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Abstract

Survival data with ultrahigh dimensional covariates such as genetic markers have

been collected in medical studies and other fields. In this thesis, we propose a

feature screening procedure for the Cox model with ultrahigh dimensional covari-

ates. The proposed procedure is distinguished from the existing sure independence

screening (SIS) procedures (Fan, Feng and Wu, 2010, Zhao and Li, 2012) in that

the proposed procedure is based on joint likelihood of potential active predictors,

and therefore is not a marginal screening procedure.

The proposed procedure can effectively identify active predictors that are joint-

ly dependent but marginally independent of the response without performing an

iterative procedure. We develop a computationally effective algorithm to carry

out the proposed procedure and establish the ascent property of the proposed al-

gorithm. We also conduct Monte Carlo simulation to evaluate the finite sample

performance of the proposed procedure and further compare the proposed proce-

dure and existing SIS procedures. The proposed methodology is also demonstrated

through an empirical analysis of a real data example.
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Chapter 1
Introduction

Modeling high dimensional data has become the most important research topic in

literature. Variable selection is fundamental in analysis of high dimensional data.

Feature screening procedures that can effectively reduce ultrahigh dimensionality

become indispensable for ultrahigh dimensional data and have attracted consid-

erable attentions in recent literature. Fan and Lv (2008) proposed a marginal

screening procedure for ultrahigh dimensional Gaussian linear models, and further

demonstrated that the marginal screening procedure may possesses a sure screen-

ing property under certain conditions. Such a marginal screening procedure has

been referred to as a sure independence screening (SIS) procedure. The SIS pro-

cedure has been further developed for generalized linear models and robust linear

models in the presence of ultrahigh dimensional covariates (Fan, Samworth and

Wu, 2009; Li, Peng, Zhang and Zhu, 2012). The SIS procedure has also been pro-

posed for ultrahigh dimensional additive models (Fan, Feng and Song, 2011) and

ultrahigh dimensional varying coefficient models (Liu, Li and Wu, 2014, Fan, Ma

and Dai, 2014). These authors showed that their procedures enjoy sure screening

property in the language of Fan and Lv (2008) under the settings in which the
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sample consists of independently and identically distributed observations from a

population. One common issue with the aforementioned screening methods is that

the ranking utility is a marginal one and therefore we need to iteratively apply

screening procedures in order to enhance the finite sample performance. In other

words, these screening procedures have a great chance to neglect important predic-

tors that relates to responses jointly but not independently without iteration. To

overcome this issue, Xu and Chen (2014) proposed a feature screening procedure

by iterative hard-thresholding algorithm (IHT) for linear and generalized linear

models and also establish the sure screening property for IHT.

Analysis of survival data is inevitable since the primary outcomes or respons-

es are subject to be censored in many scientific studies. The Cox model (Cox,

1972) is the most commonly-used regression model for survival data, and the par-

tial likelihood method (Cox, 1975) has become a standard approach to parameter

estimation and statistical inference for the Cox model. The penalized partial likeli-

hood method has been proposed for variable selection in the Cox model (Tishirani,

1997; Fan and Li, 2002; Zhang and Lu, 2007; Zou, 2008). Many studies collect

survival data as well as a huge number of covariates such as genetic markers. Thus,

it is of great interest to develop new data analytic tools for analysis of survival data

with ultrahigh dimensional covariates. Bradic, Fan and Jiang (2011) extended the

penalized partial likelihood approach for the Cox model with ultrahigh dimension-

al covariates. Huang, et al (2013) studied the penalized partial likelihood with

the L1-penalty for the Cox model with high dimensional covariates. In theory, the

penalized partial likelihood may be used to select significant variables in ultrahigh

dimensional Cox models. However, in practice, the penalized partial likelihood

may suffer from algorithm instability, statistical inaccuracy and highly computa-

tional cost when the dimension of covariate vector is much greater than the sample
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size. Feature screening may play a fundamental role in analysis of ultrahigh dimen-

sional survival data. Fan, Feng and Wu (2010) proposed a SIS procedure for the

Cox model by measuring the importance of predictors based on marginal partial

likelihood. Zhao and Li (2012) further developed a principled Cox SIS procedure

which essentially ranks the importance of a covariate by its t-value of marginal

partial likelihood estimate and selects a cutoff to control the false discovery rate.

However, both screening procedures have a great chance to neglect important pre-

dictors that relates to responses jointly but not independently without iteratively

repeating the procedures.

In this thesis work, we propose a new feature screening procedure for ultrahigh

dimensional Cox models. The proposed procedure is distinguished from the SIS

procedures (Fan, Feng and Wu, 2010; Zhao and Li, 2012) in that it is based on the

joint partial likelihood of potential important features rather than the marginal

partial likelihood of individual feature. Non-marginal screening procedures have

been demonstrated their advantage over the SIS procedures in the context of gen-

eralized linear models. For example, Wang (2009) proposed a forward regression

approach to feature screening in ultrahigh dimensional linear models. Xu and Chen

(2014) proposed a feature screening procedure for generalized linear models via the

sparsity-restricted maximum likelihood estimator. Both Wang (2009) and Xu and

Chen (2014) demonstrated their approaches can perform significantly better than

the SIS procedures under some scenarios. However, their methods are merely for

linear and generalized linear models. In this work, we will show that the newly

proposed procedure can outperform the sure independence screening procedure for

the Cox model. This work makes the major contribution to the literature in that

(a) we propose a sure joint screening (SJS) procedure for ultrahigh dimensional

Cox model; (b) we further propose an effective algorithm to carry out the pro-
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posed screening procedure, and demonstrate the ascent property of the proposed

algorithm.

We further conduct Monte Carlo simulation studies to assess the finite sample

performance of the proposed procedure and compare its performance with existing

sure screening procedure for ultrahigh dimensional Cox models. Our numerical

results indicate that the proposed SJS procedure outperforms the existing SIS

procedures. We also demonstrate the proposed joint screening procedure by an

empirical analysis of a real data example.

