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Abstract

SRAM and DRAM have been used to build our memory systems for decades,
but their scalability is facing more and more challenges in terms of leakage power
and density. Meanwhile, new emerging non-volatile memory technologies (NVMs)
are being explored, such as Phase-Change RAM (PCM or PCRAM), Spin-Torque
Transfer RAM (STTRAM or MRAM), and Resistive RAM (ReRAM). They have
common advantages of high density, low standby power and non-volatility. It
could bring benefits by using NVMs to replace SRAM and DRAM in our memory
systems.

However, NVM technologies still have some disadvantages. First, the NVM
write operation is much more expensive in terms of longer latency and higher
energy. It causes negative impacts on the system performance and energy efficiency.
Second, NVMs usually have limited write endurance, which brings challenges on
system reliability. Last but not least, the size of NVM sense amplifier is larger, and
how to maintain the area utilization is an issue. All of these NVM characteristics
are caused by their basic mechanisms, and they are very difficult to be improved
by changing cell designs. Therefore, new architecture techniques are necessary for
mitigating these issues and building efficient and reliable systems with NVMs.

In this dissertation, NVMs are evaluated as alternatives of traditional mem-
ory technologies for different memory levels. We explore NVMs as main memory
systems, on-chip caches and GPGPU register files. We analyze their impact on
system level and propose several techniques on architecture level to mitigate their
disadvantages. We believe these techniques make NVMs more attractive in the
future computer systems.
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Chapter 1
Introduction

In this chapter, we first introduce the opportunities and the challenges of using

emerging non-volatile memories as different memory subsystems, and then we give

the organization of the remaining chapters.

1.1 Opportunities and Challenges of Emerging

Non-volatile Memories

While Moore’s law is still offering smaller and faster transistors, the improvement

rate of microprocessor has exceeded the one of memory. The integration of multiple

cores on a single die accentuates the already daunting memory-wall problem. The

memory hierarchy design has to catch up and tremendously scale in performance,

energy-efficiency, and storage capacity to sustain the processing demands of a wide

variety of next-generation applications. Traditionally, SRAM and DRAM are the

common technologies to build on-chip caches and main memory. However, they

are facing constraints of cell area and leakage energy consumption with technology

scaling.

Recently, some new emerging non-volatile memory (NVM) technologies, such as

Phase-Change RAM (PCM), Spin-Torque Transfer RAM (STTRAM or MRAM),

and Resistive RAM (ReRAM), have been explored. Compared to SRAM and

DRAM, NVMs have common advantages of high density, low standby power, better

scalability, and non-volatility. Thus, it is attractive to replace SRAM/DRAM with
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Table 1.1. Characteristics of different memory technologies.

SRAM DRAM PCM STTRAM ReRAM

Cell Area (F2) 50-200 6 4-10 6-20 4
Read Power Low Low Low Low Low
Write Power Low Low High High High
Other Power Leakage Current Refresh Power None None None

Write Latency Similar to Read Similar to Read Long Long Long
Write Endurance Unlimited Unlimited 108 1012-1015 1011

NVMs given the potential energy and cost saving opportunities. Consistent with

this expectation, such a technology shift is happening. For example, PCM-based

storage [2, 3, 4] and main memory [5, 6, 7, 8, 9, 10, 11, 12, 13] have already

been investigated, STT-RAM based on-chip caches [14, 15, 16, 17, 18] have also

been heavily studied. On the industry side, HP and Hynix plan to use ReRAM

products as flash replacement and later for DRAM/SRAM as well. In addition,

Toshiba revealed their plan in using STT-RAM to replace a 512KB SRAM L2

cache for low power purpose [19]. Another example is that replacing DRAM with

STT-RAM in data centers can reduce power by up to 75% [20].

However, adopting NVMs in practical products is not straightforward. As listed

in Table 1.1, although NVMs usually have smaller cell area and zero standby leak-

age power compared to SRAM/DRAM, they have common disadvantages, which

are limited write endurance and expensive write operations. These disadvantages

of NVMs bring negative impacts on system performance, energy efficiency, and

system reliability. Worse, the impact might be different when NVMs are adopted

in different memory hierarchy levels. Therefore, we need to evaluate and address

these issues carefully.

1.1.1 Exploring NVMs as Main Memories

Main memories consume a significant portion of power in computing devices.

For example, the DRAM in a smartphone can consume up to 34.5% of the to-

tal power [21]. How to improve the memory subsystem power efficiency is a key

question in designing future devices. To address this, DRAM power reduction tech-

niques have been proposed [22, 23, 24, 25, 26]. However, DRAM is still a volatile

memory technology and needs refresh. Previous work [27] shows that DRAM re-
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fresh could contribute as much as 20% of total DRAM power, and this refresh

overhead will become larger along the DRAM scaling roadmap [28, 29]. Thus, it

is the time to explore alternative memory technologies.

NVMs, such as PCM and STT-RAM, are promising candidates for main mem-

ory systems. They have many attractive features including non-volatility, negligible

standby leakage, fast read access, high cell density, and superior scalability [30].

However, enjoying these benefits is not free. First, NVMs require large write en-

ergy. For example, PCM consumes 2.2 times more energy than DRAM does [6].

Such high write energy offsets the energy saving from NVM’s small leakage power.

Second, NVM main memory usually has smaller page size. It lowers memory page

hit ratio, and thus the performance of some workload might be degraded. Last but

not least, NVM chip internal structure is not compatible with DRAM interfaces.

This compatibility is not only highly required for a successful NVM early adop-

tion, but also critical to enable a tiered memory system using refresh-free NVM

and high-performance DRAM [31, 5, 32]. Everspin’s effort [33] to implement a

DDR3-compatible STT-RAM is an example to meet such request. Therefore, it is

necessary to design an interface-compatible high performance and low power NVM

main memory architecture.

1.1.2 Exploring NVMs as On-Chip Caches

Modern chip multiprocessors (CMP) designs tend to use more on-chip cache hi-

erarchy levels and a larger capacity at each level. Today, SRAM and embedded

DRAM (eDRAM) are the common technologies to build on-chip caches. However,

neither SRAM nor eDRAM is scalable due to leakage power or cell density con-

cern. NVMs provides benefits in terms of energy and cost savings (via cell size

reduction), which makes on-chip NVM-based cache is an attractive option. For

example, a 4Mb ReRAM macro [34] can achieve a cell size of 9.5 F2 (15X denser

than SRAM) and a random read/write latency of 7.2 ns (comparable to SRAM

caches with same capacity). In addition, non-volatility can eliminate the standby

leakage energy, which can be as high as 80% of the total energy consumption for

an SRAM L2 cache [35].

However, it is still challenging to build NVM-based on-chip caches: caches han-
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dle much more writes than storage and main memory do. The first issue is NVM

only has a limited write endurance. For example, PCM can only sustain 108 writes

before experiencing frequent stuck-at-1 or stuck-at-0 errors [8, 10, 9, 11, 12, 13].

The write endurance of ReRAM is much improved but is still limited at 1011 [36].

For STTRAM, a prediction of up to 1015 write cycles is often cited, but the best

STTRAM endurance test result is less than 4×1012 cycles [37]. This problem is

further amplified by the conventional cache management policies which result in

significant non-uniformity in terms of writing to cache blocks, which would cause

heavily-written NVM blocks to fail much earlier than most other blocks and reduce

the product lifetime. Thus, a new cache management policy is needed for NVM

caches. Second, due to process imperfection, a more severe problem of NVM cache

is that there might be a portion of cells with worse quality and much shorter write

endurance. This means the actual lifetime might be much shorter than the ex-

pected one even with perfect wear leveling since the worst quality might determine

the entire cache lifetime. Thus, we need error-tolerant techniques for NVM caches.

Third, another major disadvantage of NVM is the latency and energy overhead

associated with its write operations. In particular, a long NVM write operation

might obstruct other cache accesses [38, 17], especially when multiple processes are

running in parallel. This could cause a severe performance degradation. There-

fore, a mitigation technique to minimize the write overhead is required before any

successful NVM cache design.

1.1.3 Exploring NVMs as GPGPU Register Files

GPGPUs usually have a large number of registers to hold states and contents of

all the active threads. Compared to the RF in CPUs, the RF in GPGPUs is much

larger (e.g., 2MB in total for the top-tier Fermi chip). Therefore, the area cost and

the energy consumption of RFs should be carefully evaluated in GPGPU design.

Traditionally, SRAM is used to build the RFs in GPGPUs, but it brings two

issues. First, SRAM-based RFs occupy a significant amount of chip area since

each SRAM cell has six transistors. Second, SRAM is power-unfriendly because of

its large leakage power. NVM is being studied as one of the potential alternatives

for SRAM. However, despite the potential benefits of using NVM-based GPGPU
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RFs, there are new challenges as well. NVM has similar read latency and energy

consumption compared to SRAM, but it has much longer write latency and higher

write energy. Thus, replacing SRAM RFs by NVM ones directly brings two prob-

lems: First, the GPGPU system performance is degraded significantly considering

NVM write latency is much longer than SRAM; Second, the dynamic energy con-

sumption of NVM RFs is much larger than SRAM ones because of its higher write

energy, which offsets the benefit coming from the leakage energy saving. To solve

these two issues, we need novel RF architecture designs for NVM-based GPGPU

systems.

1.2 Organization

In this dissertation, we evaluate the feasibility of adopting NVMs on different

memory levels and analyze the impact on system level. Furthermore, we propose

several techniques to mitigate the disadvantages of NVMs and make them more

attractive for practical products.

The following is the organization of the remaining chapters. Chapter 2 describes

the backgrounds of different types of NVMs and the related work. Chapter 3

and Chapter 4 explore NVMs as the main memory. In Chapter 3, we study on

multi-level cell PCM main memories, which increases memory density dramatically

but has much higher write energy consumption than the single-level cell memory.

An energy-efficient architecture is proposed to reduce the programming energy

by manipulating the data stored in PCM. In Chapter 4, we study on STTRAM

main memories. Several techniques are proposed to design an LPDDR3-compatible

high performance and low power architecture. Next, we explore NVMs as on-

chip caches. In Chapter 5, we address on the write count variation problem.

Since NVMs usually have limited write endurance, the write traffic to each cache

line needs to be balanced. A novel and low-overhead wear-levering technique is

proposed for NVM caches. In Chapter 6, we study on the inherent variation of

NVM cell’s lifetime due to process variations and propose a hard-tolerant technique

to correct hard errors and extend NVM cache lifetime. Another problem using

NVMs caches is their more expensive write operations. We propose a technique to

mitigate its impact on system performance in Chapter 7. Afterward, we evaluate
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NVMs as GPGPU register files in Chapter 8, and then propose a write-aware

NVM-based register file design, which contains two techniques to improve system

performance and reduce the expensive write overhead. At last, Chapter 9 gives

the conclusion.



Chapter 2
Background and Related Work

In this chapter, we describe the backgrounds of different types of NVMs and then

introduce the related work.

2.1 Technology Background

Several different NVM technologies are being explored, such as Phase-Change

RAM (PCM or PCRAM), Spin-Torque Transfer RAM (STTRAM or MRAM),

and Resistive RAM (ReRAM). These techniques have common advantages of high

density, low standby power and non-volatility. The backgrounds of these different

NVM types are described in this section.

2.1.1 PCM Technology

PCM (phase change memory) is based on the phase-change behavior of chalco-

genide alloys (GST). The data storage capability is achieved by the resistance

differences between the amorphous (high-resistance, RESET state) and the crys-

talline (low-resistance, SET state) phase of GST. As shown in Fig. 2.1, every PCM

cell contains one GST and one selector transistor. A small voltage is applied across

the GST to read data stored in PCM cells. Stored data bits are sensed by measur-

ing the resulting current since the SET status and the RESET status have a large

difference in their equivalent resistances.

PCMs have two major failure modes: stuck-RESET and stuck-SET [39]. Stuck-
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RESET is caused by void formation or delamination that catastrophically discon-

nects the electrical path between GST (i.e. the storage element of PCM) and

access device. Instead, stuck-SET is caused by GST aging that makes GST more

reluctant to create an amorphous phase after continuously experiencing write cy-

cles, resulting in a degradation of the PCM RESET-to-SET resistance ratio. Both

of these failure modes can be commonly observed. ITRS [40] projects that the

average PCM write endurance is around 107-108.

Bit Line 

SL 

GST 

+N +N WL 

SET State 
or 

RESET State 

Figure 2.1. The conceptual view of a PCM cell.

2.1.2 STT-RAM Technology

STT-RAM (spin-transfer torque random-access memory) is the second generation

of MRAM (Magnetic RAM). The basic storage element in STT-RAM is a mag-

netic tunnel junction (MTJ) as shown in Fig. 2.2. Each MTJ is composed of two

ferromagnetic layers. One has a fixed magnetization direction; the other has a

free one and can change its direction. The relative direction of these two layers

is used to represent a digital “0” or “1”. In STT-RAM technology, a switching

current flowing from bitline to sourceline turns the cell into parallel state “0”; a

switching current flowing from sourceline to bitline turns the cell into anti-parallel

state “1” [38, 41].

MTJ can be unreliable for two reasons: time-dependent dielectric breakdown

(TDDB) and resistance drift [42]. TDDB is an abrupt increase of junction current

owing to a short forming through the tunneling barrier. Resistance drift is a

gradual reduction of the junction resistance over time that can eventually lead to

reduced read margin. Due to these two issues, the best STTRAM endurance test

result so far is less than 4×1012 [37].
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Figure 2.2. The conceptual view of an STT-RAM cell.

2.1.3 ReRAM Technology

Unlike PCM and STTRAM that are based on electrically induced resistive switch-

ing effects, we define ReRAM as the one that involves electro- and thermochemical

effects in the resistance change of a metal/insulator/metal system. ReRAM offers

the possibility of a very high density integration consuming even lower power. As

shown in Fig. 2.3, a typical ReRAM cell is based on a solid electrolyte (e.g. ox-

ides) sandwiched by one inert electrode (e.g. Pt) and one electrochemically active

electrode (e.g. Cu or Ag). When there is a positive bias applied on the active elec-

trode, metal ions (e.g Cu+ or Ag+) are formed. These ions then migrate through

the solid electrolyte, and they are eventually discharged at the inert electrode,

which leads to a growth of dendrite and forms a highly conductive filament in the

ON state of the cell. When the applied voltage changes its polarity, an electro-

chemical dissolution of the filament takes place, and it switches the cell back to

the OFF state1.

ReRAM has different endurance failure types. One of the them is the anode

oxidation induced interface reaction [43]. High temperature, large current/power

process, and oxygen ions produced during forming/SET process cause the oxida-

tion at the anode-electrode interface. Another endurance failure mechanism is

extra vacancy attributed reset failure effect [43]. Electric field induced extra oxy-

gen vacancy generation during switching may increase the filament size or make

the filament rougher, accompanying with the reduced resistance in high-resistance

states (RHRS) and resistance in low-resistance states (RLRS) as well as the increased

1Another type of ReRAM relies on anion migration (e.g. O−) instead of ion migration, but
the mechanism is the same.
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Figure 2.3. The conceptual view of an ReRAM cell and its filament formation and
rupture.

reset voltage. Recent ReRAM prototypes demonstrate the best write endurance

ranging from 1010 [44] to 1011 [36].

2.2 Related Work

NVMs can be adopted in different memory levels, such as main memory, on-chip

caches, and even register-file. The related work on these topics are introduced in

this section.

2.2.1 NVM Main Memory

Reduce write energy overhead of NVM main memory: Recent work has

put the focuses on how to reduce the energy overheads of NVM write operations.

Data comparison write [45, 7] was proposed to eliminate redundant bit-writes

using a read-before-write operation, which can help identify such redundant bits

and cancel those redundant write operations to save energy and reduce the impact

on performance. Several data inverting schemes [46, 47] were proposed to further

reduce the number of bit-writes. To take advantage of the asymmetric RESET

and SET energy, Xu et al. [48] proposed selective-XOR operations to bias the

data value distribution. However, most previous work focused on the SLC PCM

without using the special feature of MLC PCM. Mercury [49], a fast and energy

efficient MLC architecture, is designed to mitigate the MLC overhead by adaptively

using reset-to-set or set-to-reset write schemes. Qureshi et al. [50] designed an

adaptive PCM management infrastructure to dynamically partition MLC PCM

into SLC when the memory capacity is over-provisioned. Similarly, AdaMS [51]

was designed as an adaptive MLC and SLC partitioning architecture for PCM
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file storages. Energy-aware data compression [52] was proposed to reduce the

programming energy of MLC NAND flash, in which variable-length code reduces

the total MLC programming energy, but such a sophisticated is implemented in

the software layer.

Performance Optimizations for NVM Main Memory: NVMs include

STT-RAM and PCM have been considered as scalable DRAM alternatives in some

previous work. Some work has put the focuses on how to reduce the energy over-

heads and improve the performance of PCM, such as data comparison write [45, 7],

data inverting schemes [46, 47], selective-XOR operations [48]. Lee et al. [6] pro-

posed the technique to separate sense amplifiers and row buffers in PCM-based

main memory, but unlike EarlyPA, their technique did not issue precharge com-

mands in advance to hide the latency. Meza et al. [53] also noticed the NVM

smaller page size problem. However, they treated it as an advantage in enabling

energy-efficient fine-grained row activation for server applications where the row hit

ratio is inevitably low. The other technique they proposed [54] issues the precharge

as soon as sensing completes, and it sends the row address in PRE commands. This

technique can be used only in close page policy. For open page policy, the write

operation needs additional precharge. Emre et al. [55] evaluated STT-RAM as an

main memory alternative and proposed a write scheme to bypass the row buffer

write bypass, but they did not buffer multiple writes and did not use the separate

write path to optimize the row buffer precharge operations for reads. Last but not

least, Smullen et al. [16] and Sun et al. [18] traded off STT-RAM non-volatility for

improved write speed and energy.

2.2.2 NVM On-chip Caches

Wear leveling techniques for NVMs: These techniques focused on evenly

distributing unbalanced write frequencies to all memory lines. Zhou et al. [7]

proposed a segment swapping policy for PCM main memory. Qureshi et al. pro-

posed fine-grain wear leveling (FGWL) [5] and start-gap wear leveling [8] to shift

cache lines within a page to achieve uniform wear out of all lines in the page.

Seong et al. [9] addressed potential attacks by applying security refresh. However,

this previous work was all focused on extending the lifetime of PCM-based main
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memory. Other work on NVM caches [56] only extended wear-leveling techniques

for main memory without considering the different operating mechanisms of main

memory and caches. Some other work focus on the security threat of non-volatile

main memories [57, 9, 8], and their key idea is to dynamically change the address

mapping.

Error correction techniques for NVMs: The conventional Error Correc-

tion Code (ECC) is the most common technique in this category. Dynamically

replicated memory [10] reuses memory pages containing hard faults by dynamically

forming pairs of pages that act as a single one. Error Correction Pointer (ECP) [11]

corrects failed bits in a memory line by recording the position and its correct value.

Seong et al. [12] propose SAFER to efficiently partition a faulty line into groups

and correct the error in the group. FREE-p [13] proposed an efficient means of

implementing line sparing. These architectural techniques add different types of

data redundancy to solve the access errors caused by limited write endurance.

Mitigate the performance penalty incurred by long write latencies:

Xu et al. [14] proposed a dual write speed scheme to improve the average access

time of STT-RAM cache. An early write termination scheme was proposed to

reduce the unnecessary writes to STT-RAM cells [15]. Sun et al. [17] proposed a

hybrid cache architecture with read-preemptive write buffers. Smullen et al. [16]

and Sun et al. [18] traded off the STT-RAM non-volatility to improve the write

speed and the write energy.

2.2.3 NVM GPGPU RFs

Some previous work focused on GPGPU RF architecture design using traditional

SRAM. Gebhart, et al. [58] proposed a register file caching and a two-level warp

scheduler to hide memory access latency. A compile-time managed multi-level

register file hierarchy is also proposed [59]. A power efficient register file is eval-

uated by aggressively moving a register into drowsy state [60]. Some other work

explored how to replace SRAM-based RFs with other memory technologies. Yu,

et al. [61] proposed a SRAM-DRAM hybrid RFs in fine-grained multi-threading.

Jing, et al. [62] proposed an eDRAM-based energy-efficient RF design. Goswami,

et al. [63] proposed a resistive memory based RF with power-performance co-
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optimization.

There are also some previous work focused on mitigating the performance

penalty caused by long write latencies of NVMs. A dual write speed scheme [14] is

proposed by Xu, et al. to improve the average access time. A hybrid cache archi-

tecture with read-preemptive write buffers [16] is proposed by Sun, et al.. Other

work traded off the STTRAM non-volatility to improve the write speed [16, 18].
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NVM Main Memory: Expensive

Write Operations

Phase-change memory (PCM) is a promising candidate for main memory systems.

It has many attractive features including non-volatility, negligible standby leakage,

fast read access, high cell density, and superior scalability [30]. PCM has made

rapid progress in the recent years, and it is considered to have the read access

latency that is comparable to DRAM and the non-volatility like NAND flash [6, 51].

Therefore, there has been extensive research of using PCM at the main memory [5,

6, 50].1

Most recently, the feasibility of multi-level cell (MLC) for PCM including pro-

gramming into two and four bits per cell has been shown[1, 64, 65]. Although MLC

increases the PCM bit density, the energy of programming MLC PCM is consider-

ably larger than that of single-level cell (SLC) PCM [51, 49, 50]. The extra energy

consumed by MLC PCM comes from the necessity of program-and-verify (P&V)

scheme which causes multiple programming steps per MLC write operation for

intermediate states, and this effect is similar to the well-known energy consump-

tion difference in MLC and SLC NAND flash designs [66]. The general estimation

that PCM consumes 2.2 times more energy than DRAM does [6]. Therefore, in

this chapter, we design an energy-efficient architecture for the MLC PCM system

1This work is published as “Energy-Efficient Multi-Level Cell Phase-Change Memory Sys-
tem with Data Encoding” on ICCD2011, “Data Encoding for Multi-Level Cell Phase-Change
Memory” on NVMW2012.
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and reduce the programming energy by manipulating the data stored in MLC

PCM [67, 68].

3.1 MLC PCM Background and Energy Model

PCM technology is based on the phase-change behavior of chalcogenide alloys

(GST). The data storage capability is achieved by the resistance differences be-

tween the amorphous (high-resistance) and the crystalline (low-resistance) phase

of GST. To SET the cell into its low-resistance state, an electrical pulse is applied

to heat a significant portion of the cell above the crystallization temperature. This

SET duration mainly depends on the crystallization speed of GST. Although SET

pulses shorter than 10ns have been demonstrated [69], the typical value of the SET

pulse duration is around 150ns [70]. On the other side, in the RESET operation,

a larger electrical current is applied in order to melt the central portion of the

cell. After this pulse is cut off abruptly, the molten material quenches into the

amorphous phase. The RESET operation has shorter duration but tends to be

current-hungry [70]. Generally, the energy consumptions of full RESET and SET

operations are on the same order of magnitude.

Thanks to the large resistance contrast between the RESET and SET states

(e.g. 102 − 103), MLC PCM becomes feasible. However, the degree of success of

such an MLC write depends on the resistance distributions over a large ensemble

of PCM cells. Unlike SLC write, where the bit write quality can be ensured by

over-SET or over-RESET, the intrinsic randomness associated with each write

attempt and the inter-cell variability make it impractical to have a universal pulse

shape for writing an intermediate state. In order to address this issue, resistance

distribution tightening techniques have been developed based on the program-and-

verify (P&V) technique [51]. P&V is a common programming technique for multi-

bit writing and is widely used in MLC NAND flash products [66] and MLC PCM

prototypes [64, 1]. In order to achieve non-overlapping resistance distributions

of different bit levels, P&V needs to iteratively apply partial set pulses and then

verify that a specified precision criterion is met, which leads to much longer write

latency and hence the much larger programming energy. Similar to NAND flash,

the MLC PCM programming energy can be more than 10 times of the SLC one.
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Table 3.1. Write energy of programming every state [1]

State
Average Pulse Average energy
current duration consumption

00 300µA 40ns 36pJ
01 100µA - 548µA 220ns - 520ns 307pJ
10 576µA - 996µA 220ns - 520ns 547pJ
11 200µA 150ns 20pJ

In this work, we evaluate 2-bit MLC PCM, of which four states can be stored

within each cell. Bit patterns “00” and “11” are stored using complete RESET

and complete SET state, respectively. Intermediate resistance states in the order

of increasing resistance are used to represent combinations “10” and “01”. Fig. 3.1

demonstrates the concept of the P&V programming technique for MLC PCM.

Instead of applying a full SET-sweep pulse to securely set the cell to SET state

or applying a powerful RESET pulse to set the cell to RESET state, intermediate

MLC states have to be programmed in an iterative manner. In this work, we refer

to an MLC PCM prototype design from Bedeschi et al. [1], and we use the SET-

sweep pulse with 0.2mA peak current and 150ns duration and the RESET pulse

with 0.3mA amplitude and 40ns duration. For the partial SET pulses, we assume

that there are 32 possible P&V steps in total. To program intermediate states,

the cell has to experience a full SET-sweep pulse and a full RESET pulse as the

initialization sequence to improve the programming quality of following steps [1].

