322 33.6  
 High school diploma 1,683 22.4  
 More than high school diploma 2,897 42.0  

Marital 
Status* 

    

 Married 3,125 47.5  
 Widowed 115 1.7  
 Divorced / Separated 716 1.1  
 Never married 2,212 33.6  
 Co-habitating 416 6.3  

Note: * indicates that variables were restricted participants 18 years or older 
 

Data Reduction 

 The complete model of interest included four independent variables (physical 

conditioning, dietary intake, body fat, and tobacco use) and three outcome variables (SBP, DBP, 

and PP). Each independent variable was comprised of cheap and expensive manifest indicators. 

Cheap measures reflected self-report data obtained during the interview portion of NHANES; 



 44
 
expensive measures reflected data obtained during the examination and laboratory portions of 

NHANES. Data reduction was performed in such a way that data from multiple manifest 

measures were combined to yield two cheap measures and either one or two expensive measures 

for each predictor. The following sections provide an overview of data reduction procedures and 

a summary of all variables comprising the full model.  

 

Physical Conditioning Measures 

 Physical conditioning was modeled as a latent variable comprised of three manifest 

indicators (two cheap measures and one expensive measure). Cheap measures were derived from 

self-report physical activity data; estimated VO2 max (EVO2 max), obtained via submaximal 

treadmill testing, represented the expensive physical conditioning measure.  

 Cheap measures. Eight self-report items assessing physical activity habits were combined 

to form two cheap physical conditioning measures. Self-report physical activity items were 

presented in two interview sections: (a) the Physical Activity Questionnaire and (b) the 

Individual Activities Questionnaire. The Physical Activity Questionnaire assessed broad-level 

patterns of physical activity; example items included whether or not participants engaged in 

housework, yard work, moderate and vigorous physical activity, and muscle strengthening 

activities during the past 30 days; self-perceived level of physical activity; and average number 

of hours spent watching television per day.  

 If participants indicated that they had not engaged in at least 10 minutes of moderate or 

vigorous physical activity in the past 30 days, they were not presented with any additional 

physical activity items. If participants indicated that they had participated in at least 10 minutes 
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of moderate or vigorous physical activity in the past 30 days, they were provided with items 

from the Individual Activities Questionnaire. These additional items asked participants to 

provide detailed information regarding each session of physical activity that they had engaged in 

during the past 30 days. Thus, multiple records existed for individuals who had engaged in more 

than one session of physical activity during the past month; in such instances, multiple records 

were collapsed to form variables representing either the average response or the sum of 

responses pertaining to individual physical activity sessions.  

 The eight self-report items used to form the two cheap physical conditioning measures 

are located below in Table 2.  

Table 2 
Self-Report Questionnaire Items Used to Generate Cheap Physical Conditioning Measures 
 
Variable Description Response Range 

 
palevel 

 
(Collapsed average of) Reported intensity level of physical activity session during the 
previous 30 days 

 
1 – 2  
(1 = moderate; 2 = 
vigorous)  

 
pamet 

 
(Collapsed average of) Estimated metabolic equivalent (MET) intensity level for each 
physical activity session during the previous 30 days 

 
0 – 10 METs 

 
anyvig 

 
Over the past 30 days, did you do any tasks in or around your house for at least 10 
minutes that required moderate or greater physical activity? 

 
0 = No 
1 = Yes 

 
pasum 

 
(Collapsed sum of) Number of minutes spent engaged in each physical activity 
session during the previous 30 days 

 
0 – 2070 Minutes 

 
pamin 

 
(Collapsed average of) Number of minutes spent engaged in each physical activity 
session during the previous 30 days 

 
0 – 600 Minutes 

 
anylift 

 
Over the past 30 days, did you do any physical activities specifically designed to 
strengthen your muscles such as lifting weights, push-ups, or sit-ups? 

 
0 = No 
1 = Yes 

 
anymod 

 
Over the past 30 days, did you do any moderate physical activities for at least 10 
minutes that caused only light sweating or a slight to moderate increase in breathing 
or heart rate? 

 
0 = No 
1 = Yes 

 
pafreq 

 
(Collapsed average of) Number of occasions participant engaged in the specific 
physical activity during the previous 30 days  

 
0 – 210 occasions 
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 Data reduction involved subjecting the eight self-report variables to a principal 

components factor analysis in which items were forced to load on a single factor. Items were 

ordered according to strength of factor loading; ordered loadings appear below in Table 3.  

 
Table 3 
Principal Components Factor Loadings for Self-Report Physical Activity Items 
palevel 0.9083 
pamet 0.8964 
anyvig 0.8153 
pasum 0.7162 
pamin 0.6553 
anylift 0.5804 
anymod 0.5412 
pafreq 0.5063 
  

 Cheap physical conditioning measures were formed by creating two parcels from the 

eight items described above (parcel formation followed the procedure outlined in Rogers and 

Schmitt (2004)). Parcel 1, referred to PA1, represented the standardized average of palevel, 

pafreq, pasum, and pamin. Parcel 2, referred to as PA2, represented the standardized average of 

pamet, anymod, anyvig, and anylift. PA1 and PA2 served as the two cheap physical conditioning 

measures in the full model.  

 Expensive measure. EVO2 max, obtained via submaximal treadmill testing, served as the 

expensive measure of physical conditioning. Treadmill testing was administered by trained, 

CPR-certified, radiologic technicians during MEC examinations (NCHS, 2004b). All participants 

between the ages of 12 and 49 were eligible. Exclusion criteria included the following: (1) 

pregnancy greater than 12 weeks; (2) physical functioning limitations; (3) cardiovascular 

conditions or symptoms; (4) lung conditions or symptoms; (5) asthma symptoms; (6) medication 

exclusions (including anti-arrhythmics, beta blockers, and calcium channel-blockers); (7) resting 

heart rate greater than 100 beats per minute; (8) resting SBP greater than 180 mmHg; (9) resting 
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DBP greater than 100 mmHg; (10) irregular heart beat; or (11) other MEC staff safety 

concerns (NCHS, 2004b). (A detailed list of specific cardiovascular fitness exclusion criteria 

may be found in the appendix of NCHS, 2004). If participants’ footwear was not deemed 

appropriate for treadmill testing (i.e., footwear lacked arch support, heel cushioning, or traction), 

appropriate footwear was provided (NCHS, 2004b). Treadmill tests were performed on Quinton 

MedTrack ST65 Treadmills in conjunction with corresponding Quinton MedTrack ST 

Programmable Controllers. Heart rate and blood pressure were continuously monitored using 

Colin STBP-780 automated electronic monitors (NCHS, 2004b). 

 Prior to treadmill testing, technicians collected data regarding participants’ age, height, 

weight, and self-reported level of regular physical activity. Information regarding level of 

physical activity was used to assign participants a physical activity readiness (PAR) code (0-7) 

(NCHS, 2004b). These data were used to calculate predicted VO2 max by way of the following 

equation: 

Predicted VO2 Max = 56.63 + [1.921*(PAR)] – [0.38*(age)] – [0.754*(BMI)] + [10.987*(F=0, M=1)], 

where BMI equals body mass index, F equals female status, and M equals male status.  

 Predicted VO2 max was used to assign participants to one of eight 10-minute treadmill 

test protocols (consisting of a 2-minute warm-up, two 3-minute exercise stages, and a 2-minute 

cool down) (NCHS, 2004b). At the end of each exercise stage, participants reported their rate of 

perceived exertion (RPE; 0-20, with 20 representing maximum exertion). The goal of the 2-

minute warm-up was to increase heart rate to within 60 percent of particpants’ age-predicted 

maximum. Following the warm-up, the first 3-minute exercise stage was designed to elicit 60-80 

percent of the age-predicted maximum heart rate; the second 3-minute exercise stage was 

designed to increase heart rate to no greater than 85 percent the age-predicted maximum heart 
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rate (NCHS, 2004b). Protocol changes were permitted based on participants’ heart rate during 

the warm-up stage; that is, if heart rate was greater than 60 percent of the age-predicted max at 

the conclusion of the warm-up, technicians decreased the intensity of the treadmill testing to the 

next lowest 10-minute protocol. Similarly, if heart rate did not reach 60 percent of the age-

predicted max during the warm-up period, technicians increased treadmill testing intensity to the 

next highest 10-minute protocol (NCHS, 2004b). Treadmill testing was prematurely stopped if 

the participant exhibited discomfort or distress or safety concerns arose during the testing 

protocol.  

Based on age- and gender-specific heart rate responses to known levels of exercise 

intensity, EVO2 max was derived for each participant using participants’ heart rate responses for 

both levels of submaximal work (NCHS, 2004b) (please refer to the appendix of NCHS (2004) 

for the specific equations used to derive EVO2 max from submaximal treadmill testing data).  

  
 
Dietary Intake Measures 

 Dietary intake was modeled as a latent construct comprised of four manifest indicators 

(two cheap and two expensive measures). Cheap measures represented self-reported broad-level 

dietary behaviors. Expensive measures were derived from data obtained during the detailed 24-

hour dietary recall, performed as part of the MEC examination.  

 Cheap measures. Self-report items presented in the Dietary Behavior Questionnaire 

section of the NHANES interview addressed broad-level dietary behaviors such as the frequency 

with which particpants consumed vegetables, fish, beans, fruit, and dairy products; ate meals at 

restaurants; added table salt to food; and consumed meals at community centers or schools. Two 
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variables measured during the Dietary Behavior Questionnaire – drybeans and dgveg – served 

as the two cheap measure indicators of dietary intake for the full model. Drybeans represented a 

single item phrased as, “During the past 12 months, how often per month did you eat cooked 

dried beans or peas, such as the foods listed on this card?” (The prompt provided participants 

with a list of foods such as refried, baked, kidney, black, white, and navy beans, hummus, lentils, 

and chickpeas). Dgveg represented a single item phrased as, “During the past 12 months, how 

often per month did you eat dark green vegetables, such as the foods listed on this card?” (The 

prompt provided participants with a list of foods such as broccoli, kale, romaine lettuce, dark 

green lettuce, spinach, and mustard greens). Response coding was continuous; however, 

participants were permitted to respond that they consumed the indicated foods less frequently 

than once a month. These responses (N=177 for drybeans and N=83 for dgveg) were manually 

recoded to 0.5, representing bi-monthly consumption of the indicated food categories (i.e., a 

manually coded response of 0.5 corresponded to an average dry bean and dark green vegetable 

consumption rate of once every other month). It is important to note that these two items were 

presented only to participants taking part in the 2001-2002 cycles of NHANES. Participants 

taking part in the 1999-2000 cycles of NHANES were missing for drybeans and dgveg; as a 

result, correlations involving these two variables were computed using a reduced sample size. 

 Expensive measures. As part of the MEC examination, all participants were eligible to 

complete an intensive 24-hour dietary recall. Trained NHANES dietary interviewers 

administered the rigorous dietary recall sessions. Interviewers were required to have a Bachelor’s 

degree in Food and Nutrition or Home Economics; prior to administering dietary recalls, 

interviewers also completed a one-week training course followed by supervised interview 
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sessions (NCHS, 2002c). The main objective of the dietary interview was to obtain a detailed list 

of all foods and beverages consumed by participants in the 24 hours immediately preceding the 

MEC-based dietary recall.  

 The 24-hour dietary recall was comprised of five main steps: (a) quick list; (b) forgotten 

foods list; (c) time and occasion recall; (d) detail and review cycle; and (e) final review probe 

(NCHS, 2002c). During the quick list portion of the recall, participants were asked to rapidly 

provide a verbal list of all easily remembered foods and beverages consumed in the past 24 

hours. Next, dietary interviewers collected data regarding easily forgotten food categories (e.g., 

beverages, sweets, snacks, and breads); during this step, participants were presented with a 

handcard probe to prompt memory recall. For each recalled food item, interviewers collected 

detailed information regarding the time of day the food item was consumed, the amount of food 

consumed, and any relevant food preparation methods (e.g., no salt added, ingredient 

substitutions, type of liquid used to prepare food) (NCHS, 2002c). To assist in data collection, 

dietary interviewers referred to an extensive series of two-dimensional and three-dimensional 

measuring guides (e.g., glasses, bowls, measuring cups, rulers, empty food containers) designed 

to enhance participant recall.   

 Dietary interviewers entered data with the assistance of the Main Food List (MFL) – a 

computerized list of more than 2,600 foods; upon entering the first few letters of a food item, the 

MFL provided interviewers with an alphabetized list of all food items beginning with that 

particular letter sequence (NCHS, 2002c). Dietary intake data collected between 1999-2001 was 

initially coded using the University of Texas Food Intake Analysis System (FIAS, version 3.99); 

dietary intake data from 2002 was initially coded using Survey Net. These two software systems 
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assisted in food coding and data management by translating raw dietary interview intake data 

into an appropriate format for subsequent nutrient coding (NCHS, 2003, 2004a). The second 

stage of data coding involved processing the dietary intake data, determining portion size, and 

assigning specific nutrient values for each food item. For the 1999-2000 NHANES surveys, 

dietary data was processed using the USDA 1994-98 Survey Nutrient Database (NCHS, 2003). 

Dietary data obtained during 2001-2002 survey were processed using the USDA Food and 

Nutrient Database for Dietary Studies (FNDDS; version 1.0) (NCHS, 2004a); the FNDDS 

contained the most current information regarding food composition values available at the time 

of data processing. This second stage of data processing yielded total nutrient intake values for 

over 51 dietary intake measures.  

 Total intake values for four nutrients – magnesium (mg), fiber (gm), potassium (mg), and 

calcium (mg) – were used to form two expensive dietary intake measures. Data reduction 

involved subjecting these four nutrient variables to a principal components factor analysis in 

which items were forced to load on a single factor. Items were ordered according to strength of 

factor loading; ordered loadings appear below in Table 4. 

Table 4 
Principal Components Factor Loadings for Total Nutrient Intake Items 
 
magnesium 

 
0.9375 

 

potassium 0.9353  
calcium 0.8334  
fiber 0.8008  
 
 Two expensive dietary intake measures were created by forming parcels (Rogers & 

Schmitt, 2004) from the four total nutrient intake scores. Parcel 1, referred to as Min1, 

represented the standardized average of magnesium and fiber. Parcel 2, referred to as Min2, 
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represented the standardized average of potassium and calcium. Min1 and Min2 represented the 

two expensive dietary intake measures in the full model. 

 
 
Body Fat Measures 

 Body fat was modeled as a latent variable comprised of four manifest indicators (two 

cheap measures and two expensive measures). Cheap measures were derived from self-report 

data obtained during the interview portion of NHANES; expensive measures were obtained 

during the MEC examination portion of NHANES. 

 Cheap measures. Both cheap body fat measures were formed using several self-report 

items. As part of the MEC interview, participants provided self-reported height and weight 

values, which permitted the derivation of a self-reported BMI measure; this variable was referred 

to as Srbmi in the full model (Srbmi = [(self-reported weight (kg)) / (self-reported height (m)2)]). 

Additionally, three individual items from the Weight History section of the interview were used 

to derive a self-reported measure of weight status; specifically, these three items were (a) “Has a 

doctor or health professional ever told you that you were overweight?”; (b) “Do you consider 

yourself to be overweight?”; and (c) “Would you ideally like to weigh less than you do now?” 

Responses were coded dichotomously for each item (0 = No; 1 = Yes) and a summary measure, 

referred to as Srow, was created by summing participants’ responses to the three items. If 

participants were missing on any of the three items, Srow was set to missing. Srbmi and Srow 

represented the two cheap body fat measures in the full model. 

 Expensive measures. As part of the MEC examination, trained technicians obtained 

anthropometric measures via standardized assessment procedures. In addition to the self-reported 
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values provided during the interview, subjects’ height and weight data were re-assessed 

electronically. Standing height was electronically measured using a fixed stadiometer with 

vertical backboard and moveable headboard; stadiometers were connected to computers to 

facilitate data collection (NCHS, 2002a). Subjects were positioned so that they faced forward, 

feet flat, with their heels, buttocks, shoulder blades, and head in contact with the backboard. 

Following correct positioning, participants were instructed to inhale and to hold their breath; the 

headboard was positioned on top of the head with enough pressure for hair compression (NCHS, 

2002a). Recorders enabled screen captures for automated data collection. Weight was assessed 

using Toledo digital scales; scales were connected to computers to facilitate data collection. 

Participants were instructed to wear underwear, a paper gown, and foam slippers (NCHS, 

2002a). NHANES health technicians positioned participants appropriately on the scale; 

NHANES recorders were responsible for enabling screen captures for automated data collection. 

For participants weighing greater than 440 pounds, weight was assessed using two Seca digital 

scales; weight was approximated by adding the values recorded by each scale (NCHS, 2002a). 

Based on electronically-obtained measures of height and weight, a second measure of BMI – 

Ebmi – was calculated (Ebmi = [(electronically-measured weight (kg)) / (electronically-

measured height (m)2)]). 

 A second expensive body fat measure, body fat percentage, was derived from multi-

frequency bioelectrical impedance analysis (BIA) data. BIA was performed by trained NHANES 

health technicians as part of the MEC examination. Participants ages 8-49 were eligible for BIA 

testing; exclusion criteria included the following: (1) positive pregnancy status; (2) amputations 

(other than fingers or toes); (3) artificial joins, pins, plates, or other metal objects in the body; (4) 
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pacemakers or automatic defibrillators; (5) coronary stents; or (6) weight exceeding 300 pounds 

(NCHS, 2002b). BIA data were collected using HYDRA ECF/ICF Bio-Impedance Spectrum 

Analyzers (Model 4200) (Xitron Technologies, Inc., San Diego, California). Analyzers were 

equipped with serial ports and connected to computers for automated data collection (NCHS, 

2002b).  

 Participants were instructed to lie in a supine position with arms and legs comfortably 

separated from the trunk of the body (NCHS, 2002b). After cleaning participants’ skin with 

rubbing alcohol, four Xitron IS4000 disposable electrodes were affixed to participants. Current-

injection electrodes were placed on the dorsal surface of the right hand and right foot; voltage-

detector electrodes were placed on the dorsal surface of the right wrist and right ankle (NCHS, 

2002b). Electrodes were connected to the analyzers by way of MC4200 measurement cables. A 

small alternating current was introduced into the body via the current-injection electrodes; 

impedance to the flow of current was assessed by way of the voltage-detector electrodes (NCHS, 

2002b). The voltage drop between the two sets of electrodes was indicative of the level of 

opposition to flow of electric current (i.e., impedance). Impedance was measured at 50 

frequencies spaced logarithmically from 5KHz to 1 MHZ; the BIA analysis procedure lasted 

approximately one minute (NCHS, 2002b).  

 Prior to generating body fat percentage, BIA data were first used to derive participants’ 

fat-free mass (FFM) (kg). Participants’ height, weight, and BIA resistance measured at 50 kHz, 

were incorporated into FFM gender-specific prediction equations developed by Sun and 

colleagues (2003). These equations are as follows:  

 Males: FFM = -10.68 + 0.65 (stature2/resistance) + 0.26 (weight) + 0.02 (resistance) 
 Females: FFM = -9.53 + 0.69 (stature2/resistance) + 0.17 (weight) + 0.02 (resistance) 
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 The above FFM prediction equations were developed specifically for use with large-scale 

epidemiological studies involving diverse samples (Sun et al., 2003). NHANES data, by design, 

were representative of the population, and thus, included a diverse sample of participants. FFM 

equations were derived by Sun and colleagues using BIA data from a sample of approximately 

2,000 black and white individuals between the ages of 12-94. Cross-validation and internal 

validation analyses verified that these prediction equations demonstrated good precision (Sun et 

al., 2003). Following estimation of FFM, body fat percentage (BFat) was calculated using the 

following equation (Houtkooper et al., 1996),  

100*
W

FFM))-((WBFat
kg

kg
= , 

where Wkg represents weight in kilograms.  
 
 
 
Tobacco Use Measures 

 Tobacco use was modeled as a latent variable comprised of three manifest indicators (two 

cheap measures and one expensive measure). Cheap measures were derived from self-report data 

obtained during the interview portion of NHANES; the expensive tobacco use measure – serum 

cotinine (ng/ml) – was obtained during the MEC laboratory portion of NHANES. 

 Cheap measures. Self-reported tobacco use was assessed via questionnaire items 

focusing on past and current cigarette, pipe, cigar, chewing tobacco, snuff, and nicotine 

replacement product use. Eight individual self-report measures, primarily assessing cigarette use 

and secondarily assessing use of any additional tobacco products, were combined to yield two 

cheap tobacco use measures. Four of these eight items were taken directly from the Smoking 
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History Questionnaire; the remaining four items represented variables created specifically for 

analyses presented here. Created variables were formed by merging several items assessing 

individual product use. For example, items that separately assessed whether or not a participant 

had used cigarettes, cigars, pipes, chewing tobacco, snuff, or other nicotine products during the 

past 5 days were summed to create a measure reflecting the total number of tobacco products a 

participant used during the past 5 days (0 – 6 possible tobacco product categories). Table 5, 

located below, outlines the eight self-report tobacco use items used to derive the two cheap 

tobacco use measures.  

Table 5 
Self-Report Questionnaire Items Used to Generate Cheap Tobacco Use Items  
 
Variable Description Response Range 

 
daycig5 

 
During the past 5 days, on how many days did you smoke cigarettes? 

 
0 – 5 days 
 

nicex5* (Represents the total sum of the number of days participant reports using any nicotine 
product over the past 5 days, divided by 5. A value of 1 reflects that, on average, the 
participant used 1 nicotine product per day during the past 5 days. Scores greater than 
or less than 1 reflect that, on average, a person used more or less than 1 nicotine 
product, respectively, during the past 5 days).  
 

0 – 2.6 

nowsmoke Do you now smoke cigarettes? 0 = No 
1 = Yes 
 

allday30* During the past 30 days, on how many days did you smoke? 0 – 30 days 
 

nic5 During the past 5 days, did you use any product containing nicotine, including 
cigarettes, pipes, cigars, chewing tobacco, snuff, nicotine patches, nicotine gum, or 
any other product containing nicotine? 
 

0 = No 
1 = Yes 

sumnic5* (Total sum of the number of nicotine products participant reported using during the 
past 5 days). 
 

0 – 6 products 

cperday5 During the past 5 days, on how many days did you smoke cigarettes? 0 – 5 days 
 

allcig30 During the past 30 days, on the days that you smoked, how many cigarettes did you 
smoke per day? 

0 – 95 cigarettes 

Note: Tobacco use measures specifically created for current analyses are indicated with an asterisk (*). 
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 Data reduction involved subjecting the eight self-report variables to a principal 

components factor analysis in which items were forced to load on a single factor. Items were 

ordered according to strength of factor loading; ordered loadings appear below in Table 6.  

Table 6 
Principal Components Factor Loadings for Self-Report Tobacco Use Items 
 
daycig5 

 
0.9646 

 

nicex5 0.9551  
nowsmoke 0.9539  
allday30 0.9429  
nic5 0.9225  
sumnic5 0.9152  
cperday5 0.8518  
allcig30 0.8448  
  

 Two cheap tobacco use measures were formed by creating parcels from the eight items 

described above. Initially, parcels were created using the procedure created by Rogers and 

Schmitt (2004); however, resulting parcels were correlated r = 0.984. In an effort to represent a 

more realistic data scenario (i.e., to obtain two smoking measures that were slightly less 

correlated, yet still strongly associated), a second set of parcels was formed in the following 

manner. Parcel 1, referred to as TUse1, represented the standardized average of daycig5, nicex5, 

nowsmoke, and allday30. Parcel 2, referred to as TUse2, represented the standardized average of 

nic5, sumnic5, cigpday5, and allcig30. While TUse1 and TUse2 remained strongly correlated (r 

= 0.918), they did not represent virtually identical measures. TUse1 and TUse2 represented the 

two cheap tobacco use measures in the full model. 