The rest of the thesis is organized as follows. In Chapter 2, we give a detailed

review of the existing methods in literature. In Chapter 3, we propose a new

feature screening for the Cox model, and further demonstrate the ascent property

of our proposed algorithm to carry out the proposed feature screening procedure.

We also study the sampling property of the proposed procedure and establish its

sure screening property. Numerical comparisons and an empirical analysis of a

real data example are then presented. Some discussion and conclusion remarks are

given in Chapter 4.



Chapter 2
Literature Review

The review of literature is organized as follows. First, we introduce variable se-

lection methods for linear model via penalized least squares. We then present a

brief review of some basic concepts in survival data analysis together with some

commonly-used survival models. Existing variable selection and feature screening

procedures for survival data analysis are summarized.

2.1 Variable Selection in Linear Model

Variable selection is an important topic in linear regression analysis. In particular,

a large number of predictors usually are introduced at the initial stage of mod-

eling to reduce possible modeling biases. However, to get a parsimonious model

with strong predictability, statisticians make great efforts on selecting significant

variables. We first study the variable selection methods in linear model and then

extend them to survival models. Considering the linear regression model

y = Xβ + ε, (2.1.1)
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where y is an n × 1 response vector, X = (x1,x2, · · · ,xn)T is an n × d predictor

matrix, β = (β1, β2, · · · , βd)T denotes the coefficient vector, and ε is the n × 1

independently identical distributed noise vector with mean zero.

2.1.1 Classical Variable Selection

Classical variable selection is to select an appropriate subset of variables that gives

one good fitted or predicted values. For evaluating the performance of regression

model, statisticians have developed a variety of measures of fit criteria, including

the Cp statistic (Mallows,1973), the Akaike’s Information Criterion (AIC, Akaike,

1973, 1974), the Bayesian Information Criterion (BIC, Schwarz, 1978), General

information criterion (GIC, Nishii, 1984), and the generalized cross validation score

(GCV, Craven and Wahba, 1979).

By fitting all possible models, we can easily find a model that seems best by

whatever criterion we choose, which is so called “Best Subset Selection”. However,

with a d potential predictors, there are 2d possible subsets, the computational cost

is expensive and the exhaustive search is infeasible when d is large. In practice,

forward selection, backward elimination and stepwise selection are used to search a

good subset rather than best subset selection. Details are referred to Miller (2002).

2.1.2 Variable Selection via Penalized Least Squares

Subset selection provides interpretable models and gives us the most significant

predictors, but it still has inherent drawbacks. It could be extremely variable

because it is a discrete process – regressors are either retained or removed from

the model. Small changes in the data could result in very different selected models.

To reduce large variation and improve prediction accuracy, penalized least squares
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(PLS) methods are proposed. Instead of minimizing the least squares function, we

obtain the estimate by minimizing a penalized PLS function

Q(β) =
1

2
||y−Xβ||2 + n

d∑
j=1

pλ(|βj|), (2.1.2)

where pλ(·) is the penalty function with a tuning parameter λ, which controls the

model complexity and can be selected by a data-driven method. For simplicity

of presentation, we assume that the penalty functions for all coefficients are the

same. In this subsection, we present several commonly used penalty functions and

their specific properties.

The PLS with L2 penalty

pλ(|θ|) =
1

2
λ|θ|2

yields the ridge regression (Hoerl and Kennard, 1970). Ridge regression estimate

has an explicit form β̂ = (XTX + λI)−1(XTy). It is a continuous process that

shrinks coefficients and therefore is more stable. However, it cannot set any coef-

ficient exactly to 0 and hence does not result in a sparse model.

The PLS with L1 penalty

pλ(|θ|) = λ|θ|

yields the LASSO estimate (Tibshirani 1996, 1997). The LASSO estimator equals

to a soft-thresholding rule

θ̂j = sgn(z)(|z| − λ)+

when the design matrix is orthogonal. The LASSO estimate shrinks the OLS
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estimate and produces some coefficients that are exactly 0. Hence it enjoys some

of the favorable features of both ridge regression and best subset selection. It

produces interpretable model like subset selection and enjoys the stability of ridge

regression. However, it would result in large bias for coefficients with large values

and therefore is not selection consistent (Zou, 2006). To overcome the inconsistency

of LASSO penalty, Zou (2006) proposed a new Adaptive LASSO penalty as

pλ(|θ|) = λω̂|θ|,

where ω̂ = 1/|β̂0|γ with β̂0 obtained from OLS estimates. The adaptive LASSO

assigns different weights for different coefficients and it has been proved that it

enjoys the oracle properties with appropriate λ. The adaptive LASSO is essentially

an L1 method and the estimates could be computed by the efficient LARS (Efron,

et al., 2004) algorithms.

The PLS with Lq penalty

pλ(|θ|) = λ|θ|q (0 < q ≤ 2)

leads to a bridge regression (Frank and Friedman, 1993). By definition, we could

see that L0, L1 and L2 penalty are the special cases of Lq penalty. The solution

is continuous with respect to the OLS estimate only when q ≥ 1. However, when

q > 1, the Lq penalty can not produces a sparse solution.

L0 (or Entropy penalty) pλ(|θ|) = 1
2
λ2I(|θ| 6= 0) results in best subset selection

with specific value of λ. Compared with L0 penalty, the hard-thresholding penalty

pλ(|θ|) = λ2 − (|θ| − λ)2I(|θ| < λ)



9

also results in a hard-thresholding rule

θ̂j = zI(|z| > λ)

which also coincides with the best subset selection for orthonormal designs. Howev-

er, the latter is more smoother and facilitates computational expedience in general

settings.

We have been discussed several penalty functions so far, but what kind of

penalty function should we apply to gain desirable properties? Fan and Li (2001)

advocates that a good penalty function should result in an estimator with three

properties.

• Unbiasedness. The resulting estimator is nearly unbiased when the true

unknown parameter is large to avoid unnecessary modeling bias.