After that, a sequence of partial SET pulses with 15ns duration are applied until

the intermediate resistance level is reached. For programming intermediate state

“10”, the the partial SET pulse amplitude starts from 0.1mA with 28µA stepping;

for programming “01”, the partial SET pulse amplitude starts from 0.576mA with

28µA stepping2.

Based on our energy model assumption, the energy consumption values of pro-

gramming every state are listed in Table 3.1. It should be noticed that process

variation affects the MLC PCM behavior and the number of P&V rounds is dif-

ferent from cells to cells. Thus, the energy estimations in Table 3.1 are all average

values.

2These parameters are scaled from an MLC PCM prototype with 90nm process node and
bipolar-selected cells [1].
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Figure 3.1. The pulse shapes of complete SET and RESET operations and the modeled
program-and-verify scheme by using partial SET pulses.

From Table 3.1, we can see that there are significant value-dependent program-

ming energy variations in multi-level cell PCM. Programming RESET state “00”

using full RESET pulse and SET state “11” using SET-sweep pulse need one order

of magnitude less energy than programming other states. Thus, this phenomenon

motivates us to propose a new MLC PCM architecture based on data encoding

to increase the “11” and “00” states in the writing data and thereby reduce the

programming energy.

3.2 Implementation

In this section, the MLC PCM data encoding architecture is described. At first,

we propose a data encoding algorithm that maximizes the frequencies of the “11”

(i.e. full SET) and the “00” (i.e. full RESET) stored in MLC PCM. Then, the

advantage and overhead of this algorithm are analyzed. In the end, the circuit

architecture of such energy-efficient MLC PCM data encoding is discussed.

3.2.1 Data Encoding Algorithm

The following terms are defined for the discussion of the data encoding algorithm:

• Low Power States (LPS): the states which need less energy in programming,

representing states “00” and “11” in 2-bit MLC PCM;
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Algorithm 1 Data Encoding Algorithm

// N: memory line width
Write(A: address, D: data)
MT := Mapping Type (D); // get a mapping type
Dm := Map(D, MT ); // map the data
for all i = 0, i ≤ N , i++ do

write MLCs as Dm

end for

• High Power States (HPS): the states which need more energy in program-

ming, representing states “01” and “10” in 2-bit MLC PCM;

• Original Data: the data that are not encoded;

• Encoded Data: the data that are encoded according to the data encoding

algorithm and are stored in PCM in an encoded form.

Basically, the key concept of the algorithm is to increase the total percentage

of LPS in writing data by encoding the input data to ensure that the two most

frequent states are mapped to “11” and “00”. Therefore, the total writing energy

can be reduced since programming “11” (i.e. full SET) and “00” (i.e. full RESET)

states need less energy. Algorithm 1 captures the process of such data encoding.

In the encoding algorithm, the selection of Mapping Type is the critical part.

For the special feature of MLC PCM programming, the mapping rules for this

algorithm are designed as follows:

• Mapping Rule 1 : Map the two most frequent states to “11” and “00”.

• Mapping Rule 2 : Maintain the original data in the encoding operation as

much as possible.

Rule 1 ensures that the states “11” and “00” are the tow most frequent states in

the encoded data. Rule 2 is devised to reserve the effectiveness of data comparison

write (DCW), which we discuss later in Section 3.3.

According to the mapping rules, there are C2
4 = 6 different ways of mapping

the four states. A look-up table is used to implement the data encoding algorithm,

as shown in Table 3.2.
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Table 3.2. Encoding look-up table

Mapping of two most Mapping of the other Mapping
frequent states two states type

00→00 11→11 01→01 10→10 0000
00→00 01→11 10→10 11→01 0001
00→00 10→11 01→01 11→10 0011
01→00 10→11 00→10 11→01 1100
01→00 11→11 00→01 10→10 1101
10→00 11→11 01→01 00→10 1111

For every memory line, the information of Mapping Type needs to be added to

decode the encoded data. This mapping type needs 4 extra bits or 2 extra cells

to present since there are 6 different mapping types and every memory cell has

two bits. Because mapping types also need to be written to MLC PCM cells, we

use as much as states of “00” and “11” to present the mapping type, as shown in

Table 3.2.

The control and data flow of the encoder and decoder is shown as Fig. 3.2.

For every memory line, the original data is stored in a data buffer. Then, the

percentage of every state is counted by the encoder to choose the mapping type

using the mapping lookup table. For example, if the two largest frequency states

of one memory line data are “01” and “11”, the encoder choose mapping type as

“1101” according to the mapping lookup table. Then, the encoded data is written

as the rules: “00”, “01”, “10”, “11” are encoded to “01”, “00”, “10” and “11”,

respectively. Thereby, the states “11” and “00” are the two most frequent states

in the encoded data.

3.2.2 Advantage and Overhead of Data Encoding Algo-

rithm

For the original data, assume there are N 2-bit cells in a memory line and the

probability of an MLC is LPS (i.e. “00” or “11”) is 1/2. Therefore, the probability

of having i LPS among the original data is (1/2)N Ci
N based on the binomial

distribution. So the average percentage of LPS in N cells is:
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Figure 3.2. The control and data flow of encoder and decoder.

PLPS =
N∑
i=0

i

N

1

2N
Ci

N =
1

2
(3.1)

Similarly, the average percentage of LPS in N cells after encoding is calculated

as follows:

P ′LPS =

N/2∑
i=0

(N − i)
N

1

2N
Ci

N +
N∑

i=N/2+1

i

N

1

2N
Ci

N (3.2)

In Equation 3.2, the result is split into two cases, of which the first part is

mapping the HPS to LPS case since the LPS percentage is smaller (i < N/2) and

the percentage of LPS is changed to (N − i)/N after encoding. Therefore, we

define the data encoding algorithm’s advantage ratio, R, as:

R =
P ′LPS − PLPS

PLPS

=

N/2∑
i=0

(N − 2i)

N

1

2N−1C
i
N (3.3)

Compared with the original data, the percentage of LPS in the encoded data is

increased by 37% (for a 4-bit memory line) or by 5% for a 64-byte memory line. The

algorithm’s advantage ratio is different depending on the width of memory lines as

shown in Fig. 3.3. Moreover, this relative advantage is based on the assumption

of random multi-bit value distribution. With realistic application, the benefits

are different depending on different application workloads, which are shown in
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Section 3.4.

Moreover, this encoding algorithm is a fix-length encoding, which can ease the

memory accessing management. As shown in Fig. 3.2, the encoded data is the

mapped data in addition of the mapping type. Therefore, if the width of original

data is N × 2 bits, the width of encoded data is N × 2 + 4 bits, which equals to

the width of one memory line in our design. For a 64-byte-per-line MLC PCM,

the overhead of the data size is about 1.5%.
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3.2.3 Data Encoding Hardware

The traditional memory structure needs to be modified in order to apply the data

management function efficiently. A new architecture of MLC PCM is designed

which has the capability to encode the input data before writing, and decode

output data after reading. Therefore, write buffer, read buffer, encoder component,

and decoder component are all required in this system. As shown in Fig. 3.4, the

components in gray are the extra hardware components that are required by the

purposed MLC PCM data encoding architecture.

The data access pattern in such an architecture is described as follows:

• Write Operation: Store a memory line in the write buffer before writing to the

PCM. When data in buffer is ready, the encoder transforms the input data to

the encoded data which needs less writing energy. Then, the programming

component writes the result to PCM. Usually, processors’ speed is much

faster than writing to PCM’s MLC, which requires about 270ns in the worst

case according to our estimations as listed in Table 3.1. Therefore, processor

just need to store the memory line data to write buffer in this architecture and

Direct Memory Access (DMA) makes the performance overhead negligible.

• Read Operation: When a memory line is read out, it is stored in the read

buffer at first. Then decoder maps the encoded data to original data with

the mapping type information, which is the least significant 4 bits of the

memory line data.

3.3 Combine Data Encoding with DCW

Data comparison writes (DCW) is a common scheme for PCM system, which has

been implemented in some PCM prototypes [71]. Therefore, in this section we

study how to use the proposed encoding architecture in MLC PCM system with

adopting DCW scheme.
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3.3.1 Introduction of DCW

DCW technique [45] is designed to remove the redundant bit writes. For MLC-2,

the statistical bit-write redundancy is 25% if writing every state is equally likely.

The basic concept of DCW is preceding a write with a read. Write the cell

only if the data is changed after writing. It will reduce the unnecessary write

operations, which improve the endurance of PCM, and reduce the writing energy

consumption. In PCM operations, reads are much faster and consume much less

energy than writes. It is this asymmetry can we benefit from to improve the PCM

endurance and reduce the write energy.

3.3.2 Modified Data Encoding Algorithm for DCW

When DCW is adopted in this memory system, the question is how to combine

the data encoding and DCW techniques efficiently. We propose two techniques to

solve this problem: Maximum Maintained Mapping and Energy Hamming Distance

Comparison.

• Maximum Maintained Mapping:

In the encoding algorithm, Rule 2 is to maintain the original data in the encod-

ing operation as much as possible. It ensures that most of the data in the mapping

will not be changed. From the encoding table, we can see that the Hamming

distance between original data and encoded data is N/2 if writing every state is

equally likely.

• Energy Hamming Distance (EHD) Comparison:

When encode one memory line, we can choose from two mapping types: the old

mapping type which is read from the old memory data and the new mapping type

which is calculate from the new data. The more similar the new data and old data

are, the more efficient DCW is. In this case, the old mapping type should be chosen

to save more energy using DCW. Otherwise we should choose the new mapping

type to save energy through data encoding. To decide which case every data line

belongs, we define Energy Hamming Distance (EHD) to quantify this problem.

EHD is the Hamming Distance between two data with the weights which are set
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Algorithm 2 Combining Data Encoding with DCW

// N: memory line width
Write(A: address, D: data)
Dold m(old), MTold := Read(A)
// Map new data as old mapping type
Dnew m(old) := Map(D, MTold);
// Get the new mapping type
MT := Mapping Type (D);
// Map new data as new mapping type
Dnew m(new) := Map(D, MT );
if EHD(Dold m(old), Dold m(old)) ≤ EHD(Dnew m(new), Dold m(old)) then
MT := MTold; // Keep the old mapping type

end if
for all i = 0, i ≤ N , i+ + do

if Map(D, MT ) 6= Dold m(old) then
update MLCs to Map(D, MT )

end if
end for

as the states’ writing energy. Before writing the data, calculate the EHD between

the old data and the new data encoded as the old mapping type, as well as the

old data and the new data encoded as the new mapping type. Then the one which

has smaller EHD is chosen to write to memory through DCW scheme, so that the

effectiveness of encoding and DCW both can be maximally reserved. Algorithm 2

captures the scheme combing data encoding and DCW.

3.3.3 Modified Architecture of MLC PCM for Combining

Data Management and DCW

Some modifications are needed to implement on the PCM architecture to combine

data encoding management and DCW. The modified PCM memory read/write

data path architecture is shown in Fig. 3.5, which is based on Fig. 3.4. The gray

part in Fig. 3.5 is added for DCW and the other part is the same as the architecture

in Fig. 3.4. The Diff and EHD Count are used to calculate the Energy Hamming

Distance of two input data. Depending on which distance is smaller, the mapping

type with smaller EHD are selected to save more energy. It should be noticed that

the only difference of these two choices is to use the new mapping type or the old
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one which is stored in PCM. As a result, the decoder part does not need to change

since it can decode all the data as encoded data using mapping type information.

The performance overhead of adding this part is small because the gates and

reading operation is much smaller than the MLC PCM write latency. On the

other hand, only several XOR gates, counters, and multiplexers are needed and

only one block is added in PCM data path. Thus, the overhead of hardware is also

negligible. We discuss more details about the hardware overhead in Section 3.4.

3.4 Experimental Results

In this section, we evaluate the energy improvement after applying the data en-

coding based MLC PCM architecture.

3.4.1 Experiment Methodology

Our experiment simulates a 3.2GHz chip-multiprocessor with four SPARCV9-like

cores. Each core has their private 2-way-associative I-L1 and D-L1 caches with

the identical capacity of 64KB. The 16-way-associative L2 cache is shared by all

the cores and has a capacity of 4MB. The size of write buffer before PCM memory

is set to 128 entries. The write buffer is large enough to mitigate the impact of

long write latency of PCM memory. For all the benchmarks, the write buffer is
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Table 3.3. Baseline configurations

Processor 4-core, 3.2GHz, SPARCV9-like cores
I-L1/D-L1 caches private, 64KB/64KB, 2-way, 64-Byte cache line
L2 cache shared, 4MB, 16-way, 64-Byte cache line
PCM module 4GB, 128-entry write buffer
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Figure 3.6. Ratio of read and write memory access times

never full so that the read operation will not be blocked for a long time if there is

a burst of write operations. The parameters of baseline configuration are listed in

Table 3.3.

For our 4-core system, our experimental evaluation makes use of 4-thread

OpenMP version of workloads from PARSEC 2.1 [72] and SPEC OMP 3.2 [73]

benchmark suites. The input size of the SPEC OMP benchmark is medium, and

the native inputs are used for the PARSEC benchmark to generate realistic pro-

gram behavior. We exclude 2 workloads from PARSEC and 1 workload from SPEC

OMP3, hence we evaluate 23 workloads in total. We collect the memory accesses

to the PCM module by using the Simics full-system simulator [74]. Each Simics

simulation run is fast forwarded to the pre-defined breakpoint at the code region of

interest, warmed-up by 100 million instructions, and then simulated in the detailed

timing mode for 1 billion cycles.

3.4.2 Hardware Overhead

We evaluate the hardware overhead of the proposed encoding with DCW by using

Design Compiler to estimate the area and energy consumption with 45nm TSMC

CMOS library. According to the area analysis, the proposed encoder and decoder

architecture incurs extra area of 0.025mm2, which is negligible compared to the

3blackscholes and swaptions are excluded because these two workloads generate too few mem-
ory access traffic; gafort causes segmentation fault when executed in the parallel.
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area of PCM system. According to the energy analysis, the encoder and decoder

incur extra energy consumption of 0.971pJ and 0.449pJ per memory line access,

respectively. For different workloads, the read and write access numbers are dif-

ferent, which are show in Fig. 3.6. These results are used in our simulation to

calculate the encoder and decoder’s energy overhead.

3.4.3 Evaluation of Data Encoding Algorithm

Fig. 3.7 shows the result of the LPS’s percentage in the data. It shows that

the LPS’s percentage is increased by 4.6% on average (up to 11.1%). It can be

seen that if the percentage of LPS in the workloads’ original data is smaller, the

advantage of the encoding technology is larger. It is because the improvement of

LPS’s percentage is limited when it is already large enough in the original data.

Therefore, for mgrid from Fig. 3.7, the percentage of LPS is 99.9% in original

data and is increased only 0.1% after encoding; for swim, the percentage of LPS is

53.5% in original data and is increased as much as 11.1% after encoding.

Fig. 3.8 compares the results of energy consumption for different applications

with original data and encoded data, which include the energy of writing and

reading, respectively. The energy consumption of writing every different state is



28

30%

40%

50%

60%

70%

80%

90%

100%

DCW

DCW + Encoding

Figure 3.9. Percentage of LPS in original data and encoded data after the DCW
technique is adopted.

60%

65%

70%

75%

80%

85%

90%

95%

100%

DCW

DCW + Encoding

Figure 3.10. Reduction of energy consumption after the combination of data encoding
and DCW.

listed in Table 3.1. Besides, we also consider the energy of encoder and decoder

for every write and read access. Fig. 3.8 shows that the total energy consumption

is reduced by 9.6% on average of different workloads (up to 19.8%). Basically, if

the increasing of LPS’s percentage is larger, more energy is saved in the workload.

However, if the number of memory read accesses is too large relative to that of

write accesses, the overhead of decoder’s energy will influence the effectiveness

of the encoding technique since the decoder consumes energy for every reading

access. From Fig. 3.7 and Fig. 3.8, we can see that for workload swim and galgel,

the improvement of LPS’s percentage is 11.1% and 7.1%. But, galgel saves 19.8%

energy, which is more than swim of 12.3%, because decoder energy overhead of

galgel is smaller since its ratio of write to read is larger than swim, which can be

seen from Fig. 3.6.

3.4.4 Evaluation of Combining Data Encoding and DCW

The benefits of combining data coding and DCW together are also evaluated.

Fig. 3.9 shows the result of percentage of LPS in the writing data. In the first
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case, only the DCW technology is used. In the second case, encoding is used in

together with DCW. The result shows that the percentage of LPS is increased by

16.8% on average (up to 60.9%). It can be noticed that generally the improvement

of LPS’s percentage is larger than the memory system without DCW. The reason

is DCW technique eliminate the unnecessary writes, and most of them is writing

state “00” repeatedly. So the percentage of LPS in the workloads’ original data is

smaller for the memory system with adopting DCW. Therefore, the effectiveness

of data encoding becomes larger.

Fig. 3.10 shows that the total writing and reading energy of two different con-

figurations: original data using DCW, encoded data using DCW. After adding the

DCW scheme, every write access includes one read access. The energy consump-

tion of these reading operations are also calculated in the simulation. Moreover,

the energy overhead of the encoder and decoder components are also considered.

The result shows that the total energy of writing and reading using the proposed

architecture is reduced by 12.9% on average (up to 26.7%) compared to the memory

system which only uses DCW.

It should be noticed that adopting data encoding saves much more energy in

the memory system with DCW than the one without DCW for some workloads,

such as streamcluster. There are two reasons: the first one is that LPS’s percentage

of original writing data is decreased from 83.8% to 33.4% after DCW scheme, so

that data encoding algorithm can map much more writing data from HPS to LPS;

the second reason is the ratio of read to write in streamcluster is small which is

1.17, thus the reading energy overhead is small. On the other hand, for some other

workloads, such as swim, adopting data encoding saves less energy in the system

with DCW than the one without DCW. Because of the character of the writing data

in swim, DCW cannot decrease the LPS’s percentage in original data too much,

just from 53.5% to 52.2%. Moreover, the energy overhead is large which comes

from two aspects: the decoder’s energy for every reading access and the reading

energy overhead in DCW since every write access includes one read access.

These simulation results shows that the proposed encoding architecture is ef-

fective to the MLC PCM system without or with adopting the DCW technique.
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3.5 Summary

PCM is considered as one of the most promising technologies among emerging

non-volatile memories. Besides the common single-level cell (SLC) technology,

recent PCM prototypic chips demonstrate that multi-level cell (MLC) is practical.

Compared to SLC, MLC can store more than 1 bits on every PCM cell, thus it is one

of the attractive properties of PCM that helps to achieve higher storage density.

However, programming MLC PCM involves the program-and-verify scheme and

incurs much more energy consumption. In this work, we propose a new MLC

PCM architecture using data encoding before writing to implement an energy-

efficient MLC PCM system based on the observation that there are significant

value-dependent energy variations in programming MLC PCM. In addition, we

adopt data comparison write (DCW) to enhance the effectiveness of the proposed

data encoding architecture. The experimental results show that the total energy

consumption of writing and reading using the proposed architecture is reduced by

9.64% on average (up to 19.8%) on plain MLC PCM systems, and by 12.9% on

average (up to 26.7%) on DCW-adopted MLC PCM systems.



Chapter 4
NVM Main Memory: Small Page

Size

Besides the issue of high write energy we discussed in Chapter 3, how to improve

the performance and how to design compatible interfaces are still challenges for

building NVM main memory. In this chapter, we use STT-RAM as an example to

show our efforts on this topic.1

STT-RAM is another attractive NVM technology to implement main memory

systems, and its power saving opportunities have been heavily exploited [53, 55,

54]. However, enjoying the STT-RAM power-saving benefit is not free. It is a

consensus that STT-RAM cannot compete with DRAM in performance, and more

importantly, STT-RAM chip internal structure is not compatible with DRAM

interfaces. This compatibility is not only highly required for a successful STT-RAM

early adoption, but also critical to enable a tiered memory system using refresh-

free STT-RAM and high-performance DRAM [31, 5, 32]. Everspin’s effort [33] to

implement a DDR3-compatible STT-RAM is an example to meet such request.

The industry has realized the internal structure difference between NVM and

DRAM, and the LPDDR2 standard once includes an NVM-based solution called

LPDDR2-NVM [75], in which the activation command is divided to Pre-Active

and Activate to transfer the long row address. However, it needs a dedicated

controller for 3-phase access and a new software interface with much higher design

1This work is published as “Enabling High-Performance LPDDRx-Compatible MRAM” on
ISLPED2014.



32

complexity. Due to the design complexity, this LPDDR2-NVM spec was removed

from LPDDR3 standard. How to design LPDDR3-compatible NVM architecture

remains to be a challenge.

In this chapter, we study STT-RAM’s unique features that are different from

DRAM. In particularly, three unique STT-RAM properties, including small page

size, non-destructive read, and independent write path, are investigated, and we

propose four techniques to enable the design of LPDDR3-compatible high perfor-

mance and low power STT-RAM architecture [76]:

• We keep the LPDDRx interface and propose Combinational Row/Column

Address Strobe (ComboAS) to handle the unbalanced row and column ad-

dress bits caused by the STT-RAM’s small page size;

• We add Dynamic Latency (DynLat) to alleviate the performance degrada-

tion introduced by ComboAS;

• We devise Early Precharge/Activation (EarlyPA) to improve the STT-RAM

performance by utilizing the STT-RAM non-destructive read property;

• We improve the write performance by using Buffered Write (BufW) tech-

nique, which buffers multiple writes and leverages the STT-RAM’s unique

property of separate write path.

Combined these all together, we come up with a DRAM-swappable STT-RAM

solution with a significant performance improvement. In another word, our tech-

niques enable an LPDDRx-compatible STT-RAM with DRAM-competitive per-

formance and freely exploit the STT-RAM low power features.

4.1 Background

In this section, we describe the architecture of traditional LPDDRx devices and

the architecture of STT-RAM LPDDRx devices.
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Figure 4.1. The memory organization for LPDDRx chips.

4.1.1 Architecture of Traditional LPDDRx Devices

LPDDRx is the dominant memory interface for modern mobile devices. JEDEC

released the first LPDDR specification in 2009. Today, almost all the mobile

DRAM chips use LPDDR2 or LPDDR3 interface [77].

Figure 4.1 is an exemplary LPDDRx memory subsystem. LPDDRx devices

have wider I/O (e.g. x16 or x32) than DDRx ones (e.g. x4 or x8). In our example,

four LPDDRx devices form a 2-rank memory subsystem with a 64-bit data bus.

LPDDRx uses a multiplexed command/address (CA) bus to reduce the pin count.

The 10-bit CA bus contains command, address, and bank information.

Each LPDDRx device internally has 8 banks, and each bank can independent

process a different memory request. The internal LPDDR3 datapath uses an 8n

prefetch architecture (LPDDR2-S2 is 2n prefetch, and LPDDR2-S4 is 4n prefetch).

The LPDDRx interface transfers 2 data bits per DQ pin during every clock period.

Same as DDRx, LPDDRx accesses begin with an activation command (ACT),

which includes an RAS (row access strobe) signal, a bank address, and a row ad-

dress. Memory controllers send ACT commands to memory devices, and memory

devices activate the corresponding bank and the row. The data from the activated

row is latched in the sense amplifier (S/A) after a tRCD delay (row address to

column address delay). Then, memory controllers can continue to issue column

read or write commands with a CAS (column access strobe) signal and the starting

column address for the burst access.

The S/A acts as a temporary data storage and drives the amplified data until

the array is pre-charged again. Therefore, the S/A is essentially a row buffer that
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caches the entire row data (which can be 1-4 KB in modern DRAMs, and it is

called “a page”). Each memory bank has its own S/A.

4.1.2 Architecture of STT-RAM LPDDRx Devices

We can use the same memory organization in Figure 4.1 for STT-RAM devices.

We simulate two 4Gb LPDDR3 modules with DRAM and STT-RAM, respectively,

on a 28nm DRAM process node. Table 4.1 lists the parameters. We use our

modified-version of CACTI [78] and NVSim [79] to generate this estimation, and

we can verify that the estimated numbers match to the actual LPDDR3 DRAM

and STT-RAM prototypes. The major parameter differences between DRAM and

STT-RAM include:

• Small page size: STT-RAM uses current sensing, which is generally more

complex than DRAM voltage sensing and significantly bigger. To get the

similar area, STT-RAM reduces number of S/A and thus has a smaller page

size. Our circuit simulation shows the page size of a 4Gb LPDDR3 STT-

RAM device is only 256B, 16X smaller than its DRAM counterpart. STT-

RAM industry companies also have consensus on this. For example, a 2012

EverSpin patent [80] discloses that their STT-RAM page is only 512-bit large,

32X smaller than a DRAM page.

• Non-volatility : STT-RAM is non-volatile and needs no refresh. Hence, both

the tREF and tRFC of STT-RAM are zeros. STT-RAM auto-refresh current

(IDD52) and self-refresh current (IDD6) are zeros as well.

• Non-destructive read : STT-RAM has smaller tRTP and can issue precharge

command sooner because STT-RAM reads are non-destructive and do not

need write-back.

• Fast page close: STT-RAM has faster precharge speed and smaller tRP

because DRAM precharge needs to balance the bitlines (BL and BL) to

VDD/2, but STT-RAM precharge can skip this step.