 Expensive measure. Trained phlebotomists collected serum cotinine data during the 

laboratory portion of NHANES. All participants over the age of 3 were eligible for sample 

collection; participants were excluded if they met the following criteria: (a) positive hemophiliac 

status; (b) chemotherapy treatment within the previous four weeks; (c) physical limitations 
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preventing blood draw (e.g., no accessible veins, severe skin rash); (d) sickness or other 

emergency event precluding blood draw (e.g., fainting, vomiting); or (e) adamant participant 

refusal (NCHS, 2001a). Prior to blood draw, phlebotomists administered several items assessing 

participant fasting status4. If participants had not adhered to fasting guidelines, but fasting 

guidelines would be met if blood draws occurred at the end of the MEC examination, blood draw 

was postponed. If fasting status would not be met by the end of the MEC examination, 

participants were encouraged to return to complete their blood draw at a later point in time; if 

this was impossible, blood draw proceeded as scheduled and fasting guideline non-adherence 

was recorded (NCHS, 2001a). 

 For participants 12 years and older, 102 mL of blood (approximately 7 tablespoons) was 

drawn; the amount of blood drawn during the MEC examination was considerably less than that 

of typical blood donations (450 mL) (NCHS, 2001a). Phlebotomists applied a tourniquet several 

inches above the antecubital area of the participant’s left arm (the right arm was selected only if 

blood draw was not possible using the left arm); the intended area was cleaned twice with 

alcohol wipes and dried with sterile gauze. The participant was asked to make a fist while 

phlebotomists inserted the appropriate size needle into the selected vein. All blood draw 

collection tubes were filled in priority order as outlined in the laboratory procedures manual 

(NCHS, 2001a).   

 Blood was permitted to clot for 30-45 minutes at room temperature; to separate serum 

from plasma, samples were centrifuged at 17-25 degrees Celsius at 2,900 rpm for 15 minutes by 

way of Beckman GS-6R refrigerated centrifuges (NCHS, 2001b). Serum separators were used to 

                                                 
4 Participants with morning MEC appointments were asked to fast for 9 hours prior to their scheduled appointment; 
participants scheduled for afternoon and evening appointments were asked to fast for 6 hours (NCHS, 2001a). 
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transfer serum to appropriate storage tubes; serum samples allocated for serum cotinine 

analysis were subsequently frozen. Samples were shipped frozen (by way of FedEx), packed in 

dry ice, to the CDC CASPIR specimen repository in Lawrenceville, GA for cotinine analyis. 

Data processing involved infusing cotinine samples with a labeled cotinine isotope (methyl-D3 

cotinine); following equilibration of the labeled and unlabeled cotinine, cotinine was extracted 

from serum samples. Participants’ serum cotinine concentrations were derived by calculating the 

ratio of unlabeled to labeled cotinine with the use of a standard curve (NCHS, 2001b). 

 
 
Outcome Measures 
 
 Analyses involved three main outcome variables – SBP, DBP, and PP. Each outcome 

variable was modeled as a single item in the context of the complete model. Systolic and 

diastolic blood pressure data were obtained during the MEC examination and represent the 

average blood pressure reading over several blood pressure measurements. Pulse pressure was 

later calculated for the purposes of this dissertation using the following equation: PP = SBP – 

DBP.  

 MEC physicians oversaw collection of blood pressure data. Physicians were certified in 

blood pressure measurement in accordance with the guidelines developed by the American Heart 

Association (AHA) and were responsible for maintaining equipment integrity. All equipment 

was carefully inspected after each data collection session (NCHS, 2000). Blood pressure was 

measured for all participants over the age of 8. An inflation system – consisting of a latex 

inflation bag, Calibrated® V-Lok® cuff, inflation bulb, and Air-Flo® control valve – was 

attached to a wall-mounted calibrated Baumanometer® pressure gauge; Littman Classic II S.E. 
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Stethoscopes were used to detect Korotkoff sounds (NCHS, 2000). Physicians began the blood 

pressure examination by inquiring about participants’ recent ingestion of food, coffee, cigarettes, 

and alcohol in the 30 minutes prior to testing; if participants indicated that they had consumed 

any of these items, physicians noted this information.  

 Physicians instructed participants to sit quietly in a chair for 5 minutes prior to blood 

pressure measurement; participants’ legs were uncrossed with feet flat on the floor. The right 

arm was accessible, with the palm facing upward and elbow slightly bent (NCHS, 2000). Using a 

cosmetic pencil, physicians indicated the midpoint of the upper arm, measured between the 

shoulder and the elbow; at this midpoint, physicians measured the circumference of the upper 

arm. Using these two measurements, physicians consulted AHA guidelines to determine the 

appropriate inflation cuff size (child, adult, large adult, or adult thigh) (NCHS, 2000).  

 Three consecutive blood pressure measurements were obtained, with a minimum of 30 

seconds elapsed time between readings. Between readings, manometer tubing was disconnected 

from the cuff to allow pressure in the cuff to return to zero (NCHS, 2000). SBP was recorded as 

the pressure on the manometer when the first repetitive sounds were detected via stethoscope; 

DBP was recorded as the pressure at which the last of these sounds disappeared. Because the 

manometer displayed readings in increments of 2 mm Hg, all blood pressure measurements were 

recorded as even numbers. If an SBP or DBP reading fell between two millimeter marks on the 

manometer, readings were rounded upward toward the nearest even digit (NCHS, 2000).  

 Average SBP and DBP were calculated using the following guidelines. If only one blood 

pressure reading was obtained, that reading was recorded as the average. If more than one blood 

pressure reading was obtained, the first reading was discarded from calculation of the average 
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reading. If only two blood pressure readings were obtained, the second blood pressure reading 

was recorded as the average (NCHS, 2000).  

 
  
Covariates 
 
 Correlations among NHANES measures of primary interest were adjusted for several 

covariates. Specifically, partial correlations involving the independent and dependent measures 

of interest controlled for participant age, gender, ethnicity, education, household income, and 

martial status. Demographic data were collected during the NHANES interview portion. Age (in 

years) was reported as a continuous variable; gender was coded dichotomously (male or female). 

Participants indicated which of the following ethnic categories they most identified with: (a) 

non-Hispanic white; (b) non-Hispanic black; (c) Mexican American; (d) other Hispanic; and (e) 

other race, including multi-racial. For the purposes of this study, the Mexican American and 

other Hispanic categories were combined to yield an overall Hispanic category; the revised 4-

category ethnicity variable was represented by three dichotomous dummy variables in later 

analyses. Education represented a discrete continuous variable in which participants indicated if 

they had completed less than a high school diploma, had earned a high school diploma (including 

GED), or had completed more than a high school diploma. Household income represented a 

discrete continuous variable; participants indicated if their annual household income fell within 

one of 11 monetary ranges (from $0 to over $75,000). For single-family households, household 

income was equivalent to total family income; for multi-family households, each family’s total 

annual income was summed to derive total household income. Marital status was assessed via a 

single interview item; participants were considered married if they were married or living with a 
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partner. Participants were considered unmarried if they were widowed, divorced, separated, or 

had never married.  

 
 

Preliminary Analyses:  
Generating Partial Correlation Matrices from Empirical NHANES Data 

 
 Following data reduction and determination of the full model structure, preliminary 

analyses focused on quantifying the strength of association between cheap and expensive 

measures and the three outcome variables. Partial correlations (adjusted for age, gender, 

ethnicity, education, household income, and martial status) between cheap measures, expensive 

measures, and outcome variables were computed. In total, four partial correlation matrices (one 

per independent variable) were generated. All partial correlations were derived using complete 

case samples from NHANES data; that is, partial correlations were computed using a subsample 

of participants with no missing data on the cheap and expensive measure indicators for a given 

independent variable, the three outcome variables, or the six covariates. For this reason, the 

sample size used to compute correlations varied slightly across the four independent variables. 

Partial correlation matrices were later used as input data for all preliminary models and 

subsequent main analyses, including all two-method measurement design simulations.  

 
 

Secondary Analyses: Baseline Model Performance using NHANES Data 
 
 The efficiency of the two-method measurement design is assessed using the bias factor 

model framework; thus, secondary analyses focused on establishing plausibility of the bias factor 

model for each independent variable. Evaluating the viability of the bias factor model was a 

stepwise process in which three sequential sets of models were assessed. First, the bias 
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parameter model – a comparatively less rigorous form of the bias factor model – was 

evaluated. If models performed well at this preliminary stage, re-specification permitted the 

evaluation of the Stage 1 bias factor model. Feasibility of the Stage 1 bias factor model was of 

primary importance because this model template was equivalent to that used to assess 

performance of the two-method measurement design (i.e., the Stage 1 bias factor model template 

was later used for testing the two-method measurement design). Following the Stage 1 bias 

factor model, a final model – referred to as the Stage 2 bias factor model – was evaluated. The 

Stage 2 bias factor model served as a comparison model by which to judge the performance of 

the Stage 1 bias factor model. The following sections provide an overview of each category of 

models and discuss the relevance of comparisons among model categories. 

 

Bias Parameter Model 

 Prior to testing the viability of the bias factor model, basic model structure was assessed 

using a relatively less stringent bias parameter model template. The bias parameter model differs 

from the bias factor model with respect to the method in which bias associated with the two 

cheap measures is modeled. Whereas the bias factor model specifies two sources of correlation 

between cheap measures (i.e., cheap measures are specified to load on a common factor as well 

as a bias factor), the bias parameter model controls for the bias associated with the cheap 

measures by estimating their residual correlation (i.e., the degree of association between cheap 

measures remaining after accounting for the common factor). The basic bias parameter model 

structure is displayed below in Figure 2.  
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Figure 2 
Basic Bias Parameter Model 

 
Note: The bias parameter model accounts for the bias associated with the cheap measures by estimating their item 
residual correlation.  
 
  Under the bias parameter model, the item residual correlation between cheap measures 

may be estimated as a negative value; this was helpful later when Stage 1 and Stage 2 bias factor 

models were estimated. As described more fully below, both versions of the bias factor model 

(Stage 1 and Stage 2) specified that cheap measures load on a second latent factor representing 

bias; for estimation purposes, equality constraints are placed on both bias factor loadings under 

these models. If, however, a negative item residual correlation between cheap measures is 

detected by the bias parameter model, bias factor loadings for the Stage 1 and Stage 2 bias factor 

models must be fixed to +1.0 and -1.0. Constraining bias factor loadings to be equal when the 

item residual correlation between cheap measures is a negative value will result in seriously poor 

model fit; commonly, the model will not even converge in this situation. For this reason, 

estimating the bias parameter model prior to the bias factor model was helpful for revealing 

scenarios in which sequential models may require specific modifications. 

 Eight bias parameter models (two models per independent variable) were estimated using 

LISREL 8.5. Because PP was calculated by subtracting DBP from SBP, PP was linearly 

dependent on the values of SBP and DBP. For this reason, it was not possible to estimate models 
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in which one independent variable predicted all three dependent variables. Instead, two bias 

parameter models per independent variable were estimated; the first model specified that the 

independent variable predict both SBP and DBP and the second model specified that the 

independent variable predict PP. The eight bias parameter models evaluated here are outlined 

below in Table 7.  

Table 7 
Eight Bias Parameter Models  

 

(1) Physical Conditioning  SBP / DBP (5) Body Fat  SBP / DBP 
(2) Physical Conditioning  PP (6) Body Fat  PP 
(3) Dietary Intake  SBP / DBP (7) Tobacco Use  SBP / DBP 
(4) Dietary Intake  PP (8) Tobacco Use  PP 
 
Stage 1 Bias Factor Model  

After the eight bias parameter models were tested for adequate model performance, 

subsequent analyses evaluated performance of the Stage 1 bias factor model. Stage 1 bias factor 

models were technically equivalent to bias parameter models; both sets of models estimated the 

bias associated with cheap measures, albeit different bias modeling approaches were employed. 

The Stage 1 bias factor model specified that cheap measure indicators load on two factors: (a) a 

common factor (i.e., the independent variable of interest – physical conditioning, dietary intake, 

body fat, or smoking) and (b) a latent bias factor. Thus, instead of estimating the item residual 

correlation between cheap measures (like the bias parameter model), the Stage 1 bias factor 

model estimated the bias associated with cheap measures through the use of a second latent 

factor. Importantly, the bias factor was not specified to predict the dependent variables (i.e., b-

weights for the bias factor predicting SBP, DBP, and PP were not estimated). The basic structure 

of the Stage 1 bias factor model is displayed below in Figure 3. 
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Figure 3 
Basic Stage 1 Bias Factor Model 
 

 
 
Assessing the performance of Stage 1 bias factor models was necessary prior to the main 

simulation analyses because the utility of the two-method measurement design depended on the 

ability of data to conform to the Stage 1 bias factor model. Simulation analyses were performed 

using the Stage 1 bias factor model template5. Because they were technically equivalent models, 

b-weights and standard errors involving the independent and dependent variables were expected 

to be identical for each of the eight bias parameter model and its corresponding Stage 1 bias 

factor model.  

Because Stage 1 bias factor models did not control for the effect of bias on the outcome 

variables, (i.e., the bias factor was not specified to predict the dependent variables), resulting b-

weights involving the independent and dependent variables were not adjusted for the effect of 

response bias associated with the cheap measures. To determine if the Stage 1 bias factor model 

produced biased parameter estimates (as a result of not estimating the pathway from the bias 

                                                 
5 Please note that the Stage 1 bias factor model displayed above in Figure 3 is equivalent to the basic bias factor 
model previously displayed in Figure 1.  
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factor to the outcomes), a second set of bias factors (referred to as Stage 2 bias factor models) 

was estimated.  

 
Stage 2 Bias Factor Model  

Stage 2 bias factor models differed from Stage 1 bias factor models in that b-weights for 

the bias factor predicting the outcome variables were estimated. Consequently, resulting b-

weights for the common factors predicting the three blood pressure parameters were adjusted for 

the effect of bias on the outcome variables. The basic structure of the Stage 2 bias factor model is 

displayed below in Figure 4. 

Figure 4 
Basic Stage 2 Bias Factor Model 

 
 
 As alluded to above, estimation of Stage 2 bias factor models was important for one key 

reason: for the two-method measurement design to be maximally beneficial to researchers, the 

Stage 1 bias factor models must be plausible. Plausibility of the Stage 1 bias factor models was 

assessed by comparing b-weights obtained from the Stage 1 and Stage 2 bias factor models. If 

the b-weights involving the independent and dependent variables were approximately equivalent 

between the Stage 1 and Stage 2 bias factor models, it was implied that the parameter estimates 

Independent 
Variable  

Dependent 
Variable 

Cheap  
Measure 1 

Cheap 
Measure 2 

Response  
Bias 

Expensive 
Measure 1 

Expensive  
Measure 2 



 68
 
derived from Stage 1 bias factor models were unbiased. Thus, the two-method measurement 

design approach would be of maximal value in such instances. On the other hand, if the b-

weights obtained from Stage 2 bias factor models differed appreciably from those derived from 

Stage 1 bias factor models, the two-method measurement design approach would be of less value 

because resulting parameter estimates would be considered unreliable.  

 

Basic Specification of Sequential Models 

 Basic specification of the bias parameter models, Stage 1 bias factor models, and Stage 2 

bias factor models was relatively straightforward. For all eight models, at each of the three 

sequential model stages (24 models in total), the partial correlation matrix involving that 

particular independent variable (calculated from empirical NHANES data) was used as input 

data. Sample size was set to N=10,000; this sample size was selected based on the approximate 

size of the combined 1999-2002 NHANES sample6.  

 Bias parameter model specification. For the eight bias parameter models (see Figure 5, 

below), the number of factors specified in each model represented the total number of 

independent and dependent variables in the model; as a result, the total number of factors 

depended on the particular bias parameter model being assessed. For example, in the model in 

which physical conditioning was specified to predict both SBP and DBP (Physical Conditioning 

 SBP / DBP), three factors were estimated. In the model in which dietary intake was specified 

to predict PP only (Dietary Intake  PP), two factors were estimated.  

 

                                                 
6 Another N could have been employed just as well, as secondary analyses did not focus on drawing conclusions 
from the data; rather, secondary analyses focused on establishing model performance, which is unrelated to sample 
size. 
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Figure 5 
Basic Bias Parameter Model 
 

 
  

 All cheap and expensive measure factor loadings for the common factor were estimated. 

Because SBP, DBP, and PP were single-item factors, factor loadings for these three variables 

were fixed at 1.0 (i.e., not estimated) in accordance with LISREL model specification guidelines. 

All b-weights involving the independent and dependent variables were estimated. All residual 

factor-level and item-level variances (except as noted above) were estimated. To model the bias 

associated with the two cheap measures, their residual covariance was estimated7. Please refer to 

Table 8 at the end of Chapter 3 for sample LISREL code for estimating the bias parameter 

models.  

 Stage 1 bias factor model specification. Basic LISREL specification of the eight Stage 1 

bias factor models (see Figure 6, below) differed from that of the bias parameter models.  

 
 
 
 
 
 
 
 

                                                 
7 As described above, estimating this parameter represented the defining feature of the bias parameter model.  
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Figure 6 
Basic Stage 1 Bias Factor Model 
 

 
  

 As before, the partial correlation matrices calculated from NHANES data were used as 

input and sample size was set to N=10,000. However, for each Stage 1 bias factor model, the 

total number of factors specified was one more than that specified in the corresponding bias 

parameter model; this additional factor represented the bias factor – the second source of 

covariation between cheap measures specified in the Stage 1 bias factor models. As an example, 

for the Stage 1 bias factor model in which physical conditioning predicted SBP and DBP, four 

factors were specified: physical conditioning, the bias factor, SBP, and DBP. All b-weights 

involving the independent and dependent variables were estimated; importantly, b-weights 

quantifying the association between the bias factor and outcome variables were not estimated in 

the Stage 1 bias factor models. Residual factor-level and item-level variances were estimated 

(except that item residuals for the DVs were fixed at 0); unlike the bias parameter model, the 

residual correlation between the cheap measures was not estimated.   

 Two sets of factor loadings were estimated for Stage 1 bias factor models. Cheap and 

expensive measure factor loadings were estimated for the common factor (physical conditioning, 
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dietary intake, body fat, or tobacco use). Additionally, cheap measure factor loadings were 

estimated for the bias factor; for model identification purposes, equality constraints were placed 

on this second set of loadings. Again, because SBP, DBP, and PP were single-item factors, factor 

loadings for these three variables were set to 1.0. Please refer to Table 9 at the end of Chapter 3 

for sample LISREL code for estimating the Stage 1 bias factor models. 

 Stage 2 bias factor model specification. Basic Stage 2 bias factor model specification in 

LISREL was virtually identical to that of Stage 1 bias factor models, with one important 

difference. In Stage 2 bias factor models, b-weights for the bias factor predicting the outcome 

variables (i.e., Bias  SBP / DBP / PP) were estimated (see Figure 7, below). Please refer to 

Table 10 at the end of Chapter 3 for sample LISREL code for estimating the Stage 2 bias factor 

models. 

 
Figure 7 
Basic Stage 2 Bias Factor Model 
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Hierarchical Process for Assessing Model Performance 

 As mentioned previously, preliminary analyses followed a sequential format in which 

bias parameter models were tested, followed by Stage 1, and then Stage 2 bias factor models. 

The ability to test a model at particular stage in the sequence was conditional on acceptable 

model performance for all previous stages; for example, Stage 2 bias factor models were tested 

only after they had previously demonstrated an admissible solution and acceptable model fit at 

both the bias parameter model and Stage 1 bias factor model stages.  

 This process of assessing model admissibility and fit began by testing basic factor 

structure with no additional assumptions placed on the model. Model performance was judged 

primarily by evaluating item- and factor-level residual variances and, secondarily, by the general 

pattern of several fit indices. Admissibility of the models was first established by confirming that 

none of the resulting item- or factor-level variances were negative. After establishing model 

admissibility, further performance assessment involved four indices of practical fit. The chi-

square (χ2) statistic – a commonly used model fit index – is sensitive to sample size; with very 

large Ns (such as those used in the preliminary analyses), even minor deviations from a perfect 

model will result in statistically significant χ2 values. Because of this, model fit was also assessed 

using three additional indices of practical fit: (a) NNFI (Bentler & Bonett, 1980) (also known as 

RHO (Tucker & Lewis, 1973)); (b) CFI (Bentler, 1990), and (c) RMSEA (Browne & Cudeck, 

1993; Steiger & Lind, 1980).  

 If results indicated negative item-level or factor-level residual variances, assumptions 

were placed on the model, one at a time, and model admissibility and fit were re-assessed. 

Estimating a model with any number of assumptions reduces the number of parameters 
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estimated; in effect, less information is asked of the model, increasing the likelihood of 

acceptable model performance. Assumptions varied in their degree of severity; one category 

included relatively minor assumptions. These assumptions did not place strong restrictions on 

model estimation. On the other hand, another class of assumptions was considered more severe; 

placing major assumptions on a model was equivalent to making very strong a priori statements 

about model parameters. Major model assumptions had the ability to greatly influence resulting 

parameter estimates.  

 The hierarchical process of performance analysis begins by testing models in which all 

appropriate parameters were estimated8; thus, this first model contained no additional 

assumptions. If necessary (i.e., if results indicated negative item-level or factor-level residual 

variances), a second model was estimated in which equality constraints were placed on both 

cheap measure factor loadings. If this second model performed unacceptably, a third model was 

estimated, in which equality constraints were placed on expensive measure factor loadings in 

addition to the equality constraints on cheap measure factor loadings. It is important to note that 

for this third assumption to be viable (i.e, equality constraints on expensive measure factor 

loadings), more than one expensive measure item must be specified for an independent variable. 

If necessary, a fourth model may be estimated in which equality constraints are placed on cheap 

measure item variances; thus, this fourth model specifies three sets of equality constraints: 

equality constraints on cheap measure factor loadings (assumption 1); equality constraints on 

expensive measure factor loadings (assumption 2); and equality constraints on cheap measure 

                                                 
8 The number of appropriate parameters varied across sequential model stages (bias parameter models, Stage 1 bias 
factor models, and Stage 2 bias factor models) and is reviewed in the preceding section.  
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residual item variances (assumption 3). The hierarchical process of increasing the number of 

assumptions placed on a model is outlined below in Figure 8. 

 
Figure 8 
Hierarchical Process of Assessing Bias Parameter Model Performance 
 

 
 
  

 The three assumptions described above represented minor modifications (and thus, minor 

assumptions) to the model. However, if additional versions of the model were necessary, with 

increasingly more assumptions, the nature of model assumptions increased in severity. For 

example, if the three assumptions described above were placed on the model, and negative 

residual variances persisted, the next (fifth) model tested in the hierarchical sequence was one in 

which all factor loadings for expensive measure items were fixed at a particular value. This 

model assumption was relatively more severe than placing equality constraints on expensive 

measure factor loadings. Equality constraints permitted parameters to be estimated, albeit 

parameters with equality constraints were constrained to be equal. On the other hand, fixing 

parameters at specific values bypassed estimation altogether.  

 If the model continued to perform poorly (indicated by negative item- and factor-level 

residual variances), a sixth model was estimated in which the residual correlation between 

expensive measure items was fixed at zero. As with fixing expensive measure factor loadings at 
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specific values, assuming that the residual correlation between expensive measures was zero 

was a comparatively serious model modification. This assumption stated that the independent 

variable (the common factor) accounted for 100 percent of the variance between expensive 

measures, and thus had the potential to greatly overstate the construct validity of expensive 

measures. If model performance remained poor following this final assumption, the basic model 

structure was assumed unviable and alternative models were considered.  

 

Main Analyses: Two-Method Measurement Design Simulations 
 
 The first step in evaluating the performance of the two-method measurement design 

involved generating estimated costs of data collection. From these estimates, multiple ratios of 

partial to complete data were generated using an artificial budget scenario; all data ratios were 

computed using the same hypothetical budget of $20,000. Because data collection costs differed 

across independent variables, the nature of the data ratios varied as a function of the main 

construct of interest (physical conditioning, dietary intake, body fat, or tobacco use). 

After determining a series of viable data ratios for each independent variable, main 

analyses used simulations to demonstrate performance of the two-method measurement design. 

Two-method measurement simulations followed the basic steps outlined in Graham et al. (2006). 

Simulations were performed for each independent variable (i.e., the two-method measurement 

design was applied to each individual predictor to evaluate design performance given that 

predictor’s unique characteristics). Similar to Graham et al. (2006), parameters of primary 

interest included the b-weights and standard errors for each independent variable predicting SBP, 
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DBP, and PP.  The optimal ratio (i.e., the ratio of partial to complete data that yielded the lowest 

standard errors) was identified for each predictor.  