• Sparsity. The resulting estimator is a thresholding rule, which automatically

sets small estimated coefficients to zero to reduce model complexity.

• continuity. The resulting estimator is continuous in data to avoid instability

in model prediction.

Furthermore, Antoniadis and Fan (2001) shows three conditions to guarantee

the above three properties.

• Unbiasedness. iff p
′

λ(|θ|) = 0 for large |θ|.

• Sparsity: if minθ{p
′

λ(|θ|) + |θ|} > 0.

• continuity: if argminθ{p
′

λ(|θ|) + |θ|}= 0.
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Figure 2.1. Example penalty functions and their corresponding first order deriveatives.
(a) Plots the penalty functions of the Hard thresholding penalty, the Soft thresholding
penalty, the SCAD penalty and the MCP. (b) illustrates the corresponding derivatives
of each penalty function in (a).

It is obviously that all the penalty functions aforementioned can not simultaneously

satisfy the mathematical conditions for unbiasedness, sparsity, and continuity.

Fan and Li (2001) proposed a continuous differentiable penalty function defined

by

pλ(βj) = λ

∫ |βj |
0

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

}
dθ a > 2

= λ|βj|I(|βj| ≤ λ)− (|βj|2 − 2aλ|βj|+ λ2)

2(a− 1)
I(λ < |βj| ≤ aλ)

+
(a+ 1)λ2

2
I(|βj| > aλ)

This penalty function is called the smoothly clipped absolute deviation (SCAD)

penalty, which retains the good mathematical properties of hard and soft thresh-

olding penalty functions and hence is expected to perform the best. It corresponds

to a quadratic (nonconcave) symmetric spline function singular at origin with knots
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Figure 2.2. The relationship between PLS and OLS estimates when the design matrix
is orthonormal.

at λ and aλ and satisfies the condition of unbiasedness, sparsity and continuity.

It involves two unknown parameters λ and a, where a = 3.7 is commonly used in

practice.

Thus, the SCAD penalty results in sparse set of solution and approximately

unbiased estimates for large coefficients. The SCAD thresholding rule can be given

as

θ̂j =


sgn(z)(|z| − λ)+ if |z| ≤ 2λ

{(a− 1)z − sgn(z)aλ}/(a− 2) if 2λ < |z| ≤ aλ

z if |z| > aλ
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Zhang (2010) proposed the minimax concave penalty (MCP) defined as

pλ(βj) = λ

∫ |βj |
0

(
1− θ

aλ

)
+

dθ a > 0

= (λ|βj| −
β2
j

2a
)I(|βj| ≤ aλ) +

aλ2

2
I(|βj| > aλ)

The MCP shares the similar spirits with the SCAD penalty, including the 3 desir-

able properties and oracle property.

Figure 2.1 demonstrates some penalty functions (Hard thresholding, L1, SCAD,

and MCP) and their corresponding first order derivatives with λ = 1 and a = 3.7.

Figure 2.2 illustrates the solutions for the Hard, the L1, the ridge and the SCAD

penalty functions with the same λ and a, which clear shows that only the SCAD

penalty possess the three desirable properties, namely, unbiasedness, sparsity, and

continuity.

2.2 Basic Concepts and Commonly Used Models

in Survival Data Analysis

In this section, we first briefly introduce the basic definitions and concepts together

with commonly used models in survival analysis. Variable selection and feature

screening procedures are then discussed.

2.2.1 Definition and Notation

Survival analysis is introduced to analyze data in which the time until event is

of interest. The response in survival data is often referred as a failure time, sur-
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vival time, or event time, which are usually treated as continuous. However, the

survival time may be incompletely determined for some subjects. For example,

we sometimes are interested in how a risk factor or treatment affects time to dis-

ease or some other events. If we have study dropout, then for some subjects we

know that the survival time is at least equal to some time t. Whereas, for other

subjects, we would know their exact time of event. We consider these incomplete-

ly observed responses censored. Standard regression procedures could be applied

without censoring, however, they may be inadequate because

(1) Time to event is restricted to be positive and has a skewed distribution.

(2) The probability of surviving past a certain point in time may be of more

interest than their expected time of event.

(3) The hazard function, used for regression in survival analysis, can lend to

more insight into the failure mechanism.

For the analytical methods discussed later to be valid, we assume that the

censoring mechanism is noninformative throughout our discussion, namely, cen-

soring is caused by something other than the impending event. Censoring might

occur due to generally three reasons: (a) a subject does not experience the event

before the study ends; (b) a subject is lost to follow-up during the study period;

(c) a person withdraws from the study. All these examples are right-censoring,

which commonly happens in real life and is also what of interest in the following

discussion.

To record and represent the right-censored survival data, we introduce termi-

nology as follows Ti denotes the survival or failure time for the ith subject; Ci

denotes the censoring time for the ith subject; δi is the event indicator and defined
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by δi = I(Ti ≤ Ci). Hence δi = 1 when events happen, otherwise, it is censored;

Zi is the observed response defined by Zi=min(Ti, Ci).

Regarding the event time T a nonnegative continuous random variable, there

are several equivalent ways to describe the probability distribution of T . Some

of these are familiar, others are special to survival analysis. We will focus on the

following quantities:

The density function f(t) is defined as

f(t) = lim∆t→0
1

∆t
P (t ≤ T ≤ t+ ∆t)

The cumulative distribution function F (t) denotes the probability of survival

time T ≤ t and is defined by

F (t) = P (T ≤ t).

However, in survival analysis, our interest tends to focus on the probability of

surviving at a certain time t, and therefore we define the survival function S(t) by

S(t) = P (T > t) = 1− F (t),

which could be written as S(t) = F̄ (t). As t ranges from 0 to ∞, S(t) is non-

increasing. At time t = 0, S(t) = 1 and at time t =∞, S(t) = 0.