2In auto-refresh mode, STT-RAM peripheral circuitry still consumes power so that IDD5 is
essentially IDD2P.
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Table 4.1. Comparison of DRAM and STT-RAM LPDDR3 devices.

Parameters LPDDR3 DRAM LPDDR3 STT-RAM

Clock 533 MHz 533 MHz
Page size 4 KByte 256 Byte
Bank bit BA2-BA0 BA2-BA0
Row bit R13-R0 R17-R0

Column bit C9-C0 C5-C0

tREF 3900 ns N/A
tRCD 10 cycle 13 cycle
tRL 8 cycle 6 cycle
tWL 4 cycle 4 cycle
tRP 10 cycle 7 cycle
tRC 32 cycle 18 cycle

tRTP 4 cycle 2 cycle
tRRD 6 cycle 6 cycle
tCCD 4 cycle 4 cycle
tWTR 4 cycle 4 cycle
tWR 8 cycle 14 cycle
tFAW 27 cycle 27 cycle
tRFC 70 cycle N/A

Voltage VDD1 (1.8 V) VDD2 (1.2 V) VDD1 (1.8 V) VDD2 (1.2 V)
IDD0 7.8 mA 28.3 mA 4.8 mA 41.2 mA

IDD2N 1.8 mA 3.7 mA 1.8 mA 3.7 mA
IDD2P 1.8 mA 1.7 mA 1.8 mA 1.7 mA
IDD3N 3.5 mA 6.9 mA 3.5 mA 6.9 mA
IDD3P 3.5 mA 6.9 mA 3.5 mA 6.9 mA
IDD4R 3.5 mA 140.4 mA 0 mA 170.9 mA
IDD4W 3.5 mA 145.4 mA 0 mA 267.2 mA
IDD5 23.8 mA 78.2 mA 1.8 mA 1.7 mA
IDD6 1.0 mA 3.8 mA 0.0 mA 0.0 mA

• Slow page open: STT-RAM MTJ has smaller on/off resistance ratio (e.g.

200%), and it is hard to sense the data. Therefore, the STT-RAM row

activation speed is slower, and tRCD of STT-RAM is larger.

• Slow write: STT-RAM has longer write latency and higher write energy.

Thus, STT-RAM has larger tWR and IDD4W.
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4.2 Technique 1: Combinational Row/Column

Address Strobe (ComboAS)

In this section, we propose the first technique, Combinational Row/Column Ad-

dress Strobe, and we introduce its motivation, operation and implementation.

4.2.1 Motivation: Balance Row/Column Address Trans-

fers

LPDDR2 and LPDDR3 uses multiplexed command and address bus (CA bus).

Each command occupies the CA bus for one cycle and is clocked at both positive

and negative edges. CA bus is 10-bit width and hence each command contains 20

bits in total. The activation command (ACT) uses 2 bits for command decoding,

3 bits of the bank address, and the remaining 15 bits are for the row address.

Therefore, this scheme can address up to 32K row. It works well for existing

DRAM devices but not for our targeted STT-RAM devices.

The major problem is caused by the STT-RAM small page size. As explained

in Section 4.1.2, as STT-RAM S/A is much more complex and larger, the number

of S/A per bank is correspondingly reduced. Compared to DRAM devices usually

equipping 1KB-4KB pages, STT-RAM page size is much smaller. For example,

EverSpin’s STT-RAM page size is 512 bits [81]. This is also a common drawback for

other non-volatile memories that use current sensing (e.g. Micron’s 1Gb PCM only

has page size of 512 bits [82]). In this work, our simulated 4Gb STT-RAM device

page size is 256B, 16 times smaller than its DRAM counterpart (see Table 4.1).

Since the total memory capacity and the bank count are the same, STT-RAM

needs 4 additional row address bits than DRAM does. While it is not a problem

for low-density STT-RAM devices (e.g. EverSpin 64Mb STT-RAM [33] with 64B

page can still be DDR3 interface-compatible), the existing LPDDRx interface is

not compatible with gigascale STT-RAM devices.

A naive solution to this problem is to add two more CA bus pins, but we do

not consider it as an option. First, the row and column address bits are highly

unbalanced, and the extra two pins are only useful in ACT commands. It is a

contradiction to the basic multiplexing concept behind the CA bus design. Second,
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Figure 4.2. The timing diagrams of Unlimited-pin and ComboAS.
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adding two pins implies the STT-RAM LPDDRx bus is not compatible to the

existing DRAM bus. The bad consequences include but not limited to: (1) an

industry-wise pin ball redesigns and PHY interface redesigns; (2) for the host that

tends to mix DRAM and STT-RAM, two different memory interfaces are required

thereby increasing both area and cost. Neither of them is good for the STT-

RAM early adoption. Instead, our goal is to make a DRAM-swappable STT-RAM

solution with a fully LPDDRx-compatible interface.

4.2.2 ComboAS Operation

We propose Combinational Row/Column Address Strobe (ComboAS) to balance

the STT-RAM long row address and short column address caused by its smaller

page size. The basic concept of ComboAS is to offload the overflowed row address

from RAS commands (i.e. ACT) to CAS commands (i.e. READ or WRITE).

Hence, RAS commands only carry parts of the row address, and we transfer the

remaining row address together with the column address in CAS commands.

Considering now we split the row address into RAS and CAS commands, we

need both of them before a new row activation. Consequently, instead of waiting for

tRCD, we should issue a CAS command immediately after every RAS command.
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Table 4.2. Timing parameters for unlimited-pin and ComboAS.

Unlimited-pin system ComboAS

tRCD tRCD0 1 tCK
tCCD tCCD0 tCCD0

tRL tRL0 tRCD0 + tRL0

tWL tWL0 tRCD0 + tWL0

tRTP tRTP0 tRCD0 + tRTP0

Figure 4.2 compares the timing diagram of ComboAS against the incompatible

solution of adding 2 more CA pins.

The ComboAS timing is similar to posted-CAS [83] and posted-RAS [24] as they

all issue RAS and CAS commands back-to-back, but they are essentially different.

The actual row activation in posted-CAS [83] starts before CAS is received, and

its CAS command does not carry any row information. The posted-RAS scheme

proposed by Udipi et al. [24] is the most similar work to our ComboAS technique.

However, posted-RAS only works for close-page policy where there is only one CAS

command after opening one row, and it does not optimize the timing parameters

to mitigate the performance overhead.

To make ComboAS work for both close- and open-page policies, we adjust

memory timing parameters as follows:

• Minimize tRCD: Because we now wait for CAS to start a row activation,

and there is no circuit dependency between RAS and CAS, we can reduce

tRCD to 1 clock cycle.

• Adjust tRL, tWL, and tRTP: In ComboAS, the arrival of CAS only

means the start of a row activation. It delays the actual column access

(read or write) by the physical row activation time. Therefore, we need to

increment both the column read and write latencies (tRL and tWL) by a row

activation delay. Similarly, it is necessary to adjust tRTP (read to precharge

delay) in the same way.

Figure 4.2 compares the ComboAS external and internal command buses. The

actual row activation in the memory is delayed by 1 cycle to wait for the remaining

row address bits carried by CAS, and the read/write accesses are delayed by tRCD0

(the original row activation delay). Table 4.2 lists the detailed adjustments.
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4.2.3 ComboAS Implementation

To implement ComboAS, the key issue is to let the memory chip wait till the

first CAS command arrives before activating the accessing row. Our modifications

include: a register to store the partial row address in RAS; a set of registers to

hold the column addresses in the early-arrived CAS commands; a signal generator

to latch the remaining row address from the first-arrived CAS command.

Address Registers: Normally, we only require one address register because

the row address and column address are completely separate. However, as Com-

boAS divides row addresses into both RAS and CAS, we need two registers as

shown in Figure 4.3: P RowAddrReg stores the partial row address in RAS com-

mands; Comb AddrRegs hold the combination of the remaining row address and

the column address in CAS commands.

In Figure 4.3, RAC and CAC are the signals to represent the arrivals of RAS

and CAS, respectively. They can be decoded from the LPDDRx command truth

table. Since RAS and CAS share the same CA bus, we add a multiplexer to choose

from these two registers with CAC as the select signal.

Note that we design Comb AddrRegs to be capable of holding more than one

entries since multiple CAS commands can arrive to the memory chip before the

requested row is opened as the latency to open a row (tRCD0) is larger than the

minimum delay between two column commands (tCCD0). We decide the number

of column address registers by dtRCD0/tCCD0e (i.e. 3 in this work). Similar to

the traditional posted-CAS DRAM, ComboAS uses countdown circuits to delay

the external CAS command by tRCD0.

RA EN Generator: Normal memory devices use the RAC signal to trigger

row activations. However, in ComboAS, only the first-arrived CAC signal shall

trigger this step; all the latter CAC signals should be filtered from the row activa-

tion control. We design a RA EN generator for this purpose as shown in Figure 4.3.

In RA EN generator, the signal A is 0 when RAC and CAC are both 0. When RAS

arrives and RAC becomes 1, A changes to 1; when the first CAS command comes

and CAC becomes to 1, A toggles to 0 and remains unchanged when latter CAS

commands arrive. Thus, we ensure only the first CAS triggers the row activation.

Memory Controller: The modification to the memory controller is negligible

in ComboAS. Only a small latch (4-bit in this work) after the PHY interface is
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needed to temporarily hold the extra row address bits from RAS command and

later deposit them into the next CAS command. Second or latter CAS commands

do not need to carry any row address bits. In addition, the memory timing pa-

rameters are adjusted according to Table 4.2.

4.3 Technique 2: Dynamic Latency (DynLat)

In this section, we introduce the motivation, operation and implementation of

Dynamic Latency.

4.3.1 Motivation: Remove Unnecessary Latencies

Figure 4.2 shows that the ideal ComboAS scheme should only delay the memory

access by one cycle. Unfortunately, we cannot guarantee that ComboAS works

ideally all the time: the one-cycle penalty of ComboAS only occurs when CAS

commands are back-to-back. In another word, it requires the interval of CAS

commands is the minimum delay (tCCD3) as demonstrated in Figure 4.2. However,

not all the column accesses are back-to-back. For example, when there is a data

dependency, the address of the 2nd read depends on the data returned from the

1st read, and thus the interval between these two CAS commands are longer than

tCCD.

Note that ComboAS unconditionally adds tRCD0 on top of every tRL, tWL,

and tRTP to avoid memory internal hardware conflicts. However, such additional

latency is unnecessary when column accesses are not back-to-back. For those non-

ideal cases, we define a metric called bubble to indicate the difference between

the actual interval and the minimum interval. When the bubble is big, ComboAS

can cause severe performance loss due to the aforementioned reason.

4.3.2 DynLat Operation

Taking a deep look into this issue, while the conventional tRL0, tWL0, and tRTP0

are all static values and determined by the memory hardware limitation, the new

3Strictly speaking, the minimum interval between two column accesses is max(tCCD, BL/2)
where BL is the burst length. Normally, tCCD=4 and BL=8 for LPDDRx usecase.
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Figure 4.4. The timing diagrams of ComboAS and DynLat.

tRL, tWL, and tRTP parameters in ComboAS become variable as they include the

row activation latency (tRCD0) which we only need to pay once for one opened

row. We can deduct this tRCD0 overhead from tRL/tWL/tRTP if we find bubbles

on the command bus. This observation leads us to a dynamic timing parameter

settings, in which such parameters as tRL, tWL, and tRTP are adjustable on-the-

fly. We call this technique Dynamic Latency (DynLat).

To demonstrate the idea and the benefit of DynLat, we use Figure 4.4 as an

example. The differences between the timing diagrams without and with DynLat

are:

• There is no bubble between the first read command R1 and the second one

R2 (i.e. back-to-back column accesses). To avoid the memory chip internal

hardware conflict, the accesses R2 in ComboAS and DynLat both have the

original tRL setting (tRL0+tRCD0 as listed in Table 4.2).

• Accesses R2 and R3 are not back-to-back. In ComboAS, the tRL of R3

remains tRL0+tRCD0, which causes bubbles on both the internal command

bus and the data bus (the bubble between DATA2 and DATA3). In Dyn-

Lat, the bubble on the data bus is eliminated by setting the tRL for R3 to

be max(tRL− bubbleLength, tRL0). By forcing tRL larger than tRL0, we

ensure the command meets the memory chip internal hardware constraint;

by subtracting bubbleLength, we guarantee the bubble is removed.

To implement DynLat, we track bubble and update tRL, tWL, and tRTP

after each access:

Accumulated Bubble Length (ABL): We use ABL to store the total bubble
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Figure 4.5. The DynLat implementation.

length during transferring access commands for each memory rank4. We reset ABL

to 0 upon every ACT command and accumulate the bubble length upon every

READ or WRITE command according to Equation 4.1.

ABL′ = ABL + (curCycle− lastCmdCycle)−minReqDelay (4.1)

In general, it is the summation of the old ABL value and the newly detected bubble

length, and it keeps increasing during a page open cycle. In practice, we can set

an upper limit to the ABL value to reduce the hardware counter overhead.

Updating parameters: Based on ABL, we then calculate the new tRL, tWL,

and tRTP5 according to Equation 4.2,

tRL = max(tRL0 + tRCD0 − ABL, tRL0)

tWL = max(tRL0 + tRCD0 − ABL, tWL0)

tRTP = max(tRTP0 + tRCD0 − ABL, tRTP0) (4.2)

where tRL0, tWL0, tRTP0, and tRCD0 are the original timing parameters defined

by the memory device.

4.3.3 DynLat Implementation

Figure 4.5 shows a memory architecture with DynLat scheme adopted. A DynLat

control logic is added to both memory device and memory controller:

Memory Device: Since DynLat introduces variable read and write latencies,

the memory device shall track the latest tRL and tWL, so that it can return the

4DynLat is designed to track the rank-level timings since all banks share the same interface
and tCCD constrains the access interval in one rank.

5Write-to-precharge latency equals to tWL+BL/2+tWR, and it is adjusted together with
tWL.
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data for read or latch the data for write at the correct cycle. For this purpose,

we add a new component called TimeCtrl to each memory device as shown in

Figure 4.5. TimeCtrl tracks the ABL value and updates the timing parameters

to the device internal signal delaying circuitry according to Equation 4.2. If a

memory rank contains multiple memory devices, their TimeCtrl logics behave in

a lockstep mode.

Memory Controller: The same TimeCtrl logic is duplicated in the memory

controller so that the optimized command intervals can be correctly generated from

the controller. The number of duplications is the same as the memory subsystem

rank count. For example, in Figure 4.5, we duplicate two TimeCtrl in the memory

controller for a 2-rank configuration.

4.4 Technique 3: Early Precharge/Activation

(EarlyPA)

To improve the system performance further, in this section we propose the third

technique, Early Precharge/Activation.

4.4.1 Motivation: Leveraging Non-destructive Read

DynLat can remove the unnecessary latency and alleviate the performance drop

brought by ComboAS, but it cannot mitigate the performance drop caused by

reduced page hit ratio, which is another side effect of the STT-RAM small page

size. Although a smaller page size is preferred to avoid over-activation and reduce

the energy waste [24], it is only meaningful to close-page memory systems where

page locality is not utilized. While today’s servers and data centers mostly use

close-page policy due to their low data locality, mobile devices still commonly use

open-page policy, and their performance is highly sensitive to memory page size.

Figure 4.6 compares the performance of a DRAM system with 4KB pages

size and an STT-RAM LPDDR3 system with 256B pages (see Section 4.6 for the

detailed simulation methodology). The performance difference greatly depends on

the page hit ratio change. The biggest performance loss occurs when page hit ratio
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Figure 4.6. The IPC and page hit ratio comparison between a DRAM system and an
STT-RAM system.

is significantly reduced6. On average, the STT-RAM page hit ratio is decreased

by 66% due to its 16X smaller page size. As a result, replacing LPDDR3 DRAM

with STT-RAM degrades the performance by 10% on average and up to 24%.

Although the fundamental STT-RAM sensing scheme results in such a disad-

vantage, we shall notice that the same sensing scheme gives STT-RAM a unique

advantage: unlike DRAM reads that destroy the data stored in the DRAM cell,

STT-RAM reads are non-destructive. Based on this unique property, we devise

our third optimization technique: Early Precharge/Activation (EarlyPA).

4.4.2 EarlyPA Operation

Because DRAM reads are destructive and need data restoration, the DRAM S/A

always connects to the bitline during page open, and it also serves as a row buffer.

On the contrary, STT-RAM reads are non-destructive. The “row buffer” part of

the S/A is not necessary to connect to the input bitline after the data is correctly

sensed out. The only reason to reconnect row buffers and bitlines is to write a new

data. Previous work also considered decoupling S/As and row buffers [6], but they

did not utilize this characteristic to optimize the operation timing. Our EarlyPA

6Note that for the workloads whose page hit ratio is less sensitive to the page size, STT-RAM
outperforms DRAM (e.g. e.nat) because STT-RAM has faster precharge speed and needs no
refresh.
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technique is to precharge bitlines right after data sensing so that the next ACT

command can be issued earlier.

To decouple the “data latching” function out of a normal S/A, we first extract

the last stage amplifier (usually a pair of cross-coupled inverters) from the S/A,

and evolve it into a full SRAM cell. After this change, we still call the remaining

part of the “data sensing” circuit as the S/A, and the SRAM cells then become

the row buffer.

The decoupling enables the EarlyPA operations. A read-only example is illus-

trated in Figure 4.7:

• Time slot 1: Upon the first ACT arrival, the S/A starts data sensing, and

a self-precharge counter starts counting down from tRCD0.

• Time slot 2: The counter triggers a bitline self-precharge (an internal PRE

command7) after tRCD0. The S/A finishes data sensing, and the row buffer

holds a copy of the data.

• Time slot 3: When the second ACT arrives, bitlines and S/As are ready

for another row activation (row1). At the same time, all the column read

accesses to row0 keep proceeding from the row buffer to I/Os.

7This self-precharge is different from the auto-precharge operation used in close-page policy.
In EarlyPA the self-precharge only precharges the bitlines but the row buffer data remain intact.
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The decoupled row buffer allows bitlines to be early-precharged during the

buffer column accesses, and we can improve the read performance by issuing PRE

and ACT commands for the next row in advance. However, if there is a write

access, we need another PRE after the dirty data write-back. Therefore, when

memory write occurs, the minimum required delay to issue the next PRE op-

eration (write-to-precharge delay) is the same to the conventional scheme (i.e.

tWL+BL/2+tWR). Our proposed EarlyPA technique handles write accesses as

follows:

• If a write comes before the self-precharge is internally issued, we postpone

the self-precharge so that we can leverage the unfinished row activation cycle.

To do that, we update the self-precharge counter and reset it to the write-

to-precharge delay (i.e. tWL+BL/2+tWR).

• If a write comes after the self-precharge is internally issued, it means that

we already disconnect the corresponding row in the memory array. In this

case, we need to turn on the corresponding wordline again for writing the

data, which brings some latency overhead (i.e. 3 cycles in this work). In

addition, we have to reset the self-precharge counter to the wordline-turn-on

delay plus the write-to-precharge delay (e.g. 3+tWL+BL/2+tWR), and the

previous self-precharge operation is wasted.

Although frequent write accesses still undermine the EarlyPA performance, it

does not cause any timing violation. That is because the memory access order

remains unchanged, and the next ACT command is never issued until all the

WRITE commands to that row are drained.

4.4.3 EarlyPA Implementation

Similar to the previously proposed ComboAS scheme, the EarlyPA implementa-

tion can be transparent to the memory controller and only requires some timing

parameter manipulations. The controlling policy for column access commands

(READ/WRITE) remains the same. As shown in Figure 4.7, we modify two

precharge-related timing parameters:

• tRAS (activation-to-precharge delay) of EarlyPA is set as tRCD0+tRP0.
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• tRP (precharing time) value is set as 1 so that the next ACT command can

be issued immediately when the self-precharge is finished.

Memory Device: Devices ignore all the PRE commands from the memory

controller as EarlyPA automatically precharges the bitlines in advance. Instead, a

self-precharge counter is added to each memory device control logic. The counter

is set to tRCD0 after every ACT command and reset to tWL+BL/2+tWR or

3+tWL+BL/2+tWR after every WRITE command depending on whether the

counter reaches zero or not at the WRITE command arrival. Furthermore, the

memory device skips precharge-related timing rule (e.g. tRTP checking) except

the tRAS checking as S/As and row buffers are decoupled in the EarlyPA mode.

Memory Controller: Symmetrically, the memory controller manipulates the

timing parameters in the same way as memory devices do. An additional mod-

ification to the memory controller change the write-to-precharge latency control:

after issuing a WRITE command, the minimum required delay for the next PRE

command is tWL+BL/2+tWR+tRP0 instead of tWL+BL/2+tWR.

4.5 Technique 4: Buffered Writes (BufW)

Last but not least, we propose Buffered Writes in this section to optimize the

STT-RAM writes.

4.5.1 Motivation: Independent Write Path

EarlyPA utilizes the STT-RAM non-destructive read to issue PRE command in

advance, but we also discuss that a WRITE command might undermine the Ear-
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lyPA scheme in terms of performance. Fortunately, we can leverage our decoupled

row buffers and bitlines to make another optimization.

Traditional DRAM access protocols handle writes during the row activation

cycle. It is a good choice for DRAMs because DRAM reads are destructive and

need data restoration. Therefore, it is beneficial to leverage the row buffer for

write operations so that we can overlap the write latency with the data restoration

process. However, STT-RAM reads are non-destructive, and we no longer need to

buffer the write data in the row buffer. Instead, since we now have row buffers

disconnected from bitlines, we can set up an read-independent data write path and

buffer the write data in a separate place. This observation leads us to a buffered

write scheme (BufW).

4.5.2 BufW Operation

The basic concept of BufW is to store the incoming WRITE commands in a small

buffer placed in the memory bank, use a dedicated write path, and only try to

issue the internal write operations when we detect a bus idle period or the buffer

becomes full. The detailed BufW description is:

• If a write comes and the write buffer is not full, we allocate a new write buffer

entry and store the data together with its address into this entry. Because

the buffer is essentially a small SRAM array, we assume the buffer allocation

can be finished within one memory clock cycle. Also, this write does not

affect the EarlyPA operation.

• If a write comes and the write buffer is full, we fall back to basic EarlyPA

and complete the write through normal write data path (using row buffer as

the data latch).

• When the number of idle cycles for a memory bank exceeds a threshold8,

we switch the memory rank into a write buffer draining phase, in which an

FSM moves the data from the write buffer to the memory array. During

each drain, we use the address information in write buffer to turn on the

8This functionality and the counter are similar to the circuit that controls the DRAM power-
down mode.
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corresponding wordline but without data sensing. Only the specified column

is written while the other columns are masked. The procedure is repeated

until the write buffer becomes empty. After that, the bitlines are precharged.

Or, if a new command arrives from the memory controller during a write,

the write is cancelled, and the coming command is served at first. In another

word, the write buffer is read-preemptive [17].

• For each read access, a write buffer lookup is needed since the write buffer

might hold the latest copy of the data. Since the write buffer is usually

small (e.g. 10-entry), this lookup process can be operated in parallel with

the normal column access to the row buffer, hiding the lookup latency. In

case of write buffer hit, we add extra read latency to pretend that the data

is returned by the memory array.

Figure 4.8 shows the difference between EarlyPA and BufW. When WRITE

arrives, In BufW, DATA0 is held in the write buffer until an idle period is detected

on the memory bus. BufW outperforms EarlyPA because it can issue the next

PRE and ACT earlier when a write occurs. Note that the memory device enters

the write buffer draining phase automatically (e.g. an idle period is detected)

and exits it implicitly (e.g. the write buffer becomes empty or a bus activity is

detected). Therefore, unlike entering/exiting DRAM self-refresh mode, we do not

need explicit LPDDRx commands for the entry and exit of the write buffer draining

phase.

4.5.3 BufW Implementation

Memory Device: Figure 4.9 shows write buffer implementation. First, a SRAM-

based FIFO-organized buffer with n entries is added. Each entry includes row

address, column address, the data field (32 bytes in this work), and a bit indi-

cating if it is occupied. We evaluate the hardware overhead of these additional

components using NVSim [79] under a 32 nm technology node. The result shows

that the area overhead is about 0.004 mm2 for each memory bank (smaller than

0.1% compared to a 4 Gb DRAM LPDDR3 chip fabricated using 32nm technology

with die area of 82 mm2 [84]). The energy overhead of one access is about 3.6 pJ

and the latency is about 0.5 ns.
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Figure 4.9. BufW Implementation.

Table 4.3. Simulation settings.

Core 1-8 cores, 2GHz, out-of-order ARM cores

SRAM I-L1/D-L1 caches
private, 32KB/32KB, 8-way, LRU, 64B cache line,
write-back, write allocate

SRAM L2 cache
shared, 1MB, 16-way, LRU, 64B cache line,
write-back, write allocate

Memory controller
open page policy, 32-entry read/write queues per controller,
FR-FCFS scheduler

Main Memory 1/2/4 channel, 1/2/4 ranks-per-channel,
4/8 banks-per-rank. Timing is configured as Table 4.1

Second, 3 multiplexers are added on the memory array interface to choose

different sources for row address, column address, and input data.