 For comparison purposes, b-weights and standard errors were derived under financially-

equivalent complete cases scenarios. The number of complete cases allowable given the $20,000 

budget was determined for each predictor. This sample size was used to estimate one-group 

models in which the independent variables predicted SBP, DBP, and PP. For a fixed cost, the 

allowable complete case sample size was substantially lower than the total N allowable under a 

two-method measurement design. Resulting parameter estimates from complete case simulations 

were compared to those obtained under the optimal two-method measurement design. Lower 

standard errors obtained under the two-method measurement design indicated that the two-

method measurement design was more efficient than the corresponding complete case model of 

equivalent cost.  

 
 

Estimated Data Collection Costs 

Data collection costs were estimated for all cheap and expensive measures associated 

with the four predictors; these estimates were then used to create a series of partial to complete 

data ratios that yielded a total cost equal to or slightly greater or less than $20,000. The following 

sections briefly review the method in which costs were estimated for cheap and expensive 

measures. 

Physical conditioning. PA1 and PA2 – the two cheap physical conditioning measures – 

were assigned a combined total data collection cost of $10 per participant. This value was chosen 

based on the following logic: for incentive purposes, participants are commonly paid to complete 
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self-report surveys. It was reasonable to assume that $40 per participant was an appropriate 

monetary compensation for an hour’s worth of providing self-report data. However, most 

participants would be able to provide data for the eight items used to generate PA1 and PA2 in 

15 minutes or less. Based on the hourly compensation rate of $40, 15 minutes worth of self-

report data was valued at $10.  

The data collection cost for the expensive physical conditioning measure – EVO2 max – 

was derived using estimates provided by the Penn State General Clinical Research Center 

(GCRC). The GCRC reported a treadmill stress test cost of approximately $250 per participant; 

however, clinical staff indicated that this measure may cost between $500 and $700 when 

performed by private physicians. To derive data ratios, $250 was used as the estimated per-

participant submaximal treadmill testing fee; as a result, this cost estimate may be considered 

fairly conservative. Based on these estimates, the expensive measure (E) to cheap measure (C) 

cost differential for physical conditioning indicators was 25:1 ($250:$10), or E=25C.  

Twenty-one data ratios were generated for the physical conditioning variable; ratios are 

displayed below in Table 11. For a total cost of $20,020 (slightly larger than the hypothetical 

$20,000 budget), complete case data could be collected from 77 participants. Additional ratios 

were generated by increasing the number of cheap measures by increments of 100, and reducing 

the number of expensive measures to keep costs at $20,000.
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Table 11 
Physical Conditioning Data Ratios 

 N N Cost  Cost Total 
  Cheap Expensive Cheap Expensive Cost 
1 77* 77 $ 10.00 $ 250.00 $ 20,020 
2 100 76 $ 10.00 $ 250.00 $ 20,000 
3 200 72 $ 10.00 $ 250.00 $ 20,000 
4 300 68 $ 10.00 $ 250.00 $ 20,000 
5 400 64 $ 10.00 $ 250.00 $ 20,000 
6 500 60 $ 10.00 $ 250.00 $ 20,000 
7 600 56 $ 10.00 $ 250.00 $ 20,000 
8 700 52 $ 10.00 $ 250.00 $ 20,000 
9 800 48 $ 10.00 $ 250.00 $ 20,000 
10 900 44 $ 10.00 $ 250.00 $ 20,000 
11 1000 40 $ 10.00 $ 250.00 $ 20,000 
12 1100 36 $ 10.00 $ 250.00 $ 20,000 
13 1200 32 $ 10.00 $ 250.00 $ 20,000 
14 1300 28 $ 10.00 $ 250.00 $ 20,000 
15 1400 24 $ 10.00 $ 250.00 $ 20,000 
16 1500 20 $ 10.00 $ 250.00 $ 20,000 
17 1600 16 $ 10.00 $ 250.00 $ 20,000 
18 1700 12 $ 10.00 $ 250.00 $ 20,000 
19 1800 8 $ 10.00 $ 250.00 $ 20,000 
20 1900 4 $ 10.00 $ 250.00 $ 20,000 
21 2000 0 $ 10.00 $ 250.00 $ 20,000 

Note: * indicates the number of complete cases allowable by budget. 
  
Dietary intake. Using the same logic described above, the two cheap measures of dietary 

intake – drybeans and dgveg – were assigned a combined total data collection cost of $10 per 

participant. Similarly, this cost estimate may be considered conservative as it is unlikely that 

participants would require 15 minutes to provide data for two self-report measures.  

Data collection costs associated with the 24-hour dietary recalls were derived from 

estimates provided by the Penn State Dietary Assessment Center (DAC). Current figures 

provided by the DAC Coordinator indicated that the per-participant cost for a 24-hour dietary 

recall typically ranged from $80-100. However, per NHANES protocol, dietary interviewers 

were required to complete intensive training prior to data collection; additionally, a percentage of 
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data collection sessions were supervised by trained dieticians. During dietary recalls, 

interviewers employed preparation props, visual handcards, and measuring tools. Based on these 

additional fees, estimates provided by the DAC were slightly inflated to yield a 24-hour dietary 

recall cost of $150 per participant. Thus, the cost differential for expensive measure (E) to cheap 

measure (C) dietary intake indicators was 15:1 ($150:$10), or E=15C.   

Twenty data ratios were derived for the dietary intake variable; ratios are displayed below 

in Table 12. For $20,000, complete case data may be collected from 125 participants. Additional 

ratios were generated by increasing the number of complete cases by increments of 100, and 

reducing the number of expensive measures to keep costs at $20,000. 

 
Table 12 
Dietary Intake Data Ratios 

 N N Cost  Cost Total 
 Cheap Expensive Cheap Expensive Costs 

1 125* 125 $ 10.00 $ 150.00 $ 20,000 
2 200 120 $ 10.00 $ 150.00 $ 20,000 
3 300 113 $ 10.00 $ 150.00 $ 19,950 
4 400 106 $ 10.00 $ 150.00 $ 19,900 
5 500 100 $ 10.00 $ 150.00 $ 20,000 
6 600 93 $ 10.00 $ 150.00 $ 19,950 
7 700 86 $ 10.00 $ 150.00 $ 19,900 
8 800 80 $ 10.00 $ 150.00 $ 20,000 
9 900 73 $ 10.00 $ 150.00 $ 19,950 
10 1000 66 $ 10.00 $ 150.00 $ 19,900 
11 1100 60 $ 10.00 $ 150.00 $ 20,000 
12 1200 53 $ 10.00 $ 150.00 $ 19,950 
13 1300 46 $ 10.00 $ 150.00 $ 19,900 
14 1400 40 $ 10.00 $ 150.00 $ 20,000 
15 1500 33 $ 10.00 $ 150.00 $ 19,950 
16 1600 26 $ 10.00 $ 150.00 $ 19,900 
17 1700 20 $ 10.00 $ 150.00 $ 20,000 
18 1800 13 $ 10.00 $ 150.00 $ 19,950 
19 1900 6 $ 10.00 $ 150.00 $ 19,900 
20 2000 0 $ 10.00 $ 150.00 $ 20,000 

Note: * indicates the number of complete cases allowable by budget. 
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Body fat. Srbmi and Srow – the two cheap body fat measures – were assigned a total data 

collection cost of $10 per participant. As with the cheap dietary intake measures, this cost 

estimate may be considered conservative as it is based on 15 minutes worth of providing self-

report data.  

Local- and national-level estimates were used to derive data collections costs for Ebmi 

and BFat, the two expensive body fat measures. The combined cost of technician-obtained height 

and weight measures (used to derive Ebmi) was estimated at $20 per participant. Per NHANES 

protocol, two trained health technicians were responsible for pre-measurement explanations, 

precise positioning of participants on the scale and stadiometer, and data recording. Thus, it was 

reasonable to assume that participants’ height and weight could be collected in approximately 15 

minutes. To approximate an appropriate hourly wage for trained health technicians, recent 

estimates from by the U.S. Department of Labor, Bureau of Labor Statistics (BLS) were 

considered. In 2004, the national median income for a physician assistant was $69,410 (BLS, 

2004). Assuming 40 hours of work per week, and 50 weeks of work per year, this estimate 

yielded a gross hourly wage of $34.71. Thus, the combined total cost for 15 minutes worth of 

work by two trained technicians (at the physician assistant level) was estimated at $17.36. For 

simplicity, this figure was rounded upward to $20. The second expensive body fat measure – 

BFat – was derived from BIA data. The Penn State GCRC estimated the cost of BIA at 

approximately $30 per participant. Therefore, the combined total cost of collecting data 

consistent with the two expensive body fat measures – Ebmi and BFat – was estimated at $50. 

Based on these estimates, the cost differential for expensive measure (E) to cheap measure (C) 

body fat indicators was 5:1 ($50:$10), or E=5C. 
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Eighteen data ratios were derived for the body fat variable; ratios are displayed below 

in Table 13. For $19,980, complete case data could be collected from 333 participants. 

Additional data ratios were generated by increasing the number of cheap measures by increments 

of 100, and reducing the number of expensive measures to keep costs at $20,000.  

 
Table 13 
Body Fat Data Ratios 
  N N Cost  Cost Total 
  Cheap Expensive Cheap Expensive Costs 
1 333* 333 $ 10.00 $ 50.00 $ 19,980 
2 400 320 $ 10.00 $ 50.00 $ 20,000 
3 500 300 $ 10.00 $ 50.00 $ 20,000 
4 600 280 $ 10.00 $ 50.00 $ 20,000 
5 700 260 $ 10.00 $ 50.00 $ 20,000 
6 800 240 $ 10.00 $ 50.00 $ 20,000 
7 900 220 $ 10.00 $ 50.00 $ 20,000 
8 1000 200 $ 10.00 $ 50.00 $ 20,000 
9 1100 180 $ 10.00 $ 50.00 $ 20,000 
10 1200 160 $ 10.00 $ 50.00 $ 20,000 
11 1300 140 $ 10.00 $ 50.00 $ 20,000 
12 1400 120 $ 10.00 $ 50.00 $ 20,000 
13 1500 100 $ 10.00 $ 50.00 $ 20,000 
14 1600 80 $ 10.00 $ 50.00 $ 20,000 
15 1700 60 $ 10.00 $ 50.00 $ 20,000 
16 1800 40 $ 10.00 $ 50.00 $ 20,000 
17 1900 20 $ 10.00 $ 50.00 $ 20,000 
18 2000 0 $ 10.00 $ 50.00 $ 20,000 

Note: * indicates the number of complete cases allowable by budget. 
 

Tobacco use. The two cheap measure tobacco use indicators – TUse1 and TUse2 – were 

assigned a combined total data collection cost of $10 per participant. TUse1 and TUse2 

represented parcels formed from eight self-report items; it was assumed that participants would 

be able to provide data for all eight items in 15 minutes. Thus, this cost estimate followed the 

same participant hourly compensation logic described above. 

Serum cotinine – the expensive tobacco use measure – was assigned a per-participant 

cost of $45. This figure was derived using current cost estimates provided by Salimetrics, LLC, a 
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locally-based company providing salivary immunoassay products and analytical services9. 

Necessary collection equipment, including oral swabs and swab storage receptacles, cost $50 per 

50 participants, yielding a data collection equipment fee of $1 per participant. Following data 

collection, samples must be shipped frozen to laboratory facilities for analysis. Effective July 1, 

2007, Salimetrics, LLC charges $20.21 per sample for duplicate salivary assay analysis. In 

addition to collection, storage, shipping, and analysis costs, fees associated with technicians’ 

time (including administration of the pre-test participant questionnaire and post-test sample 

preparation) were summed to yield the $45 serum cotinine estimate. Thus, the cost differential 

for expensive measure (E) to cheap measure (C) tobacco use indicators was 4.5:1 ($45:$10), or 

E=4.5C.  

Eighteen data ratios were derived for the tobacco use variable; ratios are displayed below 

in Table 14. For $19,965, complete case data could be collected from 363 participants. 

Additional data ratios were generated by increasing the number of cheap measures by increments 

of 100, and reducing the number of expensive measures to keep costs at $20,000. 

                                                 
9 While cost estimates provided by Salimetrics, LLC pertained to salivary cotinine rather than serum cotinine, serum 
cotinine collection costs were nonetheless derived using salivary cotinine figures in the interest of realistic financial 
estimates. The cost of serum cotinine data collection was likely more expensive than that of salivary cotinine 
because trained phlebotomists, venipuncture equipment, and  biohazard protection measures were required for blood 
draws; therefore, the per-participant serum cotinine estimate of $45 was most likely slightly undervalued. 
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Table 14 
Tobacco Use Data Ratios 
  N N Cost  Cost Total 
  Cheap Expensive Cheap Expensive Costs 
1 363* 363 $ 10.00 $ 45.00 $ 19,965 
2 400 355 $ 10.00 $ 45.00 $ 19,975 
3 500 333 $ 10.00 $ 45.00 $ 19,985 
4 600 311 $ 10.00 $ 45.00 $ 19,995 
5 700 288 $ 10.00 $ 45.00 $ 19,960 
6 800 266 $ 10.00 $ 45.00 $ 19,970 
7 900 244 $ 10.00 $ 45.00 $ 19,980 
8 1000 220 $ 10.00 $ 45.00 $ 19,900 
9 1100 200 $ 10.00 $ 45.00 $ 20,000 
10 1200 177 $ 10.00 $ 45.00 $ 19,965 
11 1300 155 $ 10.00 $ 45.00 $ 19,975 
12 1400 133 $ 10.00 $ 45.00 $ 19,985 
13 1500 111 $ 10.00 $ 45.00 $ 19,995 
14 1600 88 $ 10.00 $ 45.00 $ 19,960 
15 1700 66 $ 10.00 $ 45.00 $ 19,970 
16 1800 44 $ 10.00 $ 45.00 $ 19,980 
17 1900 22 $ 10.00 $ 45.00 $ 19,990 
18 2000 0 $ 10.00 $ 45.00 $ 20,000 

Note: * indicates the number of complete cases allowable by budget. 

 

Two-Group Analyses: Evaluating the Performance of the Two-Method Measurement Design 

 Efficiency of the two-method measurement design was evaluated using the bias factor 

model template and a simulation framework. The multiple group procedure outlined in Allison 

(1987) was employed to handle missing data produced via differential data collection 

procedures; as a result, the multiple-group analysis strategy was appropriate for missingness 

consistent with the two-method measurement design. The multiple-group procedure involved 

estimating key parameters by simultaneously running one model in two groups; for the purposes 

of this dissertation, the two groups reflected the subset of cases with complete data (i.e., cheap 

and expensive measure data) and the subset of cases with partial data (i.e., cheap measures only).  
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The two-method measurement design was applied to each predictor individually. As a 

result, it was possible to evaluate performance of the two-method measurement design across 

diverse data scenarios. Diversity among independent variables stemmed from factors such as the 

number of expensive measures (either one or two), the strength of association between cheap and 

expensive measures, and the predictive value of the manifest measures on the outcome variables. 

However, the driving factor behind estimating the efficiency of the two-method measurement 

design involved the cost differential between cheap and expensive measure items. The 

magnitude of cost differential varied substantially across independent variables (from 4.5:1 to 

25:1); this had important implications for the number of partial and complete case data allowable 

under a fixed budget scenario. If data collection costs for the expensive measure(s) are high, 

researchers are limited in the amount of complete case data they may collect. On the other hand, 

if the expensive measure(s) are only slightly more expensive than for the cheap measure 

indicators, researchers are able to collect substantially more complete case data.  

Per the two-group modeling procedure outlined in Allison (1987), Group 1 represented 

the subset of complete data cases. Group 2 represented the subset of partial data cases (those 

with data for the cheap measures only). The specific sample sizes for Groups 1 and 2 were 

derived using the data ratio tables displayed above (Tables 11-14). Because data ratios were 

generated by increasing the number of cheap measures by increments of 100, for each ratio, the 

absolute number of cheap measures was greater than that of expensive measures. Expensive 

measures served as a limiting factor; the number of complete cases for a given data ratio was 

equivalent to the number of expensive measures. In turn, the number of partial data cases was 

calculated by subtracting the number of expensive measures from the number of cheap measures 
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(i.e., Npartial = Ncheap – Nexpensive). For example, as shown above in Table 11, if cheap physical 

conditioning measures were provided to N=500 participants, to remain within the $20,000 

budget, expensive physical conditioning data were collected from N=60 participants. Thus, 

according to this particular data ratio, researchers would be able to collect complete case data 

from 60 participants and partial data from 440 (i.e., 500 – 60) participants.    

Group 1 (representing complete data cases) was modeled using empirical NHANES 

matrices as input; model specification was analogous to that of the Stage 1 bias factor models. 

Cheap and expensive measures were specified to load on the common factor; cheap measures 

were also specified to load on the bias factor. Model assumptions were retained from the Stage 1 

bias factor model analyses; any assumptions necessary for acceptable performance of the Stage 1 

bias factor models (e.g., factor loading equality constraints) were also specified for the two-

group simulation models. All b-weights (and standard errors) for the common factor predicting 

the outcome variables were estimated; b-weights for the bias factor predicting the outcome 

variables were not estimated. With the exception of the residual item variances for the three 

dependent variables (modeled as one-item factors), all factor- and item-level residual variances 

were estimated. 

 Group 2 (representing partial data cases) was also modeled using empirical NHANES 

correlation matrices as input; however, these matrices differed from those used as input for 

Group 1. Because Group 1 represented complete cases, input matrices contained estimated 

covariances for each pair of items (i.e., a full and complete covariance matrix). However, Group 

2 represented partial data cases with (theoretically) missing values for the expensive measures; 

as a result, all covariances involving expensive measures would not be able to be estimated. The 
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two-group modeling procedure addressed this by employing a modified covariance matrix for 

Group 2. This modified matrix had the same number of elements as the input matrix used for 

Group 1, with several important differences. Specifically, all covariances involving the missing 

expensive measure(s) were set to 0.0; additionally, the variance(s) for the missing expensive 

measure(s) was fixed at 1.0 (Allison, 1987). This second matrix was used as input for Group 2. 

For illustration purposes, examples of the Group 1 and Group 2 physical conditioning input 

covariance matrices are displayed below in Table 15. 

 
Table 15 
Group 1 and Group 2 Physical Conditioning Input Correlation Matrices 
Group 1 (Complete Cases) Input Matrix 

 PA1 PA2 EVO2 Max SBP DBP PP 
PA1 1.00000 0.69357 0.08859 -0.00727 -0.02283 0.01326 
PA2 0.69357 1.00000 0.07487 -0.01322 -0.02398 0.00945 

EVO2 Max 0.08859 0.07487 1.00000 -0.07940 -0.04957 -0.02234 
SBP -0.00727 -0.01322 -0.07940 1.00000 0.25735 0.58837 
DBP -0.02283 -0.02398 -0.04957 0.25735 1.00000 -0.62994 
PP 0.01326 0.00945 -0.02234 0.58837 -0.62994 1.00000 
 
Group 2 (Partial Cases) Input Matrix 

 PA1 PA2 EVO2 Max SBP DBP PP 
PA1 1.00000 0.69357 0.00000 -0.00727 -0.02283 0.01326 
PA2 0.69357 1.00000 0.00000 -0.01322 -0.02398 0.00945 

EVO2 Max 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 
SBP -0.00727 -0.01322 0.00000 1.00000 0.25735 0.58837 
DBP -0.02283 -0.02398 0.00000 0.25735 1.00000 -0.62994 
PP 0.01326 0.00945 0.00000 0.58837 -0.62994 1.00000 

Note: For Group 2, all correlations involving the (missing) expensive measure(s) were set to zero; all variances 
involving the (missing) expensive measure(s) were set to 1.0. 
 

Group 2 sample size equaled the number of partial data cases specified by a particular 

data ratio. Many key parameters were constrained to be invariant between Groups 1 and 2. In 

Group 2, all factor-level parameters (including factor variances, factor covariances, and factor 
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regressions) were constrained to equal those in Group 1. Also, in Group 2, where data were 

available, all item-level parameters (including factor loadings and item-level residual variances) 

were constrained to equal those in Group 1. Because the expensive measures were missing for 

Group 2, expensive measure factor loadings were fixed at 0.0; residual variances for the 

(missing) expensive measures were fixed at 1.0. When the two-group bias factor model was 

specified in the manner described above, the procedure produced maximum-likelihood estimates 

of the regression coefficients of interest (Allison, 1987; Graham, Hofer, & Piccinin, 1994; 

Muthen, Kaplan, & Hollis, 1987). Please refer to Table 16 at the end of Chapter 3 for sample 

LISREL code for the two-group bias factor model. 

 

Comparison Analyses: Complete Case Models 

 Complete case models were utilized for two main purposes. First, complete case models 

estimated parameters using the sample size allowable under the $20,000 budget; these complete 

case Ns are represented by Ratio 1 in Tables 11-14. Estimating these models provided a 

backdrop against which to compare performance of the two-method measurement design; 

resulting parameter estimates obtained using the two-method measurement design were 

compared to those produced using the maximum number of complete cases allowable under 

$20,000.  

 Second, after the two-method measurement design was applied to all partial to complete 

data ratios, one-group models were employed to judge performance of the two-method 

measurement design in another context. To quantify the benefits produced by the two-method 

measurement design, it was necessary to determine the number of complete cases that would be 
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required to produce standard errors as efficient as those obtained using the two-method 

measurement design. Because the two-method measurement design capitalizes on the cost-

effectiveness of collecting a substantial portion of partial data, it produces efficiency in standard 

errors using a smaller N than would be required to produce the same degree of efficiency under 

less cost-effective designs. The complete case design represents a comparatively less cost-

effective design; thus, comparison analyses determined the sample size necessary to produce 

standard errors on par with those obtained using the two-method measurement design. The 

necessary complete case sample sizes represented the Effective Ns for that particular 

independent variable; in other words, Effective Ns reflected the sample size “effectively” 

produced through use of the (more cost-effective) two-method measurement design.    