The hazard function h(t) is the instantaneous rate at which events occur con-

ditioning on zero previous events.

h(t) = lim∆t→0
1

∆t
P (t < T < t+ ∆t|T > t)
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= lim∆t→0
1

∆t

P (t < T < t+ ∆t)

P (T ≥ t)
=
f(t)

S(t)

The cumulative hazard function H(t) describes the accumulated risk up to time

t, and is defined by

H(t) =

∫ t

0

h(u)du.

The relationships between these descriptive functions f(t), h(t), S(t), and H(t)

can be expressed as

f(t) = − d

dt
S(t)

h(t) =
f(t)

S(t)
= − d

dt
{logS(t)}

H(t) =

∫ t

0

h(u)du =

∫ t

0

− d

du
{logS(u)}du = −logS(t)

S(t) = exp{−H(t)}

Given a survival data, if we assume that every subject has the same survival curve,

namely, there are no covariates or group differences, the survival or hazard function

can then be estimated in two ways:

(1) by developing an empirical estimate, such as Kaplan-Meier estimator of the

survival function, and Nelson-Aalen estimator for cumulative hazard. This

approach requires few assumptions and gives robust estimates.

(2) by specifying a parametric model for hazard function h(t) based on a particu-

lar density, such as exponential distribution, weibull distribution and gamma

distribution. And use the maximum likelihood estimators(MLE) to estimate

the unknown parameters of the parametric distributions. This approach may

be too sure to draw inappropriate conclusions.
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However, in real life, it is too rigid to assume that the event time of all subject-

s are governed by the same survival function, namely, the whole population is

homogeneous. Therefore, another distinguishing characteristic of survival model,

presented by a vector of covariates that may affect survival time, was introduced.

The effects of the influential covariates are of such great interest that people de-

veloped several models based on different testable assumptions to study them.

2.2.2 Common Used Models for Survival Data

In this subsection, we concern survival model with the following three character-

istics: (1) the response is the waiting time until the occurrence of an event; (2)

observations are right-censored; and (3) there are covariates whose effects on the

survival time are of interest.

Let xi represent the set of covariates for ith subject. Note that xi may be

continuous, discrete and time-varying. The goal of survival analysis is to model

the effects of significant covariates given a survival data {(xi, Zi, δi)}n.

The most popular framework in analysis of right-censored survival data is the

Cox’s proportional hazards model (Cox, 1972), in which the hazard function

h(t|x) for a subject with covarties x is defined as

h(t|x) = h0(t)exp(xTβ), (2.2.3)

where h0(t) is the unspecific baseline hazard function who serves as a reference

group. Cox’s proportional hazards model contains non-parametric h0(t) and an-

other parametric term, and hence is a semi-parametric model. Under the propor-

tional hazard(PH) assumption, the relative hazard rate(risk) between two groups
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only depends on their corresponding covariates, but not time t. In other words, for

two subjects with fixed covariates, their relative risk is the same at all durations t.

Returning to the relationships between the descriptive functions, we can integrate

both sides of (2.2.3) from 0 to t to obtain the cumulative hazard function

H(t|x) = H0(t)exp(xTβ),

which are also proportional. Applying the relationships again, the survival function

S(t|x) can be then determined uniquely by

S(t|x) = S0(t)exp(xTβ), (2.2.4)

where S0(t) = exp(−
∫ t

0
h0(u)du) is the baseline survival function. Thus, the effects

of covariates x on the survival function is to raise it to a power given by relative

risk exp(xTβ).

It is assumed for the Cox’s proportional hazards model that the survival time of

subjects are independent. However, this assumptions might be violated when the

collected data are correlated. To deal with the dependence among the observations,

Cox’s frailty model (Vaupel et al., 1979) was introduced, in which the hazard

rate for the jth subject in ith group is

hij(t|xij) = h0(t)uiexp(xTijβ), (2.2.5)

where ui is associated with frailties and follows a specific distribution, such as

gamma frailty. It is frequently assumed that given the frailty ui, the data in the ith

group are independent. Frailty model is an extension of proportional hazards model
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by considering the survival sample heterogeneous, namely, a mixture of individuals

with different baseline hazards caused by unknown or unmeasured covariates.

The Cox PH assumption postulates that the covariates have a fixed multiplica-

tive effect on the hazard, or the relative risk is the same at all durations t. In

practice, it is not uncommon for the hazard functions based on two or more group-

s converge with time. Therefore, it is more reasonable to suppose that the effect

of the covariates on the hazard disappears with time. One approach to model

such behavior is to include time-varying covariates in the Cox’s PH model. As

an alternative, Bennett (1983) introduced the proportional odds model, which

was defined by

S(t|x)

1− S(t|x)
=

S0(t|x)

1− S0(t|x)
exp(xTβ), (2.2.6)

where S0(t|x) is the baseline function of a unspecific form.

All the three models discussed above belong to the class of semi-parametric

model with baseline functions of unknown form. In practice, researchers would

like to consider some parametric models to gain efficiency in analysis or to obtain

some estimates that could be used in future survival study. Accelerated failure

time (AFT) model (Collett, 2003) is one of the parametric models who describes

the logarithm of survival time using a conventional linear model. The AFT model

can be expressed as

log(T ) = xTβ + σε, (2.2.7)

where ε is a random error term with a distribution to be specified, and σ is a scaler.

This model specifies the distribution of log-survival as a simple shift of a baseline

distribution represented by the error term. Furthermore, the conditional survival
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function of T given x can be represented as

S(t|x) = S0(texp(−xTβ)), (2.2.8)

where S0(·) is the baseline survival function determined by ε. In other words, the

survival probability of a subject interested at time t would be exactly the same as

the probability of the baseline subject at its time texp(−xTβ). Different choice of ε

can result in different parametric survival model. For instance, if ε follows standard

extreme value distribution, namely, eε follows a unit exponential distribution, the

survival time T follows an exponential distribution with

h(t|x) = h0(t)exp(−xTβ), (2.2.9)

where h0(t) = 1
σ
t
1
σ
−1. Although model (2.2.9) has the same form as Cox’s PH

model, the hazard function here is parametric.