Third, a small controller is added to monitor bank states and drain the write

buffer when a long idle state is detected.

As a summary, the hardware overhead is negligible.

Memory Controller: The write buffer draining process is transparent to the

memory controller until the buffer is full and a new write command comes. In this

case, we need to switch the memory controller back to the basic EarlyPA mode.

To synchronize the write buffer overflow event between the memory controller and

the memory device, we add a virtual write buffer to the memory controller for

each memory rank. This buffer has the same number of entries as the ones on the

memory device side, but each entry only has one bit to indicate if the corresponding

entry in the memory device is occupied or not. We update this virtual write buffer

using the same algorithm as the one in the memory device. Therefore, the memory

controller is able to know the status of the actual write buffer on the memory

devices and switch to the basic EarlyPA mode when necessary.



51

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
a

li
z
e

d
 I

P
C

 

ComboAS Impractical(Unlimited-pin) DynLat EarlyPA BufW DRAM
1.6 1.8 

Figure 4.10. Normalized IPC of main memory system with each technique: ComboAS
as the baseline, Unlimited-pin, DynLat, EarlyPA, BufW, and DRAM systems.

4.5.4 BufW Discussion

First, as later shown in Section 4.6, the BufW technique is most beneficial to

the workloads with heavy write traffic. Therefore, unlike the previous three tech-

niques (i.e. ComboAS, DynLat, and EarlyPA) that we consider are the essential

techniques for the commodity STT-RAM success, the BufW technique might serve

as an optional technique that is only added for a system that is known to handle

heavy memory write traffic.

Second, the BufW technique is different from the previous “cached DRAM”

effort [85, 86]. Cached DRAM adds a large amount of SRAMs on a DRAM chip

to buffer multiple DRAM rows. The hardware overhead on the DRAM device side

is tremendous because their buffer entry is in the unit of page size. For example,

an 8KB SRAM cache is added to a 4MB DRAM [85], and it can cause at least 5%

die size increase (assuming a 24:1 SRAM/DRAM cell area ratio). On the contrary,

our BufW buffers data in the unit of a memory burst length, and it only causes less

than 0.1% die size overhead. In addition, fabricating SRAM on a DRAM process

degrades the performance. Our BufW technique is immune to this degradation

because the buffer is filled on a non-critical path. However, cached DRAM suffers

from this problem as cache is latency-sensitive.

4.6 Experiments

4.6.1 Simulation Methodology

We model a 2GHz out-of-order ARMv7 microprocessor using our modified version

of gem5 [87]. DRAMSim2 [88] is integrated and modified to model the main

memory system. Open-page policy with FR-FCFS [89] scheduling is accurately
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modeled.

We user the timing and power parameters in in Table 4.1 to simulate our DRAM

and STT-RAM devices. Both of DRAM and STT-RAM are projected to work

on a 533MHz LPDDR3 bus. Unless specified, our default system configuration

comprises a single-core processor with a main memory system with 1 channel, 2

ranks, and 8 banks. We also give detailed sensitivity studies to vary the number of

cores, channels, ranks, and banks in Section 4.6.4. We use open-page policy with

row-interleaving which is widely used to maximize the memory-level parallelism.

More details for the simulation setting are provided in Table 4.3.

We select 20 memory-intensive benchmarks from SPEC 2006 [90], EEMBC

2.0 [91], and HPEC [92]. We form the multi-core workloads by randomly choosing

from all the workloads. We fast-forward each simulation to the pre-defined break-

point at the code region of interest, warm-up 10 million instructions, and simulate

for at least 1 billion instructions. To measure the system performance, we use

instruction per cycle (IPC) as the metric.

4.6.2 Performance Speedup of Individual Benchmarks

Figure 4.10 shows the performance speedup of the STT-RAM system with each

proposed technique. The DRAM system performance is also provided for com-

parison. We use ComboAS as the baseline which has the worst performance. The

second bar is the performance of an impractical implementation where 2 more pins

are added (referred to as Unlimited-pin in the chart). Compared to Unlimited-pin,

Figure 4.10 shows that the performance of ComboAS is degraded by 5% on aver-

age. However, after adopting DynLat to reduce the unneccesarry latency overhead

caused by ComboAS, the sytem performance is bounsed back by 3% on average (up

to 14%). Thus, the performance of ComboAS system with DynLat is comparable

to the Unlimited-pin in most cases.

In addition, by leveraging the STT-RAM non-destructive read with EarlyPA,

we improve the performance by 14% (up to 36%). Furthermore, by adding BufW

scheme, we provide another performance boost, and the overall performance im-

provement reaches 17% on average (up to 42%). After adopting all the proposed

techniques, the overall performance of the projected STT-RAM system is compet-
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Figure 4.11. Normalized energy consumption of DRAM system and STT-RAM system
adopted different techniques.

itive to the DRAM counterpart.

The performance improvement of each workload is different because of two

reasons. First, memory-intensive workloads benefit more from our proposed tech-

niques because more efficient memory accesses provide larger system performance

improvement. Second, write-intensive workloads benefit more from BufW, but

the benefit is reduced if the write ratio is too high and the write buffer is always

full. We also give the sensitivity study on the number of write buffer entries in

Section 4.6.4.

4.6.3 Energy Consumption Analysis

Sleeping Mode. The battery life is critical to every mobile device. To reduce

standby power, modern devices (e.g. smartphones) turn off as many components

(e.g. CPU, GPU, GPS, etc.) as possible during the sleeping mode. However,

DRAM cannot be turned off because it is volatile. Commonly, DRAM is switched

from auto-refresh mode to self-refresh mode before the memory controller becomes

off-line. Although the self-refresh mode can generally reduce the DRAM refresh

power by 50%-80% (depending on the ambient temperature), it is still a dominant

power contributor to the standby power. For instance, a smartphone usually com-

sumes 25mW-30mW during standby (e.g. iPhone 4S), but its 512MB DRAM still

consumes 6mW even using self-refresh. Replacing DRAM with STT-RAM can

eliminate the memory standby power (STT-RAM IDD6 is 0), and easily improve

the mobile device battery life.

Operating Mode. While the performance of our optimized STT-RAM system
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is similar to the conventional DRAM system, the real deal breaker is the energy

consumption saving. Figure 4.11 shows the comparison of energy consumption

between the DRAM and the STT-RAM systems, in which each value is divided

to refresh energy, burst energy, activation/precharge energy and background pe-

ripheral circuit energy9. The energy overhead of each proposed technique is also

included.

Compared to DRAM, STT-RAM-based system does not consume any refresh

energy because of its non-volatility, and it is the major source of the STT-RAM

energy saving. We need to mention that, as shown in Table 4.1, the read/write

energy of STT-RAM is larger than DRAM because STT-RAM has smaller sense

margin and the memory cell is difficult to write. Thus, the STT-RAM burst energy

is usually larger than the DRAM one. The energy consumed by peripheral circuits

is similar between DRAM and STT-RAM because we do not apply any circuit

optimization to it in this work. But we should note that the peripheral energy of

STT-RAM can be further reduced if STT-RAM is allowed to go into power-collapse

mode frequently during the idle state.

Figure 4.11 shows the ComboAS STT-RAM system reduces the total energy

consumption by more than 17% compared to DRAM system. After adopting

proposed DynLat, EarlyPA and BufW techniques, the energy consumption of STT-

RAM system can be further reduced by 4.5% on average since the performance

is increased and the total execution time is reduced. Considering the comparable

performance and smaller energy consumption, STT-RAM is an attactive candidate

to build the main memory system.

4.6.4 Sensitivity Study

The number of Channels, Ranks, and Banks. To evaluate our techniques

under different memory configurations, we change the number of memory channels,

ranks, and banks but keep the total memory capacity the same. Figure 4.12 is the

normalized IPC under each configuration showing that the proposed techniques

improve the performance by 16%-20% under different configurations. When the

9In this work, we do not model the self-refresh mode for DRAM systems and the power-
collapse mode for STT-RAM systems. The realistic background energy can be smaller than our
simulated numbers.
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Figure 4.13. Normalized IPC of each technique when the number of cores are changed.

number of higher-level parallelism (channels) is increased, the performance dif-

ference between naive STT-RAM and DRAM system is decreased. In this case,

the performance of STT-RAM system (e.g. 4c1r4b) after adopting all proposed

techniques may be better than the DRAM system. But adding higher-level paral-

lelism is expensive, especially for mobile systems. Therefore, using our proposed

techniques is a more effective method to boost the performance.

The Number of Cores. Figure 4.13 shows the performance improvement of our

proposed techniques under multi-core system configuration. After adopting all the

proposed techniques, the performance of 2core/4core/8core system is improved by

14%/10%/5% on average. When the number of cores is increased, the page hit ratio

of main memory system is decreased as the number of processes simultaneously

accessing memory goes up, which is also proved in some previous work [24, 53].

The good news is that the performance hit caused by STT-RAM smaller page size

is also less severe in these cases, and our techniques bring extra performance gain.

The Number of Write Buffer Entries. For BufW, the number of write buffer

entries is a predetermined parameter and should be studied. The possibility of

write buffer overflow decreases as the number of entries increases, and the system

performance is improved. In case of write buffer overflow, our solution is to utilize

the conventional write path which is through the row buffer. We need another PRE
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Figure 4.14. The IPC improvement of BufW over EarlyPA and the percentage of
repeated PRE commands when the write buffer size increases.

command after that to close the row, and the previous PRE command issued by

EarlyPA in advance becomes useless. A larger write buffer can reduce the chances

of repeated PRE commands. However, adding more write buffer entries has area

overhead. Therefore, we need a trade-off between performance and cost.

Figure 4.14 shows the IPC improvement and the percentage of repeated PRE

commands when the number of write entries is increased from 2 to 50. The result

shows that IPC is increased rapidly when the number of write buffer entries in-

creases from 2 to 10, and the trend becomes flatten after 10. Therefore, we select

10 as our write buffer size.

4.7 Summary

The shift from PCs to mobile devices is requesting low-power memory solutions,

and non-volatile memory technologies such as STT-RAM are promising candi-

dates. Compared to DRAM, STT-RAM has many unique features such as small

page size, non-destructive read, and independent write path. The smaller page size

brings challenges in designing commodity STT-RAM that can be deployed on the

same LPDDRx interface as DRAM, and can cause performance degradation to

mobile systems where the page hit ratio is important. In this work, we propose

four techniques: ComboAS and DynLat to solve the DRAM-compatibility issue;

EarlyPA and BufW to further improve the performance by exploiting the STT-

RAM unique features, and they mitigate the performance loss caused by lower

page hit ratio. Combined together, our solution enables a commodity STT-RAM

on LPDDR3 interface with a much optimized performance (17% on average and
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up to 42%). It makes LPDDR3 STT-RAM have competitive performance but save

21% energy compared to LPDDR3 DRAM does. The proposed architecture is a

step forward to the future energy-efficient memory design.



Chapter 5
NVM Caches: Wear Leveling

Compare to NVM main memories, building NVM-based on-chip caches is more

challenging. It is because caches handle much more writes than storage and main

memory do, but NVM only has a limited write endurance. Worse, this limited

write endurance issue is further amplified by the conventional cache management

policies: these polices were originally designed for SRAM caches and result in

significant non-uniformity in terms of writing to cache blocks, which would cause

heavily-written NVM blocks to fail much earlier than most other blocks. Therefore,

in this chapter, we study on how to design an effective wear-leveling technique for

NVM caches.1

There are already many wear-leveling techniques to extend the lifetime of NVM

main memories [7, 8, 9], but the difference between cache and main memory op-

erational mechanisms makes the existing wear-leveling techniques for NVM main

memories inadequate for NVM caches. This is because writes to caches have intra-

set variations in addition to inter-set variations while writes to main memories

only have inter-set variations. According to our analysis, intra-set variations can

be comparable to inter-set variations for some workloads. This presents a new

challenge in designing wear-leveling techniques for NVM caches.

To minimize both inter- and intra-set write variations, we introduce i2WAP

(inter/intra-set Write variation-Aware cache Policy), a simple but effective wear-

leveling scheme for NVM caches [93, 94]. i2WAP features two schemes: 1) Swap-

1This work is published as “i2WAP: Improving Non-Volatile Cache Lifetime by Reducing
Inter- and Intra-Set Write Variations” on HPCA2013.
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Shift is enhanced from the existing main memory wear-leveling techniques and

aims to reduce the cache inter-set write variation; 2) Probabilistic Set Line Flush

is designed to alleviate the cache intra-set write variation, which is a severe problem

for NVM caches and has not been addressed before.

5.1 Inter-Set and Intra-Set Write Variations

Write variation is a significant concern in designing any cache/memory subsystems

with a limited write endurance. Large write variation can greatly degrade the

product lifetime because only a small subset of memory cells that experience the

worst-case write traffic can result in an entire dead cache/memory subsystem even

when the majority of cells are far from wear-out.

While the write variation in NVM main memories has been widely studied [7,

6, 5, 8, 9], to our knowledge, the write variation in NVM caches has not. Wear-

leveling in caches brings extra challenges since there are write count variations

inside every cache set (i.e. intra-set variations) as well as across different cache

sets (i.e. inter-set variations). In order to demonstrate how severe the problem is

for NVM caches, we first do a quick experiment.

5.1.1 Definition

The objective of wear-leveling is to reduce write variations and make write traffic

uniform. To quantify the cache write variation, we define the coefficient of inter-set

variations (InterV) and the coefficient of intra-set variations (IntraV) as follows,

InterV =
1

Waver

√√√√√√ N∑
i=1

(
M∑
j=1

wi,j/M −Waver

)2

N − 1
(5.1)

IntraV =
1

Waver ·N

N∑
i=1

√√√√√√ M∑
j=1

(
wi,j −

M∑
j=1

wi,j/M

)2

M − 1
(5.2)
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Figure 5.1. The coefficient of variation for inter-set and intra-set write count of L2 and
L3 caches in a simulated 4-core system with 32KB I-L1, 32KB D-L1, 1MB L2, and 8MB
L3 caches.

where we use Bessel’s correction to calculate the standard deviation. wi,j is the

write count of the cache line located at set i and way j, and Waver is the average

write count:

Waver =

N∑
i=1

M∑
j=1

wi,j

NM
(5.3)

where N is the number of cache sets, and M is the cache associativity. In short,

InterV is the CoV (coefficient of variation) of the average write count within cache

sets; IntraV is the average of the CoV of the write counts cross a cache set2. If

wi,j are all the same, InterV and IntraV are both zero.

Figure 5.1 shows the experimental results of InterV and IntraV in our simulated

4-core system with 32KB 8-way I-L1, 32KB 8-way D-L1, 1MB 8-way L2, and

8MB 8-way L3 caches. The detailed simulation methodology and the setting are

described in Section 5.6. We compare InterV and IntraV in L2 and L3 caches as

we anticipate that NVM will be first used in low-level caches. We observe from

Figure 5.1 that:

1. Large InterV: Cache lines in different sets might have totally different write

frequencies because applications usually have biased memory residency. For

instance, streamcluster has 189% InterV in L2, and swaptions has 115%

InterV in L3. On average, InterV is 66% in L2 and 22% in L3.

2We use average CoV instead of maximum CoV to keep the definitions of intra-set (the CoV
of the averages) and inter-set variations (the average of the CoVs) symmetric.
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2. Large IntraV: A cache line holding hot data might absorb most of the cache

write operations, and thus the remaining M-1 lines in the set (for an M-

way associative cache) are written less frequently. This causes IntraV. For

example, freqmine has 84% L2 IntraV, and swaptions has 222% L3 IntraV.

On average, IntraV is 17% in L2 and 27% in L3.

3. L2 has larger InterV than L3: L2 caches are private for each processor but

all processors share one L3 cache, thus L3 has smaller InterV since it mixes

different requests. Considering the average write count to L2 is also higher,

the larger L2 InterV makes the limited write endurance problem even worse.

4. IntraV is comparable to InterV: Our results show that IntraV is roughly the

same or even larger compared to InterV for some workloads. Combining

these two types of write variations together significantly shortens the NVM

cache lifetime.

5.2 Cache Lifetime Metrics

Cache lifetime can be defined in two ways: raw lifetime and error-tolerant lifetime.

We define the raw lifetime by the first failure of a cache line without considering any

error recovery effort. On the other hand, we can extend the raw lifetime by using

error correction techniques and paying overhead in either memory performance or

memory capacity [10, 11, 12, 13], and we call it the error-tolerant lifetime. In this

work, we focus on how to improve the raw lifetime at first as it is the base of the

error-tolerant lifetime. Later, we discuss the error-tolerant lifetime in Section 5.7.2.

The target of maximizing the cache raw lifetime is equivalent to minimizing

the worst-case write count to a cache line. However, it is impractical to obtain

the worst-case write count throughout the whole product lifetime which might

span several years. Instead, in this work, we model the raw lifetime by using three

parameters: average write count, inter-set write count variation, and intra-set write

count variation. The detailed methodology can be described as follows,

1. The cache behavior is simulated during a short period of time tsim (e.g. 10

billion instructions on a 3GHz CPU).
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Figure 5.2. The L2 cache write count probability distribution function (PDF) of
blackscholes.

2. Each cache line write count is collected to get a average write count Waver.

Also, we calculate InterV and IntraV according to Equation 5.1 and Equa-

tion 5.2.

3. Assuming the total write variation of a cache line is the summation of its

inter- and intra-set variations3, we then have Wvar = Waver · (InterV +

IntraV ).

4. The worst-case write count is predicted as Waver + Wvar to cover the vast

majority of cases. While it is approximate, Figure 5.2 validates the feasibility

of this approach.

5. Assuming the general characteristics of cache write operations for one appli-

cation do not change with time4, the lifetime of the system can be defined

as:

ttotal =
Wmax · tsim
Waver +Wvar

=
Wmax · tsim

Waver(1 + InterV + IntraV )
(5.4)

where Wmax represents the write endurance.

In addition, the lifetime improvement (LI) of a cache wear-leveling technique

can be expressed by Equation 5.5, where Waver base and Waver opt are the average

3InterV and IntraV are not independent, but the worst-case variation can be modeled as the
sum of them.

4If system runs different applications over time, the cache write variance can be reduced.
However, in this work, we only consider the worst case. It occurs in some practical cases, such
as embedded applications in which the data layout could largely remain the same.
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Figure 5.3. The baseline lifetime of L2 and L3 caches normalized to the ideal lifetime
(no write variations in the ideal case).

write count before and after wear-leveling, respectively:

LI =
Waver base(1 + InterVbase + IntraVbase)

Waver opt(1 + InterVopt + IntraVopt)
− 1 (5.5)

In order to increase LI, we need to reduce InterV and IntraV while not significantly

increasing Waver.

We apply the state-of-the-art LRU (least recently used) cache management

policy as the baseline, and Figure 5.3 shows how large the write variation it can

cause. Compared to the ideal case where cache writes are evenly distributed,

LRU can shorten the cache raw lifetime by 20%-30% under some workloads (e.g.

swaptions). If this is the case of future NVM caches, our system will quickly fail

even when most of the NVM cells are still healthy. Therefore, it is critical to design

a write variation-aware cache management for NVM caches, and we need a cache

management policy that can reduce both InterV and IntraV.

5.3 Starting from Inter-Set Write Variations

5.3.1 Challenges in Cache Inter-Set Wear-Leveling

The existing wear-leveling techniques [7, 5, 8, 9] focus on increasing the lifetime

of NVM main memory. The principle behind these techniques is to introduce

an address re-mapping layer. This principle remains the same for cache inter-

set wear-leveling, but we should reduce the performance overhead during address
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re-mapping since caches are accessed more frequently than main memories.

Using Data Movement: Main memory wear-leveling techniques must use

data movement during a re-mapping because any data loss in main memories

is unrecoverable. Moving cache lines from one set to another is costly. First,

data movement requires temporary data storage. Second, one cache set movement

involves multiple reads and writes, it blocks the cache port, and thus it might cause

significant system performance degradation. Start-Gap [8] is a recently proposed

technique for NVM main memory wear-leveling. If we directly extend Start-Gap

to handle the cache inter-set wear-leveling, it falls into this category.

Using Data Invalidation: Another option to implement set address re-

mapping for NVM caches is data invalidation. We can use cache line invalidation

because we can always restore the cache data later from lower-level memories as

long as they are clean. This unique feature of caches provides us a new opportunity

to design a low-overhead cache inter-set wear-leveling technique.

Data invalidation saves the temporary storage and the data movement latency

as well. To quantify the performance difference between data movement and in-

validation, we use L3 cache inter-set wear-leveling as an example. Equation 5.6

lists the timing overhead of a cache set movement operation, in which M is cache

associativity and tL3 is the L3 access latency (we assume symmetric read/write

latency for the sake of simplicity).

tmove = M × (2× tL3) (5.6)

The timing overhead of a cache set invalidation operation is hard to predict pre-

cisely since it highly depends on workloads. Equation 5.7 gives a first-order esti-

mation, where HitR is the L3 hit rate, WriteR is the L3 write ratio, and tMM is

the main memory latency. tinvalid consists of two parts: writing back the dirty data

in this set to main memory; restoring data from main memory to L3 which should

be hit later. In the first part, HitR×WriteR is used to estimate the percentage of

dirty blocks, and we assume that the write back buffer can hide the main memory

write latency; In the second part, we assume that the data returned from main
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Figure 5.4. The performance comparison between data invalidation and data move-
ment.

memory can be forwarded to L2 before being written into L3.

tinvalid = M ×HitR×WriteR× tL3 +M ×HitR× tMM (5.7)

We generally have tinvalid < tmove since WriteR is usually small. To further

quantify the performance difference between these two, we also simulate two sys-

tems, respectively (see Section 5.6 for detailed simulation settings). In the data

movement system, we extend the Start-gap technique [8] and trigger a cache set

movement after every ψ cache writes. In the second system, we do not move

the cache set but only invalidate it (write back if dirty). Figure 5.4 shows the

performance comparison under different ψ settings (i.e. 100, 1,000 and 10,000).

Compared to the data invalidation system, the data movement system has worse

performance (i.e. 2% on average and up to 7% when ψ equals to 100). For the

data invalidation system, the performance overhead comes from writing back the

dirty data to main memory and restoring data which should be hit later from main

memory. The widely-used MSHR technique [95] can effective hide these latencies.

However, On the other hand, the performance overhead in the data movement

system is always there since we cannot move data in a non-blocking way.

5.3.2 Swap-Shift (SwS)

Considering data invalidation is more favorable in cache inter-set wear-leveling,

we modify the existing main memory wear-leveling technique and devise a new

technique called Swap-Shift (SwS).
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Figure 5.5. One SwS shift round in a cache with 4 sets.

5.3.2.1 SwS Architecture

The concept of SwS is to periodically shift cache set locations. Instead of shifting

all the cache sets at once which hits performance significantly, SwS only swaps the

data of two neighboring sets at once. SwS can eventually shift all the cache sets

by one offset after N-1 swaps, where N is the number of cache sets.

SwS uses a global counter to store the number of cache writes, and we an-

notate it as Wr. It also uses two registers, SwV (changing from 0 to N-2) and

ShV (changing from 0 to N-1), to track the current status of swaps and shifts,

respectively. SwS has swap round and shift round::

• Swap Round (SwapR): Every time Wr reaches a specific threshold (Swap

Threshold, ST ), a swap between cache set [SwV ] and set [SwV+1] is trig-

gered. Note that this swap operation only exchanges the set IDs, and in-

validates the data stored in these two sets (needs write-back if the data are

dirty). After that, SwV is incremented by 1. One swap round (SwapR)

consists of N-1 swaps and indicates that all the cache set IDs are shifted by

1.

• Shift Round (ShiftR): ShV is incremented by 1 after each SwapR. At the

same time, SwV is reset to 0. One shift round (ShiftR) consists of N shifts

(i.e. SwapR).

Figure 5.5 is an example of how SwS shifts the entire cache by multiple swaps.

It shows the SwV and ShV values during a complete ShiftR, which consists of 4

SwapR; it also shows that one SwapR consists of 3 swaps and all cache sets are

shifted by 1 after each SwapR. In addition, after one ShiftR, all cache sets are
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Global
Counter

SwV = (SwV+1)
mod (N-1)

Cache Write
If Num==ST

ShV=(ShV+1)
mod N

If LS == SwV
then PS = ShV

else If LS > SwV
then PS = (LS + ShV) mod N

else
then PS = (LS + ShV + 1) mod N

INPUT: LS OUTPUT: PS

If SwV==0

If PS == ShV
then LS = SwV

else If (PS - ShV) mod N > SwV
then LS = (PS - ShV) mod N

else
then LS = (PS - ShV - 1) mod N

INPUT: PSOUTPUT: LS

Figure 5.6. The mapping between logical (LS) and physical set index (PS) in SwS.

shifted to the original position and all the logical set indices are the same as the

physical ones.

The performance penalty of SwS is small because only two sets are swapped

at once and the swap interval period can be long enough (e.g. million cycles) by

adjusting ST . The performance analysis of SwS is in Section 5.7.1.

5.3.2.2 SwS Implementation

Figure 5.6 shows the SwS implementation. When a logical set number (LS) arrives,

the physical set number (PS) can be computed based on three different situations:

1. If LS = SwV , it means that this logical set is exactly the cache set should be

swapped in this ShiftR. Therefore, PS is mapped to the current shift value

(ShV ).