 Complete case models were tested using one-group structural equation models and a 

simulation framework. One-group models were estimated because these analyses were limited to 

complete case data; thus, only one pattern of missingness (namely, no missingness) was 

represented. One-group models were equivalent to Stage 1 bias factor models; as before, 

empirical NHANES correlation matrices were used as input. However, whereas the Stage 1 bias 

factor models were previously estimated with sample sizes of 10,000, the sample sizes for 

complete case models were dictated by additional factors. For testing the number of complete 

cases allowable under the $20,000 budget, sample size was set to the number of complete cases 

displayed in Ratios 1 (Tables 11 – 14). Because of the variation in cost differential between 

cheap and expensive measures, complete case N varied across independent variables (from N=77 

for physical conditioning to N=363 for tobacco use).  For generating Effective Ns, sample size 

was increased monotonically until resulting standard errors were just below those produced by 
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the most efficient two-method measurement design. Please refer to Table 17 at the end of 

Chapter 3 for sample LISREL code for the one-group complete case bias factor model. 
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Table 8 
Sample LISREL Code for Bias Parameter Model (Physical Conditioning  SBP / DBP) 
da ni=6 no=10000 ma=cm 
Labels 
c1 c2 e1 o1 o2 o3 
cm fu 
  1.000000000000  0.693573564348  0.088592057615 -0.007269302775 -0.022826628798  0.013258230924 
  0.693573564348  1.000000000000  0.074874516978 -0.013217608109 -0.023984808833  0.009446623062 
  0.088592057615  0.074874516978  1.000000000000 -0.079403242125 -0.049574414437 -0.022335083371 
 -0.007269302775 -0.013217608109 -0.079403242125  1.000000000000  0.257346347780  0.588374511633 
 -0.022826628798 -0.023984808833 -0.049574414437  0.257346347780  1.000000000000 -0.629938629134 
  0.013258230924  0.009446623062 -0.022335083371  0.588374511633 -0.629938629134  1.000000000000 
Selection 
c1 c2 e1 o1 o2/ 
mo ny=5 ne=3 ly=fu,fr ps=sy,fr te=sy,fr be=fu,fr 
Le 
pcon SBP DBP  
pa ly 
1 0 0  
1 0 0  
1 0 0  
0 0 0  
0 0 0  
start 1.0 ly 4 2 ly 5 3  
pa ps  
0 
0 1 
0 1 1 
ma ps 
1 
0 1 
0 0 1 
pa be 
0 0 0  
1 0 0  
1 0 0  
pa te 
1 
1 1 
0 0 1 
0 0 0 0 
0 0 0 0 0 
ou sc mi ad=off it=750 nd=5 
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Table 9 
Sample LISREL Code for Stage 1 Bias Factor Model (Physical Conditioning  SBP / DBP) 
da ni=6 no=10000 ma=cm  
Labels 
c1 c2 e1 o1 o2 o3 
cm fu 
  1.000000000000  0.693573564348  0.088592057615 -0.007269302775 -0.022826628798  0.013258230924 
  0.693573564348  1.000000000000  0.074874516978 -0.013217608109 -0.023984808833  0.009446623062 
  0.088592057615  0.074874516978  1.000000000000 -0.079403242125 -0.049574414437 -0.022335083371 
 -0.007269302775 -0.013217608109 -0.079403242125  1.000000000000  0.257346347780  0.588374511633 
 -0.022826628798 -0.023984808833 -0.049574414437  0.257346347780  1.000000000000 -0.629938629134 
  0.013258230924  0.009446623062 -0.022335083371  0.588374511633 -0.629938629134  1.000000000000 
Selection 
c1 c2 e1 o1 o2/ 
mo ny=5 ne=4 ly=fu,fr ps=sy,fr te=sy,fr be=fu,fr 
Le 
pcon Bias SBP DBP  
pa ly 
1 2 0 0  
1 2 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
start 1.0 ly 4 3 ly 5 4  
pa ps  
0 
0 0 
0 0 1 
0 0 1 1 
ma ps 
1 
0 1 
0 0 1 
0 0 0 1 
pa be 
0 0 0 0  
0 0 0 0 
1 0 0 0 
1 0 0 0 
pa te 
1 
0 1 
0 0 1 
0 0 0 0 
0 0 0 0 0 
ou sc mi ad=off it=750 nd=5 
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Table 10 
Sample LISREL Code for Stage 2 Bias Factor Model (Physical Conditioning  SBP / DBP) 
da ni=6 no=10000 ma=cm  
Labels 
c1 c2 e1 o1 o2 o3 
cm fu 
  1.000000000000  0.693573564348  0.088592057615 -0.007269302775 -0.022826628798  0.013258230924 
  0.693573564348  1.000000000000  0.074874516978 -0.013217608109 -0.023984808833  0.009446623062 
  0.088592057615  0.074874516978  1.000000000000 -0.079403242125 -0.049574414437 -0.022335083371 
 -0.007269302775 -0.013217608109 -0.079403242125  1.000000000000  0.257346347780  0.588374511633 
 -0.022826628798 -0.023984808833 -0.049574414437  0.257346347780  1.000000000000 -0.629938629134 
  0.013258230924  0.009446623062 -0.022335083371  0.588374511633 -0.629938629134  1.000000000000 
Selection 
c1 c2 e1 o1 o2/ 
mo ny=5 ne=4 ly=fu,fr ps=sy,fr te=sy,fr be=fu,fr 
Le 
pcon Bias SBP DBP  
pa ly 
1 2 0 0  
1 2 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
start 1.0 ly 4 3 ly 5 4  
start 0.66127 ly 3 1  
pa ps  
0 
0 0 
0 0 1 
0 0 1 1 
ma ps 
1 
0 1 
0 0 1 
0 0 0 1 
pa be 
0 0 0 0  
0 0 0 0 
1 1 0 0 
1 1 0 0 
pa te 
1 
0 1 
0 0 1 
0 0 0 0 
0 0 0 0 0 
ou sc mi ad=off it=5000 nd=5 
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Table 16 
Sample LISREL Code for Two-Group Bias Factor Model (Physical Conditioning  SBP / DBP) 
GROUP 1: Complete Cases 
da ni=6 no=56 ma=cm ng=2  
Labels 
c1 c2 e1 o1 o2 o3 
cm fu 
  1.000000000000  0.693573564348  0.088592057615 -0.007269302775 -0.022826628798  0.013258230924 
  0.693573564348  1.000000000000  0.074874516978 -0.013217608109 -0.023984808833  0.009446623062 
  0.088592057615  0.074874516978  1.000000000000 -0.079403242125 -0.049574414437 -0.022335083371 
 -0.007269302775 -0.013217608109 -0.079403242125  1.000000000000  0.257346347780  0.588374511633 
 -0.022826628798 -0.023984808833 -0.049574414437  0.257346347780  1.000000000000 -0.629938629134 
  0.013258230924  0.009446623062 -0.022335083371  0.588374511633 -0.629938629134  1.000000000000 
Selection 
c1 c2 e1 o1 o2/ 
mo ny=5 ne=4 ly=fu,fr ps=sy,fr te=sy,fr be=fu,fr 
Le 
pcon Bias SBP DBP  
pa ly 
1 2 0 0  
1 2 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
start 1.0 ly 4 3 ly 5 4  
pa ps  
0 
0 0 
0 0 1 
0 0 1 1 
ma ps 
1 
0 1 
0 0 1 
0 0 0 1 
pa be 
0 0 0 0  
0 0 0 0 
1 0 0 0 
1 0 0 0 
pa te 
1 
0 1 
0 0 1 
0 0 0 0 
0 0 0 0 0 
ou nd=5 
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(Table 16 Cont’d) 
GROUP 2: Partial Data Cases 
da ni=6 no=544 ma=cm ng=2 
Labels 
c1 c2 e1 o1 o2 o3 
cm fu 
1.000000000000  0.693573564348  0.000000000000 -0.007269302775 -0.022826628798  0.013258230924 
0.693573564348  1.000000000000  0.000000000000 -0.013217608109 -0.023984808833  0.009446623062 
0.000000000000  0.000000000000  1.000000000000  0.000000000000  0.000000000000  0.000000000000 
-0.007269302775 -0.013217608109  0.000000000000  1.000000000000  0.257346347780  0.588374511633 
-0.022826628798 -0.023984808833  0.000000000000  0.257346347780  1.000000000000 -0.629938629134 
0.013258230924  0.009446623062   0.000000000000  0.588374511633 -0.629938629134  1.000000000000 
Selection 
c1 c2 e1 o1 o2/ 
mo ny=5 ne=4 ly=fu,fr ps=in te=di,fr be=in 
Le 
pcon Bias SBP DBP  
pa ly 
1 2 0 0  
1 2 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
start 1.0 ly 4 3 ly 5 4  
eq ly 1 1 1 ly 1 1 
eq ly 1 2 1 ly 2 1 
eq ly 1 3 1 ly 3 1 
eq ly 1 1 2 ly 1 2 
eq ly 1 2 2 ly 2 2  
pa te 
1 
0 1 
0 0 0 
0 0 0 0 
0 0 0 0 0 
start 1.0 te 3 3 
eq te 1 1 1 te 1 1 
eq te 1 2 2 te 2 2 
ou nd=5 
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Table 17 
Sample LISREL Code for One-Group Complete Case Bias Factor Model ( Physical Conditioning  SBP / DBP) 
da ni=6 no=77 ma=cm  
Labels 
c1 c2 e1 o1 o2 o3 
cm fu 
1.000000000000  0.693573564348  0.088592057615 -0.007269302775 -0.022826628798  0.013258230924 
0.693573564348  1.000000000000  0.074874516978 -0.013217608109 -0.023984808833  0.009446623062 
0.088592057615  0.074874516978  1.000000000000 -0.079403242125 -0.049574414437 -0.022335083371 
 -0.007269302775 -0.013217608109 -0.079403242125  1.000000000000  0.257346347780  0.588374511633 
 -0.022826628798 -0.023984808833 -0.049574414437  0.257346347780  1.000000000000 -0.629938629134 
  0.013258230924  0.009446623062 -0.022335083371  0.588374511633 -0.629938629134  1.000000000000 
Selection 
c1 c2 e1 o1 o2/ 
mo ny=5 ne=4 ly=fu,fr ps=sy,fr te=sy,fr be=fu,fr 
Le 
pcon Bias SBP DBP  
pa ly 
1 2 0 0  
1 2 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
start 1.0 ly 4 3 ly 5 4  
pa ps  
0 
0 0 
0 0 1 
0 0 1 1 
ma ps 
1 
0 1 
0 0 1 
0 0 0 1 
pa be 
0 0 0 0  
0 0 0 0 
1 0 0 0 
1 0 0 0 
pa te 
1 
0 1 
0 0 1 
0 0 0 0 
0 0 0 0 0 
ou sc mi ad=off it=750 nd=5 
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CHAPTER 4 
 

Results 
 

Preliminary Analyses: Empirical NHANES Correlation Matrices 
 

 Partial correlations (adjusted for age, gender, race, education, household income, and 

marital status) are summarized below by independent variable. The sample size used to derive 

partial correlations is indicated for each predictor. 

 

Physical Conditioning Measures  

 Physical conditioning partial correlations were calculated using a complete cases sample 

of N=3,861; results are displayed below in Table 18. PA1 and PA2 – the two cheap physical 

conditioning measures – were strongly correlated (r = 0.69357). PA1 and PA2 were also 

significantly correlated with the expensive physical conditioning measure, estimated EVO2 max; 

however, these associations were substantially weaker than the correlation between PA1 and 

PA2. SBP, DBP, and PP were all significantly correlated; whereas SBP was directly associated 

with DBP and PP (r = 0.25735 and r = 0.58837, respectively), DBP was inversely associated 

with PP (r = -0.62994). The partial correlations involving PA1, PA2, and EVO2 max with the 

outcome variables were generally weak. PA1 and PA2 were negatively associated with SBP and 

DBP, though these correlations did not reach significance. PA1 and PA2 were positively 

associated with PP, though the correlations were non-significant. While EVO2 max was 

significantly and inversely associated with SBP and DBP, its association with PP was non-

significant.  
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 Overall, the partial correlation matrix indicated that physical activity (i.e., PA1 and 

PA2) was positively associated with cardiorespiratory fitness (i.e., EVO2 max). Furthermore, 

physical activity and cardiorespiratory fitness were associated with reduced SBP and DBP 

(although the association reached statistical significance only for cardiorespiratory fitness). 

Physical conditioning was virtually uncorrelated with PP.  

Table 18 
Physical Conditioning Measures: Inter-Item Partial Correlation Matrix 
 

PA1 PA2 EVO2 Max SBP DBP PP 
 
PA1 

 
 1.0000 

     

PA2  0.69357***  1.0000     
EVO2 Max  0.08859***  0.07487***  1.0000    
SBP -0.00727 -0.01322 -0.07940*** 1.0000   
DBP -0.02283 -0.02398 -0.04957** 0.25735***  1.0000  
PP  0.01326  0.00945 -0.02234 0.58837*** -0.62994*** 1.0000 
Note: N=3,861. * p < 0.05; ** p < 0.01; *** p < 0.001 
 
  
Dietary Intake Measures 

  Dietary intake partial correlations were derived from a complete cases sample of 

N=3,922; results are displayed below in Table 19. The two cheap dietary indicators – drybeans 

and dgveg – were significantly correlated, although the strength of association was modest (r = 

0.16911). Conversely, the two expensive dietary indicators – Min1 and Min2 – were strongly 

associated (r = 0.68345). Min1 was more strongly correlated with drybeans and dgveg (r = 

0.12157 and r = 0.10511, respectively) than was Min2 (r = 0.04455 and r = 0.03552, 

respectively). SBP, DBP, and PP were significantly correlated. SBP was positively associated 

with DBP and PP, while DBP was inversely associated with PP. None of the four dietary intake 

measures was significantly associated with SBP. Furthermore, only drybeans was significantly 

associated with DBP and PP (r = -0.05236 and r = 0.04090, respectively).  
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 Taken together, the results from the partial correlation matrix indicated that specific total 

nutrient intake scores (i.e., Min1 and Min2) were moderately indicative of self-reported broad-

level dietary behaviors (i.e., drybeans and dgveg). In general, while the dietary intake measures 

were non-significantly correlated with blood pressure parameters, the trends observed in Table 

19 indicated that increased consumption of dry beans, dark green vegetables, magnesium and 

fiber (Min1), and potassium and calcium (Min2) was associated with reduced SBP and DBP, and 

increased PP.  

Table 19 
Dietary Intake Measures: Inter-Item Partial Correlation Matrix 
 

Drybeans Dgveg Min1 Min2 SBP DBP PP 
 
Drybeans 

 
 1.0000 

      

Dgveg  0.16911***  1.0000      
Min1  0.12157***  0.10511***  1.0000     
Min2  0.04455**  0.03552*  0.68345***  1.0000    
SBP -0.00038 -0.02129 -0.02481 -0.03084 1.0000   
DBP -0.05236** -0.02733 -0.02780 -0.02355 0.28060***  1.0000  
PP  0.04090*  0.00287  0.00016 -0.00847 0.65490*** -0.54159*** 1.0000 

Note: N=3,922. * p < 0.05; ** p < 0.01; *** p < 0.001 
 
 
Body Fat Measures 

 Body fat partial correlations were calculated using a complete cases sample of N=4,024; 

results are displayed below in Table 20. These data reflected an interesting scenario. While the 

two cheap body fat measures – Srbmi and Srow – were strongly correlated (r = 0.64628), Srbmi 

was comparatively more strongly associated with both expensive body fat indicators (rSrbmi , Ebmi 

= 0.92228 and rSrbmi , BFat = 0.79246). Srow was also highly correlated with Ebmi and BFat (r = 

0.67374 and r = 0.64455, respectively), though not to the same degree as Srbmi. Regarding the 

expensive measures, Ebmi and BFat were strongly correlated (r = 0.86383). SBP, DBP, and PP 
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were significantly correlated; SBP was positively associated with both DBP and PP while 

DBP was inversely associated with PP. All four body fat measures were significantly associated 

with SBP, DBP, and PP.  

 Overall, body fat was strongly associated with increased SBP, DBP, and PP; this 

association was most robust for SBP. All four body fat measures were highly correlated, 

regardless of their differential costs of data collection; BMI calculated from self-report measures 

(Srbmi), as well as a summary score of self-reported overweight status (Srow), were strongly 

correlated with BMI calculated from technician-obtained measures (Ebmi) and body fat 

percentage derived from BIA-prediction equations (BFat).  

Table 20 
Body Fat Measures: Inter-Item Partial Correlation Matrix  
 

Srbmi Srow Ebmi BFat SBP DBP PP 
 
Srbmi 

 
1.0000 

      

Srow 0.64628*** 1.0000      
Ebmi 0.92228*** 0.67374*** 1.0000     
BFat 0.79246*** 0.64455*** 0.86383*** 1.0000    
SBP 0.25923*** 0.19061*** 0.28502*** 0.23552*** 1.0000   
DBP 0.09152*** 0.07256*** 0.09697*** 0.08939*** 0.35431***  1.0000  
PP 0.15305*** 0.10799*** 0.17144*** 0.13367*** 0.58932*** -0.54669*** 1.0000 
Note: N=4,024. * p < 0.05; ** p < 0.01; *** p < 0.001 
 
 
Tobacco Use Measures 
 
 Tobacco use partial correlations were derived using a complete cases sample of N=3,833; 

results are displayed below in Table 21. The two cheap tobacco use measures – TUse1 and 

TUse2 – were strongly correlated (r = 0.91780). Additionally, the expensive tobacco use 

measure – serum cotinine – was strongly associated with both cheap smoking measures (average 

r = 0.73366). SBP, DBP, and PP were significantly correlated; SBP was positively associated 

with DBP and PP while DBP was negatively associated with PP. Results indicated that all three 
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smoking measures were uncorrelated with SBP; however, all three smoking measures were 

significantly and inversely associated with DBP. TUse1 and TUse2 were significantly associated 

with PP; however, the association between serum cotinine and PP did not reach significance.  

 Taken together, the data indicated that self-reported tobacco use behaviors (TUse1 and 

TUse2) were consistent with a biochemical indicator of recent tobacco exposure. Furthermore, 

tobacco use was significantly associated with reduced DBP and increased PP. Tobacco use, as 

assessed by the three measures in this study, was uncorrelated with SBP.  

Table 21 
Tobacco Use Measures: Inter-Item Partial Correlation Matrix 
 

TUse1 TUse1 Cotinine SBP DBP PP 
 
TUse1 

 
 1.0000 

     

TUse2  0.91780***  1.0000     
Cotinine  0.73185***  0.73548***  1.0000    
SBP -0.01542 -0.01211 -0.02858 1.0000   
DBP -0.08079*** -0.08076*** -0.06784*** 0.41267***  1.0000  
PP  0.04977**  0.05309**  0.02606 0.67622*** -0.39199*** 1.0000 

 
Note: N=3,833. * p < 0.05; ** p < 0.01; *** p < 0.001  
 
 Table 22, located below, summarizes the basic factor structure and pattern of partial 

correlations for each independent variable. 
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Table 22 
Summary of Basic Factor Structure and Pattern of Partial Correlations, by Independent Variable 
 

 

 
N Cheap  
Measures 
 

 
N Expensive 
Measures 
 

r cheap , cheap r ex , ex r cheap , ex r IV , DVs 

Physical 
Conditioning 
 

2 1 Moderate 
(r = 0.694) 

N / A Low 
(r = 0.082) 

SBP: r = -0.033 
DBP: r = -0.032 
PP: r = 0.015a 

 
Dietary  
Intake 
 

2 2 Low 
(r = 0.169) 

Moderate 
(r = 0.683) 

Low 
(r = 0.077) 

SBP: r = -0.019 
DBP: r = -0.033 
PP: r = 0.013a 

 
Body Fat 
 

2 2 Moderate 
(r = 0.646) 

High 
(r = 0.864) 

High 
(r = 0.758) 

SBP: r = 0.243 
DBP: r = 0.088 
PP: r = 0.142 
 

Tobacco Use 
 

2 1 High 
(r = 0.918) 

N / A High 
(r = 0.734) 

SBP: r = -0.019 
DBP: r = -0.076 
PP: r = 0.043 
 

Note: r cheap , cheap refers to the strength of correlation between the two cheap measure indicators; r ex , ex refers to 
the strength of correlation between the expensive measure indicators (if two expensive measure indicators were 
present in the model); r cheap , ex represents the average correlation between cheap and expensive measures for a 
given independent variable; and r IV ,DVs represents the average correlation between manifest measures for a given 
independent variable and the three outcome variables. a reflects the absolute value of the average correlation; in such 
instances, manifest indicators were correlated with the outcome variables in opposite directions (i.e., a combination 
of negative and positive item-outcome correlations).    
 

 
Secondary Analyses: Bias Parameter Models, Stage 1 and Stage 2 Bias Factor Models 

 
Secondary analyses focused on establishing plausibility of the bias factor model for each 

independent variable as the two-method measurement design is assessed using a bias factor 

model framework. Admissibility of the Stage 1 bias factor model was of primary importance 

because the Stage 1 bias factor model template was later used for testing the two-method 

measurement design. Analyses began by estimating the series of eight bias parameter models; 

assuming models performed well at this preliminary stage, models were re-specified to evaluate 
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performance of the Stage 1 bias factor models. Stage 2 bias factor models served as comparison 

models by which to judge the performance of the Stage 1 bias factor model. 

Preliminary results from two bias parameter models prompted model re-specification. For 

six of the eight bias parameter models ((a) Physical Conditioning  SBP / DBP; (b) Dietary 

Intake  SBP / DBP; (c) Dietary Intake  PP; (d) Body Fat  SBP / DBP; (e) Body Fat  PP; 

and (f) Tobacco Use  SBP / DBP), no negative item- or factor-level residual variances were 

detected and the overall pattern of fit indices indicated acceptable performance. However, initial 

analyses indicated that the Physical Conditioning  PP bias parameter model failed to converge 

after 5,000 iterations. Additionally, preliminary results from the Tobacco Use  PP bias 

parameter model indicated a negative item-level residual variance for TUse1. These findings 

were attributed to the comparatively weak correlations between physical conditioning and PP 

and tobacco use and PP; whereas physical conditioning and tobacco use were more strongly 

associated with SBP and DBP, they were virtually uncorrelated with PP. To add stability, these 

two bias parameter models were re-estimated with physical conditioning and tobacco use 

specified to predict both SBP and PP (i.e., Physical Conditioning  SBP / PP; Tobacco Use  

SBP / PP). This modification was retained for the Stage 1 and Stage 2 bias factor models, as 

well. The following sections summarize the performance of the bias parameter models, Stage 1 

bias factor models, and Stage 2 bias factor models by independent variable. Tables allow for the 

comparison of parameter values across sequential models. 
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Physical Conditioning 

 Two physical conditioning models (Physical Conditioning  SBP / DBP and Physical 

Conditioning  SBP / PP) were evaluated at each stage of the sequential model series. Results 

are displayed below in Table 23.  

Table 23 
Physical Conditioning: Sequential Model Results 
  BPM Stage 1 BFM Stage 2 BFM 
PC Factor Loadings     
 PA1 0.133  0.133 0.133  
 PA2 0.114  0.114  0.114  
 EVO2 Max 0.661 0.661  0.661± 
    
Bias Factor Loadings     
 PA1 ----- 0.824  0.824  
 PA2 ----- 0.824  0.824  
    
B-weights     
 PC  SBP -0.119  -0.119  -0.120  
 PC  DBP -0.077  -0.077  -0.075  
 PC  PP -0.031  -0.031  -0.034  
    
Model Fit Indices    
 Chi-Square (df) 4.364 (3) 4.364 (3) 1.162 (2) 
 RMSEA 0.007 0.007 0.000 
 CFI 0.999 0.999 1.000 
 NNFI 0.999 0.999 1.000 
Note: PC Factor Loadings=physical conditioning common factor loadings; BPM=bias parameter model; BFM=bias 
factor model; ± refers to a fixed parameter value 
 
 Bias parameter models. The two physical conditioning bias parameter models required 

no additional model assumptions. EVO2 max loaded comparatively more highly on the physical 

conditioning common factor than did PA1 and PA2; thus, EVO2 max dominated the physical 

conditioning factor relative to the two self-report physical activity measures. Resulting b-weights 

indicated that the association between physical conditioning and SBP fell under the category of 

“small effects” (i.e., ρ = .10) in Cohen’s (1977) terms. By Cohen’s (1977) standards, the 
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associations between physical conditioning and DBP and PP failed to reach the “small effect” 

threshold. The general pattern of fit indices indicated excellent model fit.  

 Stage 1 bias factor models. Initial assessment of the two physical conditioning Stage 1 

bias factor models produced no negative item- or factor-level residual variances; therefore, no 

additional model modifications were necessary. Common factor loadings for PA1, PA2, and 

EVO2 max were identical to those obtained from the bias parameter models. Bias factor loadings 

for PA1 and PA2 (constrained to be equal) were estimated at 0.824, indicating that a substantial 

correlation remained between PA1 and PA2 after taking into account the common physical 

conditioning factor. Resulting b-weights were identical to those obtained from the bias parameter 

models. Fit indices indicated excellent model fit for both physical conditioning Stage 1 bias 

factor models. 

 Stage 2 bias factor models. Preliminary results indicated that when the bias factor was 

specified to predict the three outcome variables, neither of the two physical conditioning Stage 2 

bias factor models converged. However, after fixing the EVO2 max common factor loading at 

0.661 (the factor loading estimated by the bias parameter and Stage 1 bias factor models), both 

Stage 2 bias factor models performed well. By fixing the EVO2 factor loading at 0.661, stability 

was added to the model by way of a reduced model estimation load. 

 Common factor loadings for PA1 and PA2 were identical to those obtained from the bias 

parameter models and Stage 1 bias factor models. Bias factor loadings for the cheap measures 

were identical to those obtained from the Stage 1 bias factor models. Again, the bias factor 

loadings were estimated at 0.824, indicating that a large degree of residual correlation between 

PA1 and PA2 was unaccounted for by the physical conditioning common factor.  
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 After controlling for the effect of the bias factor on the outcome variables (i.e., 

estimating the Bias  SBP / DBP / PP b-weights), the b-weights for physical conditioning 

predicting SBP and DBP remained virtually unchanged. Again, the overall pattern of fit indices 

indicated excellent fit of the Stage 2 bias factor models. 