Estimation and inference of the parameters in the semi-parametric or paramet-

ric models aforementioned could be achieved by likelihood methods, which would

be discussed later.

2.3 Variable Selection in Cox’s Model

In this subsection, we introduce the techniques of variable selection via penalization

to survival analysis setting with right-censored data. Given the i.i.d. observed data

{(xi, Zi, δi)}n and the assumption that T and C are independent conditioning on
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x, a full likelihood of the data can be written as

L =
∏
u

f(Zi|xi)
∏
c

F̄ (Zi|xi) =
∏
u

h(Zi|xi)
n∏
i=1

F̄ (Zi|xi), (2.3.10)

where the subscript c and u denote the censored and uncensored data respective-

ly, and f(t|x), F̄ (Zi|xi) and h(Zi|xi) are the conditional density function , the

conditional survival function and the conditional hazard function of T given x.

Furthermore, let t1 < . . . < tN denote the ordered observed failure times and j

denote the label for item falling at tj so that the covariates associated with the

N failures are x1, . . . ,xN . Let Rj denote the risk set right before time tj, namely,

Rj={i : Zi ≥ tj}.

Based on the Cox’s proportional hazards (PH) assumption,

h(t|xi) = h0(t)exp(xTi β),

where h0(t) and β are the baseline hazard function and the corresponding param-

eters. The likelihood in (2.3.10) becomes

L(h0(t),β) =
∏
u

h0(Zi)exp(xTi β)
n∏
i=1

exp{−H0(Zi)exp(xTi β)}, (2.3.11)

where H0(·) is the cumulative baseline hazard function. What of interest is the

estimate of β and therefore we treat h0(t) as a nuisance parameter. Following

Breslow’s idea, maximizing the profiled likelihood L(h0(t), β̂) with respect to h0(t)

conditioning on the estimated β yields an estimate of h0(t). Substituting this

profiled estimate ĥ0(t) into (2.3.11), we get the resulting function that depends
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only on β after dropping the constant terms

L(β) =
N∏
j=1

exp(xTj β)∑
i∈Rj exp(xTi β)

. (2.3.12)

The logarithm of (2.3.12) can be written as

`(β) =
N∑
j

xTj β − log
{∑
i∈Rj

exp(xTi β)
} , (2.3.13)

which is the partial likelihood function (Cox, 1975). Similar to PLS, penalized

maximum partial likelihood estimator based on (2.3.13) can be used to select sig-

nificant covariates. The penalized partial likelihood can be defined by

Q(β) =
N∑
j

xTj β − log
{∑
i∈Rj

exp(xTi β)
}− n d∑

j=1

pλ(|βj|). (2.3.14)

With proper choice of pλ(·), many of the estimated coefficients will be zero and

hence their corresponding covariates do not appear in the model. This achieves

the objectives of variable selection.

The SCAD penalty functions was applied by Fan and Li (2002) to solve the

variable selection problem for Cox’s proportional hazards model while inheriting

good properties, such as oracle property.

Fan and Li (2002) listed several mild conditions to guarantee the asymptotic

normality of the maximum partial likelihood estimates, see Andersen and Gill

(1982) and Murphy and van der Vaart (2000) for details. They then derived

the theorems to show that SCAD thresholding penalized likelihood estimators,

converging at rate of root-n, perform as well as the oracle procedure.
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Denote by β0 the true value of β, and let β0 = (β10,β20)T where β10,β20

are the corresponding zero and nonzero components of β. Similarly, denote the

SCAD estimator β̂ = (β̂1, β̂2)T , where β̂1, β̂2 are the nonvanishing and vanishing

components of β̂. Fan and Li (2002) showed that under the conditions that

max{|p′′

λn(|βj0|)| : βj0 6= 0} → 0,

λ→ 0,

√
nλ→∞ as n→∞.

we can have, with probability tending to 1,

β̂2 = 0,

√
n(β̂1 − β10)→ N{0, I−1

1 (β10,0)},

where I−1
1 (β10,0) is the Fisher information matrix of β1 when β2 = 0. Namely,

they work as well as if the correct sub-model was known.

They adopted the local quadratic approximation (LQA, Fan and Li, 2001)

algorithm to reduce the nonconvex optimization problem to a local quadratic one.

maximizing Q(β) is equivalent to minimizing

−`(β) + n

d∑
i=1

pλ(|βj|).

They showed that penalty function can be locally approximated by a quadratic

function respectively. Therefore, maximizing Q(β) can be locally approximated
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(except for the constant term) by minimizing

−∇`(β0)T (β0 − β) +
1

2
(β0 − β)T∇2`(β0)(β0 − β) +

1

2
nβTΣλ(β

0)β,

where β0 is the initial β estimate, Σλ(β
0) =diag{p′

λ(|β0
1 |)/|β0

1 |, . . . , p
′

λ(|β0
d |)/|β0

d |},

β0
j are the components of initial value β0.

Hence Newton-Raphson algorithm could be applied here to estimate β by one-

step procedure instead of fully iterative MLE as long as the initial estimator is

good enough. Fivefold cross-validation and generalized cross validation are used

to select the proper value of λ.

Zhang and Lu (2007) also considered Cox’s model with noninformative cen-

soring mechanism. To avoid the inconsistency of the LASSO and the numerical

complexity of the SCAD, they applied the adaptive LASSO penalty, whose weights

are determined by unpenalized maximum likelihood estimator β̂MLE. Namely,

Q(β) = −`(β) + nλ
d∑
i=1

|βj|/wj,

where wj = 1/β̂MLE
j , since β̂MLE

j is consistent, it can reflect the importance of the

covariates. This method incorporates different important penalties for different

coefficients: unimportant variables receive larger penalties than important ones, so

that important covariates are more likely to be retained, whereas the unimportant

ones are more likely to be dropped.