2. If LS > SwV , it means that this set has not been shifted in this ShiftR.

Therefore, PS is mapped to LS + ShV .

3. If LS < SwV , it means that this set has been already shifted. Therefore,

PS is mapped to LS + ShV + 1.

When a dirty cache line is written back to the next level of cache, the logical set

address needs to be re-generated. The mapping from PS to LS is symmetrical

and is also given in Figure 5.6. This mapping policy can be verified by the simple
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example in Figure 5.5. Because SwV and ShV are changed along with cache writes,

the mapping between LS and PS change all the time. This scheme balances the

writes to different physical sets, reducing cache InterV.

Compared to a conventional cache architecture, the set index translation step

in SwS only adds a simple arithmetic operation and can be merged into the row

decoder. We synthesize the LS-to-PS address translation circuit in a 45nm tech-

nology, and the circuit can handle a LS-to-PS translation within one cycle under

a 3GHz clock frequency.

5.4 Intra-Set Variation: A More Severe Issue

SwS only reduces cache inter-set write variations. Our experiment later in Sec-

tion 5.6.2 shows that SwS alone cannot reduce intra-set variations. In this section,

we start with two straightforward techniques and then follow with a much improved

technique, called PoLF, to tackle the cache intra-set variation problem.

5.4.1 Set Line Flush

Intra-set write variations are mainly caused by hot data being written more fre-

quently than others. For example, if a cache line is frequently accessed by cache

write hits, the corresponding cache set must have a highly unbalanced write dis-

tribution.

Traditionally, caches use LRU replacement policy to avoid evicting useful cache

lines by marking every accessed block marked towards the MRU (most recently

used) position. The LRU policy rarely replaces the hot data that are frequently

accessed by cache write hits. This increases the write count of one block and the

intra-set write variation of the corresponding set.

To solve this problem, we first consider a set line flush (LF) scheme. When there

is a cache write hit, LF puts the new data into the write-back buffer directly instead

of writing it to the hit data block, and then marks the cache line as INVALID.

This process is called set line flush. Using LF, the block containing the hot data

has the opportunity to be replaced by other cold data, and the hot data can be

reloaded to other cache lines. We invalidate the hot data line instead of moving it
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Figure 5.7. The cache architecture of HoLF. The counters to store the write count are
added to every cache line.

to other positions due to the same performance concern explained in Section 5.3.1.

LF balances the intra-set write count, but it flushes data on every cache write

hit regardless of data hotness. Obviously, LF greatly harms performance as it

evicts useful cache line every time. Instead, we need a scheme that only flushes

hot cache lines that have been heavily written.

5.4.2 Hot Set Line Flush

We can improve the LF scheme by tracking the write count of each cache line

and storing this counter in cache tags. We call this enhanced scheme hot set line

flush (HoLF). We can detect a hot cache line if its counter is greater than the

average value of that cache set by a predetermined threshold, and thus we should

flush it. In this way, we can load another data into this cache line, and reload the

hot data into a relatively cold cache line. Figure 5.7 shows the HoLf architecture.

However, HoLF is still impractical. HoLF adds a large area overhead since it

requires one counter for every cache line. Considering the typical cache line is 64-

byte wide and assuming the write counter is 20-bit, the hardware overhead is more

than 3.7%. HoLF also degrades performance because it updates both maximum

and average write counter values in every cache set. It is infeasible to initiate

multiple arithmetic calculations for every cache write.

Due to these reasons, we stop the HoLF discussion and switch to a further

improved solution called PoLF.
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5.4.3 Probabilistic Set Line Flush

The key of probabilistic set line flush (PoLF) is to flush hot data probabilistically

instead of deterministically.

5.4.3.1 Probabilistic Invalidation

Unlike HoLF, PoLF only maintains one global counter to count the number of

write hits to the entire cache, and it flushes a cache line when the counter saturates

regardless of the cache line hotness. Although we cannot guarantee that the hottest

data would be flushed, the probability of PoLF selecting a hot data line is high:

the hotter the data is, the more likely it will be selected when the global counter

saturates. Theoretically, PoLF can still flush the hottest cache line with only one

global counter.

Maintaining LRU: Normal LRU policy marks the age bits of the evicted

cache line as LRU during a cache line invalidation. However, PoLF should not

modify age bits during a probabilistic invalidation. Otherwise it is possible that

after invalidating a single hot cache line, the same data will be reinstalled in

the very same line on a subsequent miss. Therefore, in our design, when PoLF

flushes a cache line in response to a probabilistic invalidation, the cache line age

bits are unchanged. Later, a subsequent miss will invalidate the actual LRU line

and reinstall the hot data in that line. The cache line evicted by probabilistic

invalidation remains invalid until it becomes the actual LRU line.

Comparison with Other Policies: Figure 5.8 shows the behavior of a 4-

way cache set managed by LRU, LF, and PoLF polices under an exemplary access

pattern. We observe that:

1. For LRU, the hot data a0 is moved to the MRU position (age bits=3) af-

ter each write hit and is never replaced by other data. Thus, the intra-set

variation using LRU is the largest one among all the polices.

2. For LF, each write hit causes its corresponding cache line to be flushed. The

age bits are not changed during write hits. The intra-set variation is reduced

compared to the LRU policy because the hot data a0 is reloaded into another

cache line. However, data a1 is also flushed since every write hit causes one

cache line flush, and it brings one additional access miss.
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THEN write back & invalidate block

ELSE move block to MRU
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a1: data in one cache way
0: age bits (0: LRU 3: MRU) a0 write operation I Invalid data

Figure 5.8. The behavior of one cache set composed of 4 ways under LRU, LF, and
PoLF polices for the same access pattern. The total write count of each cache way, the
average write count and the intra-set variation are marked, respectively.

3. For PoLF, we let every other write hit cause a cache line flush (i.e. line-flush

threshold FT=2)5. Compared to the LRU policy, its intra-set variation is

reduced because the hot data a0 is moved to another cache line. In addition,

compared to LF, cache miss rate is reduced because a1 is not flushed.

From this example, we can see that PoLF maintains a high probability of replacing

a hot cache data and thus reduces IntraV.

5.4.3.2 PoLF Implementation

Figure 5.9 shows the PoLF implementation. The only hardware overhead of PoLF

is a global counter (one counter for the entire cache) that tracks the total number

of write hits to the cache. The counter is only incremented at each write hit event.

If the counter saturates at one threshold, then the cache will record the write

operation that causes the counter saturation, and invalidate the line corresponding

5FT is set as 2 for this illustration. The realistic value is much larger, and we discuss it in
Section 5.6.
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Figure 5.9. The cache architecture of PoLF. Only one global write hit counter is added
to the entire cache.

to that write hit. The tunable parameter of PoLF is the line-flush threshold FT .

5.5 i2WAP: Putting Them Together

We combine SwS and PoLF together to form our inter- and intra-set write variation

-aware policy, i2WAP. In i2WAP, SwS and PoLF work independently: SwS reduces

InterV, and PoLF reduces IntraV.

The total write variations can be reduced significantly and the product lifetime

can be improved. The implementation overhead of i2WAP is:

• One global counter to store the number of write accesses (for SwS);

• Two registers to store the current cache set swapping and shifting values (for

SwS);

• One global counter to store the number of write hits (for PoLF).

5.6 Experiments

In this section, we first describe our experiment methodology, then we demonstrate

how SwS and PoLF reduce InterV and IntraV, respectively. Finally, we show how

i2WAP improves the NVM cache lifetime.
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Table 5.1. Workload characteristics in L2 an L3 caches under our baseline configuration.

L2 cache L3 cache
Workload WPKI TPKI WPKI TPKI

blackscholes 0.07 0.4 0.04 0.3
canneal 0.04 23 0.01 15
dedup 1.1 4.8 0.4 0.8
facesim 3.3 4.7 1.1 1.4
ferret 1.8 6.3 0.2 0.5

fluidanimate 0.4 1.4 0.3 0.8
freqmine 1.3 6.7 0.2 0.4
raytrace 0.56 0.62 0.03 0.25

streamcluster 3.7 4.2 0.9 1.1
swaptions 1.4 2.9 0.02 0.06

vips 1.1 4.4 0.6 1.0
x264 0.7 16.1 0.2 0.5

5.6.1 Baseline Configuration

Our baseline is a 4-core CMP system. Each core consists of private L1 and L2

caches, and all the cores share an L3 cache. Our experiment makes use of a 4-

thread OpenMP version of the PARSEC 2.1 [72] benchmark workloads6. We run

single applications since they generally represent the worst case. The native inputs

are used for the PARSEC benchmark to generate realistic program behavior. We

modify the gem5 full-system simulator [87] to implement our proposed techniques

and use it to collect cache accesses. Each gem5 simulation run is fast forwarded

to the pre-defined breakpoint at the code region of interest, warmed-up by 100

million instructions, and then simulated for at least 10 billion instructions. The

characteristics of workloads are listed in Table 5.1, in which WPKI and TPKI are

writes and transactions per kilo-instructions, respectively.

In this work, we use ReRAM L2 and L3 caches as an example. Our techniques

and evaluations are also applicable to other NVM technologies. Table 5.2 lists the

simulation parameters, and the circuit-level cache parameters (e.g. access latency)

are obtained from NVSim [79].

6A supplementary experiment on multi-programm workloads is given in Section 5.6.7.
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Table 5.2. Baseline configurations.

System 4-core, 3GHz, out-of-order CPU model
based on ALPHA 21264

SRAM∗ I-L1/D-L1 caches private, 32KB/32KB, 8-way, 64-Byte cache line,
LRU & write-back, write allocate, 2-cycle

ReRAM L2 cache private, 1MB, 8-way, 64-Byte cache line,
LRU & write-back, write allocate, 30-cycle

ReRAM L3 cache shared, 8MB, 8-way, 64-Byte cache line,
LRU & write-back, write allocate, 100-cycle

DRAM main memory 4GB, x16, 8 banks, tRCD-tRP-CL: 11-11-11

5.6.2 Effect of SwS on Inter-Set Variation

The SwS effectiveness in InterV reduction is related to the number of shift rounds

(ShiftR). For a cache with N sets, one ShiftR includes N swap rounds (SwapR)

and one SwapR has N − 1 swaps. One ShiftR shifts every cache set through all

the possible locations. More ShiftR means better inter-set wear-leveling.

We annotate the round number of ShiftR as RRN,

RRN =
Wtotal

ST ×N × (N − 1)
=

WPI × In
ST ×N × (N − 1)

(5.8)

in which ST is the swap threshold, Wtotal is the product of WPI (write access

per instruction) and In (the number of simulation instructions). For the same

application, if the execution time is longer, which means In is larger, we can use a

larger ST value to get the same RRN.

To illustrate the relationship between InterV reduction and RRN, we run simu-

lations with different configurations and execution lengths. Figure 5.10 shows the

result. As RRN increases, the cache InterV reduces significantly. When RRN is

larger than 100, InterV becomes 95% smaller. According to Eqn. 5.8, this means

if we want to make an effective inter-set wear-leveling every month, we can use a

relaxed ST value (e.g. 100,000 in this case).

However, simulating a system within 1-month wall clock time is never realistic.

To evaluate the effectiveness of SwS, we use a smaller ST (e.g. ST=10) in a

relatively shorter simulation (e.g. 100 billion instructions) to get a similar RRN.
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Figure 5.10. Inter-set variations normalized to baseline when RRN increases in SwS
scheme. The zoom-in sub-figure shows the detailed L2 inter-set variation of different
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Figure 5.11. The average intra-set variation and the average write count normalized
to baseline for L2 and L3 caches after adopting a PoLF scheme. The zoom-in sub-figure
shows the detailed L2 intra-set variation for different workloads after adopting an PoLF
scheme with line-flush threshold (FT) of 10.

Figure 5.10(b) shows an L2 InterV reduction after adopting SwS when RRN equals

to 100. The average InterV is significantly reduced from 66% to 1.2%.

In practice, ST can be scaled along with the entire product lifespan since our

wear-leveling goal is to balance the cache line write count in the scale of several

months if not years. Thus, the swap operation in SwS is infrequent enough to hide

its performance impact.

5.6.3 Effect of PoLF on Intra-Set Variation

Figure 5.11 shows how PoLF affects IntraV and average write counts for L2 and

L3 caches. We can see that PoLF can reduce IntraV significantly and the strength
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Figure 5.12. The total variation for L2 and L3 caches under the baseline configuration,
SwS scheme (RRN=100), PoLF scheme (FT=10) and i2WAP policy. Each value is
broken down to InterV and IntraV. Note that a log scale is used to cover a large range
of variations.

of PoLF can be changed with different FT values.

When FT equals to 1, the PoLF scheme flushes every write hit and it is equiv-

alent to the LF scheme. Figure 5.11 shows that LF can further reduce IntraV

compared to PoLF. However, the average write count of LF is increased signifi-

cantly as well. Thus, considering the impact on both IntraV and average write

counts, we choose PoLF with an FT that equals to 10.

The results show that PoLF reduces the average L2 IntraV from 17% to 4%

and the average L3 IntraV from 27% to 6%. The average write count is increased

by less than 2% compared to the baseline.

5.6.4 Effect of i2WAP on Total Variation and Lifetime Im-

provement

Figure 5.12 shows the total variations of L2 and L3 caches under different policies.

Compared to the baseline, SwS reduces InterV across all the workloads, but it

does not reduce IntraV. On the other hand, PoLF reduces IntraV and has a small

impact on InterV. By combining SwS and PoLF, i2WAP is able to reduce both
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Figure 5.13. The lifetime improvement after adopting i2WAP using Eqn. 5.5. (Left:
L2, Right: L3)

InterV and IntraV, evenly distributing writes to every cache line. Figure 5.12

shows that on average the total variation is reduced from 84% to 5% for L2 caches

and from 49% to 15% for L3 caches.

Reduced InterV and IntraV mean an improved NVM cache lifetime. Figure 5.13

shows the lifetime improvement of L2 and L3 caches after adopting SwS only, PoLF

only, and the combined i2WAP policy, respectively. The lifetime improvement

varies based on the workload. Basically, the larger the original variation value is,

the bigger the improvement a workload has. The overall lifetime improvement is

75% (up to 224%) for L2 caches and 23% (up to 100%) for L3 caches.

5.6.5 Sensitivity to Cache Associativity

As shown in Table 5.2, we use 8-way associative L2 and L3 caches in the baseline

system. To study on the i2WAP effectiveness on different cache configurations, we

evaluate its sensitivity to different associativity numbers ranging from 4 to 32. All

the other system parameters remain the same.

Figure 5.14 shows the total L2 and L3 variations under different policies when

we change the cache associativity. For both L2 and L3 caches in the baseline

system, with the increase of the cache associativity, InterV is decreased and IntraV

is increased. The reason is that when the cache capacity is fixed, the number of

cache sets decreases as the associativity increases. Thus, more writes are merged

into one cache set and the write variation from one set to another becomes smaller.

Furthermore, IntraV is amplified since the number of cache lines in a set is increased

and the intra-set write imbalance becomes worse.
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i2WAP policy. Each value is broken down to the inter-set variation and the intra-set
variation.
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Figure 5.15. The lifetime improvement from i2WAP with different cache associativity.
(Left: L2, Right: L3)

Regardless of how the associativity changes, adopting i2WAP reduces the total

variations significantly by combining SwS and PoLF. Figure 5.14 shows that for

the 4-way, 16-way and 32-way systems, on average the total variation is reduced

from 109% to 17%, from 66% to 6%, from 57% to 7% for L2 caches, respectively;

for L3 caches, it is reduced from 55% to 25%, from 52% to 19%, from 55% to 15%,

respectively.

Accordingly, Figure 5.15 shows the lifetime improvement. On average, the

lifetime improvement is 95% and 20% for L2 and L3, respectively, in a 4-way

system; it is 55% and 20% for L2 and L3, respectively, in a 8-way system; it is 44%

and 23% for L2 and L3, repsectively, in a 16-way system.
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Figure 5.16. The total variation for L2 and L3 caches with different capacities under
the baseline configuration, SwS scheme (RRN=100), PoLF scheme (FT=10) and i2WAP
policy. Each value is broken down to the inter-set variation and the intra-set variation.

5.6.6 Sensitivity to Cache Capacity

We run another sensitivity study on cache capacities. In Section 5.6, we use 1MB

L2 and 8MB L3 caches as shown in Table 5.2. We expect that i2WAP also works

effectively on different cache capacities. We conduct experiments on different L2

capacity ranging from 512 kB to 4 MB and different L3 capacity ranging from 4 MB

to 32 MB. Figure 5.16 shows the result. On average, the total variation is reduced

by 90%-95% for L2 caches and 58%-73% for L3 caches, respectively.

Accordingly, Figure 5.17 shows the lifetime improvement. On average, the life-

time improvement is 66%-153% and 22%-26%, respectively. These results validate

that i2WAP works effectively regardless of the cache capacity. For L2 caches, we

can see that as capacities increase, the value of lifetime improvement also increases.

The reason is that the write imbalance is worse in larger capacity caches causing

a larger variation. Thus, i2WAP is more important to large L2 caches. For L3

caches, the variation growth is much flatter than the ones in L2 caches, and In-

traV occupies a larger proportion in the baseline. Thus, the L3 cache lifetime

improvement is smaller than the one of L2.

5.6.7 Sensitivity to Multi-Program Applications

All the previous simulations are based on multi-thread workloads. To study the

i2WAP effectiveness on multi-program applications, we simulate workload mixtures

from SPEC CPU2006 benchmark suite [90]. The other simulation configurations
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Figure 5.17. The lifetime improvement from i2WAP with different cache capacities.
(Left: L2, Right: L3)

remain the same as described in Section 5.6.

Figure 5.18 shows the variations of L2 and L3 caches for multi-program work-

loads in a 4-core system. Table 5.3 lists the workload mixtures that we synthesize.

Intuitively, multiple cores share one L3 caches and run different programs, and the

access traffic to the L3 cache should be well mixed and thus balanced. However,

Figure 5.18 shows that both InterV and IntraV in the shared L3 cache can still be

a problem in some cases. On average, InterV and IntraV of L3 caches are 28% (up

to 100%) and 26% (up to 64%), respectively. Similar to the results of multi-thread

experiments, the variations in L2 caches is larger than the ones in L3 caches since

L2 only serves one program and has more unbalanced write. On average, the total

variation is reduced from 132% to 24% for L2 caches and from 54% to 15% for

L3 caches, respectively. Figure 5.19 shows the lifetime improvement for the multi-

program workloads. For L2 and L3 caches, the overall lifetime improvement is 88%

(up to 387%) and 33% (up to 136%), respectively. For the workload mixtures that

initially have large InterV, there is a larger space for i2WAP to work and improve

the lifetime. On the other hand, IntraV is more difficult to reduce since PoLF

is based on a probablistic mechanism, but i2WAP still works fairly well for the

workload mixtures that initially have large IntraV.

In general, i2WAP is effective in reducing cache write variations and improving

cache lifetime under multi-program workloads.



81

Table 5.3. The workload list in the mixed groups.

Mixed Group workloads

Mix 1 astar+bwaves+bzip2+gcc
Mix 2 bzip2+astar+gobmk+h264ref
Mix 3 gromacs+bzip2+gcc+gobmk
Mix 4 gcc+gromacs+hmmer+namd
Mix 5 gobmk+h264ref+hmmer+gromacs
Mix 6 h264ref+hmmer+milc+namd
Mix 7 milc+namd+omnetpp+wrf
Mix 8 namd+h264ref+gcc+astar
Mix 9 omnetpp+wrf+astar+bwaves
Mix 10 wrf+milc+bwaves+gromac
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Figure 5.18. The total variation for L2 and L3 caches for multi-program applications
using mixed SPEC CPU2006 workloads under the baseline configuration, SwS scheme
(RRN=100), PoLF scheme (FT=10) and i2WAP policy. Each value is broken down to
the inter-set variation and the intra-set variation.

5.7 Analysis of Other Issues

5.7.1 Performance Overhead and Impact on Main Memory

Since i2WAP causes extra cache invalidations and extra write backs on main mem-

ory, it is necessary to compare its performance to a baseline system without wear-
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Figure 5.19. The lifetime improvement after adopting i2WAP for multi-program ap-
plications using Eqn. 5.5. (Left: L2, Right: L3)

leveling7. To model the contention on the main memory bus, we integrate DRAM-

Sim2 [96], in which open-page policy with FR-FCFS [97] scheduling is accurately

modeled. DRAM timing information was obtained and modified from Micron

datasheets [98].

Figure 5.20 shows the performance overhead of a system in which L2 and L3

caches using i2WAP with ST = 100, 000 and FT = 10 compared to a baseline

system in which an LRU policy is adopted. Both of the results of the multi-thread

and multi-program workloads are provided. As shown in Figure 5.20, on average,

the IPC of the system using i2WAP is reduced only by 0.15% compared to the

baseline. The performance penalty of i2WAP is very small because of two reasons:

• In SwS, the interval of swap operations is long (e.g. 10 million instructions),

and only two cache sets are re-mapped for each operation.

• In PoLF, write hit accesses are infrequent enough to ensure the frequency of

set line flush operations is low (e.g. once per 105 instructions), and only one

cache line is flushed each time. In addition, designers can trade-off between

the number of flush operations and the variation value by adjusting FT .

Figure 5.21 shows the write count to the main memory compared to the baseline

system after adopting the i2WAP policy. The result shows that its impact on

the write count is very small, only increasing about 1.7% on average. For most

workloads, the write count is increased by less than 1%. Thus, the impact on

memory bus contention is very small. In addition, because most writes can be

7The simulator has a protocol to ensure cache coherency when invalidation occur, thus the
performance overhead of this part is included.
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Figure 5.20. The system IPC degradation compared to the baseline system after adopt-
ing the i2WAP policy.
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Figure 5.21. The write count to the main memory normalized to the baseline system
after adopting i2WAP.

filtered by caches and the write count of main memory is much smaller than that

of caches, the endurance requirement for non-volatile main memory is much looser.

5.7.2 Error-Tolerant Lifetime

While our analysis is all focused on the raw cache lifetime, this lifetime can be

easily extended by tolerating partial cell failures. There are two factors causing

the different failure time of cells. The first one is the variation of write counts,

which is addressed mainly in this work. The second one is the inherent variation of

the cell’s lifetime due to process variations, which needs another type of techniques

to solve. For both factors, the system lifetime can be extended by tolerating a small

number of cell failures.

It is much simpler to extend i2WAP and tolerate the failed cache lines compar-

ing to tolerating main memory failures [10, 9, 11, 12, 13]. We can force the failed

cache lines to be tagged INVALID, so that no further data would be written to

the failed cache lines. In this case, the number of ways in the corresponding cache
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Figure 5.22. The performance degradation and lifetime extension during gradual cache
line failure on a non-volatile cache hierarchy.

set is only reduced by 1, e.g. from 8-way associative to 7-way associative.

The error-tolerant lifetime is at least the same as the raw lifetime and may be

much longer. However, the performance is degraded because the cache associativity

is reduced. Figure 5.22 shows an analysis of an ReRAM-based cache hierarchy with

32KB L1 caches, 1MB L2 caches, and 8MB L3 caches. It shows that if the system

can tolerate the failure of 50% of the cache lines at all levels, the lifetime can be

extended by 6% and the performance penalty is 15%8.

5.7.3 Security Threat Analysis

Thus far, we only consider typical workloads. However, memory technologies with

limited write endurance always pose a security threat. An adversary might design

an attack that stresses few cache lines to reach their endurance limit and then

cause a system failure.

One of the common attacks to wear out NVM is Repeated Address Attack

(RAA) [8]. Using a simple RAA, an attacker can write a cache line repeatedly

and then cause a write endurance failure. It is easy to attack a cache without

any endurance-aware policy. A malicious code can attack an L1 data caches by

repeatedly write to one address. Since a cache under normal LRU management

never replaces a cache line under a cache hit, the same cache line is continuously

overwritten under such an attack. The attacking mechanism is similar for L2

or L3 caches. The only difference is that the attacker would use the higher-level

8The value of performance degradation and the lifetime extension depend on the cache hier-
archy and capacity, but the trends for different configurations are similar.
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Figure 5.23. The time to fail when the portion of cache lines covered by the distributed
attacks is changed.

cache’s write-back to repeatedly write the lower-level cache. For example, circularly

writing M + 1 (M is the cache associativity) of data in one L1 cache set would

trigger a repeated write pattern to a single L2 cache line. Assuming it takes 10-50

cycles to write back to one L2 cache line, the time required to make a L2 cache

line failure is:

Time to Fail =
Cycle per write× Cell endurance

Cycles per second
= 6− 30 minutes (5.9)

Thus, the traditional cache policy opens a serious security problem to NVM caches

with limited write endurance.

To defend RAA, we can enhance i2WAP by introducing some randomness. The

randomized i2WAP requires several modification:

1. In SwS, we can randomize the swap threshold ST within a pre-determined

range. Such randomization makes the mapping relationship between physical

and logical set IDs unpredictable, therefore increasing the difficulty of RAA.

2. In PoLF, we can also randomize the line-flush threshold FT within a pre-

determined range. Cache line invalidation is quickly triggered by repeatedly

write hits. PoLF guarantee a high probability to invalidate the attacked

cache line, and data is then loaded in another random location. The thresh-

old randomization makes it more difficult for attackers to predict the new

location.