 Parameter estimates from the Stage 2 bias factor models completely controlled for the 

bias associated with the cheap physical conditioning measures; thus, resulting b-weights from the 

Stage 2 bias factor models were completely unbiased. Analyses revealed that parameter 

estimates from Stage 1 and Stage 2 bias factor model were virtually identical, indicating that the 

Stage 1 bias factor model also produced unbiased parameter estimates. Based on these results, it 

was determined that the physical conditioning Stage 1 bias factor model was a viable template 

for subsequent evaluation of the two-method measurement design.  

 

Dietary Intake 

 Sequential model results pertaining to the two dietary intake models (Dietary Intake  

SBP / DBP and Dietary Intake  PP) are found below in Table 24. 
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Table 24 
Dietary Intake: Sequential Model Results 
  BPM Stage 1 BFM Stage 2 BFM 
DI Factor Loadings     

 drybeans 0.094  0.094  0.094  
 dgveg 0.094  0.094  0.094  
 Min2 0.827  0.827  0.827  
 Min2 0.827  0.827  0.827  

    
Bias Factor Loadings     

 drybeans ----- 0.400  0.400  
 dgveg ----- 0.400  0.400  

    
B-weights     

 DI  SBP -0.034  -0.034  -0.034  
 DI  DBP -0.032  -0.032  -0.031  
 DI  PP -0.004  -0.004  -0.005  

    
Model Fit Indices    

 Chi-Square (df) 181.530 (9) 165.907 (6) 157.233 (5) 
 RMSEA 0.044 0.052 0.055 
 CFI 0.978 0.977 0.978 
 NNFI 0.963 0.963 0.958 

Note: DI=dietary intake; BPM=bias parameter model; BFM=bias factor model 
 
 Bias parameter models. Initial estimation of the dietary intake bias parameter models 

resulted in a negative residual variance for Min1. Equality constraints were placed on cheap 

measure factor loadings and the models were re-assessed; however, the negative residual 

variance persisted. When a second set of equality constraints was placed on the expensive 

measure factor loadings, no negative residual variances were detected. Thus, the dietary intake 

bias parameter models required two additional minor assumptions to improve model 

performance to an acceptable level.  

Results indicated that the two expensive measures (Min1 and Min2) loaded more highly 

on the common factor than did the cheap measures (drybeans and dgveg). Thus, the expensive 
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measures dominated the dietary intake common factor relative to the cheap measures. 

Resulting b-weights revealed that the associations between dietary intake and SBP, DBP, and PP, 

in the context of Cohen (1977), failed to reach the “small effect” threshold (i.e., ρ = .10). Fit 

indices indicated overall good model fit.  

 Stage 1 bias factor models. The two sets of equality constraints specified in the bias 

parameter models were retained for the Stage 1 bias factor models. Additionally, as with all bias 

factor models (both Stage 1 and 2), equality constraints were placed on cheap measure bias 

factor loadings for identification purposes. Thus, the Stage 1 bias factor models incorporated 

three sets of factor loading equality constraints ((a) cheap measure common factor loadings; (b) 

expensive measure common factor loadings; and (c) cheap measure bias factor loadings).  

Common factor loadings for all four dietary intake measures were identical to those 

obtained from the bias parameter models. Bias factor loadings were estimated at 0.40, indicating 

that a rather substantial portion of variance between drybeans and dgveg was unaccounted for by 

the dietary intake factor. Resulting b-weights were identical to those estimated by the bias 

parameter models. The overall pattern of fit indices indicated good model fit.  

 Stage 2 bias factor models. All four common factor loadings were estimated to be 

identical to those obtained from the Stage 1 bias factor models; similarly, estimated bias factor 

loadings were identical to those from the Stage 1 bias factor models. After controlling for the 

effect of the bias factor on the outcome measures, the pattern of b-weights involving dietary 

intake and SBP, DBP, and PP was virtually unchanged from Stage 1 bias factor model results. 

Model fit remained acceptable, as judged by the pattern of fit indices. 
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 Because the Stage 1 and 2 bias factor models yielded virtually identical results, the Stage 

1 bias factor models were found to be unbiased. Thus, the dietary intake Stage 1 bias factor 

model was a viable template for subsequent evaluation of the two-method measurement design.  

 

Body Fat 

 Two body fat models (Body Fat  SBP / DBP and Body Fat  PP) were evaluated at 

each stage of the sequential model series. Results are displayed below in Table 25. 

Table 25 
Body Fat: Sequential Model Results 
  BPM Stage 1 BFM Stage 2 BFM 
BF Factor Loadings     

 Srbmi 0.925  0.925  0.925  
 Srow 0.677  0.677  0.677  
 Ebmi 0.997  0.997  0.997  
 BFat 0.867  0.867  0.867  

    
Bias Factor Loadings     

 Srbmi ----- -0.144  -0.142  
 Srow ----- -0.144  -0.142  

    
B-weights    

 BF  SBP 0.285  0.285  0.285  
 BF  DBP 0.097 0.097 0.097  
 BF  PP 0.171  0.171  0.172  

    
Model Fit Indices    

 Chi-Square (df) 306.285 (7) 306.285 (7) 301.687 (3) 
 RMSEA 0.065 0.065 0.099 
 CFI 0.993 0.993 0.992 
 NNFI 0.984 0.984 0.978 

Note: BF=body fat; BPM=bias parameter model; BFM=bias factor model 
 

Bias parameter models. Model specification for the body fat bias parameter models 

required no additional assumptions. Both cheap body fat measures (Srbmi and Srow), as well as 

both expensive body fat measures (Ebmi and BFat), loaded highly on the common factor (factor 
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loading range: 0.677 – 0.997). Interestingly, self-reported BMI (Srbmi; a cheap measure) 

loaded more highly on the body fat factor than did BIA-derived body fat percentage (BFat; an 

expensive measure). The b-weights indicated that the associations between body fat and SBP 

approached what Cohen (1977) termed a “medium effect” (i.e., ρ = .30). On the other hand, the 

associations between body fat and DBP and PP represented “small effects” (Cohen, 1977). The 

overall pattern of fit indices indicated excellent model fit.  

Stage 1 bias factor models. Baseline assessment of the Stage 1 bias factor models 

resulted in no negative item- or factor-level residual variances; therefore, no additional model 

modifications were necessary. The four common factor loadings were estimated to be identical to 

those obtained from the bias parameter models. Cheap measures loaded on the bias factor with 

loadings of -0.144, indicating that only a relatively small proportion of variance between Srbmi 

and Srow was unaccounted for by the common body fat factor. Resulting b-weights were 

identical to those obtained from the bias parameter models. The overall pattern of fit indices 

reflected good model fit.  

 Stage 2 bias factor models. All common factor and bias factor loadings were estimated to 

be identical to those obtained from previous bias parameter and Stage 1 bias factor models. 

Resulting b-weights and standard errors quantifying the effect of body fat on the three outcomes 

were identical across both Stage 1 and Stage 2 bias factor models. Again, the overall pattern of 

fit indices indicated good model fit.  

 Stage 1 and Stage 2 bias factor models produced virtually identical b-weights and 

standard errors for the pathways involving the independent and dependent variables; thus, the 

Stage 1 bias factor model demonstrated the ability to yield unbiased parameter estimates. The 
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Stage 1 body fat bias factor model was found to be a viable template for subsequent application 

of the two-method measurement design. 

 

Tobacco Use 

 Sequential model results pertaining to the two tobacco use models (Tobacco Use  SBP 

/ DBP and Tobacco Use  SBP / PP) are found below in Table 26. 

Table 26 
Tobacco Use: Sequential Model Results 
  BPM Stage 1 BFM Stage 2 BFM 
TU Factor Loadings     
 TUse1 0.967  0.967  0.967  
 TUse2 0.967  0.967 0.967  
 Serum Cotinine 0.759  0.759  0.759  
    
Bias Factor Loadings     
 TUse1 -----  1.000±  1.000± 
 TUse2 ----- -1.000± -1.000± 
    
B-weights     
 TU  SBP -0.015                -0.015 -0.015  
 TU  DBP -0.084  -0.084  -0.084  
 TU  PP  0.053   0.053   0.053  
    
Model Fit Indices    
 Chi-Square (df) 9.021 (4) 9.021 (4) 8.208 (2) 
 RMSEA 0.011 0.011 0.018 
 CFI 0.999 0.999 1.000 
 NNFI 0.999 0.999 0.999 
Note: TU=Tobacco Use; BPM=bias parameter model; BFM=bias factor model; ± refers to a fixed parameter value 
 
 Bias parameter models. Initial results from the tobacco use bias parameter models 

indicated acceptable model performance. However, as described below, Stage 1 and Stage 2 bias 

factor models required equality constraints for cheap measure common factor loadings. While 

the bias parameter models did not require this set of equality constraints, they were nevertheless 

placed on the models to establish consistency of model specification across the sequential model 
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series. Thus, the tobacco use bias parameter models were re-specified to constrain cheap 

measure factor loadings on the common factor to be equal.10  

All three tobacco use indicators (TUse1, TUse2, and serum cotinine) loaded highly on the 

common factor; however, the two self-report measures loaded more highly than did serum 

cotinine. Resulting b-weights revealed that the association between tobacco use and DBP 

represented a “small effect”; however, the associations between tobacco use and SBP and PP did 

not reach the “small effect” threshold (Cohen, 1977). Fit indices revealed excellent model fit.  

 Stage 1 bias factor models. Initial assessments indicated that the Stage 1 bias factor 

models failed to converge. Further examination of previous results (those from the bias 

parameter models) revealed an interesting finding: the residual covariance between the two 

cheap measures (TUse1 and TUse2) was negative. Stage 1 and 2 bias factor models estimate the 

residual covariation between cheap measures by specifying that they load on a latent bias factor. 

Furthermore, for model identification purposes, the bias factor loadings for cheap measures are 

constrained to be equal. However, because the residual covariation between TUse1 and TUse2 

(i.e., the residual association unaccounted for by the tobacco use common factor) was negative, 

bias factor loadings for TUse1 and TUse2 could not be constrained to be equal. To resolve this 

issue, Stage 1 bias factor models were re-specified; specifically, the TUse1 bias factor loading 

was fixed at 1.00, the TUse2 bias factor loading was fixed at -1.00, and the bias factor variance 

was estimated. This re-specification permitted the estimation of the negative residual correlation 

between the two cheap measures. Following this modification, the Tobacco Use  SBP / PP 

                                                 
10 This model modification may be considered especially minor in the case of the two tobacco use bias parameter 
models; even without equality constraints, cheap measure factor loadings were very similar to one another. 
Specifically, without equality constraints on the bias parameter models, common factor loadings for TUse1 and 
TUse2 were estimated at 0.965 and 0.970, respectively. 
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Stage 1 bias factor model performed well; however, the Tobacco Use  SBP / DBP Stage 1 bias 

factor model still failed to converge. At this point, equality constraints were placed on the cheap 

measure common factor loadings. Following this modification, the Tobacco Use  SBP / DBP 

Stage 1 bias factor model converged. For model equivalency purposes, cheap measure common 

factor equality constraints were retained for all tobacco use models in the sequential model 

series.  

All common factor loadings were estimated to be identical to those obtained from the 

bias parameter models. Furthermore, b-weights resulting from the Stage 1 bias factor models 

were identical to those obtained from the bias parameter models. Fit indices suggested excellent 

model fit. 

 Stage 2 bias factor models. All model assumptions from the Stage 1 bias factor models 

were retained; that is, equality constraints were placed on cheap measure common factor 

loadings; the bias factor loadings for TUse1 and TUse2 were fixed at values of 1.00 and -1.00, 

respectively; and the bias factor variance was estimated. Estimated tobacco use factor loadings 

were identical to those obtained from the bias parameter models and Stage 1 bias factor models. 

Additionally, b-weights and standard errors pertaining to tobacco use, SBP, DBP, and PP were 

identical to those from previous models. Fit indices revealed excellent model fit. 

 Taken together, findings from the Stage 2 bias factor models indicated that the Stage 1 

bias factor models produced unbiased b-weights involving tobacco use, SBP, DBP, and PP. The 

tobacco use Stage 1 bias factor model represented a viable model template for simulations 

evaluating the performance of the two-method measurement design. 
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Main Analyses: Evaluating the Performance of the Two-Method Measurement Design Using 

Two-Group Structural Equation Modeling Approach 
 

 Using a simulation framework and a Stage 1 bias factor model template, the two-method 

measurement design was applied to each predictor. The two-group modeling procedure (Allison, 

1987; Graham et al., 1994; Muthen et al., 1987) was employed to permit parameter estimation 

among data with missingness patterns consistent with the two-method measurement design (i.e., 

a substantial portion of partial data cases and a smaller portion of complete data cases). For each 

predictor, the two-method measurement design was applied to all data ratios generated under the 

hypothetical $20,000 budget. Results are discussed below.  

 

Presentation of Results 

 Please note that the presentation of results deviates from that of previous sections. For 

two of the four predictors – body fat and tobacco use – application of the two-method 

measurement design produced statistical advantages beyond those yielded by the financially-

equivalent complete cases models; results pertaining to these predictors are presented first. 

However, application of the two-method measurement design was comparatively less effective 

for the physical conditioning and dietary intake variables; results pertaining to these two 

predictors – as well as a discussion of explanatory factors – follow after.  

 

Body fat 

  Eighteen ratios of partial to complete data cases were generated for the body fat 

predictor; all ratios remained within the hypothetical budget of $20,000. Ratio 1, corresponding 



 114
 
to the number of complete cases allowable under the budget (N=333), was tested using a one-

group design. The two-method measurement design was applied to ratios 2-17 using the two-

group modeling procedure; resulting b-weights and standard errors are displayed below in Table 

27.     
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Table 27 
Body Fat Parameter Estimates Obtained using the Two-Method Measurement Design   
 N N Cost  Cost Total N N  BF→ SBP  BF→ DBP  BF→ PP 
 Cheap Expensive Cheap Expensive Cost Partial Complete b SE b SE b SE 
              

1 333 333 $ 10.00 $ 50.00 $ 19,980 0 333 0.28540 0.05391 0.09741 0.05490 0.17139 0.05463 
2 400 320 $ 10.00 $ 50.00 $ 20,000 80 320 0.28455 0.04985 0.09784 0.05078 0.17024 0.05054 
3 500 300 $ 10.00 $ 50.00 $ 20,000 200 300 0.28363 0.04515 0.09831 0.04601 0.16901 0.04579 
4 600 280 $ 10.00 $ 50.00 $ 20,000 320 280 0.28299 0.04158 0.09863 0.04238 0.16859 0.04198 
5 700 260 $ 10.00 $ 50.00 $ 20,000 440 260 0.28251 0.03875 0.09887 0.03949 0.16752 0.03930 
6 800 240 $ 10.00 $ 50.00 $ 20,000 560 240 0.28215 0.03643 0.09905 0.03712 0.16704 0.03695 
7 900 220 $ 10.00 $ 50.00 $ 20,000 680 220 0.28186 0.03450 0.09920 0.03514 0.16665 0.03498 
8 1000 200 $ 10.00 $ 50.00 $ 20,000 800 200 0.28162 0.03285 0.09931 0.03344 0.16634 0.03329 
9 1100 180 $ 10.00 $ 50.00 $ 20,000 920 180 0.28142 0.03143 0.09941 0.03197 0.16608 0.03183 
10 1200 160 $ 10.00 $ 50.00 $ 20,000 1040 160 0.28126 0.03019 0.09949 0.03068 0.16587 0.03056 
11 1300 140 $ 10.00 $ 50.00 $ 20,000 1160 140 0.28112 0.02910 0.09956 0.02953 0.16568 0.02943 
12 1400 120 $ 10.00 $ 50.00 $ 20,000 1280 120 0.28099 0.02815 0.09963 0.02857 0.16553 0.02842 
13 1500 100 $ 10.00 $ 50.00 $ 20,000 1400 100 0.28088 0.02731 0.09968 0.02759 0.16539 0.02752 
14 1600 80 $ 10.00 $ 50.00 $ 20,000 1520 80 0.28079 0.02658 0.09973 0.02676 0.16528 0.02672 
15 1700 60 $ 10.00 $ 50.00 $ 20,000 1640 60 0.28070 0.02600 0.09977 0.02601 0.16518 0.02602 
16 1800 40 $ 10.00 $ 50.00 $ 20,000 1760 40 0.28062 0.02566 0.09981 0.02535 0.16511 0.02544 
17 1900 20 $ 10.00 $ 50.00 $ 20,000 1880 20 0.28054 0.02607 0.09984 0.02483 0.16509 0.02518 
18 2000 0 $ 10.00 $ 50.00 $ 20,000 2000 0 ---- ---- ---- ---- ---- ---- 

Note: Bolded parameters indicate the lowest standard error obtained for a particular independent-dependent variable pathway. For Body Fat  SBP and Body 
Fat  PP, standard errors monotonically decreased as the ratio of partial to complete increased; as a result, no minimum standard error was reached. 
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 Regression coefficients. As the partial to complete data ratio became more extreme (i.e., 

from Ratio 1 to Ratio 17), the b-weights for each of the three regression paths of interest (i.e., (a) 

Body Fat  SBP; (b) Body Fat  DBP; and (c) Body Fat  PP) changed in a monotonic 

fashion; the regression coefficients for body fat predicting SBP and PP increased monotonically, 

while the b-weight for body fat predicting DBP decreased monotonically. This pattern of b-

weights indicated that as the ratio of partial to complete data cases became more extreme, 

parameter estimates became increasingly biased. However, between the complete case design 

and the most extreme two-method measurement design (i.e., 1880 partial data cases and 20 

complete data cases), the absolute difference in b-weights was 0.00486, 0.00243, and 0.02129 

for body fat predicting SBP, DBP, and PP, respectively (reflecting a 2.0, 2.4, and 12.4 percent 

change in b-weights for SBP, DBP, and PP, respectively). Thus, the degree of bias associated 

with parameter estimates derived under the two-method measurement design was small.  

 Standard errors. The two-method measurement design produced a substantial increase in 

power by way of reduced standard errors. As the ratio of partial to complete data became more 

extreme, resulting standard errors decreased monotonically for all three regression paths. The 

standard errors pertaining to the Body Fat  SBP path reached a minimum (SE = 0.02566) when 

the two-method measurement design was applied using 1760 partial data cases and 40 complete 

data cases. For the Body Fat  DBP and Body Fat  PP regression coefficients, no minimum 

standard error was detected; rather, as the ratio of partial to complete data increased to the most 

extreme data ratio, standard errors steadily decreased. Please refer to Figure 9, located below, for 

a graphical representation of how standard errors decreased as the two-method measurement 

design was applied to increasingly extreme partial to complete data ratios. 
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Figure 9: Simulation Standard Errors for the Regression Coefficients of Body Fat Predicting SBP, DBP, and PP
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 Statistical power benefits. To quantify the benefits derived from the two-method 

measurement design, the Effective N was calculated for each of the three body fat regression 

pathways. Effective N was ascertained by determining the number of complete cases that, when 

tested using the one-group complete cases model, yielded a standard error lower than that 

produced by the most efficient two-method measurement design (Graham et al., 2006). The 

lowest standard error associated with the Body Fat  SBP pathway was 0.02566; thus, the 

Effective N for the Body Fat  SBP pathway represented the number of complete cases that 

yielded a standard error just below 0.02566. Unlike the standard error for the Body Fat  SBP 

pathway, the Body Fat  DBP and Body Fat  PP pathways did not demonstrate a minimum 

standard error. Effective Ns for these two pathways were calculated using the standard errors 

obtained when the two-method measurement design was tested with the most extreme partial to 

complete data ratio (i.e., 1880 partial cases, 20 complete cases); these standard errors were 

0.02438 and 0.02518 for body fat predicting DBP and PP, respectively. Table 28, located below, 

displays resulting standard errors as the one-group model was tested with an increasingly large 

number of complete cases; for each of the three pathways, the number of cases representing the 

Effective N is indicated in bold.  
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Table 28 
Standard Errors and Effective Ns for Body Fat Regression Pathways 
Obtained under a One-Group Complete Cases Design 
Complete 
Cases N BF → SBP BF → DBP BF → PP 

333 0.05391 0.05490 0.05463 
500 0.04397 0.04478 0.04456 
650 0.03856 0.03926 0.03908 
800 0.03475 0.03539 0.03522 
950 0.03189 0.03247 0.03231 
1100 0.02963 0.03017 0.03003 
1250 0.02779 0.0283 0.02817 
1400 0.02626 0.02674 0.02661 
1469 0.02565 0.02611 0.02598 
1500  0.02583 0.02571 
1550   0.02541 0.02529 
1565   0.02529 0.02517 
1600   0.02501   
1625   0.02482   

  Note: Bolded values represent complete case standard errors lower than those obtained using the most efficient 
two-method measurement design.        
 
 To obtain statistical power equivalent to that produced by the two-method measurement 

design, researchers would require 1469, 1625, and 1565 complete cases to test the associations 

between body fat and SBP, DBP, and PP, respectively. Another way to conceptualize this is that 

the two-method measurement design behaved as if the sample sizes were N=1469, N=1625, and 

N=1565 for testing the body fat regression weights involving SBP, DBP, and PP, respectively.  

 To compute Effective N Increase Factors, the Effective N for each regression path was 

divided by 333 (the nominal complete case N permitted by the hypothetical $20,000 budget). 

Effective N Increase Factors were 4.4, 4.9, and 4.7, respectively, for the SBP, DBP, and PP 

regression pathways. Taken together, results indicated that the two-method measurement design 

produced a substantial increase in statistical power beyond that produced by the financially-

equivalent complete cases models. The utility of the two-method measurement design was 

demonstrated by the sizeable reduction in standard errors and stability of estimated b-weights. 
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The benefits of the two-method measurement design were greatest for the Body Fat  DBP 

pathway (Effective N Increase Factor: 4.9). 

 

Tobacco Use 

  Eighteen partial to complete data ratios, all remaining within the $20,000 hypothetical 

budget, were generated for the tobacco use predictor. Ratio 1 reflected the number of complete 

cases permitted by the budget (N=363); this data ratio was tested using the one-group complete 

cases design. The two-method measurement design was applied to ratios 2-17 using the two-

group modeling procedure; resulting b-weights and standard errors are displayed below in Table 

29.
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Table 29 
Tobacco Use Parameter Estimates Obtained using the Two-Method Measurement Design   
  N N Cost  Cost Total N N  TU → SBP TU → DBP TU → PP 
  Cheap Expensive Cheap Expensive Costs Partial Complete b SE b SE b SE 
               

1 363 363 $ 10.00 $ 45.00 $ 19,965 0 363 -0.01494 0.05332 -0.08371 0.05699 0.05261 0.05472 

2 400 355 $ 10.00 $ 45.00 $ 19,975 45 355 -0.01485 0.05086 -0.08367 0.05485 0.05267 0.05240 

3 500 333 $ 10.00 $ 45.00 $ 19,985 167 333 -0.01467 0.04550 -0.08361 0.05038 0.05280 0.04741 

4 600 311 $ 10.00 $ 45.00 $ 19,995 289 311 -0.01456 0.04156 -0.08356 0.04734 0.05288 0.04386 

5 700 288 $ 10.00 $ 45.00 $ 19,960 412 288 -0.01448 0.03852 -0.08353 0.04525 0.05293 0.04122 

6 800 266 $ 10.00 $ 45.00 $ 19,970 534 266 -0.01443 0.03607 -0.08351 0.04381 0.05297 0.03922 

7 900 244 $ 10.00 $ 45.00 $ 19,980 656 244 -0.01439 0.03406 -0.08349 0.04290 0.05300 0.03771 

8 1000 220 $ 10.00 $ 45.00 $ 19,900 780 220 -0.01435 0.03238 -0.08348 0.04253 0.05302 0.03662 

9 1100 200 $ 10.00 $ 45.00 $ 20,000 900 200 -0.01433 0.03094 -0.08347 0.04242 0.05304 0.03580 

10 1200 177 $ 10.00 $ 45.00 $ 19,965 1023 177 -0.01431 0.02971 -0.08346 0.04289 0.05305 0.03539 

11 1300 155 $ 10.00 $ 45.00 $ 19,975 1145 155 -0.01429 0.02866 -0.08346 0.04381 0.05307 0.03529 

12 1400 133 $ 10.00 $ 45.00 $ 19,985 1267 133 -0.01427 0.02776 -0.08345 0.04534 0.05308 0.03560 

13 1500 111 $ 10.00 $ 45.00 $ 19,995 1389 111 -0.01426 0.02701 -0.08344 0.04771 0.05309 0.03644 

14 1600 88 $ 10.00 $ 45.00 $ 19,960 1512 88 -0.01425 0.02644 -0.08344 0.05158 0.05309 0.03818 

15 1700 66 $ 10.00 $ 45.00 $ 19,970 1634 66 -0.01424 0.02610 -0.08344 0.05755 0.05310 0.04123 

16 1800 44 $ 10.00 $ 45.00 $ 19,980 1756 44 -0.01423 0.02624 -0.08343 0.06836 0.05311 0.04724 

17 1900 22 $ 10.00 $ 45.00 $ 19,990 1878 22 -0.01422 0.02799 -0.08343 0.09465 0.05311 0.06286 

18 2000 0 $ 10.00 $ 45.00 $ 20,000 2000 0 ----   ---- ----   ---- ----  ----  
Note: Bolded parameters indicate the lowest standard error obtained for a particular independent-dependent variable pathway. 
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 Regression coefficients. As the partial to complete data ratio became more extreme (i.e., 

from Ratio 1 to Ratio 17), the b-weights for all three regression paths of interest (i.e, (a) Tobacco 

Use  SBP; (b) Tobacco Use  DBP; and (c) Tobacco Use  PP) increased monotonically. 