Zhang and Lu (2007) also showed that the adaptive LASSO estimator possess

oracle estimator with proper choice of λ. They proved that as long as

√
nλ→ 0, nλ→∞,
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the adaptive LASSO estimator enjoys the oracle property. which is similar to the

one described in Fan and Li (2002), with probability tending to 1, there exits a

root-n consistent adaptive LASSO estimator β̂ that works as well as if the correct

sub-model was known. The modified Fu’s shooting algorithm was used to solve

the optimization problem. Similarly, they choose GCV statistic as their tuning

parameter selector.

2.4 Feature screening in Ultra-High Dimensional

Survival Data Analysis

The penalized variable selection methods work well with a moderate number of

coveriates for Cox’s PH model, however its usefulness is limited in the case of

ultrahigh dimensional screening problems. Extent the idea of sure independence

screening (SIS, Fan, Samworth, and Wu, 2009) and iterative independence screen-

ing (ISIS, Fan, Samworth, and Wu, 2009) proceduces in GLM, Fan, Feng and Wu

(2010) employed maximum of the partial likelihood of the single covariate as a

marginal utility measure. Following the same notation in section 2.4.2, define

µk(βk) = max
βk

 n∑
i=1

δixikβk −
n∑
i=1

δilog
{ ∑
j∈R(zi)

exp(xTjkβk)
} , (2.4.15)

where R(t) = {i : Zi ≥ t} and xik is the kth component of xi. So the marginal

utility reflects how much information the corresponding covariate contains for the

survival responses. Once all the marginal utilities are obtained, they can be or-

dered from the largest to smallest. Fan, Feng and Wu (2010) choose the top

d = [n/log(n)] covariates as the screening features.In the rest of this dissertation,
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we will refer to this procedure as Cox-SIS.

After Cox-SIS, the parameter dimensionality is reduced from the original p to

d < n, where the refined variable selection technique can be applied. Cox-SIS can

handle challenging cases, such as some covariates that are marginally independent

but jointly dependent with the response variable by iterated Cox-SIS, which is

actually the conditional feature ranking and iterative feature screening, similarly to

ISIS in GLM. The only difference is that the likelihood function is now replaced by

partial likelihood. Moreover, two variant of iterated Cox-SIS can be used to reduce

false selected rates (FSR). However, two major problems remain unaddressed with

Cox-SIS. First, the extension of sure screening property to Cox’s model is difficult,

because censoring is confounding between the covariates and the survival outcome.

Second, Cox-SIS is a model-based method which only works well when the true

underlying model is indeed a Cox’s model. Consequently its power is very limited

when Cox’s model is not applicable.

The screening procedures require choosing a threshold to dictate how many

variables to retain, but there are no principled methods for making such a choice,

making the resulting screened models difficult to evaluate. Zhao and Li (2012)

followed the spirit of Fan, Feng, and Wu (2010), but provided a new, principled

method for choosing the number of covariates to retain based on specifying the

desired false positive rate. They solve β̂k marginally by

β̂k = argmaxβk

 n∑
i=1

δixikβk −
n∑
i=1

δilog
{ ∑
j∈R(zi)

exp(xTjkβk)
} . (2.4.16)

Let Ik(βk) denote the information matrix at β̂k. They illustrated that by screening
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the model with

M̂γ = {1 ≤ k ≤ p, I
1
2
k (βk)|βk| > γ},

one can control the expected false positive rate at 2(1 − Φ(γ)), where Φ(·) is the

standard normal cumulative distribution function. One sensible way to do this

would be to first fix the number of false positives f that we are willing to tolerate.

They are conservative by letting γ = Φ−1(1− f
2p

), so that the expected false positive

rate is 2(1 − Φ(γ))= f/p, which is smaller than the desirable false positive rate.

Term this method a principled Cox sure independence screening procedure (PSIS),

as the cutoff γ is selected to control the false positive rate. Specifically, PSIS is

implemented as follows:

(1) Fit a marginal Cox’s model for each of the covariates according to (2.4.38)

to get parameter estimates β̂k and their corresponding variance estimates

I−1
k (β̂k).

(2) Fix the false positive rate as f/p and let γ = Φ−1(1− f
2p

).

(3) Retain covariates by M̂γ = {1 ≤ k ≤ p, I
1
2
k (βk)|βk| > γ}.

They also gave the first theoretical justifications of the sure independence

screening procedure for censored data. Zhao and Li (2012) first shown that β̂k

are consistent for βk0, the real value of βk, and they also suggested that in order

to detect covariate j ∈ M̂, |βk0| has to be at least O(n−
1
2 ). Under the asymptotic

framework where the number of covariates can grow with the sample size, Zhao

and Li (2012) proved the sure screening propoerty (SSP) for PSIS.

They showed that by choosing γ = Φ−1(1− f
2p

), under the condition that κ < 1
2
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and log(p) = O(n
1
2
−κ), with probability going to 1,

P (M⊆ M̂) ≥ 1− s exp(−cn1−2κ),

where c > 0, s is the number of nonzero components in β0. Hence, their screening

procedure PSIS will select all of the important variables with a false positive rate

close to f/p. Therefore, it is reasonable to work on M̂ to further select signifi-

cant variables and identify the underlying model structure by penalized variable

selection tools.



Chapter 3
Feature Screening in Ultrahigh

Dimensional Cox’s Model

Survival data with ultrahigh dimensional covariates such as genetic markers have

been collected in medical studies and other fields. Feature screening plays a funda-

mental role in analysis of ultrahigh dimensional survival data. Fan, Feng and Wu

(2010) proposed a SIS procedure for the Cox model by measuring the importance

of predictors based on marginal partial likelihood. Zhao and Li (2012) further

developed a principled Cox SIS procedure which essentially ranks the importance

of a covariate by its t-value of marginal partial likelihood estimate and selects a

cutoff to control the false discovery rate. However, both screening procedures have

a great chance to neglect important predictors that relates to responses jointly but

not independently without iteratively repeating the procedures.