Random number generators have been widely studied [99, 100, 8]. The latency

and storage overhead of these generators are small (e.g. 1 cycle delay with 80bytes

storage). They can be easily integrated into the i2WAP implementation.
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The randomized i2WAP makes the address re-mapping layer unpredictable from

outside, and it distributes RAA accesses to different cache lines, thus destroying

their repetition feature. Figure 5.23 shows the time to fail for a 1MB L2 cache

when the portion of cache lines mapped from the distributed attacks is increased.

The time to make a cache line fail can be extended to several months if an RAA

access pattern is distributed to more cache lines. Such a long duration is sufficient

to detect an abnormal attack.

5.8 Summary

Modern computers require large on-chip caches, but the scalability of traditional

SRAM and eDRAM caches is constrained by leakage power and cell density. NVM

is a promising alternative to build large on-chip caches. However, NVM usually

has limited write endurance, and the existing wear-leveling techniques cannot ef-

fectively improve the NVM cache lifetime because caches have IntraV in addition

to InterV. In this work, we propose i2WAP, a new endurance-aware cache manage-

ment policy. i2WAP uses SwS to reduce InterV and PoLF to reduce IntraV thus

improving NVM cache lifetime. To implement i2WAP, we only need two global

counters and two global registers. In one of our experiments, i2WAP improves the

NVM cache lifetime by 75% on average and up to 224%.



Chapter 6
NVM Caches: Hard Error Tolerance

In Chapter 5, we studied on the wear-leveling techniques to balance the write

traffic to cache lines, and their basic assumption is all the memory cells have the

same quality and the same write endurance. However, this assumption is not true.

Due to process imperfection, a more severe problem to non-volatile cache lifetime

is that there might be a portion of cells with worse quality and much shorter

write endurance. This means the actual lifetime might be much shorter than the

expected one even with perfect wear leveling if there is no other error-tolerant

technique to be combined and the cell with the worst quality might determine the

entire cache lifetime.1

State-of-the-art error-tolerant techniques are designed to handle transient soft

errors instead of permanent hard errors, such as Error Correcting Codes (ECC).

If we use ECC to tolerate permanent wear-out errors, we have to use stronger

ECC protection by paying larger hardware overhead. The overhead of DEC-TED

(double-error correction and triple-error detection) for 64-bit data could be as high

as 23%. Moreover, if the bit error count exceeds the ECC protection, we have to

discard the affected cache line and waste the healthy bits within it. By doing this,

the number of available cache ways in a set might decrease rapidly followed by a

quick cache capacity reduction and a significant performance degradation. There-

fore, ECC cannot effectively tolerate hard errors from limited write endurance and

process imperfection, and new cache architectures for hard error tolerance must

1This work is published as “Point and Discard: A Hard-Error-Tolerant Architecture for Non-
Volatile Last Level Caches” on DAC2012.
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be explored.

Previous work proposed several hard-error-tolerate architecture for non-volatile

main memory [10, 11, 12, 13] based on error correction, but the problem is different

here since main memory and caches are in different levels of hierarchy. In this

chapter, we propose Point-and-Discard (PAD), a hard-error-tolerant architecture

for non-volatile caches [101]. The principle of PAD is to discard hard errors instead

of repairing them. Moreover, it only discards affected bytes instead of the entire

cache line when a hard error happens and uses unaffected bytes in the affected

cache line to store the locations of affected bytes.

6.1 Error Detection and Distribution Model

Write endurance is defined as the number of times that a memory cell can be

overwritten. Limited write endurance is a common problem for non-volatile mem-

ories. For example, PCRAM cells are only expected to sustain 108 writes before

experiencing permanent errors [102]. The write endurance of ReRAM is recently

improved but is still at the level of 1011 [36]. While STTRAM is usually predicted

to have the write endurance of 1015, the current best test result for STTRAM

devices is still less than 4× 1012 cycles [37].

For last-level caches, some of write endurance values (e.g. 1011 for ReRAM and

1012 for STTRAM) seem to be sufficiently high. However, the real problem is that

each cell’s lifetime is different due to process imperfection and some weaker cells

might wear out much earlier than expected. When a hard error occurs during the

runtime of non-volatile caches, a cell would stuck at a value and never change after

that. In non-volatile caches, hard errors can be detected by a “read-write-read”

pattern for write operations. This mechanism is common in all the non-volatile

memory systems to reduce write energy [11]. When there is a write hit, the old

data in the cache line is read out at first. Then, only the changed bits are written

to the cache line. Finally, the newly-stored data is read out again. If the data is

different from the writing data, a hard error is then detected.

In this work, we assume the cell write endurance is under a normal distribution

like previous work does [10, 11, 13] and wear-leveling techniques are adopted into

the system to get a uniform write distribution across all cache blocks. In the
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Figure 6.1. The available cache line percentage of a 1MB cache with CoV=0.3 under
naive mechanism during runtime.

rest part of this work, we study the non-volatile cache lifetime under a process

variation2 with CoV=0.3. In addition, we assume hard errors are independent and

identically distributed.

6.2 Motivation

The simplest method to handle hard errors is to force the affected cache lines

tagged as INVALID, so that no further data would be written to the cache lines

containing hard errors. But, the problem of this mechanism is that even one wear-

out cell can cause the waste of the entire cache line, which usually contains 512 bits.

In addition, since hard errors are distributed randomly, it is highly possible that

almost every cache line has some weak cells. Therefore, the number of unaffected

cache lines would rapidly decrease causing significant performance degradation.

We simulate a 1MB ReRAM cache with 8-way associativity and 64-byte cache

lines as an example, in which the mean write endurance is 1011 and the CoV is

0.3. Figure 6.1 shows the percentage of unaffected cache lines as the write count

increases. The result shows the percentage of unaffected cache lines is quickly

reduced to 10% only after 3.25× 1014 writes to the cache. Assuming there are 400

times/second writes to the cache on average, the lifetime is about 1.5 years, which

cannot satisfy the requirement of using ReRAM in last-level caches.

This naive mechanism does not work because it over-discards the entire cache

line for every single wear-out bit. In order to solve this problem, the basic idea of

PAD is to reduce the discard granularity from cache lines to bytes. In PAD, when

2CoV is coefficient of variation. A sensitivity analysis of CoV from 0.2 to 0.4 is in Section 6.4.
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Figure 6.2. A brief example of the PAD architecture.
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Figure 6.3. The architecture of PAD mechanism.

there is a hard error, only the affected byte is discarded instead of the entire cache

line. The remaining healthy bytes from different cache lines are then reorganized

to compose new complete cache lines.

Figure 6.2 shows a brief example of the PAD architecture, in which we use a

simplified cache structure with 4-way associativity and 8-byte cache lines. The

shadow bytes are the ones affected by hard errors. The last few healthy bytes

in each way are used to store the positions of the hard-error-affected bytes. By

knowing which bytes have hard error, we can use the remaining bytes to compose

three complete healthy ways.
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6.3 Implementation

In a cache with 64-byte cache lines (Byte[0] to Byte[63]), we allow PAD to discard

up to 32 bytes in one cache line. Thus, 5 bits are added to store the number of

pointers for each cache line, and their initial values are zeros. Since these cells are

only need to be written 31 times at most, it is not possible for them to wear out.

Figure 6.3 shows the diagram of the PAD architecture. In every cache line, if

one cell wears out, the address of the affected byte is stored in a pointer and the

number of pointers is incremented by 1. Assuming the current number of pointers

in a cache line is N , if a new pointer needs to be added, the position of this new

pointer is set as Byte[63−N ]. In PAD, we use one byte to store one pointer entry

although only 6 bits are needed. The remaining 2 bits are used as V ALID INFO.

It is set to “00” if this pointer works normally, otherwise it means some bits in this

pointer have worn out and this pointer should be ignored. The V ALID INFO

bits themselves are protected by the 2-bit redundancy.

After a byte becomes a pointer, it is impossible for this pointer to wear out

because the pointer is read-only once its value is assigned. However, it is possible

that the byte to be discarded happens to be the pointer to be designated (i.e.

Byte[63−N ]), which means the new pointer position is just the same as the affected

byte. PAD can also tolerate this type of errors: First, PAD uses V ALID INFO

to indicate this pointer is invalid and should be ignored; Second, if V ALID INFO

itself is stuck at “00”, another pointer can be used to discard this pointer. In the

worst case, if the designated pointer is healthy at the first place but fails at the

same time as the one it points to, PAD can invalid it by setting the V ALID INFO

bits and use another pointer. However, it should be noticed that the possibility of

such worst-case scenario is extremely low since it is rare for multiple bits to wear

out at the same time.

Unlike conventional cache architectures, it is required for PAD to reconstruct

healthy bytes into new cache lines when hard errors occur in a cache set. A

multi-level shift component is added for this purpose. To access a cache line, data

bytes are first loaded into the shift component, then the information stored in the

pointers is used to shift out (discard) the hard-error-affected bytes.

For demonstration purpose, the structure of the multi-level shift component
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Figure 6.4. Architecture of the single cycle multi-level shifter using 8-byte cache line
as an example.

for 8-byte cache lines is shown in Figure 6.4. Every pointer implies to discard

one hard-error-affected byte and to shift that byte out. Assuming the hard-error-

affected bytes in this example are B6 and B3, then B1 and B0 are used to store the

pointers for discarding B6 and B3, respectively. When this cache line is accessed,

the pointers stored in B1 and B0 are decoded to control the multiplexer signals

on each level. In this example: the control bits on Level 1 are “0111111”, and

the output data is B7 B5 B4 B3 B2 B1 B0 B0; the control bits on Level 2 are

“00011”, and the data becomes B7 B5 B4 B2 B1 B1 B0 B0; the control bits on

Level 3 are “000”, and the final output data is B7 B5 B4 B2. Thus, we remove

two hard-error-affected bytes (i.e. B6 and B3) by using two pointer (i.e. B1 and

B0) and get the remaining healthy bytes (i.e. B7, B5, B4, and B2).

We call this architecture of multi-level shifter as Single-Cycle-MS since all lev-

els of shifters are connected together and the result can be output in one cycle.

However, for conventional 64-byte cache lines, using Single-Cycle-MS architecture

brings large area and latency overhead. Thus, we propose an improved architec-

ture called as Multi-Cycle-MS which is shown in Figure 6.5. In each cycle, the

data is processed by a n-stage Single-Cycle-MS, in which n is a small number

and can be changed by designers according to different target frequencies. In this

work, we choose n to be 3. Initially when there is no hard-error-affected bytes,

cache lines can be accessed directly and there is no latency overhead. During run-

time, when the number of hard-error-affected bytes in one cache line increases,

the Multi-Cycle-MS circuit is enabled to reconstruct the correct data by paying

latency overhead in an incremental way. Multi-Cycle-MS has two advantages over

Single-Cycle-MS:
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Figure 6.5. Architecture of the multi-cycle multi-level shifter for 64-byte cache lines.

• Smaller area: For Single-Cycle-MS, it needs 1023 2-to-1 multiplexers in every

multi-level shift. For Multi-Cycle-MS, if we choose n as 3, it only needs 183

2-to-1 multiplexers. It saves about 82.1% areas.

• Faster data reconstruction speed : The latency overhead of Single-Cycle-MS

is fixed for every cache access and equals to the sum of 31 2-to-1 multi-

plexers (more than 10 cycles). On the other hand, the latency overhead of

Multi-Cycle-MS only increases gradually as the number of hard-error-affected

bytes increases. Although the worst-case latency of Multi-Cycle-MS is the

same as that of Single-Cycle-MS, the average latency of Multi-Cycle-MS is

much shorter. The analysis of the Multi-Cycle-MS latency overhead is in

Section 6.4.4.

In PAD, two status bits are added to every cache line to represent 1 out of 4

possible states of the corresponding cache line:

• Normal : This cache line does not have any hard-error-affected bytes and can

be treated as a normal line, and shift operation is not needed for accessing

this cache line.

• Fixable: This cache line has some hard-error-affected bytes but can be fixed

by using the valid data bytes in the next cache line of the same set.

• Patch: All the healthy bytes in this cache line are used to fix the previous

Fixable line of the same set. Patch cache lines never get a hit because they

do not store actual data anymore.
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• Discarded : After the number of the hard-error-affected bytes in a cache line

is more than 31, the cache line is set as Discarded and is not used anymore.

In every cache access, the result of comparators in the tag array shows which

cache line is hit in the set3. Besides the tag, PAD stores a Start information in

the tag. For Normal ways, Start always equals to 0. For Fixable ways, Start

denotes which byte is the actual first byte in this cache line, which means that

the healthy bytes in Byte[0]–Byte[Start− 1] are used to shift into previous ways.

When the first hard error occurs in a 8-way set, the last cache line in this set is

tagged as Patch because this set can only store 7 cache lines instead of 8 lines at

most. The affected cache line and its following ones are tagged as Fixable. When

a new hard-error-affected byte occurs in a Fixable line, the number of pointers

(N) in this cache line is added by 1. If Start equals to 64 − N , which means all

healthy bytes in this cache line are used to fix the previous line, then the status

of this cache line is changed from Fixable to Patch. During runtime, more ways

are tagged to be Patch as more weak cells wear out, and the percentage of Normal

and Fixable ways in the set is reduced.

The hit and Start information is loaded into a final MUX (F-MUX) to get the

output data. F-MUX outputs the data based on the status of the hit cache line,

which must be Normal or Fixable since hits never occur to Patch and Discarded

lines. If the status of the hit cache line is Normal, F-MUX chooses this line and

outputs the complete cache line. If its status is Fixable, F-MUX chooses this

Fixable line and all the following lines until the next Fixable or Normal line or

the last line of this set. Assuming Start of a hit fixable line is Sn, then F-MUX

would choose all the bytes from Byte[Sn] to Byte[63] in this line, and the remaining

bytes from the followed Patched or Fixable ways. This part is easy to implement

since the Multi-Cycle-MS has already discarded the hard-error-affected bytes and

F-MUX only needs to assemble them together4.

3For caches, the size of tag array is very small compared to the data array. Thus we can use
simple redundant encoding to tolerate the hard errors in tag cells.

4Although we focus on reads in the discussion, reads and writes are symmetric. Also, Data-
Comparison Write [103] is adopted to avoid the unnecessary writes.
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Table 6.1. Experiment settings
Set Number 2048
Way Number 8
Cache Line Size 64 Byte
Cache Size 1MB
Mean Cell Lifetime 1011

Lifetime Variation 0.3

6.4 Experimental Results

In this section, we describe our experiment methodology and evaluate the lifetime

improvement and the overhead after applying PAD.

6.4.1 Experiment Methodology

While it is intractable to simulate the cache behavior over its entire lifetime, we

follow the same assumptions used in previous work [10, 11], in which we assume

that existing wear-leveling techniques already spread writes evenly over cache lines

and every write randomly hits one cache line. In addition, the bit flipping prob-

ability is assumed to be 0.5. In this work, we use ReRAM caches as the analysis

target. For each simulation run, the simulator assigns a random lifetime to each

cell using a normal distribution with a mean of 1011 writes [36]. Our experiment

tracks the number of available cache lines after each write operation. If a new hard

error occurs, the available cache line count is recalculated.

We use the architectural parameters shown in Table 6.1. The baseline archi-

tecture is set to a naive cache architecture in which an entire hard-error-affected

cache line (i.e. 64 bytes) has to be disabled for a single hard error. To evaluate

the effectiveness of PAD, we also simulate the cache architecture adopted 64-bit

Single Error Correction (SEC64) which is a common type of ECC in today’s

memory. SEC64 corrects up to one error bit for each 64-bit data blocks by adding

7 check bits. The storage overhead of SEC64 is 7 bits per 64-bit data (11%).
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Figure 6.6. The percentage of available lines of a 1MB cache with CoV=0.3 in PAD
compared to baseline and ECC (SEC64).

6.4.2 Lifetime Improvement

Figure 6.6 shows the percentage of available cache lines (i.e. Normal and Fixable

cache lines) in PAD compared to baseline and SEC64. Under the assumed write

endurance CoV of 0.3, the percentage of available cache lines in baseline quickly

decreases to 10% only after 3.25 × 1014 writes to the cache. On the other hand,

after adopting PAD architecture, the percentage of available cache lines is reduced

to 10% after 1.41×1015 writes. Assuming there are 400 times/second writes to the

cache on average, the lifetime is about 1.5 years for the baseline system and about

6.8 years after adopting PAD. Thus, PAD can improve the simulated ReRAM

cache lifetime by 4.6X.

For SEC64, the percentage of available cache lines is higher than PAD in the

system’s early life. It is because SEC64 pays much larger storage overhead (11%

compared to 1.4%) to correct the wear-out bits while PAD uses unaffected bytes

to fix the affected lines. However, PAD has larger error-tolerant capability than

SEC64. The result shows that PAD improves the cache lifetime by 1.7X compared

to SEC64.

6.4.3 Sensitivity Analysis of CoV

It is expected that the lifetime of cache architecture is very sensitive to the write

endurance distribution. Therefore, we use the same model to simulate a 1MB

ReRAM cache with different CoV (higher CoV means more severe process vari-

ation, and lower means less). Figure 6.7 and Figure 6.8 show the percentage of

available cache lines in PAD compared to baseline and SEC64 systems when CoV
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Figure 6.7. The percentage of available lines of a 1MB cache with CoV=0.2 in PAD
compared to baseline and ECC (SEC64).
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Figure 6.8. The percentage of available lines of a 1MB cache with CoV=0.4 in PAD
compared to baseline and ECC (SEC64).

is 0.2 and 0.4, respectively. The results show the 1MB ReRAM cache lifetime

is increased by 1.6X and 440X compared to baseline, respectively. Compared to

SEC64, PAD can also get 1.3X and 6.1X lifetime improvement. It implies that

PAD is more effective under more severe process variation, which means it would

be more useful as the process node advances.

6.4.4 Overhead Analysis

PAD has the capability of tolerating hard errors. However, it is also important

to evaluate the area and performance overhead of PAD when we deploy it in low-

power high-density non-volatile caches.

For each cache line, PAD only needs to add a 5-bit counter (for pointers) and a

2-bit status label. Thus, the storage overhead is about 1.4% for a 64-byte cache line.

The major area overhead comes from the multi-level shifters. For a 8-way cache, it

needs 8 multi-level shifters, and there are 183 2-to-1 multiplexers in every Multi-

Cycle-MS. Thus, the overall area overhead is 1,464 2-to-1 multiplexers. Compared

to common error-tolerant schemes, such as SEC64, which has 11% storage overhead
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Figure 6.9. The read latency of PAD for a 1MB ReRAM cache. It is small in the early
life and increases during the running time.

and additional encoder/decoder, PAD has much smaller overhead.

The latency overhead of PAD is zero in the system’s early life when there is

no hard error in the cache. But, the latency increases over time when more cells

wear out because Multi-Cycle-MS needs more cycles to reconstruct a valid data.

Figure 6.9 shows the simulation result of the latency overhead. It shows that the

access latency overhead is smaller than 3 cycles during half of the cache’s lifespan,

and the maximum latency is 11 cycles which only occurs near the end of the

lifetime.

6.4.5 Performance Analysis

We use Instructions-Per-Cycle (IPC) to compare the performance degradation be-

tween PAD and the other cache architectures. In baseline and SEC64, there is no

latency overhead5 but the percentage of available cache lines is reduced rapidly.

On the other hand, the latency overhead is increased gradually in PAD, but the

percentage of available lines reduces much more slowly as shown in Figure 6.6.

We used the gem5 simulator for our performance evaluations [87]. Figure 6.10

shows the normalized IPC of PAD compared to baseline and SEC64 of simulating

EEMBC 2.0 benchmark [91]. As more write operation conducted to caches, Fig-

ure 6.10 shows the baseline performance is degraded quickly from 100% to 50%

after only 3 × 1014 writes. For PAD, the write count is about 1.4 × 1015 when

IPC degrades 50%, which is increased by 4.7X. Compared to SEC64, the IPC of

PAD is reduced slightly (smaller than 2%) in the cache’s early life. However, due

to the higher error-toleration, PAD achieves better performance than SEC64 with

5We use zero latency overhead for SEC64 in the simulation. However, depending on the
implementation, the encoder and decoder could bring some latency overhead.
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Figure 6.10. The IPC degradation of PAD architecture compared to baseline and ECC
(SEC64).

the number of writes increasing. Therefore, compared to baseline and SEC64,

PAD architecture can improve the performance of non-volatile caches with longer

lifetime.

6.5 Summary

Adopting non-volatile memory technologies in last-level caches is attractive be-

cause they has lower energy consumption and higher density compared to the

traditional SRAM and embedded DRAM technologies. However, limited write en-

durance is one obstacle before adopting non-volatile caches widely. Although the

write endurance values of some non-volatile memories seem sufficient for last-level

caches, a more severe problem is lifetime variations due to process imperfection. It

causes the actual cache lifetime much shorter than expectation because the weak-

est cell might determine the overall lifetime. However, the current error-tolerant

techniques for caches are designed to handle transient faults and cannot effectively

tolerate hard errors in non-volatile caches.

This work presents Point-and-Discard (PAD), a hard-error-tolerant architec-

ture for non-volatile caches. PAD has better error-tolerant capacity than some

common schemes (such as SEC64) with smaller storage overhead. The experimen-

tal results show that PAD improves the lifetime of non-volatile caches by 1.6X-440X

under different process variations. Moreover, PAD incurs no performance overhead

in the system’s early life and ensures a gradual performance degradation as the

cells continuously wear out.



Chapter 7
NVM Caches: Write Optimizations

In addition to the limited write endurance issue discussed in Chapter 5 and Chap-

ter 6, another problem of NVM caches is expensive write operations. In this

chapter, we use STTRAM last-level caches as an example to show the impact of

expensive writes on system performance and propose our solutions.1

We define a type of process characteristic called LLC-obstructive. Processes

with this characteristic can cause significant performance degradation in STTRAM

LLC based system, and they also negatively affect the performance of other pro-

cesses running in parallel. We design an obstruction-aware monitoring mecha-

nism (OAM) and an obstruction-aware cache management (OAP), which differen-

tiates the accesses generated by LLC-obstructive processes from others [104, 105].

OAP can significantly improve system performance and reduces energy consump-

tion for STTRAM last-level cache design.

7.1 Background and Motivation

In this section, we briefly review the STTRAM LLC, and use a motivational exam-

ple to demonstrate why the port obstruction problem can cause huge performance

loss.

1This work is published as “OAP: An Obstruction-Aware Cache Management Policy for STT-
RAM Last-Level Caches” on DATE2013.
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Table 7.1. Characteristics of 8MB SRAM and STTRAM caches (32nm).

Memory type SRAM STTRAM

Cell factor (F2) 146 40
Read latency (ns) 11.1 11.4
Write latency (ns) 11.1 22.5
Read energy (pJ) 15.8 17.5
Write energy (pJ) 13 172

Leakage power (mW) 14.1 0.14
Area (mm2) 11.5 3.16

7.1.1 Using STTRAM LLCs

Compared to conventional SRAM cache, the advantages of STTRAM cache are

smaller area and lower leakage power. The cell size of STTRAM is currently in the

range of 13F 2 [106] to 100F 2 [41] where F is the feature size. This cell size is much

smaller than the SRAM size (e.g. 146F 2 [78]). The small cell size of STTRAM

can greatly reduce the silicon area occupied by caches. In addition, STTRAM

has zero leakage power consumption from memory cells due to its non-volatility.

Previous work [35] shows the leakage energy can be as high as 80% of total energy

consumption for an L2 cache in 130nm process. Thus, using STTRAM last-level

caches to eliminate standby leakage power is an attractive choice.

Table 7.1 shows the characteristics of a 4-bank 8-way 8MB SRAM cache and

its STTRAM counterpart. The estimation is given by NVSim [79], a performance,

energy, and area model based on CACTI [78]. It shows that STTRAM cache

has much smaller area and leakage power than the one of SRAM. However, as

also shown in Table 7.1, the write latency of STTRAM is around 2X longer than

SRAM. This long write latency becomes a sensitive parameter in STTRAM L3

cache and it causes the L3 cache port obstruction problem.

7.1.2 Motivation 1: Port Obstruction

As the last-level cache, L3 is usually implemented using single-port memory bitcell

due to the infeasible cost associated with multi-port bitcell designs. For example,

building dual-port STTRAM cell requires at least 4 transistor [107] (a 4X larger

cell layout area), which is not affordable in large-capacity L3 designs. For single-
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Table 7.2. Cache hierarchy of 3 different systems.

System name Cache hierarchy
2-LC 4-core, private SRAM 32KB L1, SRAM 256KB L2
3-LC-SRAM 2-LC + SRAM 8MB shared L3
3-LC-STTRAM 2-LC + STTRAM 8MB shared L3

port STTRAM caches, an ongoing write operation can cause a long L3 cache port

obstruction and delay all the following read operations that are on the critical

path from the performance aspect. When the number of pending read operations

exceeds the number of MSHR entries of the requester (e.g. CPU or upper-level

cache) [108], the system must stall. Because of this port obstruction, while some

workloads can benefit from the larger capacity of STTRAM LLCs, it is possible

that the system performance is not improved but degraded when running some

write-intensive workloads.