Thus, the two-method measurement design produced slightly biased parameter estimates. 

However, the absolute difference in b-weights between the complete cases ratio and the most 

extreme partial to complete data ratio (i.e., 1878 partial data cases and 22 complete data cases) 

was 0.00072, 0.00028, and 0.0005 for tobacco use predicting SBP, DBP, and PP, respectively 

(reflecting a 4.8, 0.33, and 0.95 percent change in b-weights for SBP, DBP, and PP, 

respectively). Thus, the degree of bias associated with parameter estimates derived under the 

two-method measurement design was small. 

 Standard errors. As the partial to complete data ratio became more extreme, the standard 

errors for all three regression paths initially decreased monotonically to some minimum value 

before they began to increase; therefore, all three sets of standard errors displayed an inflection 

point at which the two-method measurement design no longer produced an increase in statistical 

power. For the Tobacco Use  SBP regression weight, the lowest standard error (0.02610) was 

obtained when the two-method measurement design was applied using 1634 partial data cases 

and 66 complete data cases. For tobacco use predicting DBP, the lowest standard error (0.04242) 

was obtained by applying the two-method measurement design to 900 partial and 200 complete 

data cases. The lowest standard error for tobacco use predicting PP (0.03529) was obtained when 

the two-method measurement design was applied using 1145 partial and 155 complete data 

cases. Please refer to Figure 10, located below, for a graphical representation of how standard 
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errors decreased as the two-method measurement design was applied to increasingly extreme 

partial to complete data ratios.
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Figure 10: Simulation Standard Errors for the Regression Coefficients of Tobacco Use Predicting SBP, DBP, and 
PP

0.02500

0.03000

0.03500

0.04000

0.04500

0.05000

0.05500

0.06000

0.06500

0.07000

0 45 167 289 412 534 656 780 900 1023 1145 1267 1389 1512 1634 1756 1878

N Partial Cases

SE

TU-->SBP

TU-->DBP

TU-->PP



 

 

125
 Statistical power benefits. Using the minimum standard errors as reference, Effective 

Ns were computed for all three regression paths. The one-group design was used to determine 

the number of complete cases that yielded lower standard errors than those obtained using the 

most efficient two-method measurement designs. Table 30, located below, displays resulting 

standard errors as the one-group model was estimated with an increasingly large number of 

complete cases; for each of the three regression paths, the number of cases representing the 

Effective N is indicated in bold. 

Table 30 
Standard Errors and Effective Ns for Tobacco Use Regression 
Pathways Obtained under a One-Group Complete Cases Design 
Complete 
Cases N TU → SBP TU → DBP TU → PP 
363 0.05332 0.05699 0.05472 
400 0.05078 0.05428 0.05212 
500 0.04541 0.04854 0.04661 
600 0.04145 0.04430 0.04254 
655 0.03967 0.04240 0.04071 
700 0.03837  0.03938 
800 0.03589  0.03683 
872 0.03437  0.03528 
900 0.03383   
1000 0.03209   
1100 0.03060   
1200 0.02930   
1300 0.02815   
1400 0.02712   
1500 0.02620     
1513 0.02609     

 
 To obtain statistical power equivalent to that produced by the two-method measurement 

design, 1513, 655, and 872 complete cases would be necessary to test the associations between 

tobacco use and SBP, DBP, and PP, respectively. Thus, the two-method measurement design 

behaved as if the sample sizes were N=1513, N=655, and N=872 for testing the tobacco use 

regression weights involving SBP, DBP, and PP, respectively.  
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 Effective N Increase Factors were computed by dividing the Effective Ns by 363 (the 

nominal complete cases N permitted by the hypothetical $20,000 budget); for the SBP, DBP, and 

PP regression paths, Effective N Increase Factors were 4.2, 1.8, and 2.4, respectively. Overall, 

results indicated that the two-method measurement design produced a substantial increase in 

statistical power by way of lower standard errors for regression paths of interest. The benefits of 

the two-method measurement design were greatest for the Tobacco Use  SBP pathway 

(Effective N Increase Factor: 4.2).  

 

Physical Conditioning 

 Twenty-one partial to complete data ratios were computed for the physical conditioning 

variable; with the exception of Ratio 1 (total cost: $20,020), all ratios remained within the 

$20,000 hypothetical budget. Ratio 1, corresponding to the complete cases scenario, was tested 

using a one-group design. The two-method measurement design was applied to ratios 2-20 using 

the two-group modeling procedure; resulting b-weights and standard errors are displayed below 

in Table 31. 
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Table 31 
Physical Conditioning Parameter Estimates Obtained using the Two-Method Measurement Design 

     N N Cost Cost Total N N PC → SBP  PC → DBP  PC → PP 
  Cheap Expensive Cheap Expensive Costs Partial Complete b SE b SE b SE 

1 77 77 $ 10.00 $ 250.00 $ 20,020 0 77 -0.11887 0.41175 -0.07751 0.29894 -0.03069 0.19843 

2 100 76 $ 10.00 $ 250.00 $ 20,000 24 76 -0.15906 0.31028 -0.12787 0.30291 -0.02084 0.28935 

3 200 72 $ 10.00 $ 250.00 $ 20,000 128 72 -0.11086 0.33353 -0.13036 0.34485 0.01999 0.30305 

4 300 68 $ 10.00 $ 250.00 $ 20,000 232 68 -0.08798 0.32921 -0.13257 0.38412 0.04022 0.28981 

5 400 64 $ 10.00 $ 250.00 $ 20,000 336 64 -0.07688 0.32742 -0.13374 0.44147 0.05012 0.28691 

6 500 60 $ 10.00 $ 250.00 $ 20,000 440 60 -0.07128 0.33494 -0.13429 0.51196 0.05508 0.29746 

7 600 56 $ 10.00 $ 250.00 $ 20,000 544 56 -0.06825 0.35254 -0.13456 0.59318 0.05774 0.31920 

8 700 52 $ 10.00 $ 250.00 $ 20,000 648 52 -0.06650 0.38001 -0.13472 0.68575 0.05929 0.35056 

9 800 48 $ 10.00 $ 250.00 $ 20,000 752 48 -0.06543 0.41748 -0.13483 0.79196 0.06023 0.39121 

10 900 44 $ 10.00 $ 250.00 $ 20,000 856 44 -0.06474 0.46602 -0.13488 0.91586 0.06082 0.44195 

11 1000 40 $ 10.00 $ 250.00 $ 20,000 960 40 -0.06430 0.52737 -0.13493 1.06264 0.06124 0.50475 

12 1100 36 $ 10.00 $ 250.00 $ 20,000 1064 36 -0.06399 0.60492 -0.13495 1.24068 0.06150 0.58286 

13 1200 32 $ 10.00 $ 250.00 $ 20,000 1168 32 -0.06380 0.70405 -0.13498 1.46192 0.06167 0.68165 

14 1300 28 $ 10.00 $ 250.00 $ 20,000 1272 28 -0.06365 0.83351 -0.13497 1.74585 0.06181 0.80996 

15 1400 24 $ 10.00 $ 250.00 $ 20,000 1376 24 -0.06358 1.00914 -0.13502 2.12650 * * 

16 1500 20 $ 10.00 $ 250.00 $ 20,000 1480 20 -0.07214 1.37715 -0.15331 2.91215 * * 

17 1600 16 $ 10.00 $ 250.00 $ 20,000 1584 16 -0.07087 1.76508 -0.15075 3.74436 * * 

18 1700 12 $ 10.00 $ 250.00 $ 20,000 1688 12 -0.07230 2.52847 -0.15388 5.37416 * * 

19 1800 8 $ 10.00 $ 250.00 $ 20,000 1792 8 -0.07325 4.14108 -0.15594 8.81186 * * 

20 1900 4 $ 10.00 $ 250.00 $ 20,000 1896 4 -0.08041 11.28585 -0.17122 24.02815 * * 

21 2000 0 $ 10.00 $ 250.00 $ 20,000 2000 0 ---- ---- ---- ---- ---- ---- 
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     Regression coefficients. As the partial to complete data ratio became more extreme (i.e., 

from Ratio 1 to Ratio 20), the b-weights for all three regression paths of interest (i.e., (a) 

Physical Conditioning  SBP; (b) Physical Conditioning  DBP; and (c) Physical Conditioning 

 PP) dramatically changed. The b-weights for physical conditioning predicting DBP and PP 

decreased and increased, respectively, in a monotonic manner. However, the b-weight for 

physical conditioning predicting SBP initially increased monotonically to a maximum value (i.e., 

-0.06358, obtained using 1376 partial data cases and 24 complete data cases) before reversing 

direction and monotonically decreasing across the remainder of data ratios. The instability of b-

weights for all three regression paths indicated that the two-method measurement design 

produced biased parameter estimates. Additionally, the large increases and decreases in b-

weights across the data ratios indicated that the degree of bias was fairly substantial.  

 Standard errors. Resulting standard errors also indicated that the application of the two-

method measurement design did not produce any statistical advantage over the financially-

equivalent complete case models. Standard errors pertaining to the Physical Conditioning  

DBP and Physical Conditioning  PP pathways increased monotonically as the partial to 

complete data ratio became more extreme. For the most extreme data ratio (i.e., 1896 partial data 

cases and 4 complete data cases), the standard error for the DBP regression path was 24.02815, 

nearly 80 times greater than the standard error obtained using the complete cases model with a 

sample size of N=77. The two-group model estimating the effect of physical conditioning on PP 

failed to converge when data ratios more extreme than 1272 partial data cases and 28 complete 

data cases were tested; thus, for 6 of the 20 data ratios, parameter estimates involving physical 

conditioning and PP were not able to be estimated.   
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Dietary Intake 

 Twenty-one partial to complete data ratios were computed for the dietary intake variable; 

all ratios remained within the $20,000 hypothetical budget. Ratio 1, corresponding to the 

complete cases scenario, was tested using a one-group design. The two-method measurement 

design was applied to ratios 2-19 using the two-group modeling procedure; resulting b-weights 

and standard errors are displayed below in Table 32. 
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Table 32 
Dietary Intake Parameter Estimates Obtained using the Two-Method Measurement Design 
  N N Cost Cost Total N N DI → SBP  DI → DBP  DI → PP 
  Cheap Expensive Cheap Expensive Costs Partial Complete b SE b SE b SE 

1 125 125 $ 10.00 $ 150.00 $ 20,000 0 125 -0.03382 0.09958 -0.03252 0.09959 -0.00402 0.09961 

2 200 120 $ 10.00 $ 150.00 $ 20,000 80 120 -0.03482 0.10096 -0.03737 0.10095 -0.00113 0.10106 

3 300 113 $ 10.00 $ 150.00 $ 19,950 187 113 -0.03629 0.10298 -0.04463 0.10294 0.00310 0.10322 

4 400 106 $ 10.00 $ 150.00 $ 19,900 294 106 -0.03793 0.10500 -0.05292 0.10493 0.00776 0.10550 

5 500 100 $ 10.00 $ 150.00 $ 20,000 400 100 -0.03968 0.10644 -0.06207 0.10635 0.01274 0.10739 

6 600 93 $ 10.00 $ 150.00 $ 19,950 507 93 -0.04167 0.10808 -0.07292 0.10801 0.01851 0.10983 

7 700 86 $ 10.00 $ 150.00 $ 19,900 614 86 -0.04378 0.10929 -0.08525 0.10935 0.02506 0.11229 

8 800 80 $ 10.00 $ 150.00 $ 20,000 720 80 -0.04580 0.10945 -0.09797 0.10987 0.03207 0.11414 

9 900 73 $ 10.00 $ 150.00 $ 19,950 827 73 -0.04781 0.10935 -0.11197 0.11063 0.04051 0.11641 

10 1000 66 $ 10.00 $ 150.00 $ 19,900 934 66 -0.04958 0.10860 -0.12577 0.11146 0.05004 0.11846 

11 1100 60 $ 10.00 $ 150.00 $ 20,000 1040 60 -0.05093 0.10707 -0.13773 0.11223 0.05963 0.11972 

12 1200 53 $ 10.00 $ 150.00 $ 19,950 1147 53 -0.05209 0.10559 -0.14950 0.11436 0.07055 0.12151 

13 1300 46 $ 10.00 $ 150.00 $ 19,900 1254 46 -0.05299 0.10401 -0.15999 0.11781 0.08156 0.12369 

14 1400 40 $ 10.00 $ 150.00 $ 20,000 1360 40 -0.05360 0.10230 -0.16835 0.12207 0.09114 0.12609 

15 1500 33 $ 10.00 $ 150.00 $ 19,950 1467 33 -0.05413 0.10108 -0.17654 0.12983 0.10106 0.13116 

16 1600 26 $ 10.00 $ 150.00 $ 19,900 1574 26 -0.05452 0.10040 -0.18377 0.14189 0.11013 0.13981 

17 1700 20 $ 10.00 $ 150.00 $ 20,000 1680 20 -0.05478 0.10031 -0.18941 0.15822 0.11739 0.15238 

18 1800 13 $ 10.00 $ 150.00 $ 19,950 1787 13 -0.05500 0.10310 -0.19514 0.19325 0.12483 0.18123 

19 1900 6 $ 10.00 $ 150.00 $ 19,900 1894 6 -0.05517 0.11750 -0.20024 0.29122 0.13152 0.26591 

20 2000 0 $ 10.00 $ 150.00 $ 20,000 2000 0 ---- ---- ---- ---- ---- ---- 
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 Regression coefficients. As the partial to complete data ratio became more extreme 

(i.e., from Ratio 1 to Ratio 19), the b-weights for all three regression paths of interest (i.e., (a) 

Dietary Intake  SBP; (b) Dietary Intake  DBP; and (c) Dietary Intake  PP) changed 

monotonically; the b-weights for dietary intake predicting SBP and DBP monotonically 

decreased while the b-weight for dietary intake predicting PP monotonically increased. The 

magnitude of change was relatively large, indicating that the two-method measurement design 

produced biased parameter estimates. Between the complete case ratio and the most extreme 

partial to complete data ratio (i.e., 1894 partial data cases and 6 complete data cases), the b-

weights for dietary intake predicting SBP, DBP, and PP changed 0.02135, 0.16772, and 0.1275 

respectively (reflecting a 63 percent decrease, a 515 percent decrease, and a 3171 percent 

increase, respectively, in b-weights). Thus, the large increases and decreases in b-weights across 

the data ratios indicated that the degree of bias was fairly substantial.  

 Standard errors. Resulting standard errors also indicated that the application of the two-

method measurement design did not produce any statistical advantage over the financially-

equivalent complete cases model. Standard errors pertaining to the Dietary Intake  DBP and 

Dietary Intake  PP pathways increased monotonically as the partial to complete data ratio 

became more extreme. For the most extreme data ratio (i.e., 1894 partial data cases and 6 

complete data cases), the standard errors for the DBP and PP regression paths were 0.29122 and 

0.26591, respectively (reflecting standard errors 2.9 and 2.6 times greater than the standard error 

obtained using the complete cases model with a sample size of N=125). The standard error 

pertaining to the Dietary Intake  SBP pathway did not change monotonically; rather, the 

standard error increased monotonically between data ratios 1-9, and then decreased 
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monotonically between ratios 10-17; between ratios 18 and 19, the standard error increased. 

Importantly, among data ratios in which the standard error pertaining to the Dietary Intake  

SBP pathway decreased, the standard error still remained greater than that produced by the 

financially-equivalent complete case design. Taken together, the instability of b-weights and 

increases in standard errors demonstrated that the two-method measurement design did not 

produce any appreciable statistical power benefit when applied to the dietary intake variable.   
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CHAPTER 5 

 
Discussion and Conclusions 

 
 The following sections address formally stated research questions, provide an overview 

of key findings, and discuss opportunities for future research related to the two-method 

measurement design.  

 
Research Questions 
 
1. What is the degree of association between established hypertension risk factors (physical 
conditioning, dietary intake, body fat, and tobacco use) and SBP, DBP, and PP in a large, 
nationally representative sample? 
 
 Partial NHANES correlations offered insight into the strength of association between the 

four hypertension risk factors and blood pressure parameters. Physical conditioning – as assessed 

by PA1, PA2, and EVO2 max – was generally uncorrelated with SBP, DBP, and PP. Partial 

correlations involving the three physical conditioning measures indicated that their associations 

with SBP, DBP, and PP did not reach the “small effect” threshold in the context of Cohen 

(1977). However, despite their small magnitude, the general pattern of partial correlations 

indicated that increased levels of physical conditioning were associated with reduced SBP and 

DBP and elevated PP. EVO2 max was most strongly associated with SBP and DBP, indicating 

that the strength of association between physical fitness and blood pressure was more robust than 

that between physical activity and blood pressure; this finding is consistent with previous 

research (Dvorak et al., 2000; Myers et al., 2004; Sternfeld et al., 1999). 

 Dietary intake – as assessed by drybeans, dgveg, Min1, and Min2 – was generally 

uncorrelated with SBP, DBP, and PP. Partial correlations indicated that none of the associations 

involving the dietary intake measures and the blood pressure parameters reached Cohen’s (1977) 
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“small effect” threshold. Despite their small magnitude, however, results indicated that increased 

consumption of dry beans, dark green vegetables, magnesium, and fiber was associated with 

reduced SBP and DBP and elevated PP. These findings are consistent with previous literature 

stating that total nutrient intakes confer small reductions in SBP and DBP (Kawano et al., 1998; 

Zhou et al., 2000). 

 Body fat was strongly associated with blood pressure. All four body fat indicators – 

Srbmi, Srow, Ebmi, and BFat – were significantly correlated with SBP, DBP, and PP; effect 

sizes generally reached Cohen’s (1977) “medium effect” threshold.  These findings are 

consistent with the extensive body of literature implicating excess body fat as a strong 

contributing factor to the onset of hypertension (Wilsgaard et al., 2000). 

 Tobacco use – as measured by TUse1, TUse2, and serum cotinine – was negatively 

associated with DBP and positively associated with PP; on the other hand, tobacco use was 

generally uncorrelated with SBP. Partial correlations indicated that the associations between the 

three tobacco use measures and SBP, DBP, and PP were considered “small effects” in the 

context of Cohen (1977). These findings were generally inconsistent with previous literature 

indicating the detrimental effects of tobacco use on blood pressure and general cardiovascular 

risk profile (Mahmud & Feely, 2003). 

 
2. For each independent variable, what is the optimal ratio of partial to complete data that 
yields the most efficient and unbiased regression coefficients under the two-method 
measurement design? 
 
 When applied to the body fat and tobacco use variables, the two-method measurement 

design produced smaller standard errors and larger Effective Ns for testing regression 

coefficients of substantive interest compared to financially-equivalent complete case models. For 



 

 

135
these two independent variables, it was possible to determine the optimal ratios of partial to 

complete data that produced the most unbiased and efficient regression coefficients. 

 For body fat predicting SBP, the lowest standard error (0.02566) was obtained when the 

two-method measurement design was applied using 1760 partial data cases and 40 complete data 

cases; thus, the optimal partial to complete data ratio was 1760:40, or 40:1. When body fat 

predicted DBP and PP, standard errors monotonically decreased through the most extreme partial 

to complete case data ratio; thus, the lowest standard errors (0.02483 and 0.02518 for DBP and 

PP, respectively) were obtained when the two-method measurement design was applied using 

1880 partial data cases and 20 complete data cases, reflecting an optimal ratio of 1880:20, or 

94:1.   

 For tobacco use, standard errors for each of the three regression paths of substantive 

interest decreased monotonically to some minimum value before beginning to increase. When 

tobacco use predicted SBP, the lowest standard error (0.02610) was obtained when the two-

method measurement design was applied using 1634 partial data cases and 66 complete data 

cases, reflecting an optimal partial to complete data ratio of 1634:66, or 24.8:1. The lowest 

standard error for the b-weight involving tobacco use predicting DBP (0.04242) was obtained 

when the two-method measurement design was applied to a comparatively less extreme data 

ratio (i.e., 900 partial data cases and 200 complete data cases); thus, the optimal ratio for 

estimating the Tobacco Use  DBP b-weight was 900:200, or 4.5:1. When tobacco use 

predicted PP, the two-method measurement design produced the lowest standard error (0.03529) 

when the two-group model was estimated using 1145 partial data cases and 155 complete data 

cases, reflecting an optimal data ratio of 1145:155, or 7.4:1.  
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 Application of the two-method measurement design was less effective for the physical 

conditioning and dietary intake variables; as a result, no optimal ratios of partial data to complete 

data cases were observed. As the two-method measurement design was applied using 

increasingly extreme partial to complete data ratios, the pattern of physical conditioning b-

weights changed substantially, indicating that the two-method measurement design produced 

biased parameter estimates. Additionally, increasingly large standard errors reflected that the 

two-method measurement design failed to produce an increase in statistical power when applied 

to the physical conditioning factor.  

Similar patterns were observed for the dietary intake factor; substantial changes in 

estimated b-weights occurred with increasingly extreme data ratios, indicating that the two-

method measurement design produced biased estimates of dietary intake b-weights. Additionally, 

standard errors for all three dietary intake regression paths increased substantially as the partial 

to complete case data ratios became more extreme; consequently, no statistical power advantage 

was provided by the two-method measurement design when applied to the dietary intake factor.  

 
3. What effect does the number of expensive measures for an independent variable, as well 
as the strength of correlation between cheap and expensive measures, have on the 
performance of the two-method measurement design?  
 
 Body fat and tobacco use – the variables for which the two-method measurement design 

produced increases in statistical power – differed from one another in several important ways, 

including their number of expensive measures. Body fat was represented by two expensive 

measures (i.e., Ebmi and BFat), whereas tobacco use was represented by one expensive measure 

(i.e., serum cotinine). Body fat and tobacco use also differed in the strength of correlation 

between cheap measures. Srow and Srbmi – the two cheap body fat measures – were strongly 
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correlated (r = 0.646); however, the degree of association between TUse1 and TUse2 – the 

two cheap tobacco use indicators – was comparatively stronger (r = 0.917). Additionally, 

whereas all four body fat indicators were strongly associated with SBP, DBP, and PP, partial 

correlations indicated that tobacco use measures were less strongly correlated with blood 

pressure parameters. The following sections summarize key results related to the performance of 

the two-method measurement design when applied to the body fat and tobacco use factors. 

 Body fat. As shown in Table 33, below, Effective N Increase Factors for the three body 

fat coefficients of substantive interest were 4.4, 4.9, and 4.7. Essentially, these values reflect that 

the best two-method measurement designs provided the equivalent of 4.4 - 4.9 times the number 

of complete cases than were allowable by the financially-equivalent complete cases model 

(nominal complete case N=333).   