In this chapter, we propose a feature screening procedure for the Cox model

with ultrahigh dimensional covariates. The proposed procedure is distinguished

from the existing sure independence screening (SIS) procedures (Fan, Feng and

Wu, 2010, Zhao and Li, 2012) in that the proposed procedure is based on joint
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likelihood of potential active predictors, and therefore is not a marginal screen-

ing procedure. The proposed procedure can effectively identify active predictors

that are jointly dependent but marginally independent of the response without

performing an iterative procedure. We also develop a computationally effective

algorithm to carry out the proposed procedure and establish the ascent property

of the proposed algorithm. The proposed procedure is further shown to possess

the sure screening property.

3.1 New feature screening procedure for Cox’s

model

Let T and x be the survival time and its p-dimensional covariate vector, respec-

tively. Throughout this paper, we consider the following Cox proportional hazard

model:

h(t|x) = h0(t) exp(xTβ), (3.1.1)

where h0(t) is an unspecified baseline hazard functions and β is an unknown pa-

rameter vector. In survival data analysis, the survival time may be censored by the

censoring time C. Denote the observed time by Z = min{T,C} and the event in-

dicator by δ = I(T ≤ C). We assume the censoring mechanism is noninformative.

That is, given x, T and C are conditionally independent.

Suppose that {(xi, Zi, δi) : i = 1, · · · , n} is an independently and identically

distributed random sample from model (3.1.1). Let t01 < · · · < t0N be the ordered

observed failure times. Let (j) provide the label for the subject failing at t0j so

that the covariates associated with the N failures are x(1), · · · ,x(N). Denote the
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risk set right before the time t0j by Rj:

Rj = {i : Zi ≥ t0j}.

The partial likelihood function (Cox, 1975) of the random sample is

`p(β) =
N∑
j=1

[xT(j)β − log{
∑
i∈Rj

exp(xTi β)}]. (3.1.2)

Suppose that the effect of x is sparse. Denote the true value of β by β∗. The

sparsity implies that ‖β∗‖0 is small, where ‖a‖0 stands for the L0-norm of a (i.e.

the number of nonzero elements of a). In the presence of ultrahigh dimensional

covariates, one may consider to reduce the ultrahigh dimensionality to a moderate

one by an effective feature screening method. In this section, we propose screening

features in the Cox model by the constrained partial likelihood

β̂m = arg max
β

`p(β) subject to ‖β‖0 ≤ m (3.1.3)

for a pre-specified m which is assumed to be greater than the number of nonzero

elements of β∗. For high dimensional problems, it becomes almost impossible to

solve the constrained maximization problem (3.1.3) directly. Alternatively, we con-

sider a proxy of the partial likelihood function. It follows by the Taylor expansion

for the partial likelihood function `p(γ) at β lying within a neighbor of γ that

`p(γ) ≈ `p(β) + (γ − β)T `′p(β) +
1

2
(γ − β)T `′′p(β)(γ − β),

where `′p(β) = ∂`p(γ)/∂γ|γ=β and `′′p(β) = ∂2`p(γ)/∂γ∂γT |γ=β. When p < n
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and `′′p(β) is invertible, the computational complexity of calculating the inverse

of `′′p(β) is O(p3). For the setting of large p and small n, `′′p(β) is not invertible.

Low computational costs are always desirable for feature screening. To deal with

singularity of the Hessian matrix and save computational costs, we propose to use

the following approximation for `′′p(γ)

g(γ|β) = `p(β) + (γ − β)T `′p(β)− u

2
(γ − β)TW (γ − β), (3.1.4)

where u is a scaling constant to be specified and W is a diagonal matrix. Through-

out this paper, we use W = diag{−`′′p(β)}, the matrix consisting of the diagonal

elements of −`′′p(β). This implies that we approximate `′′p(β) by u diag{`′′p(β)}.

Remark. Xu and Chen (2014) proposed a feature screening procedure by iterative

hard-thresholding algorithm (IHT) for generalized linear models with independent-

ly and identically distributed (iid) observations. They approximated the likelihood

function `(γ) of the observed data by a linear approximation `(β)+(γ−β)T `′(β),

but they also introduced a regularization term −u‖γ − β‖2. Thus, the g(γ|β) in

Xu and Chen (2014) would coincide with the one in (3.1.4) if one set W = Ip, the

p× p identity matrix, but the motivation of our proposal indeed is different from

theirs, and the working matrix W is not set to be Ip throughout this paper.

It can be seen that g(β|β) = `p(β), and under some conditions, g(γ|β) ≤ `p(β)

for all γ. This ensures the ascent property. See Theorem 1 below for more details.

Since W is a diagonal matrix, g(γ|β) is an additive function of γj for any given

β. The additivity enables us to have a closed form solution for the following

maximization problem

max
γ

g(γ|β) subject to ‖γ‖0 ≤ m (3.1.5)
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for given β and m. Note that the maximizer of g(γ|β) is γ̃ = β + u−1W−1`′p(β).

Denote the order statistics of γ̃j by |γ̃(1)| ≥ |γ̃(2)| ≥ · · · ≥ |γ̃(p)|. The solution of

maximization problem (3.1.5) is the hard-thresholding rule defined below

γ̂j = γ̃jI{|γ̃j| > |γ̃(m+1)|}=̂H(γ̃j;m). (3.1.6)

This enables us to effectively screen features by using the following algorithm:

Step 1. Set the initial value β(0) = 0.

Step 2. Set t = 0, 1, 2, · · · and iteratively conduct Step 2a and Step 2b below

until the algorithm converges.

Step 2a. Calculate γ̃(t) = (γ̃
(t)
1 , · · · , γ̃(t)

p )T = β(t) + u−1
t W−1(β(t))`′p(β

(t)),

and

β̃(t) = (H(γ̃
(t)
1 ;m), · · · , H(γ̃(t)

p ;m))T =̂H(γ̃(t);m). (3.1.7)

Set St = {j : β̃
(t)
j 6= 0}, the nonzero index of β̃(t).