A common practice to hide write latency is to enlarge the write buffer size.

Write buffer can hold the incoming writing data and fill them into the destination

cache line only when the cache becomes idle or the write buffer reaches high water

mark. Write buffering is usually effective in traditional SRAM LLCs since SRAM

write speed is sufficiently fast to drain all the write buffer entries during the cache

idle period. However, write buffering becomes less effective for STTRAM cache as

its write is too long to hide. In addition, the practical write buffer size is limited

by design complexity and fully-associative look-up overhead.

To quantify this write-induced port obstruction problem, we simulate 3 different

systems as configured according to Table 7.2 (see Section 7.3 for details on our

simulation methodology): one with only 2 levels of caches, one with an additional

SRAM L3 cache, and one with an additional STTRAM L3 cache. Figure 7.1 shows

the normalized IPC comparison among these 3 systems. Compared to 2-LC, the

performance of 3-LC-SRAM is improved by 3% on average, but the performance of

3-LC-STTRAM is degraded 14% on average (up to 35%). While adding STTRAM

L3 cache improves the performance for some workloads (e.g. hmmer), it might

heavily degrade the performance for write-intensive workloads (e.g. lbm) as well.
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Figure 7.1. Compared to the system 2-LC, the normalized IPC of 3-LC-SRAM and
3-LC-STTRAM using 4-duplicate workloads.

7.1.3 Motivation 2: Process Interference

Besides the performance degradation caused by a workload’s own write intensity,

we must notice that the LLC is commonly a shared resource, and one process that

obstructs the cache port can block the normal cache accesses generated by other

concurrent processes in a multi-core system.

To illustrate this problem, we simulate 4 different workloads running simulta-

neously on a 4-core system. We use two different mixed group: mix1 and mix2.

Figure 7.2 shows the normalized IPC of each workload in these two mixed groups,

and the names of running workloads are also listed.

In our experiment design, we assign 4 different workloads to Group 1, and

copy the same configuration to Group 2 but intentionally replacing the workload

running on the first core with a write-intensive workload cactusADM in Group 2.

The result shows that all the workload IPCs in Group 1 are only reduced by 1%.

However, on contrary, not only the IPC of the first core but all the IPCs in Group 2

are degrades significantly (10%-25%). This demonstrates that the write-intensive

process not only causes performance loss to itself but also interferes the normal

cache accesses initiated by other processes.

Based on these observations, we define a type of process characteristic called

“LLC-obstructive”. If a workload is LLC-obstructive, the performance of itself can

be degraded significantly by adding an STTRAM LLC, and worse, it might also

affect the performance of other workloads in a negative way.

Therefore, we need a new STTRAM L3 cache management policy, and its task

is to first identify any potential LLC-obstructive processes on-the-fly and then

avoid the performance degradation caused by such LLC-obstructive processes.
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Figure 7.2. The normalized IPC of 3-LC-SRAM and 3-LC-STTRAM of two workload
groups: the first core runs different workloads; the other three run the same workloads.

7.2 Obstruction-Aware Cache Management

In this chapter, our basic concept is to enhance the existing cache management

policy so that it can detect those LCC-obstructive processes, block their cache

accesses, and reserve the LLC capacity for well-behaved processes. In this section,

we describe how to implement such a policy.

7.2.1 A Naive Approach: Using Static Threshold

To design an obstruction-aware cache management policy, the most critical prob-

lem is how to find LLC-obstructive processes during runtime. We start from a

relatively straightforward method called “static threshold obstruction-aware man-

agement policy” (SOAP), which uses a predetermined threshold to determine

whether a process is LLC-obstructive. Based on our motivational experiments

in Section 7.1, we can observe that LLC-obstructive processes commonly have two

features:

1. High utilization: The LLC port occupancy is high. It is usually manifested

in the respect of high TPKI (transactions per kilo instruction). Given a

certain read/write ratio, write operations obstruct the LLC port most of the

time. This causes the delay of read requests from itself and other concurrent

processes.

2. High miss rate: The cache miss rate is high. The consequence is that most

of the data written into the LLC will are useless. Thus, both the time and

the energy spent on those LLC writes are wasted.
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If one process has these two characteristics, it means that this process intro-

duces heavy writes to the LLC but most of them are unnecessary. This type of

processes obstruct the LLC and degrade the system performance.

Thus, we can set two static thresholds, Utilth and MissRth, monitor the cache

access statistics of each process, and determine which one is likely to be LLC-

obstructive. First, we can define the utilization of each process according to Equa-

tion 7.1,

Utilization =
NRD × TRd +NWR × TWr

Execution T ime
(7.1)

where NRD and NWR are the read and the write counts, respectively, and TRd and

TWr represent the latencies of the LLC read and the write operation, respectively.

If the calculated value is greater than the threshold Utilth, this workload is labeled

as high utilization.

Similarly, we can also monitor the cache miss rate of a process. If it is greater

than MissRth, we then label that process as high miss rate. If one process is

both high utilization and high miss rate, we treat it as a potential LLC-obstructive

process.

It is relatively simple to implement the SOAP idea, but SOAP has its disad-

vantages. First, it is highly possible that misjudgment can happen since we only

use two simplified metrics. For example, given the criteria used in SOAP, such

a “LLC-obstructive” process might not actually block the LLC port for a long

time if most of its cache accesses are reads. Though it is possible to overcome

this problem by adding more metrics and conditions (e.g. read/write ratio), the

scheme itself only becomes marginally better but with more and more hardware

complexity.

Second, although the value of Utilth and MissRth can be adjusted upfront by

the architects, the working thresholds for different processes vary from one case

to another, and it becomes very impractical to predetermine a set of universal

values. To show the impact of selecting different threshold values, we show a

sensitivity study on these two parameters. The details of simulation methodology

are described in Section 7.3. Figure 7.3 shows how the performance speedup of

SOAP2 varies when we change the value of MissRth from 0.05 to 0.95 only. This

2Each speedup value is the average result among all the benchmarks
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Figure 7.3. The performance speedup from SOAP and changing MissRth from 0.05 to
0.95.
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Figure 7.4. The performance speedup from SOAP and changing the value of Utilth
from 10% to 90%.

result shows that the speedup can be small if this threshold is set too low. It is

because some normal processes would be incorrectly labeled as LLC-obstructive

when MissRth is low. Their performance drops since they are blocked by the cache

management policy and cannot benefit from the existence of the LLC.

On contrary, Figure 7.4 shows the speedup of SOAP when Utilth is changed

from 10% to 90%. This result shows that the speedup can be small if Utilth is either

too low or too high. If Utilth is too low, normal processes can be incorrectly treated

as LLC-obstructive; vice versa, if Utilth is too high, LLC-obstructive processes

cannot be effectively captured. We see a sub-optimal system performance in both

of these two cases.

In short, the performance speedup of SOAP is very sensitive to the setting

of these thresholds (i.e. Utilth and MissRth), and it is difficult to predefine the

optimal values. Therefore, we stop discussing the details of SOAP any further,

instead we focus the rest of this chapter on an improved solution called dynamic

obstruction-aware management policy (OAP), which does not require any prede-

fined thresholds.
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7.2.2 A More Practical Approach: Using Heuristic Metric

To make OAP adaptive to different workloads, a more practical way is to use

heuristic metrics. The rationale behind adding another level of cache (e.g. L3) into

the memory hierarchy is to provide fast-access memory resources so that workloads

with good spacial and temporal locality can leverage these memory resources and

avoid the time-consuming access to the off-chip DRAM main memory. However,

not all the workloads can benefit from this feature.

Assuming that the behavior of a process does not change within a short period

of time, if we write data of this process into the LLC, the expected execution time

for one of following accesses can be estimated as Equation 7.2,

T = PRd × TRd + (1− PRd)× TWr + PMiss × (TMem + TWr) (7.2)

where PRd is the LLC read/write ratio, PMiss is the LLC miss rate. In addition,

TRd, TWr, TMem are the latency of LLC read, LLC write, and the average latency

of main memory, respectively. Note that we assume that this cache uses fetch-on-

write policy, a widely-used policy in modern cache designs.

For each cache miss, new data need to be fetched from main memory and be

written to LLC at first. Thus, the additional latency is added to the total delay

T .

On the other hand, if the data of this process are not written into LLC, then

the following operations have to access main memory directly. Thus, the expected

execution time of one access can be estimated as:

T ′ = TMem (7.3)

If writing the data from one process into the LLC cannot get any benefit in

terms of system performance, which means T > T ′, then we can get:

PMiss >
TMem − PRd × TRd − (1− PRd)× TWr

TMem + TWr

(7.4)

When the process characteristic satisfies Equation 7.4 during a period of time, it

might cause intensive write operations to the LLC so that writing its data into LLC
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Figure 7.5. A 3-level cache hierarchy enhanced by OAP. Newly added structures are
highlighted in gray.

will only extend the execution time and hence degrade the system performance.

We then can define this type of processes as LLC-obstructive processes.

We can also observe from Equation 7.4 that the possibility of LLC obstruction

is higher when an STTRAM LLC is used because the miss rate threshold becomes

smaller when the LLC write latency is longer. This is also the reason why the

performance degradation is more severe when we use STTRAM LLCs instead of

their SRAM counterparts.

7.2.3 LLC Obstruction Monitor

To detect LLC-obstructive processes during runtime, we design an obstruction-

aware monitor (OAM) and places it before LLC (i.e. between the L2 and L3

caches). The OAM circuit is separated from the cache hierarchy. This allows

OAM to independently obtain the L3 cache access information from each core.

An adjustable parameter period is available in OAM, and it presents the timing

granularity of the LLC-obstructive detection. Every period is further divided to

two parts:

1. sampPeriod, in which the cache works under the normal policy, and OAMs

collect cache access statistics;

2. exePeriod, in which L3 is managed by OAP using the detection result col-

lected during the last sample period.



109

Request to L3

Read

Hit

Return Date Send request to main memory

Forward to L2

Get data

Write to L3

Forward to L2

Forward write request to main memory

Hit

Yes No

Yes No

LLC-obstruction
Yes No

Yes No

Write to L3

No Yes Yes No
LLC-obstruction LLC-obstruction

Fetch cache line

Write to L3

Invalidate hit block

Figure 7.6. The control flow of an OAP controller. The “LLC obstruction” detection
is made by the OAM associated with each core.

In sampPeriod, all processes are labeled as Non-LLC-obstructive. A per-core

OAM collects the statistics including: the execution time currentTime, the number

of read accesses RD, the number of write accesses WR, and the number of cache

misses Miss.

At the end of sampPeriod, OAM evaluates two metrics: the actual miss rate

MissR and the obstruction threshold OAPth.

MissR = Miss/(RD +WR) (7.5)

OAPth =
TMem − (RD · TRd +WR · TWr)/(RD +WR)

TMem + TWr

(7.6)

According to Equation 7.4, if MissR is larger than OAPth, it means that the

process is not benefiting from LLC. Therefore, OAM labels this process as an

LLC-obstructive process. Otherwise, OAM labels it as a Non-LLC-obstructive one.

During the following exePeriod, depending on whether OAM considers this pro-

cess is LLC-obstructive or not, OAP handles the cache accesses from this process

accordingly until the next period starts. The monitor algorithm can be described

in Algorithm 3.

7.2.4 OAP Architecture

Figure 7.5 shows a 4-core system with a 3-level cache hierarchy enhanced by OAP.

Similar to previous work [109, 110], we assume processes are bound to cores. Each

core has its own OAM to track L3 cache accesses requested by its private L2 cache

and find out the LLC-obstructive processes. After the potential LLC-obstructive

processes are detected, an OAP-controller in the shared L3 cache is responsible
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Algorithm 3 The algorithm of runtime OAM
Input: The new access sent to LLC.
Output: The detection result.
Parameters: period, sampPeriod, Utilth, MissRth.

1: if currentT ime− startT ime == period then
2: reset all parameters
3: label as Non-LLC-obstructive
4: startT ime← currentT ime
5: end if
6: if currentT ime− startT ime < sampPeriod then
7: if accessIsRead then
8: RD++ // Update read access count
9: else

10: WR++ // Update write access count
11: end if
12: if accessIsMiss then
13: Miss++ // Update miss count
14: end if
15: end if
16: if currentT ime− startT ime == sampPeriod then
17: Calculate OAPth, MissR
18: if MissR > OAPth then
19: label as LLC-obstructive
20: else
21: label as Non-LLC-obstructive
22: end if
23: end if

to prevent LLC-obstructive processes from accessing L3 cache and also make sure

data coherence. The control flow of the OAP-controller is shown as Figure 7.6,

and its functionality is described as follows:

• L3 read hits : The L3 cache returns the data to the corresponding L2 cache.

• L3 read misses : The L3 cache asks the data from the main memory at first.

When the main memory returns the data, the OAP-controller checks weather

the read requester is LLC-obstructive. If it is, the returning data bypasses

the L3 and is directly forwarded to the L2. Otherwise, the data is written

into the L3 as normal.

• L3 write hits : The OAP-controller checks if the write requester is LLC-
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obstructive at first. If it is, the L3 invalidates the hit data block, and the

write request bypasses the L3 and is directly forwarded to the main memory.

Otherwise, the data is written into the L3 as normal.

• L3 write misses : At first, the OAP-controller checks if the requester is LLC-

obstructive. If it is, the write request bypasses the L3 and is forwarded to

the main memory directly. Otherwise, the cache line is fetched and allocated

at first and then the new data is written into the L3 cache.

Note that we assume the modification is applied on the top of a non-inclusive

or exclusive cache management work flow. If we need to implement OAP atop

of an inclusive LLC, we should include other techniques, such as adding a bypass

buffer [111] to implement cache bypassing.

7.3 Experimental Results

In this section, we describe our experiment methodology, and we evaluate the

performance improvement and the energy reduction achieved by OAP.

7.3.1 Experiment Methodology

We model a 1.5GHz 4-core out-of-order ARMv7 microprocessor using a modified

version of gem5 [87]. Our modification to gem5 includes an asymmetric cache

read/write latency model, a banked cache model, and a sophisticated cache write

buffer scheme. Write buffers are commonly used in conventional cache architecture

to hide the performance penalty due to write operations, but the write buffer size

cannot be too large because of its fully-associative look-up overhead [17]. Thus,

the write buffer technique alone is not sufficient to deal with the performance

degradation due to the STTRAM long write latency. We use an 8-entry write

buffer in this work.

Simulation setting details are listed in Table 7.3. All the circuit-level cache mod-

ule parameters (e.g. read latency and write latency) are obtained from NVSim [79]

and are consistent with Table 7.1. The simulation workloads are from SPEC

CPU2006 benchmark suite [90]. Workloads are compiled using gcc version 4.5.2
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Table 7.3. Simulation settings.

Core
4-core, 1.5GHz
out-of-order ARM cores

SRAM I-L1/D-L1 caches
private, 32KB/32KB, 16-way, LRU,
64B cache line, write-back, write allocate
2-cycle read, 2-cycle write

SRAM L2 cache
private, 256kB, 8-way, LRU,
64B cache line, write-back, write allocate
8-cycle read, 8-cycle write

Common
shared, 8MB, 8-way, LRU,
4 banks, 8-entry write buffer per bank,

L3 64B cache line, write-back, write allocate
cache OAP STTRAM 17-cycle read, 34-cycle write, w/ OAP

Baseline STTRAM 17-cycle read, 34-cycle write, w/o OAP
Baseline SRAM 17-cycle read, 17-cycle write

DRAM main memory 4GB, 128-entry write buffer, 200-cycle

(Sourcery G++ Lite 2011.03-41) without any optimization setting. We simulate

each experiment for at least 2 billion instructions. We set the OAM sampling

period to be 0.1 million cycles and OAM launching period to be 10 million cycles.

We use IPC (instructions per cycle) as the performance metric and use geo-

metric mean to average the performance of cores and derive the speedup metric

(speedup = geomean( IPCi

IPCbaseline
i

)) which accounts for both fairness and perfor-

mance [110].

7.3.2 Performance Speedup

Figure 7.7 illustrates the speedup over conventional STTRAM L3 based system

after adopting the OAP architecture. The first 8 groups run 4 duplicated processes,

and the other 8 groups are workload mixtures as listed in Table 7.4. It shows

that after adopting OAP on the STTRAM L3 cache, the system performance is

improved by 14% on average (up to 42%) compared to the conventional cache

management policy.

Furthermore, we list several characteristics over workloads in Table 7.5: 1) the

percentage of reads and writes to L3 cache; 2) the miss rate of L3; 3) the port

utilization calculated as Eqn 7.1. In order to understand where the performance
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Table 7.4. The workload list in the mixed groups.

Mixed group workloads

mix1 lbm+libquantum+sjeng+cactusADM
mix2 povray+mcf+namd+lbm
mix3 bwaves+cactusADM+astar+hmmer
mix4 gcc+lbm+libquantum+bwaves
mix5 cactusADM+gcc+mcf+lbm
mix6 libquantum+bzip2+bwaves+cactusADM
mix7 lbm+sjeng+bzip2+libquantum
mix8 mcf+bwaves+sjeng+lbm

saving comes from, the frequency analysis for the different paths outlined in the

control flow of the OAP controller can be calculated based on the data in Table 7.5.

Generally, the workloads with high write miss rate and high port utilization are

more likely to be detected as LLC-obstructive processes, and the groups which

have more LLC-obstructive processes in more periods benefit more from OAP

architecture. Because OAM can quickly detect such processes during sampling

periods, and OAP-controller skips their unnecessary writes to the STTRAM L3

cache.

For groups with mixed workload, the performance improvement comes from two

respects. First, the performance of LLC-obstructive processes is improved because

OAP skips the unnecessary writes in these processes and mitigates the penalty

coming from the longer write latency. Second, the performance of concurrent

processes is also improved since the obstruction on the L3 port is reduced and

their requests to L3 can be satisfied more quickly. In addition, the available cache

lines of L3 is increased for these well-behaviored processes because the number of

write operations from LLC-obstructive processes is reduced, thus it increases their

hit rate and performance.

7.3.3 Compare to SRAM LLC

Adopting OAP architecture in L3 cache makes STTRAM more competitive com-

pared to SRAM. To evaluate its benefits, we simulate another baseline system with

a shared SRAM L3 cache, which is configured as Table 7.3.

Figure 7.8 shows the normalized IPC of the systems with normal SRAM L3,



114

Table 7.5. The characteristics of each workload.

Workloads L3 read% L3 write% L3 miss rate L3 utilization

bwaves-dup4 32% 68% 42% 0.49
bzip2-dup4 39% 61% 36% 0.30

cactusADM-dup4 42% 58% 95% 0.44
libquantum-dup4 60% 40% 99% 0.48

gcc-dup4 74% 26% 73% 0.09
lbm-dup4 23% 77% 89% 0.63
mcf-dup4 72% 28% 74% 0.34

sjeng-dup4 46% 54% 94% 0.16
mix1 43% 57% 96% 0.56
mix2 44% 56% 69% 0.28
mix3 36% 64% 73% 0.37
mix4 42% 58% 78% 0.57
mix5 45% 55% 80% 0.46
mix6 42% 58% 73% 0.51
mix7 43% 57% 83% 0.47
mix8 40% 60% 76% 0.45

STTRAM L3 and OAP STTRAM L3. The result shows that compared to the

SRAM L3 based system, a straightforward STTRAM L3 replacement degrades

the system performance by 13.2% on average due to its longer write latency. How-

ever, after adopting OAP, the performance of STTRAM L3 based system can be

improved significantly. Compared to SRAM L3, the performance degradation in

OAP STTRAM based system is only 0.7% on average.

Besides the performance improvement achieved by OAP, using STTRAM L3

itself can save energy as well. This is because the leakage power is dominant in L3

cache and the leakage power of STTRAM is only about 1% of SRAM’s. In addition,

adopting OAP can reduce the total energy consumption further because it reduces

the number of writes, which is a major source of the dynamic energy in STTRAM

caches. Figure 7.9 shows the normalized energy consumption of 3 different systems

and each value is broken down to leakage energy and dynamic energy. Due to the

leakage energy reduction, an 8Mb STTRAM L3 can save around 90% total energy

compared to an SRAM L3 cache with the same capacity. And after adopting OAP

architecture, the energy of STTRAM L3 is further reduced by 64% on average.

The final advantage of STTRAM L3 cache is the silicon area reduction. It is
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Figure 7.7. The performance speedup after adopting OAP with duplicated and mixed
workloads in a 4-core system: benchmark-dup4 means executing benchmark on each core.

0.4

0.6

0.8

1

1.2

N
o

rm
a
li
z
e

d
 I
P

C
 

SRAM L3 STTRAM L3 OAP-STTRAM L3

Figure 7.8. The IPC of systems with SRAM L3, conventional STTRAM L3 and OAP
STTRAM L3 (normalized to the value of SRAM L3 based system).

not related to OAP but also important. Compared to an 8MB SRAM cache, an

8MB STTRAM cache can save 72.5% area as shown in Table 7.1.

In summary, STTRAM L3 enhanced by OAP makes itself a more attractive

option in replacing SRAM L3 cache.

7.4 Overhead Analysis

7.4.1 Hardware Overhead

We evaluate the hardware overhead of the proposed OAP architecture using Syn-

opsys Design Compiler with a 32nm CMOS library. According to the synthesis

result, the OAM circuitry only incurs 0.05mm2 area overhead, which is negligible

compared to the L3 cache area (usually half of the total chip area). According to

the energy analysis, the extra energy consumption per access is about 1.7pJ, which

is included in our simulations. In addition, it is straightforward to integrate the

OAP judgment flow into the conventional cache controller using bypass circuits.
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Figure 7.9. The energy consumption of SRAM L3, conventional STTRAM L3 and
OAP STTRAM L3 (normalized to the value of SRAM L3). Each value is broken down
to leakage energy and dynamic energy.

In terms of latency overhead, considering OAMs are separated from the cache

hierarchy and OAP-controller only brings some branch decisions in the control

flow, we do not add any latency overhead in our simulation settings.

7.4.2 Impact on L3 Miss Rate

OAP avoids the writes to STTRAM L3 from LLC-obstructive workloads, but it

might increase the miss rate since the data of LLC-obstructive processes are not al-

located in L3. If L3 miss rate increases significantly, the system performance might

be degraded because more accesses to the main memory are needed. However, the

OAP scheme is designed to detect LLC-obstructive processes automatically which

usually have high miss rate. Figure 7.10 shows the normalized L3 miss rate of an

OAP system compared to the baseline. It shows the overall miss rate only increases

by 6%. Thus, the OAP scheme has small impact on system miss rates.

7.4.3 Traffic Overhead Analysis

We also need to evaluate the traffic overhead since some writes are bypassed from

LLC in the OAP system. Figure 7.11 and Figure 7.12 show the main memory traffic

and the L3 traffic of OAP system normalized to the baseline system, respectively.

From Figure 7.11, we can observe that OAP increases the overall read and write

accesses to main memory by 39% and 10%, respectively. Although the traffic to

the main memory is increased, the number of write accesses to L3 is reduced by

62% on average as shown in Figure 7.12. Therefore, combined these two factors,
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Figure 7.10. The L3 miss rate comparison between a baseline system and an OAP
system.
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Figure 7.11. Read and write access numbers of the main memory normalized to the
baseline system.

the performance of the entire system is increased after adopting OAP since the

port obstruction possibility becomes lower, and the write latency of the STTRAM

L3 cache is long.

7.5 Sensitivity Study

In this section, we describe our experiments and results to study the performance

sensitivity in terms of different write latencies, bank numbers, core numbers, and

the period length of OAM when applying OAP technique.

7.5.1 Sensitivity to Cache Write Latency

In Section 7.3, we use the cache configuration shown in Table 7.3, in which the

LLC latency is consistent with Table 7.1. We expect that OAP also works effec-
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Figure 7.13. The performance speedup after adopting OAP with different cache write
latencies.

tively on caches with different cache configurations and can get more benefits when

increasing the STTRAM LLC latency.

We run experiments on different LLC write latencies ranging from 15ns to 30ns.

Figure 7.13 shows the results. Among all the workloads, the performance speedup

is 1.06 on average and up to 1.21 when the LLC write latency is reduced to 15ns.

On the other hand, the effectiveness of OAP is more significant when we increase

the LLC latency. The system speedup is increased to 1.24 and 1.33 on average

when the LLC write latency is increased to 25ns and 30ns, respectively.

Generally, adopting the OAP technique gets more performance benefit when the

STTRAM LLC latency is longer. The reason is that the port obstruction problem

is more severe when L3 write latency is longer. An ongoing write from one core

could have a higher chance to block other reads to the same cache bank. The

OAP technique improves the system performance by detecting LLC-obstructive

processes and skipping their unnecessary writes to the STTRAM L3 cache.
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Figure 7.14. The performance speedup after adopting OAP architecture with different
numbers of L3 banks.

7.5.2 Sensitivity to Bank Number

Large on-chip caches are usually split to multiple banks to increase access par-

allelism. If the LLC has more banks, the possibility of port obstruction will be

reduced since an ongoing write operation only blocks the port of the corresponding

cache bank and does not effect the port of other cache banks. To study on the

effect of LLC bank number, we adopt OAP in systems with different L3 configura-

tions as 1 bank, 2 banks, 4 banks and 8 banks, respectively. All the other system

parameters are consistent with the ones in Table 7.3.