Another way to conceptualize the benefits provided by the two-method measurement 

design is to consider the Effective Ns; as shown in Table 33, Effective Ns were 1469, 1635, and 

1565 for testing the effects involving body fat and SBP, DBP, and PP, respectively. These results 

illustrate the enormous statistical advantage provided by the two-method measurement design. 

As an example, researchers could test the Body Fat  SBP effect using a complete cases design 

and statistical power based on a sample size of N=333; however, for the same cost, researchers 

could implement the two-method measurement design and test the same effect with power 

equivalent to N=1469 complete cases.   



 138
 

 

Table 33 
Summary of Key Results: Application of the Two-Method Measurement Design to the Body Fat Construct 
  

BF  SBP 
 
BF  DBP 

 
BF  PP 

Average correlation between manifest measures and outcome r = 0.243 r = 0.088 r = 0.142 

Optimal ratio (partial:complete data cases) 1760:40 (40:1) 1880:20 (94:1) 1880:20 (94:1) 

SE (Nominal Complete Cases Design) 0.05391 0.05490 0.05463 

SE (Most Efficient Two-Method Measurement Design) 0.02566 0.02483 0.02518 

% Decrease in SE 52 55 54 

Effective N 1469 1625 1565 

Effective N Increase Factor 4.4 4.9 4.7 

 
 The increase in statistical power provided by the two-method measurement design varied 

across the three body fat regression paths. Effective N Increase Factors correlated inversely with 

the average effect size between body fat and the three blood pressure parameters. That is, the 

largest Effective N Increase Factor (4.9) was obtained for the Body Fat  DBP pathway; 

correspondingly, of the three blood pressure parameters considered, body fat was least strongly 

associated DBP (average r = 0.088). In the same manner, body fat measures were most strongly 

correlated with SBP (r = 0.243); subsequently, the two-method measurement design produced 

the smallest Effective N Increase Factor (4.4) for the coefficient pertaining to Body Fat  SBP. 

 Tobacco use. As shown below in Table 34, Effective N Increase Factors for the three 

tobacco use coefficients of substantive interest were 4.2, 1.8, and 2.4; thus, for the same cost, the 

two-method measurement design behaved as if a substantially larger number of complete cases 

were available for parameter estimation than the complete case N allowable under the 

hypothetical budget constraint (nominal complete case N=363). Using the same logic above, the 

considerable statistical advantages provided by the two-method measurement design are 
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demonstrated by the Effective Ns (1513, 655, and 872 for tobacco use predicting SBP, DBP, 

and PP, respectively). As an example, for $20,000, the Tobacco Use  SBP effect could be 

tested with statistical power based on a sample size of N=363; or, for the same cost, under the 

two-method measurement design, the same effect could be tested with power equivalent to 

N=1513 complete cases. 

 
Table 34 
Summary of Key Results: Application of the Two-Method Measurement Design to the Tobacco Use Construct 
  

TU  SBP 
 
TU  DBP 

 
TU  PP 

Average correlation between manifest measures and outcome r = -0.019 r = -0.076 r = 0.043 

Optimal ratio (partial:complete data cases) 1634:66 (24.7:1) 900:200 (4.5:1) 1145:155 (7.4:1) 

SE (Nominal Complete Cases Design) 0.05332 0.05699 0.05472 

SE (Most Efficient Two-Method Measurement Design) 0.02610 0.04242 0.03529 

% Decrease in SE 51 26 36 

Effective N 1513 655 872 

Effective N Increase Factor 4.2 1.8 2.4 

 
 As with body fat, Effective N Increase Factors correlated inversely with the average 

effect size between tobacco use and the three blood pressure parameters. The largest Effective N 

Increase Factor (4.2) was obtained for estimating the association between tobacco use and SBP; 

correspondingly, of the three blood pressure parameters considered, tobacco use was least 

strongly associated SBP (average r = -0.019). Tobacco use measures were most strongly 

correlated with DBP (average r = -0.076); subsequently, the two-method measurement design 

produced the smallest Effective N Increase Factor (1.8) for estimating the association between 

tobacco use and DBP. 

 The present findings indicate that for bivariate models, the strength of association 
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between the independent and dependent variables is inversely correlated with the increase in 

statistical power produced by the two-method measurement design. These results are consistent 

with previous research; Graham and colleagues (2006) demonstrated that the benefit of the two-

method measurement design was comparatively greater when the effect size between 

independent and dependent variables was r = 0.10 versus r = 0.40. 

 Effective N Increase Factors provide researchers with the ability to compare the 

performance of the two-method measurement design across diverse data scenarios and variable 

sample sizes (Graham et al., 2006); therefore, it was possible to compare the performance of the 

two-method measurement design for the body fat and tobacco use factors. As indicated by the 

magnitude of Effective N Increase Factors, in general, the two-method measurement design 

produced a comparatively greater statistical power advantage for body fat relative to tobacco use. 

However, because body fat and tobacco use factors differed in several respects (e.g., number of 

expensive measures; strength of correlation between cheap measures; strength of correlation 

between cheap and expensive measures; and strength of correlation between manifest measures 

and outcome variables), it is difficult to determine the impact that these factors make on 

performance of the two-method measurement design. An area for future research involves using 

a simulation framework to manipulate these factors, one at a time, to gain a better understanding 

of how common factor characteristics influence performance of the two-method measurement 

design. 
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Cost-Effectiveness Implications 

 Effective Ns for the three body fat regression coefficients highlight the degree of cost-

effectiveness produced the two-method measurement design. Under the hypothetical budget of 

$20,000, it is possible to collect complete body fat data from N=333 participants. However, the 

two-method measurement design provided the equivalent of N=1513, N=1625, and N=1565 

complete cases for testing the effect of body fat on SBP, DBP, and PP, respectively. In order to 

collect complete data from sample sizes this large (without the use of the two-method 

measurement design), data collection costs would equal $88,140, $97,500, and $93,900 for 

testing the effects involving body fat and SBP, DBP, and PP, respectively.   

 Similarly, for $20,000, complete tobacco use data may be collected from N=363 

participants. However, the two-method measurement design provided the equivalent of N=1513, 

N=655, and N=872 complete cases for testing the effect of tobacco use on SBP, DBP, and PP, 

respectively. Without the use of the two-method measurement design, to collect complete data 

from sample sizes this large, data collection costs would equal $83,215, $36,025, and $47,960 

for testing the effects involving tobacco use and SBP, DBP, and PP, respectively. 

 Body fat and tobacco use simulations were performed using expensive to cheap measure 

cost ratios of 5:1 and 4.5:1, respectively. Thus, these findings suggest that the cost-effectiveness 

of the two-method measurement design is enhanced as the cost differential between cheap and 

expensive measures increases. Graham and colleagues (2006) found similar results; as the 

expensive measure to cheap measure cost ratio increased from 1.6:1 to 10:1, Effective N Increase 

Factors increased proportionately (Graham et al., 2006). Because the degree of cost-effectiveness 

produced by the two-method measurement design is correlated with the cost differential between 
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cheap and expensive measures, the utility of this design is likely enhanced for data scenarios in 

which researchers would normally be severely limited in the amount of complete case data able 

to be collected.   

 

Improving Performance of the Two-Method Measurement Design 

 The two-method measurement design produced biased and inefficient parameter 

estimates when applied to the physical conditioning and dietary intake variables. Several factors 

likely influenced the comparatively poor performance of the two-method measurement design 

for these two predictors. Related to physical conditioning, cheap and expensive measures were 

only modestly correlated (average r = 0.082). Despite a strong correlation between cheap 

measures (PA1 and PA2) (r = 0.694), the physical conditioning factor was dominated by EVO2 

max; consequently, a large portion of the correlation between the two cheap measures was 

attributed to response bias (as indicated by bias factor loadings of 0.840 for PA1 and PA2). This 

created a scenario in which physical conditioning was represented by three manifest measures, 

only one of which (EVO2 max) loaded highly on the common factor. 

The relative lack of association between cheap and expensive physical conditioning 

indicators may reflect that the measures were indicative of separate, yet related, underlying 

constructs. PA1 and PA2 – the two cheap physical conditioning measures – focused on 

participants’ physical activity behaviors; EVO2 max, on the other hand, represented participants’ 

level of physical fitness. The lack of power benefits produced by the two-method measurement 

design may indicate that physical conditioning represented too broad of a construct; perhaps the 

two-method measurement design would have performed comparatively more efficiently had the 



 

 

143
independent variable represented physical activity or physical fitness, rather than a more 

complex physical conditioning construct. Modifying the physical conditioning factor to represent 

a narrower physical activity or fitness construct would have required an expensive measure of 

physical activity (e.g., accelerometers, pedometers) or cheap measures of participants’ fitness 

level (e.g., self-report items assessing cardiorespiratory fitness status), respectively.  

Similar to the physical conditioning indicators, cheap and expensive dietary intake 

measures were weakly correlated (average r = 0.077); additionally, unlike the cheap physical 

conditioning measures, the cheap dietary intake measures (drybeans and dgveg) were only 

modestly correlated (0.169). Because of the strong association between the expensive dietary 

intake measures (r = 0.683), the common factor was dominated by Min1 and Min2 (both 

common factor loadings estimated to be 0.827). On the other hand, common factor loadings for 

drybeans and dgveg were estimated to be substantially lower (both 0.094). The two-method 

measurement design is configured in such a way that expensive measures are used to model 

response bias associated with cheap measures; however, for the dietary intake factor, expensive 

measures were weakly correlated with cheap measures. This created a situation in which the 

dietary intake was comparatively less stable; resulting biased b-weights reflected the instability 

of the factor.  

The relatively poor performance of the two-method measurement design for the physical 

conditioning and dietary intake factors has implications for future applications. Findings 

highlight several opportunities for researchers to maximize the utility of the two-method 

measurement design. To begin with, manifest measures should be selected carefully and with a 

specific purpose in mind; specifically, cheap and expensive measures for a given construct 
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should be highly correlated. It is likely that for a large percentage of two-method measurement 

design applications, cheap measures will be represented by self-report items; thus, researchers 

should select self-report measures that are most likely to yield the strongest correlations with 

expensive measures of the same construct. It is recommended that researchers collect small 

amounts of data from candidate cheap measures to determine, a priori, the set of cheap measures 

that best correlates with expensive measure data.  

 It is also helpful if researchers are able to anticipate, to some degree, effect sizes between 

independent and dependent variables of interest. As the two-method measurement design has 

been shown to be especially useful for testing smaller effects, researchers may perform small-

scale simulations prior to data collection to more precisely estimate the optimal ratio of partial to 

complete data for a given effect. This offers researchers the opportunity to more accurately tailor 

data collection to achieve maximal cost-effectiveness; researchers are able to consider, prior to 

data collection, for which effects the two-method measurement design will be of maximum 

utility.  

 

Strengths 

 This dissertation represents the first application of the two-method measurement design 

involving empirical data. Bivariate models assessed the impact of physical conditioning, dietary 

intake, body fat, and tobacco use on SBP, DBP, and PP. The four predictors were comprised of a 

variable number of manifest indicators that differed in strength of intercorrelation; as a result, 

this dissertation also examined how the absolute number of cheap and expensive measures, as 
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well as the intercorrelations among manifest indicators, impacted the performance of the 

two-method measurement design.  

 Additionally, this dissertation explored several challenges related to real-world 

implementation of the two-method measurement design. Whereas Graham and colleagues (2006) 

explored the utility of the two-method measurement design using simulated data, results from 

this dissertation revealed scenarios for which the two-method measurement design was both 

more and less efficient than financially-equivalent complete cases designs. Empirical data were 

obtained from an ongoing large-scale epidemiological survey; thus, the cheap and expensive 

measures used in this dissertation represented actual, real-world indicators of physical 

conditioning, dietary intake, body fat, and tobacco use. As a result, findings from this 

dissertation are highly applicable to several areas of current research. Findings extend the 

previous state of the current literature regarding the two-method measurement design and 

provide several guiding principles for researchers considering using a version of the design for 

future research.  

 Recent interest in the efficiency of health prevention programs, as well as limited external 

funding sources, has placed an increased emphasis on cost-effective research within many 

behavioral health disciplines. When researchers are faced with several measures for assessing 

particular constructs, they must determine a data collection strategy that balances data quantity 

and quality with budget constraints. The two-method measurement design helps researchers to 

spend their resources in the most efficient manner, thus producing the greatest power for testing 

substantive effects. Across disciplines, it is extremely common that multiple indicators exist for 

assessing constructs of interest; the methodology presented in this dissertation is relevant for 
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scenarios in which researchers are limited in the number of data cases that may be collected, but 

desire greater statistical power for testing effects. Results presented here may yield new efforts to 

re-organize financial resources for tailored data collection procedures consistent with the two-

method measurement design. 

 

Limitations 

 As this dissertation employed empirical data, key measures (including cheap and 

expensive measures, as well as outcome variables) were limited to those collected as part of the 

ongoing NHANES surveillance effort. In several instances, cheap and expensive measures were 

weakly correlated because a wide selection of variables from which to choose ideal manifest 

measures was lacking. For example, while NHANES data provided a substantial number of total 

nutrient intake scores from which to select expensive dietary intake measures, data were 

particularly scarce regarding cheap (self-report) dietary intake measures. Even after selecting 

cheap measures based on their magnitude of association with expensive measures, 

intercorrelations remained generally weak between cheap measures (drybeans, dgveg) and 

expensive measures (Min1, Min2).   

 Physical conditioning was comprised of manifest measures reflecting two separate, yet 

related, constructs (i.e., physical activity and physical fitness). NHANES data contained cheap 

(but not expensive) physical activity measures; likewise, NHANES data included expensive (but 

not cheap) physical fitness measures. Therefore, the physical conditioning factor was comprised 

of modestly correlated manifest measures indicative of fundamentally different constructs, 
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limiting the ability of the two-method measurement design to reliably estimate regression 

coefficients of substantive interest.  

 Another potential limitation involves the estimated costs of data collection for cheap and 

expensive measures. The most efficient two-method measurement design was determined by 

repeated applications of the design using series of partial to complete data ratios; therefore, the 

cost differential between cheap and expensive measures had important implications for the 

number of partial and complete cases permitted under the hypothetical $20,000 budget. It is 

possible that the estimated costs of data collection used to generate ratios of partial to complete 

data over- or under-estimated actual data collection costs. Future research will be able to extend 

the current state of the literature by performing sensitivity analyses to assess how performance of 

the two-method measurement design varies as a function of the cost differential between cheap 

and expensive measures.   

 

Areas for Future Research 

 One important finding from the present study is that, consistent with Graham et al. 

(2006), the strength of association between the independent and dependent variables is inversely 

correlated with the statistical power benefit provided by the two-method measurement design. 

Determining the precise underlying cause for this finding represents an essential area for future 

research. The two-method measurement design represents a recent statistical advancement in the 

field of planned missingness; this design has the potential to transform and streamline default 

data collection methods that have been used for decades. Accordingly, as more information is 

gained regarding the performance of the two-method measurement design across diverse data 
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scenarios, researchers will be able to better tailor application of the design to their unique data 

collection needs.  

 Future research will involve examining the impact of multiple factors (e.g., cost 

differential between cheap and expensive measures; number of expensive measures) on the 

efficiency of the two-method measurement design. Disentangling such factors, and examining 

their impact individually, will assist in determining data scenarios most appropriately suited for 

implementation of the two-method measurement design. Additionally, as this dissertation and 

previous research (Graham et al., 2006) have assessed the performance of the two-method 

measurement design when applied to bivariate models, future work will assess the utility of the 

design for multivariate models. This extension also invites multiple other research questions 

related to design application. For example, in a two-method measurement design involving 

several independent variables, is there any statistical benefit to having complete case data from 

the same sample of participants? How does the degree of association between multiple 

independent variables affect efficiency of estimated parameters under the two-method 

measurement design? 

 Future research will also explore the utility of other potential two-method measurement 

design configurations. The translation of the two-method measurement design to mediation and 

moderation models offers the opportunity to achieve cost-effectiveness in longitudinal research. 

The two-method measurement design may also be combined with other planned missingness 

designs (e.g., the three-form design; (Graham et al., 2006)) to create innovative approaches to 

data collection that capitalize on current missing data analysis procedures.   
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The two-method measurement design is highly applicable to multiple research 

disciplines. Whenever researchers have the opportunity to collect data for a particular construct 

using several measures of variable cost and construct validity, the two-method measurement 

design offers the potential for cost-effective data collection and unbiased and efficient parameter 

estimation. Additionally, as state-of-the-art measures continue to advance across research fields, 

the cost differential between cheap and expensive measures will likely widen, further 

emphasizing the need for cost-effective designs. With the ongoing development and refinement 

of valid measures across research disciplines, the utility of the two-method measurement design 

will continue to increase.   

 



 150
 

References 

Allison, P. (1987). Estimation of linear models with incomplete data. Sociological Methodology, 

17, 71-103. 

Anderson, L. F., Tomten, H., Haggarty, P., Lovo, A., & Hustvedt, B. (2003). Validation of 

energy intake estimated from a food frequency questionnaire: a doubly-labelled water 

study. European Journal of Clinical Nutrition, 57, 279-284. 

Appel, L. J., Brands, M. W., Daniels, S. R., Karanja, N., Elmer, P. J., & Sacks, F. M. (2006). 

Dietary approaches to prevent and treat hypertension: A scientific statement from the 

American Heart Association. Hypertension, 47, 296-308. 

Appel, L. J., Sacks, F. M., Carey, V. J., Obarzanek, E., Swain, J. F., Miller, E. R., et al. (2005). 

Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and 

serum lipids. Journal of the American Medical Association, 294(12), 2455-2464. 

Arcaro, G., Cretti, A., Balzano, S., Lechi, A., Muggeo, M., Bonora, E., et al. (2002). Insulin 

causes endothelial dysfunction in humans: Sites and mechanisms. Circulation, 105, 576-

582. 

Arcaro, G., Zamboni, M., Rossi, L., Turcato, E., Covi, G., Armellini, F., et al. (1999). Body fat 

distribution predicts the degree of endothelial dysfunction in uncomplicated obesity. 

International Journal of Obesity and Related Metabolic Disorders, 23, 936-924. 

Arnett, D. K., McGovern, P. G., Jacobs, D. R., Shahar, E., Duval, S., Blackburn, H., et al. 

(2002). Fifteen-year trends in cardiovascular risk factors (1980-1982 through 1995-

1997): The Minnesota Heart Study. American Journal of Epidemiology, 156, 929-935. 



 

 

151
Barlow, C. E., LaMonte, M. J., Fitzgerald, S. J., Kampert, J. B., Perrin, J. L., & Blair, S. N. 

(2006). Cardiorespiratory fitness is an independent predictor of hypertension incidence 

among initially normotensive healthy women. American Journal of Epidemiology, 163, 

142-150. 

Beevers, G., Lip, G., & O'Brien, E. (2001). ACB of hypertension: The pathophysiology of 

hypertension. British Medical Journal, 322, 912-916. 

Behall, K. M., Scholfield, D. J., & Hallfrisch, J. (2006). Whole-grain diets reduce blood pressure 

in mildly hypercholesterolemic men and women. Journal of the American Dietetic 

Association, 106, 1445-1449. 

Benowitz, N. L., Hansson, A., & Jacob III, P. (2002). Cardiovascular effects of nasal and 

transdermal nicotine and cigarette smoking. Hypertension, 39, 1107-1112. 

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 

238-246. 

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of 

covariance structures. Psychological Bulletin, 88, 588-606. 

Bingham, S. A. (2002). Biomarkers in nutritional epidemiology. Public Health Nutrition, 5, 821-

827. 

BLS. (2004). Occupation report: 2004 median annual earnings.    

Brouwer, I., Dusseldorp, M., West, C., Meyboom, S., Thomas, C., Duran, M., et al. (1999). 

Dietary folate from vegetables and citrus fruit decreases plasma homocysteine 

concentration in humans in a dietary controlled trial. The Journal of Nutrition, 129, 1135-

1139. 



 152
 
Brown, A. A., & Hu, F. B. (2001). Dietary modulation of endothelial function: Implications for 

cardiovascular disease. American Journal of Clinical Nutrition, 73, 673-686. 

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen 

& J. S. Long (Eds.), Testing stuctural equation models (pp. 136-162). Newbury Park, 

CA: Sage. 

Campia, U., Sullivan, G., Bryant, M. B., Waclawiw, M. A., Quon, M. J., & Panza, J. A. (2004). 

Insulin impairs endothelium-dependent vasodilation independent of insulin sensitivity or 

lipid profile. American Journal of Physiology: Heart and Circulatory Physiology, 286, 

H76-H82. 

Carnethon, M. R., Gulati, M., & Greenland, P. (2005). Prevalence and cardiovascular disease 

correlates of low cardiorespiratory fitness in adolescents and adults. Journal of the 

American Medical Association, 294, 2981-2988. 

Casperson, C., Powell, K., & Christenson, G. (1985). Physical activity, exercise, and physical 

fitness: Definitions and distinctions for health-related research. Public Health Reports, 

100, 126-131. 

CDC. (1999). Decline in deaths from heart disease and stroke, United States, 1900-1999. 

Morbidity and Mortality Weekly Report (MMWR), 48, 649-656. 

Cersosimo, E., & DeFronzo, R. A. (2006). Insulin resistance and endothelial dysfunction: The 

road map to cardiovascular disease Diabetes/Metabolism Research and Reviews, 22, 423-

436. 

Cheitlin, M. D. (2003). Cardiovascular physiology -- changes with aging. The American Journal 

of Cardiology, 12, 9-13. 



 

 

153
Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., et 

al. (2003). Seventh report of the Joint National Committee on Prevention, Detection, 

Evaluation, and Treatment of blood pressure. Hypertension, 42, 1206-1252. 

Chudek, J., & Wiecek, A. (2006). Adipose tissue, inflammation, and endothelial dysfunction. 

Pharmacological Reports, 58, suppl., 81-88. 

Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic 

Press. 

Contento, I. R., Randell, J. S., & Basch, C. E. (2002). Review and analysis of evaluation 

measures used in nutrition education intervention research. Journal of Nutrition 

Education and Behaviora, 34, 2-25. 

Cook, N. R., Cutler, J. A., Obarzanek, E., Buring, J. E., Rexrode, K. M., Kumanyika, S. K., et al. 

(2007). Long term effects of dietary sodium reduction on cardiovascular disease 

outcomes: Observational follow-up of the trials of hypertension prevention (TOHP). 

British Medical Journal, 334, 885-893. 

Cortes, B., Nunez, I., Cofan, M., Gilabert, R., Perez-Heras, A., Casals, E., et al. (2006). Acute 

effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial 

function. Journal of the American College of Cardiology, 48, 1666-1671. 

Dvorak, R. V., Tchernof, A., Starling, R. D., Ades, P. A., DiPietro, L., & Poehlman, E. T. 

(2000). Respiratory fitness, free living physical activity, and cardiovascular disease risk 

in older individuals: A doubly labeled water study. The Journal of Clinical 

Endocrinology and Metabolism, 85, 957-963. 



 154
 
Elder, D. A., Prigeon, R. L., Wadwa, R. P., Dolan, L. M., & D'Alessio, D. A. (2006). B-cell 

function, insulin sensitivity, and glucose tolerance in obese diabetic and nondiabetic 

adolescents and young adults. Journal of Clinical Endocrinology and Metabolism, 91, 

185-191. 

Emmons, K. M., Abrams, D. B., Marshall, R., Marcus, B. H., Kane, M., Novotny, T. E., et al. 

(1994). An evaluation of the relationship between self-report and biochemical measures 

of environmental tobacco smoke exposure. Preventive Medicine, 23, 35-39. 

Fain, J. N. (2006). Release of interleukins and other inflammatory cytokines by human adipose 

tissue is enhanced in obesity and primarily due to the nonfat cells. Vitamins and 

Hormones, 74, 443-477. 

Ferreira, A. C., Peter, A. A., Mendez, A. J., Jimenez, J. J., Mauro, L. M., Chirinos, J. A., et al. 

(2004). Postprandial hypertriglyceridemia increases circulating levels of endothelial cell 

microparticles. Circulation, 110, 3599-3606. 

Fields, L. E., Burt, V. L., Cutler, J. A., Hughes, J., Roccella, E. J., & Sorlie, P. (2004). The 

burden of adult hypertension in the United States 1999 to 2000: A rising tide. 