Figure 7.14 shows the performance speedup result. Among all workloads, the

speedup is as high as 2.08 and 1.46 on average when L3 cache is configured as a

1-bank and 2-bank system, respectively. And the average speedup is 1.02 when

the bank number is increased to 8.

Therefore, the system with smaller LLC bank number can get more perfor-

mance improvement by adopting OAP technique. The reason is that a multi-bank

organization provides more parallelism and mitigates the port obstruction prob-

lem. However, adding bank number is expensive in terms of cost. Thus, adopting

OAP to improve the performance for the system with smaller bank number is a

better solution.

7.5.3 Sensitivity to Core Number

Another sensitivity study is targeted on the core number. The simulation result

given in Section 7.3 is focused on a 4-core system, but OAP can also be adopted
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Figure 7.15. The performance speedup after adopting OAP architecture with different
numbers of cores.

in single-core or multi-core systems with different core numbers.

We run simulations on systems with 1 core, 2 cores and 8 cores. Other system

configurations are not changed and shown in Table 7.3. For the single-core system,

we only execute one program without using the mixed groups. For the 2-core

system, we use the first two programs in each mixed group as shown in Table 7.4.

For the 8-core system, we duplicate each program to two cores for each mixed

group.

Figure 7.15 shows the speedup results. The speedup of the single core system

is 1.01 on average and up to 1.07. This speedup is not as significant as the 4-core

system because there is no negative affect between different applications, and the

obstruction problem is not as severe as in multi-core systems.

For the 2-core and 8-core systems, the overall speedup is 1.06 and 1.32 , re-

spectively. It shows that when the core number is increased, the problem of LLC

port obstruction is more and more severe since there are more processes sharing

the same port of LLC. Thus, adopting OAP technique can get more performance

improvement with the core number increasing.

7.5.4 Sensitivity to the Length of Launching Period and

Sampling Period

In addition, we run sensitivity study on the length of launching period and sampling

period. If the sampling period is too long compared to the launching period, the

running time using OAP technique is short and the effectiveness of OAP is reduced.

On the other hand, if the sampling period is too short, the LLC-obstructive pro-
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Figure 7.16. The performance speedup after adopting OAP architecture with different
launching sampling period length.

cesses might not be captured by OAM and the performance speedup is decreased.

Figure 7.16 shows the performance speedup of OAP architecture with different

length of launching period and sampling period. It shows that the overall per-

formance speedup is reduced to 13% when the sampling period is too small (i.e.

the launching period is set as 10M cycle and the sampling period is set as 0.01M

cycle).

7.6 Summary

While the scaling of SRAM and eDRAM is constrained by cell density and leak-

age energy, the emerging STTRAM memory technology is explored as one of the

potential alternatives of last-level caches. Despite STTRAM has higher density

and smaller leakage energy, STTRAM has much longer write latency compared

to SRAM, and may cause severe performance degradation in a multi-core system

where cache accesses are obstructed by the write operations. In this chapter, we

proposed OAP, an obstruction-aware cache management policy, which can sig-

nificantly improve system performance and reduces energy consumption across

different workloads for future STTRAM last-level cache design.



Chapter 8
NVM GPGPU: Write-Aware

Register Files

Besides main memories and caches, NVMs are also explored as other memory

levels, such as register files in general-purpose computing on graphics processing

units (GPGPU). Recently, to enable the acceleration on parallel data processing,

GPGPU is studied and developed rapidly. By utilizing traditional GPUs, GPG-

PUs are targeted for non-graphics workloads which demand high computational

performance. In industry, Nvidia and AMD have already released many GPGPU

products [112, 113].1

Different from CPUs, GPGPUs can achieve teraFLOP peak performance by

exploiting thread-level parallelism. For example, Nvidia GTX680 GPU provides

3090 GFLOPS/s with 1536 cores [114]. This high performance of GPGPUs comes

from the large number of parallel threads executed in a SIMD (Single-Instruction

Multiple-Data) fashion. In addition, GPGPUs typically implement a hardware-

based context switch among threads to hide the long latency of memory opera-

tions. In order to achieve this, GPGPUs have a large number of registers to hold

states and contents of all the active threads. For instance, each streaming multi-

processor (SM) in the Nvidia Fermi architecture is equipped with a 128KB register

file (RF) which supports up to 1,536 active threads [112]. Compared to the RF

in CPUs (e.g., 2KB in total for a 64-bit CPU with 128 int/128 FP registers), the

1This work will be published as “A Write-Aware STTRAM-Based Register File Architecture
for GPGPUs” on JETC.
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Figure 8.1. The architecture of operand collectors.

RF in GPGPUs is much larger (e.g., 2MB in total for the top-tier Fermi chip).

Therefore, the area cost and the energy consumption of RFs should be carefully

evaluated in GPGPU design.

Traditionally, SRAM is used to build the RFs in GPGPUs, but it faces chal-

lenges in terms of density and leakage power. Thus, STTRAM is being studied

as one of the potential alternatives for SRAM to mitigate these two issues. How-

ever, as discussed in Chapter 7, the expensive write operations of STTRAM might

degrade the system performance and increase the dynamic energy consumption.

To solve these two issues, we propose a sophisticated Write-AwaRe Register File

design (WarRF) in this chapter, which makes STTRAM a more attractive option

for RF design in future GPGPU systems.

8.1 Background

8.1.1 GPGPU and Register File Architecture

GPGPUs usually consist of many small cores, and each core includes multiple data

processing lanes (e.g. 32 in Fermi), an L1 data/instruction cache, a shared memory,

a register file, multiple schedulers, and multiple computing units [112]. There are

thousands of threads processing simultaneously in the GPU core to fully utilize

the parallelism. The number of threads is determined by the hardware resource.

GPGPUs issue threads in groups, and we call each group a warp (e.g. 32
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threads in one warp in Fermi). All the threads in one warp are executed in a

SIMD fashion. At each clock cycle, the instruction scheduler selects a ready warp

for execution and issues it to the data path. Another special GPGPU feature is to

switch from one warp to another without any latency. Because of this, GPGPUs

can hide long latency memory operations and keep their pipelines busy even if

some warps are stalled. In order to implement this instant context switch, each

thread allocates some dedicated registers from the RF. This is the reason why

GPGPU requires huge RFs, and GPU RF size is orders of magnitude larger than

CPU RF size. For example, each stream multiprocessor (SM) in the Nvidia Fermi

architecture has 32,768 32-bit registers, and the RF size can be as large as 2MB

for the entire GPGPU chip [115]. This RF size still keeps increasing over product

generations to support more threads and provide higher performance.

Moreover, GPGPU RF must support multiple memory operations simultane-

ously. To achieve this, Nvidia uses a banked RF architecture combing multiple

single ported RF to avoid the big hardware overhead of using multi-port memory

array. The design of operand collectors is further devised to distribute accesses to

different RF banks and avoid bank conflicts since one bank can only handle one

access at each cycle [116].

Figure 8.1 shows the detailed architecture of operand collectors. When an

instruction is received from the decode stage, an available collector unit is allocated

to store the register identifier, operand data, etc. Meanwhile the source operand

read requests are queued in the arbitrator. The arbitrator contains read queues

for each register bank. It selects a group of non-conflicting accesses and sends

them to RF at every cycle. As each operand is read out of the register file and

placed into the corresponding collector unit, it is marked as ready. Finally, when

all the operands are ready, the instruction is issued to a SIMD execution unit. In

addition, each execution unit and memory port has an independent issue port from

the operand collector to avoid the stall due to shared writebacks.
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Figure 8.2. The layouts of SRAM and STTRAM arrays. In STTRAM array, separated
read and write paths to different sub-arrays can be operated in parallel.

8.2 Split Bank Write

8.2.1 Motivation

For SRAM-based RFs, read and write accesses have similar latency and both can

be finished in one cycle. Thus, the arbitrator sends a group of accesses to RF at

each cycle. But, for STTRAM-based RFs, write access has much longer latency

than read, and it needs multiple cycles to finish. Therefore, when a write access is

operated in one RF bank, the read/write accesses to the same bank need to wait

until the write operation is finished. If all the requests in the queues conflict with

the current writes, the pipeline has to stall.

To improve the parallelism of read and write accesses to RFs, we explore an

inherent feature of STTRAM memory array circuitry. SRAM commonly uses volt-

age sense amplifiers which partially share circuit with write drivers. On contrary,

STTRAM uses current sensing, which is generally more complicated and requires

larger sense amplifiers. In addition, write drivers and sense amplifiers are separated

entirely. As shown in Figure 8.2, different from SRAM, each STTRAM memory

array is usually divided to two sub-arrays, which share sense amplifiers placed in

the middle. Therefore, separated read and write paths to two different sub-arrays

inside one bank can still be operated simultaneously in STTRAM arrays.

Thus, we propose the Split Bank Write technique (SBW), in which the arbi-

trator treats a read access and a write access to the same RF bank but different

sub-arrays non-conflicting.
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8.2.2 Implementation of SBW

To implement SBW, we add two buffers in the arbitrator as shown in Figure 8.3:

Write Busy (WBusy) Buffer: it is used to memorize the banks which are

occupied by write accesses. Assuming the write cycle count of STTRAM RFs is n

times longer compared to the one of SRAM RFs (e.g. n equals to 3 in this work),

WBusy buffer contains m = blog2nc bits for each RF bank to store the remaining

cycles of the current writes.

Subarray id Buffer: it is used to store the identifier of the accessed sub-array

when a write happens. This buffer contains only one bit for each RF bank since

each bank is divided to two sub-arrays. In addition, the input address buffer for

each RF bank is decoupled for two sub-arrays.

After adding these two buffers, the work flow of the arbitrator is modified as

follows to distribute non-conflicting reads and writes to RF banks:

• First, the arbitrator reads WBusy buffer. If the corresponding entry for bank

M is 0, it means that bank M is free to assign any access; otherwise, it means

bank M is occupied by a write access, and the arbitrator needs to read the

corresponding entry in Subarray id buffer in order to get the accessed sub-

array identifier.

• Second, the arbitrator uses the same algorithm as the traditional one [116]

to decide a group of non-conflicting accesses (Gaccess) and sends them to RF.

The input is the status of read queues for each register bank and writeback

informations from ALU and memory units. The only difference here is that

the accessed sub-arrays in banks with non-zero WBusy entry are all avoided.

• Next, for the bank chosen to write in Gaccess, the arbitrator sets the corre-

sponding entry in WBusy buffer to n− 1 (e.g. 2 in this work). In addition,

The arbitrator calculates which sub-array is used for this register address,

and the identifier (0 or 1) is stored in Subarray id buffer.

• Then, the arbitrator subtracts all the other non-zero entries in WBusy buffer

by 1 since the write accesses have just consumed one cycle.

An example is shown in Figure 8.3 to illustrate the work flow. Assuming that

at a certain cycle the arbitrator finds there is a read request for RF Bank 1 in the
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Figure 8.3. The architecture of Split Bank Write technique.

queue. It reads WBusy buffer and finds that the data in entry 1 is “2”, which

means Bank 1 is occupied by a write access that needs two more cycles to finish.

Without the SBW technique, this read access needs to be blocked until the write

is finished. But, when SBW is adopted, the arbitrator reads Subarray id buffer

and finds the write is operated in sub-array 1 of Bank 1. Thus, this read can be

issued normally if it accesses sub-array 0.

8.3 Writeback Pool

8.3.1 Motivation

Besides longer write latency, write energy of STTRAM-based RFs is also much

larger than SRAM-based ones. SBW is designed to reduce the performance over-

head, but it does not reduce the total access count as well as the dynamic energy.

Thus, we still need other techniques to solve this problem.

GPGPU usually has many warps running in parallel. Two-level warp scheduler

was proposed in previous work to manage the warps and utilize computational

resources more effectively [58, 117]. It partitions warps into an active set eligible

for execution and an inactive pending set waiting for long latency operations. A

warp encountering a stall-inducing event can be demoted to the pending set, and

a pending warp can be promoted to the active set when it is ready.

This two-level warp scheduler provides an opportunity to reduce the write ac-

cess number to RFs. Only active warps require register accesses, and the number

of active warps is relatively small compared to the total warp number. Before

being moved to the pending set, an active warp might write some registers repeat-

edly, and it is possible to avoid these repeated write accesses. On the basis of this



128

Bank

0

Bank

1

Bank

2

Bank

N-1

Crossbar

Collector Units

SIMD Execution Units

WPool Indicator

Warp ID

register id, dirty bit, write pool id;

Reg ID Dirty bit WPool ID

1

0

0

8

5

0

1

1

0

1

4

0

Arbitrator

WPool Array

Data ArrayWPool ID

1

N-1

0

Multi-bank Register File

0

1

N-1

Data0

Data1

NULL

WPool Array

Write Data

Read Data

W
ri

te
 Q

u
e

u
e

 

F
o

r 
E

a
c

h
 B

a
n

k

WPool Indicator

Warp ID Reg ID Dirty bit WPool ID

1

0

0

8

5

0

1

1

0

1

4

0

Arbitrator

1

N-1

0

Data ArrayWPool ID

0

1

N-1

Data0

Data1

NULL

WPool Array

Multi-bank 

Register 

File

O
u

tp
u

t 
M

U
X

RD_EN

Read Data

WB_EN
ID_Sel

Write 

Data

In
p

u
t 
M

U
X

WR_EN

RD_Sel

WPool Indicator

Warp ID Reg ID Dirty bit WPool ID

1
0

0

8
5

0

1
1

0

1
4

0

Arbitrator

1

N-1

0

Data ArrayWPool ID

0

1

N-1

Data0

Data1

NULL

WPool Array

Multi-bank 

Register File

O
u

tp
u

t 
M

U
X

RD_EN

Read Data

WB_ENID_Sel

Write 

Data

In
p

u
t 
M

U
X

WR_EN

RD_Sel

WPool Indicator

Warp ID Reg ID Dirty bit WPool ID

1
0

0

8
5

0

1
1

0

1
4

0

Arbitrator

1

N-1

0

Data ArrayWPool ID

0

1

N-1

Data0

Data1

NULL

WPool Array

Multi-bank 

Register File

O
u

tp
u

t 
M

U
X

RD_EN

Read Data

WB_ENID_Sel

Write 

Data
In

p
u

t 
M

U
X

WR_EN

RD_Sel

Figure 8.4. The architecture of Write Pool technique.

concept, we propose the Write Pool (WPool) technique.

8.3.2 Implementation of WPool

We add a small SRAM-based write buffer between the arbitrator and the RF, so

that write accesses initiated by an active warp can be temporarily held in this write

buffer and only written back to the STTRAM-based RF when this buffer is full.

In addition, the entries containing the registers for pending warps are replaced out

firstly.

Architecture of WPool: As shown in Figure 8.4, WPool consists of two

components:

• WPool Indicator: It is placed in the arbitrator and has N entries, where

N is a designer parameter to tune the balance between energy saving and

hardware overhead (we use N=60 in this work). Each indicator entry includes

4 fields: warp id, register id, dirty bit and WPool id, in which dirty bit

indicates whether an entry is occupied or not, warp id and register id store

the write access information, WPool id points to an entry in the second

WPool component which actually stores the register data.

• WPool Array: it is a separate small SRAM buffer which also has N entries.

Each entry stores two fields: WPool id is used to connect with WPool In-

dicator; data array stores the register data, in which the size of one entry
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is the same with the size of one register multiplied by the thread number in

one warp since all threads in a warp execute same instructions.

Work flow of WPool: The arbitrator decides the access group as described

in Section 8.2, and the write pool is considered as a separate bank besides all the

other register banks when non-conflicting accesses are selected.

As shown in Figure 8.4, if there is a access to bank M, the arbitrator firstly

checks WPool Indicator using warp id and register id, and then its behavior is as

follows:

• If it is a read access, the arbitrator sets RD EN and RD Sel correspondingly

to choose between WPool and RF. Besides, if the data is in WPool, ID Sel

is set as WPool id.

• If it is a write hit, the arbitrator sends WPool id to WPool Array by ID Sel

and sets WR EN to 1. Thus, the data is written to the corresponding entry

in WPool Array.

• If it is a write miss and the arbitrator finds an empty entry in WPool Indica-

tor, its behavior is the same as a write hit. It sends ID Sel to WPool Array

and writes the data to the empty entry.

• If it is a write miss and there is no empty entry left, the arbitrator chooses an

entry to replace. It sends ID Sel as the selected WPool id, and sets WB EN

to 1 in order to write the old data into RFs. Then WR EN is set to 1 and

the new data is loaded to WPool Array.

Note that SBW is also adopted here to make sure write accesses are operated

correctly without blocking other accesses.

Replacement policy: The replacement policy of WPool is modified based on

Least Recently Used (LRU) policy, which discards the least recently used items

first. Different from LRU, we change the policy as follows. When a warp is demoted

to the pending list from the active set, all the entries in WPool Indicator with this

warp id are shifted to LRU side. It is because register accesses only happen in

active threads, and the registers allocated for a pending warp will only be accessed

when this warp is active again. The interval between a warp is demoted and
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promoted is usually very long since the pending warp is waiting for long latency

operations, such as off-chip DRAM accesses. Thus, writing back the dirty data

occupied by pending warps can save space for active warps.

8.4 Implementation Overhead

We combine these two techniques to form our WarRF design. The implementation

overhead of WarRF is small. For SBW, it does not bring any circuit overhead

on memory arrays since it explores an existing special feature of STTRAM array.

The only overhead is two small buffers (e.g. 48 bits) located in the arbitrator,

and the modification on the arbitrator algorithm is also small. For WPool, the

overhead mainly comes from WPool array. In this work, we choose 60 as the entry

number, which brings smaller than 6% overhead compared to the RF size. And

this overhead can be reduced further by adjusting the number of WPool entries.

The energy overhead of one access to WPool array is about 0.08pJ/bit calculated

by NVSim [79], and it is also included in our experimentel results.

8.5 Experimental Results

8.5.1 Experiment Methodology

We model a contemporary GPU SIMT processor, which is similar to the Nvidia

Fermi GTX480 GPU [115] using our modified version of GPGPU-Sim [118]. Our

modification to GPGPU-Sim includes an asymmetric read/write latency model for

RFs, a modification to the arbitrator, and the WarRF implementation. We select

the simulation workloads from GPGPU-Sim benchmark suite [118] and Rodinia

benchmark [119].

Table 8.1 shows the system configurations. Each GPU core is equipped with

a 128KB register file which consists of 16 banks. In addition, all the circuit-level

parameters (e.g. read/write latency and energy consumption) are obtained from

NVSim [79] and are shown in Table 8.2. It shows that STTRAM-based RF has

much smaller area and leakage power compared to SRAM-based one. But, the

write latency and the write energy of STTRAM-based RF are much larger.
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Table 8.1. Simulation Configuration

Parameter Value

Core Number 15 cluster, 1 core/cluster
Clock (Core/Icnt/DRAM) 0.7/1.4/0.924 GHz

SIMD Width 32
Warp Size 32

Registers Per Core 128KB
Register File Banks 16

Shared Memory 48KB
Shared Memory Banks 32
L1/Cons/Tex Cache 16KB/8KB/12KB

L2 Cache 786KB

Table 8.2. Characteristics of SRAM and STTRAM RFs (22nm)

Memory type SRAM STTRAM

Cell factor (F2) 146 40
Read latency (ns) 0.69 0.88
Write latency (ns) 0.67 4.12

Read energy (pJ/bit) 0.37 0.42
Write energy (pJ/bit) 0.32 0.72

Leakage power (uW/bank) 25 0.3
Area (mm2) 4.1 1.1

8.5.2 Performance Improvement of WarRF

Figure 8.5 illustrates the normalized IPC of different systems. Compared to

SRAM-based RF, STTRAM-based one degrades the system performance due to

its longer write latency. Observed from Figure 8.5, the overall performance of

STTRAM baseline is degraded by 14% compared to SRAM RF. This is also the

problem addressed by WarRF.

First, the SBW technique improves the system performance by issuing reads

and writes to different sub-arrays in the same bank. Compared to STTRAM

baseline, the overall system performance after adopting SBW is boosted by 7%

(up to 11%). Moreover, the system performance is further improved by 6% on

average (up to 14%) after adopting the WPool technique because the write traffic

to STTRAM RF is reduced.

Combining these two techniques, WarRF can improve the system performance
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Figure 8.5. The normalized IPC compared between STTRAM baseline RF, SBW,
WarRF and SRAM RF based systems.

of STTRAM-based RF by 13% on average and up to 23%. In general, the workload

with more RF write traffic benefits more from our WarRF architecture since the

long write latency is originally the bottleneck of the baseline system.

Thus, by adopting WarRF, STTRAM-based RF can achieve comparable per-

formance with SRAM-based one, and the difference is only about 2.5% on average.

8.5.3 Write Access Reduction and Energy Consumption

Saving

Adopting WPool in WarRF can help to reduce the number of write accesses to RF.

Figure 8.6 shows that the write traffic to RF is reduced by 31% on average and up

to 83% using WPool. It brings benifits in terms of both performance improvement

and energy saving.

Figure 8.7 shows the normalized energy consumption of different systems and

each value is broken down to leakage energy and dynamic energy. The energy

overhead to access WPool array is also included in the results. Compared to

SRAM-based RF, the total energy consumption of STTRAM baseline is reduced

by 32% on average because the leakage energy of STTRAM is only about 1% of

SRAM. But, we can also observe that the dynamic energy of STTRAM baseline

is increased about 49% on avearge because the write energy of STTRAM is much

larger. As a result, for some workloads, the total energy consumption after adopt-

ing STTRAM-based RF is not decreased but increased, such as LPS, in which the

energy consumption is increased by 18%.

After adopting WarRF, the dynamic energy is decreased since the write traffic
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Figure 8.6. The write traffic reduction after adopting the WPool technique.
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Figure 8.7. The normalized energy consumption compared between SRAM RF,
STTRAM RF, and WarRF.

to RF is reduced. As shown in Figure 8.7, the energy consumption of WarRF is

further reduced by 7.4% on average and up to 24%. As a result, the overall energy

consumption of WarRF is reduced by 38% compared to SRAM-based RF.

8.5.4 Silicon Area Saving

Another advantage of STTRAM-based RF is the silicon area reduction due to

its much smaller cell size. Based on Table 8.2, an 2MB STTRAM RF can save

about 68% area compared to an SRAM one, in which the overhead of WarRF is

also added. Therefore, considering comparable performance and the area/energy

savings, STTRAM-based RFs enhanced by WarRF makes itself a more attractive

choice in replacing SRAM ones.
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8.6 Summary

GPGPUs usually have large size of register files to implement the zero overhead

switch between threads. RFs are built with SRAM by default, but the scaling of

SRAM is constrained by cell density and leakage energy. STTRAM is a new non-

volatile memory technology and is explored as one of the potential alternatives for

SRAM because of its smaller cell area and zero standby leakage power. However,

STTRAM-based RFs face the problems of performance loss and higher dynamic

energy due to longer write latency and higher write energy. In this work, we

propose a write-aware STTRAM-based RF (WarRF) for GPGPUs, which contains

two techniques: SBW modifies the arbitrator design to increase the parallelism

of read and write accesses; WPool reduces the number of repeated write accesses

to RFs. Our experiment shows that by adopting WarRF, the STTRAM-based

system performance is improved by 13% on average and the energy consumption

is reduced by 7.4% further, which makes STTRAM RF a more attactive choice.



Chapter 9
Conclusion

While the scaling of SRAM and DRAM is facing constrains of cell density and

leakage energy, people are looking for their replacements. NVMs are promising

candidates because of their low leakage power and high density. Therefore, there

are many recent works in academic and industry to study on the feasibility of using

NVMs as different memory levels.

Although using NVMs brings benefits in terms of lower leakage energy and

higher density, there are still obstacles to adopt them in practical products, such

as limited write endurance, expensive write operations, etc. It is very difficult

to solve these issues on cell-level since they are caused by intrinsic features of

non-volatile memory cells. Therefore, we can only mitigate these problems on

architecture level, which is also the motivation of our work. In this dissertation,

the impacts of NVM features are analyzed on system level, and some architecture

designs using NVMs have been investigated.

First, we explore NVMs as main memory system. We first study on how to

use multi-bit phase change memory to build the main memory system and pro-

pose an energy-efficient architecture based on data encoding to reduce the writing

energy overhead. Then, we work on STTRAM main memories and propose sev-

eral techniques to design an LPDDR3-compatible high performance and low power

architecture.

Next, we explore NVMs as on-chip caches. To build a more reliable non-volatile

caches, we first study on the limited write endurance problem. A wear-levering

technique is proposed to balance the write traffic to each cache line, and a hard-
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error tolerant technique is proposed to correct hard errors caused by the inherent

variation of the cell’s lifetime due to process variations. In addition, we also work on

the issue of expensive writes, and propose a technique to mitigate the performance

overhead caused by the longer write latency of non-volatile last-level caches.

Last but not least, we evaluate NVMs as GPGPU register files and propose a

write-aware NVM-based register file design.

Overall, this dissertation intends to build the novel computer memory archi-

tecture design that takes the advantages of emerging NVMs and mitigate their

disadvantages as well.
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