Hypertension, 44, 398-404. 

Flegal, K. M., Carroll, M. D., Ogden, C. L., & Johnson, C. L. (2002). Prevalence and trends in 

obesity among US adults, 1999-2000. Journal of the American Medical Association, 288, 

1723-1727. 

Foster, K. R., & Lukaski, H. C. (1996). Whole-body impedance - what does it measure? 

American Journal of Clinical Nutrition, 64 (suppl), 388S-396S. 



 

 

155
Gong, Z., Agalliu, I., Lin, D., Stanford, J., & Kristal, A. (2007). Obesity is associated with 

increased risks of prostate cancer metastasis and death after initial cancer diagnosis in 

middle-aged men. Cancer, 109, 1192-1202. 

Graham, J. W., Cumsille, P. E., & Elek-Fisk, E. (2003). Methods for handling missing data. In J. 

A. Schinka & W. F. Velicer (Eds.), Research methods in psychology: Vol. 2 Handbook of 

psychology (pp. 87-114). New York: Wiley. 

Graham, J. W., Hofer, S. M., & Piccinin, A. M. (1994). Analysis with missing data in drug 

prevention research. In L. M. Collins & L. Seitz (Eds.), Advances in data analysis for 

prevention intervention research (pp. 13-63). Washington, D.C.: National Institute on 

Drug Abuse. 

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data 

designs in psychological research. Psychological Methods, 11(4), 323-343. 

Gregg, E. W., Cheng, Y. J., Cadwell, B. L., Imperatore, G., Williams, D. E., Flegal, K. M., et al. 

(2005). Secular trends in cardiovascular disease risk factors according to body mass 

index in US adults. Journal of the American Medical Association, 293, 1868-1874. 

Guo, S. S., Chumlea, W. C., & Cockram, D. B. (1996). Use of statistical methods to estimate 

body composition. American Journal of Clinical Nutrition, 64(suppl), 428S-435S. 

Haider, A. W., Larson, M. G., Franklin, S. S., & Levy, D. (2003). Systolic blood pressure, 

diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart 

failure in the Framingham Heart Study. Annals of Internal Medicine, 138, 10-16. 



 156
 
Hartung, G. H., Krock, L. P., Crandall, C. G., Bisson, R. U., & Myhre, L. G. (1993). Prediction 

of maximal oxygen uptake from submaximal exercise testing in aerobically fit and nonfit 

men. Aviation, Space, and Environmental Medicine, 64, 735-740. 

Heyward, V. H., & Wagner, D. R. (2004). Applied body composition assessment (Second ed.). 

Champaign, IL: Human Kinetics. 

Houtkooper, L. B., Lohman, T. G., Going, S. B., & Howell, W. H. (1996). Why bioelectrical 

impedance analysis should be used for estimating adiposity. American Journal of Clinical 

Nutrition, 64(suppl), 436S-448S. 

Hu, X., Juneja, S., Maihle, N., & Cleary, M. (2002). Leptin -- a growth factor in normal and 

malignant breast cells and for normal mammary gland development. Journal of the 

National Cancer Institute, 94, 1704-1711. 

Ishikawa-Takata, K., Ohta, T., & Tanaka, H. (2003). How much exercise is required to reduce 

blood pressure in essential hypertensives: A dose-response study. American Journal of 

Hypertension, 16, 629-633. 

Jakulj, F., Zernicke, K., Bacon, S. L., van Wielingen, L. E., Key, B. L., West, S. G., et al. (2007). 

A high-fat meal increases cardiovascular reactivity to psychological stress in healthy 

young adults. The Journal of Nutrition, 137, 935-939. 

Johnson, J. G., Cohen, P., Kasen, S., & Brook, J. S. (2002). Eating disorders during adolescence 

and the risk for physical and mental disorders during early adulthood. Archives of 

General Psychiatry, 59, 545-552. 



 

 

157
Kant, A. K., & Graubard, B. I. (2005). Energy density of diets reported by American adults: 

Association with food group intake, nutrient intake, and body weight. International 

Journal of Obesity, 29, 950-956. 

Kawano, Y., Matsuoka, H., Takishita, S., & Omae, T. (1998). Effects of magnesium 

supplementation in hypertensive patients: Assessment by office, home, and ambulatory 

blood pressures. Hypertension, 32, 260-265. 

Kohlmeier, L., Mendez, M., McDuffie, J., & Miller, M. (1997). Computer-assisted self-

interviewing: a multimedia approach to dietary assessment. American Journal of Clinical 

Nutrition, 65, suppl., 1275S-1281S. 

Kotler, D. P., Burastero, S., Wang, J., & Pierson Jr., R. N. (1996). Prediction of body cell mass, 

fat-free mass, and total body water with bioelectrical impedance analysis: Effects of race, 

sex, and disease. American Journal of Clinical Nutrition, 64(suppl), 489S-497S. 

Kyle, U. G., Genton, L., Karsegard, L., Slosman, D. O., & Pichard, C. (2001). Single prediction 

equation for bioelectrical impedance analysis in adults aged 20-94 years. Nutrition, 17, 

248-253. 

Lapu-Bula, R., & Ofili, E. (2007). From hypertension to heart failure: Role of nitric oxide-

mediated endothelial dysfunction and emerging insighs from myocardial contrast 

echocardiography. American Journal of Cardiology, 99, 7D-14D. 

Lee, C. D., Blair, S. N., & Jackson, A. S. (1999). Cardiorespiratory fitness, body composition, 

and all-cause and cardiovascular disease mortality in men. American Journal of Clinical 

Nutrition, 69, 373-380. 



 158
 
Lewington, S., Clarke, R., Qizilbash, N., Peto, R., Collins, R., & Collaboration, P. S. (2002). 

Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of 

individual data for one million adults in 61 prospective studies. The Lancet, 360, 1903-

1913. 

Lind, P., Engstrom, G., Stavenow, L., Janzon, L., Lindgarde, F., & Hedblad, B. (2004). Risk of 

myocardial infarction and stroke in smokers is related to plasma levels of inflammation-

sensitive proteins. Ateriosclerosis, Thrombosis, and Vascular Biology, 24, 577-582. 

Liszka, H. A., Mainous, A. G., King, D. E., Everett, C. J., & Egan, B. M. (2005). 

Prehypertension and cardiovascular morbidity. Annals of Family Medicine, 3, 294-299. 

Mahmud, A., & Feely, J. (2003). Effect of smoking on arterial stiffness and pulse pressure 

amplification. Hypertension, 41, 183-187. 

Mangels, A., Messina, V., & Melina, V. (2003). Position of the American Dietetic Assosication 

and Dieticians of Canada: Vegetarian diets. Journal of the American Dietetic Association, 

103, 748-765. 

Marshall, J. R. (2003). Methodologic and statistical considerations regarding use of biomarkers 

of nutritional exposure in epidemiology. Journal of Nutrition, 133, 881S-887S. 

McKay, D. L., Perrone, G., Rasmussen, H., Dallal, G., & Blumberg, J. B. (2000). 

Multivitamin/mineral supplementation improves plasma B-vitamin status and 

homocysteine concentration in healthy older adults consuming a folate-fortified diet. 

Journal of Nutrition, 130, 3090-3096. 

Mei, Z., Grummer-Strawn, L. M., Pietrobelli, A., Goulding, A., Goran, M. I., & Dietz, W. H. 

(2002). Validity of body mass index compared with other body-composition screening 



 

 

159
indexes for the assessment of body fatness in children and adolescents. American 

Journal of Clinical Nutrition, 75, 978-985. 

Melanson, E. L., Knoll, J. R., Bell, M. L., Donahoo, W. T., Hill, J. O., Nysse, L. J., et al. (2004). 

Commercially available pedometers: considerations for accurate step counting. 

Preventive Medicine, 39, 361-368. 

Mensah, G. A., & Brown, D. W. (2007). An overview of cardiovascular disease burden in the 

United States. Health Affairs, 26, 38-48. 

Mensah, G. A., Hokdad, A. H., Ford, E. S., Greenlund, K. J., & Croft, J. B. (2005). State of 

disparities in cardiovascular health in the United States. Circulation, 111, 1233-1241. 

Mizia-Stec, K. (2006). Cytokines and adhesive molecules in detection of endothelial 

dysfunction. Pharmacological Reports, 58, suppl., 21-32. 

Mohamed-Ali, V., Goodrick, S., Bulmer, K., Holly, J., Yudkin, J. S., & Coppack, S. W. (1999). 

Production of soluble tumor necrosis factor receptors by human subcutaneous adipose 

tissue in vivo. American Journal of Physiology 277, E971-E975. 

Munter, P., He, J., Cutler, J. A., Wildman, R. P., & Whelton, P. K. (2004). Trends in blood 

pressure among children and adolescents. Journal of the American Medical Association, 

291, 2107-2113. 

Muthen, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are 

not missing completely at random. Psychometrika, 52, 431-462. 

Myers, J., Kaykha, A., George, S., Abella, J., Zaheer, N., Lear, S., et al. (2004). Fitness versus 

physical activity patterns in predicting mortality in men. The American Journal of 

Medicine, 117, 912-918. 



 160
 
Natarajan, S., & Nietert, P. J. (2003). National trends in screening, prevalence, and treatment of 

cardiovascular risk factors. Preventive Medicine, 36, 389-397. 

NCHS. (2000). NHANES: Physician Examination Procedures Manual. Hyattsville: MD: 

National Center for Health Statistics. 

NCHS. (2001a). NHANES laboratory procedures manual: Part I. Hyattsville, MD: National 

Center for Health Statistics. 

NCHS. (2001b). NHANES laboratory procedures manual: Part II. Hyattsville, MD: National 

Center for Health Statistics. 

NCHS. (2002a). NHANES anthropometry procedures manual. Hyattsville, MD: National Center 

for Health Statistics. 

NCHS. (2002b). NHANES body composition procedures manual. Hyattsville, MD: National 

Center for Health Statistics. 

NCHS. (2002c). NHANES MEC in-person dietary interview procedures manual. Hyattsville, 

MD: National Center for Health Statistics. 

NCHS. (2003). NHANES 1999-2000 Data Release: Dietary Interview Component, Total 

Nutrients Intakes File. Hyattsville: MD: National Center for Health Statistics. 

NCHS. (2004a). NHANES 2001-2002 Data Release: Dietary Interview Component, Total 

Nutrient Intakes Files. Hyattsville: MD: National Center for Health Statistics. 

NCHS. (2004b). NHANES cardiovascular fitness procedures manual. Hyattsville, MD: National 

Center for Health Statistics. 

Nicholls, S., Lundman, P., Harmer, J., Cutri, B., Griffiths, K., Rye, K., et al. (2006). 

Consumption of saturated fat impairs the anti-inflammatory properties of high-density 



 

 

161
lipoproteins and endothelial function. Journal of the American College of Cardiology, 

48, 715-720. 

Nichols, W. W. (2005). Clinical measurement of arterial stiffness obtained from noninvasive 

pressure waveforms. American Journal of Hypertension, 18, 3S-10S. 

Noonan, V., & Dean, E. (2001). Submaximal exercise testing: Clinical application and 

interpretation. Physical Therapy, 80, 782-807. 

Osei, K., Rhinesmith, S., Gaillard, T., & Schuster, D. (2004). Impaired insulin sensitivity, insulin 

secretion, and glucose effectiveness predict future development of impaired glucose 

tolerance and type 2 diabetes in pre-diabetic African Americans. Diabetes Care, 27, 

1439-1446. 

Pastor-Barriuso, R., Banegas, J. R., Damian, J., Appel, L. J., & Guallar, E. (2003). Systolic blood 

pressure, diastolic blood pressure, and pulse pressure: An evaluation of their joint effect 

on mortality. Annals of Internal Medicine, 139, 731-739. 

Pate, R., Wang, C., Dowda, M., Farrell, S., & O'Neill, J. (2006). Cardiorespiratory fitness levels 

among US youth 12 to 19 years of age: Findings from the 1999-2002 National Health and 

Nutrition Examination Survey. Archives of Pediatric and Adolescent Medicine, 160, 

1005-1012. 

Patterson, P. (2000). Reliability, validity, and methodological responses to the assessment of 

physical activity via self-report. Research Quarterly for Exercise and Sport, 71, 15-20. 

Perez-Stable, E. J., Benowitz, N. L., & Marin, G. (1995). Is serum cotinine a better measure of 

cigarette smoking than self-report? Preventive Medicine, 24, 171-179. 



 162
 
Peterson, M. J., Czerwinski, S. A., & Siervogel, R. M. (2003). Development and validation of 

skinfold-thickness prediction equations with a 4-compartment model. American Journal 

of Clinical Nutrition, 77, 1186-1191. 

Piers, L. S., Soares, M. J., Frandsen, S. L., & O'Dea, K. (2000). Indirect estimates of body 

composition are useful for groups but unreliable in individuals International Journal of 

Obesity, 24, 1145-1152. 

Plantinga, Y., Ghiadoni, L., Magagna, A., Giannarelli, C., Franzone, F., Taddei, S., et al. (2007). 

Supplementation with vitamins C and E improves arterial stiffness and endothelial 

function in essential hypertensive patients. American Journal of Hypertension, 20, 392-

297. 

Qureshi, A. I., Suri, M. F., Kirmani, J. F., & Divani, A. A. (2005). Prevalence and trends of 

prehypertension and hypertension in the United States: National Health and Nutrition 

Examination Surveys 1976 to 2000. Medical Science Monitor, 11, CR403-409. 

Rogers, W. M., & Schmitt, N. (2004). Parameter recovery and model fit using multidimensional 

composites: A comparison of four empirical parceling algorithms. Multivariate 

Behavioral Research, 3, 379-412. 

Sallis, J. F., & Saelens, B. E. (2000). Assessment of physical activity by self-report: Status, 

limitations, and future directions. Research Quarterly for Exercise and Sport, 71, 1-14. 

Sampei, M. A., Novo, N. F., Juliano, Y., & Sigulem, D. M. (2001). Comparison of the body 

mass index to other methods of body fat evaluation in ethnic Japanese and Caucasian 

adolescent girls. International Journal of Obesity, 25, 400-408. 



 

 

163
Silverthorn, D. U. (2001). Human physiology: An integrated approach, 2nd ed. . Upper 

Saddle River, NJ: Prentice-Hall. 

Singhal, A. (2005). Endothelial dysfunction: Role in obesity-related disorders and the early 

origins of CVD. Proceedings of the Nutrition Society, 64, 15-22. 

Staessen, J. A., Gasowski, J., Wang, J. G., Thijs, L., Hond, E. D., Boissel, J., et al. (2000). Risks 

of untreated and treated isolated hypertension in the elderly: meta-analysis of outcome 

trials. The Lancet, 355, 865-872. 

Staffileno, B. A., Braun, L. T., & Rosenson, R. S. (2001). The accumulative effects of physical 

activity in hypertensive, post-menopausal women. Journal of Cardiovascular Risk, 8, 

283-290. 

Steiger, J. H., & Lind, J. M. (1980). Statistically based tests for the number of common factors. 

Paper presented at the the annual meeting of the Psychometric Society. 

Steinberger, J., Jacobs, D. R., Raatz, S., Moran, A., Hong, C., & Sinaiko, A. R. (2005). 

Comparison of body fatness measurements by BMI and skinfolds vs dual energy x-ray 

absorptiometry and their relation to cardiovascular risk factors in adolescents. 

International Journal of Obesity, 29, 1346-1352. 

Sternfeld, B., Sidney, S., Jacobs, D. R., Sadler, M. C., Haskell, W. L., & Schreiner, P. J. (1999). 

Seven-year changes in physical fitness, physical activity, and lipid profile in the 

CARDIA study. Annals of Epidemiology, 9, 25-33. 

Streppel, M., Arends, L., van't Veer, P., Grobbee, D., & Geleijnse, J. (2005). Dietary fiber and 

blood pressure: A meta-analysis of randomized placebo-controlled trials. Archives of 

Internal Medicine, 165, 150-156. 



 164
 
Streppel, M., Boshuizen, H. C., Ocke, M. C., Kok, F. J., & Kromhout, D. (2007). Mortality and 

life expectancy in relation to long-term cigarette, cigar, and pipe smoking: The Zutphen 

Study. Tobacco Control, 16, 107-113. 

Subar, A. F., Kipnis, V., Troiano, R. P., Midthune, D., Schoeller, D. A., Bingham, S., et al. 

(2003). Using intake biomarkers to evaluate the extent of dietary misreporting in a large 

sample of adults: The OPEN Study. American Journal of Epidemiology, 158, 1-13. 

Sun, S. S., Chumlea, W. C., Heymsfield, S. B., Lukaski, H. C., Schoeller, D., Friedl, K., et al. 

(2003). Development of bioelectrical impedance analysis prediction equations for body 

composition with the use of a multicomponent model for use in epidemioloigc surveys. 

American Journal of Clinical Nutrition, 77, 331-340. 

Symons, J. D., Rutledge, J. C., Simonsen, U., & Pattathu, R. A. (2006). Vascular dysfunction 

produced by hyperhomocysteinemia is more severe in the presence of low folate. 

American Journal of Physiology: Heart and Circulatory Physiology, 290, H181-H191. 

Talbot, L. A., Metter, E. J., & Fleg, J. L. (2000). Leisure-time physical activities and their 

relationship to cardiorespiratory fitness in healthy men and women 18-95 years old. 

Medicine and Science in Sports and Exercise, 32, 417-425. 

Tchernof, A., Nolan, A., Sites, C. K., Ades, P. A., & Poehlman, E. T. (2002). Weight loss 

reduces C-reactive protein levels in obese postmenopausal women. Circulation, 105, 

564-569. 

Teo, K. K., Ounpuu, S., Hawken, S., Pandey, M. R., Valentin, V., Hunt, D., et al. (2006). 

Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART 

study: A case-control study. The Lancet, 368, 647-658. 



 

 

165
Thompson, D. R., Obarzanek, E., Franko, D. L., Barton, B. A., Morrison, J., Biro, F. M., et 

al. (2007). Childhood overweight and cardiovascular disease risk factors: The National 

Heart, Lung, and Blood Institute Growth and Health Study. Journal of Pediatrics, 150, 

18-25. 

Tooze, J. A., Subar, A. F., Thompson, F. E., Troiano, R. P., Schatzkin, A., & Kipnis, V. (2004). 

Psychosocial predictors of energy underreporting in a large doubly labeled water study. 

American Journal of Clinical Nutrition, 79, 795-804. 

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor 

analysis. Psychometrika, 38, 1-10. 

Tudor-Locke, C. E., & Myers, A. M. (2001). Challenges and opportunities for measuring 

physical activity in sedentary adults. Sports Medicine, 31, 91-100. 

USDHHS. (2002). Physical activity and fitness. In Healthy People 2010: Objectives for 

improving health, 2nd ed.  . Washington, DC: U.S. Government Printing Office  

Vartiainen, E., Seppala, T., Lillsunde, P., & Puska, P. (2002). Validation of self reported 

smoking by serum cotinine measurement in a community-based study. Journal of 

Epidemiology and Community Health, 56, 167-170. 

Vasan, R. S., Beiser, A., Seshadri, S., Larson, M. G., Kannel, W. B., D'Agostino, R. B., et al. 

(2002). Residual lifetime risk for developing hypertension in middle-aged women and 

men: The Framingham Heart Study. Journal of the American Medical Association, 

287(8), 1003-1010. 

Vogel, R. A., Corretti, M. C., & Plotnick, G. D. (1997). Effect of a single high-fat meal on 

endothelial function in healthy subjects. American Journal of Cardiology, 79, 350-354. 



 166
 
Wagenknecht, L. E., Burke, G. L., Perkins, L. L., Haley, N. J., & Friedman, G. D. (1992). 

Misclassification of smoking status in the CARDIA study: A comparison of self-report 

with serum cotinine levels. American Journal of Public Health, 82(1), 33-36. 

Wallenfeldt, K., Hulthe, J., Bokemark, L., Wikstrand, J., & Fagerberg, B. (2001). Carotid and 

femoral atherosclerosis, cardiovascular risk factors, and C-reactive protein in relation to 

smokeless tobacco use or smoking in 58-year-old men. Journal of Internal Medicine, 

250, 492-501. 

Warnecke, R. B., Johnson, T. P., Chavez, N., Sudman, S., O'Rourke, D. P., Lacey, L., et al. 

(1997). Improving question wording in surveys of culturally diverse populations. Annals 

of Epidemiology, 7, 334-342. 

Weickert, M. O., Mohlig, M., Schofl, C., Arafat, A. M., Otto, B., Viehoff, H., et al. (2006). 

Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. 

Diabetes Care, 29, 775-780. 

West, S. G. (2001). Effect of diet on vascular reactivity : An emerging marker for vascular risk. 

Current Atherosclerosis Reports, 3, 446-455. 

Wilsgaard, T., Schirmer, H., & Arnesen, E. (2000). Impact of body weight on blood pressure 

with a focus on sex differences. Archives of Internal Medicine, 160, 2847-2853. 

Wolever, T., Campbell, J. E., Geleva, D., & Anderson, G. H. (2004). High-fiber cereal reduces 

postprandial insulin responses in hyperinsulinemic but not normoinsulinemic subjects. 

Diabetes Care, 27, 1281-1285. 



 

 

167
Wong, N. D., Pio, J. R., Franklin, S. S., L'Italien, G. J., Kamath, T. V., & Williams, G. R. 

(2003). Preventing coronary events by optimal control of blood pressure and lipids in 

patients with the metabolic syndrome. American Journal of Cardiology, 91, 1421-1426. 

Wood, F. G. (2002). Ethnic differences in exercise among adults with diabetes. Western Journal 

of Nursing Research, 24, 502-515. 

Yamani, M. H., Wells, L., Massie, B. M., Ammon, S., Der, E., & Prouty, K. (1995). Relation of 

the nine-minute self-powered treadmill test to maximal exercise capacity and skeletal 

muscle function in patients with congestive heart failure. American Journal of 

Cardiology, 76, 788-792. 

Zevin, S., Saunders, S., Gourlay, S. G., Jacob III, P., & Benowitz, N. L. (2001). Cardiovascular 

effects of carbon monoxide and cigarette smoking. Journal of the American College of 

Cardiology, 38, 1633-1638. 

Zhou, M., Kosaka, H., & Yoneyama, H. (2000). Potassium augments vascular relaxation 

mediated by nitric oxide in the carotid arteries of hypertensive Dahl rats. American 

Journal of Hypertension, 13, 666-672. 



Vita 

Allison Elizabeth Olchowski 
 

Department of Biobehavioral Health 
The Pennsylvania State University 

315 East Health and Human Development  
University Park, Pennsylvania 16802-6509  

 
 
 
EDUCATION 
 
• Ph.D., Biobehavioral Health, 2007 
The Pennsylvania State University, State College, PA 
Research mentor: Dr. John W. Graham 
 
• M.S., Health Policy & Administration, 2004 
The Pennsylvania State University, State College, PA 
Research mentor: Dr. E. Michael Foster 
 
• B.S., Biology, 2002 (Cum laude) 
Mary Washington College, Fredericksburg, VA 
 

 
 PEER-REVIEWED PUBLICATIONS 

 
• Olchowski, A.E., Foster, E.M., & Webster-Stratton, C. (2007). Examining the differential cost-
effectiveness of behavioral health interventions: An assessment of the Incredible Years Series. Journal of 
Early and Intensive Behavioral Intervention, 4(1), 284-304. 
 
• Graham, J.W., Taylor, B.J., Olchowski, A.E., & Cumsille, P.E. (2006). Planned missing data designs in 
psychological research. Psychological Methods, 11(4), 323-343. 
 
• Olchowski, A.E., Graham, J.W., Beverly, E.A., Dupkanick, C. Cigarette smoking, physical activity, and 
the health status of college students. Forthcoming in the Journal of Applied Social Psychology.  
 
• Foster, E.M., Olchowski, A.E., & Webster-Stratton, C. Is stacking intervention components cost-
effective? An Analysis of the Incredible Years Program. Forthcoming in the Journal of the American 
Academy of Child and Adolescent Psychiatry.  
 
• Graham, J.W., Olchowski, A.E., & Gilreath, T. How many imputations are really needed? Some fine 
tuning of MI theory. Forthcoming in Prevention Science.  
 