Step 2b. Update β by β(t+1) = (β
(t+1)
1 , · · · , β(t+1)

p )T as follows. If j 6∈ St,

set β
(t+1)
j = 0; otherwise, set {β(t+1)

j : j ∈ St} be the maximum partial

likelihood estimate of the submodel St.

Unlike the screening procedures based on marginal partial likelihood methods pro-

posed in Fan, Feng and Wu (2010) and further studied in Zhao and Li (2012),

our proposed procedure is to iteratively updated β using Step 2. This enables

the proposed screening procedure to incorporate correlation information among

the predictors through updating `′p(β) and `′′p(β). Thus, the proposed procedure

is expected to perform better than the marginal screening procedures when there
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are some predictors that are marginally independent of the survival time, but not

jointly independent of the survival time. Meanwhile, since each iteration in Step 2

can avoid large-scale matrix inversion and, therefore, it can be carried out with low

computational costs. Based on our simulation study, the proposed procedures can

be implemented with less computing time than the marginal screening procedure

studied in Fan, Feng and Wu (2000) and Zhao and Li (2012). Theorem 1 below

offers convergence behavior of the proposed algorithm.

Theorem 1. Suppose that Conditions (D1)—(D4) in the Appendix hold. Denote

ρ(t) = sup
β̃

[
λmax{W−1/2(β(t)){−`′′p(β̃)}W−1/2(β(t))}

]

where λmax(A) stands for the maximal eigenvalue of a matrix A. If ut ≥ ρ(t), then

`p(β
(t+1)) ≥ `p(β

(t)),

where β(t+1) is defined in Step 2b in the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if ut is appro-

priately chosen. That is, the proposed algorithm may improve the current estimate

within the feasible region (i.e. ‖β‖0 ≤ m), and the resulting estimate in the cur-

rent step may serve as a refinement of the last step. This theorem also provides

us some insights about choosing ut in practical implementation. One also has to

specify the value of m in practical implementation. In the literature of feature

screening, it is typical to set m = [n/log(n)] (Fan and Lv, 2008). Although it is

an ad hoc choice, it works reasonably well in our numerical examples. With this

choice of m, one is ready to further apply existing methods such as the penalized
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partial likelihood method (See, for example, Tishirani, 1997, Fan and Li, 2002) to

further remove inactive predictors. Thus, we set m = [n/log(n)] throughout the

numerical studies of this paper. To be distinguished from the SIS procedure, the

proposed procedure is referred to as sure joint screening (SJS) procedure.

Proof of Theorem 1. Applying the Taylor expansion to `p(γ) at γ = β, it

follows that

`p(γ) = `p(β) + `′p(β)(γ − β) +
1

2
(γ − β)T `′′p(β̃)(γ − β),

where β̃ lies between γ and β.

(γ−β)T{−`′′p(β̃)}(γ−β) ≤ (γ−β)TW (β)(γ−β)λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)]

Thus, if u > λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)] ≥ 0 since −`′′p(β) is non-negative

definite, then

`p(γ) ≥ `p(β) + `′p(β)(γ − β)− u

2
(γ − β)TW (β)(γ − β)

Thus it follows that `p(γ) ≥ g(γ|β) and `p(β) = g(β|β) by definition of g(γ,β).

Hence, under the conditions of Theorem 1, it follows that

`p(β
(t+1)
∗ ) ≥ g(β(t+1)

∗ |β(t)) ≥ g(β(t)|β(t)) = `(β(t)).

The second inequality is due to the fact that ‖β(t+1)
∗ ‖0 = ‖β(t)‖0 = m, and β

(t+1)
∗ =

arg maxγ g(γ|β(t)) subject to ‖γ‖0 ≤ m. By definition of β(t+1), `p(β
(t+1)) ≥

`p(β
(t+1)
∗ ) and ‖β(t+1)‖0 = m. This proves Theorem 1.



35

3.2 Monte Carlo Simulations

In this section, we evaluate the finite sample performance of the proposed feature

screening procedure via Monte Carlo simulations. All simulations were conducted

by using R codes.

The main purpose of our simulation studies is to compare the performance of

the SJS with the SIS procedure for the Cox model (Cox-SIS) proposed by Fan,

Feng and Wu (2010) and further studied by Zhao and Li (2012). To make a

fair comparison, we set the model size of Cox-SIS to be the same as that of our

new procedure. In our simulation, the predictor variable x is generated from a p-

dimensional normal distribution with mean zero and covariance matrix Σ = (σij).

Two commonly-used covariance structures are considered.

(S1) Σ is compound symmetric. That is, σij = ρ for i 6= j and equal 1 for i = j.

We take ρ = 0.25, 0.50 and 0.75.

(S2) Σ has autoregressive structure. That is, σij = ρ|i−j|. We also consider

ρ = 0.25, 0.5 and 0.75.

We generate the censoring time from an exponential distribution with mean

10, and the survival time from the Cox model with h0(t) = 10 and two sets of βs

listed below:

(b1) β1 = β2 = β3 = 5, β4 = −15ρ, and other βjs equal 0.

(b2) βj = (−1)U(a + |Vj|) for j = 1, 2, 3 and 4, where a = 4logn/
√
n, U ∼

Bernoulli(0.4) and Vj ∼ N (0, 1).

Under the setting (S1) and (b1), X4 is jointly dependent but marginally in-

dependent of the survival time for all ρ 6= 0. Thus, this setting is designed to
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challenge the marginal SIS procedures. The coefficients in (b2) was used in Fan

and Lv (2008), and here we adopt it for survival data.

In our simulation, we consider the sample size n = 100 and 200, and the

dimension p=1000 and 2000. For each combination, we conduct 1000 replicates

of Monte Carlo simulation. We compare the performance of feature screening

procedures using the following two criteria:

1. Ps: the proportion that an individual active predictor is selected for a given

model size m in the 1000 replications.

2. Pa: the proportion that all active predictors are selected for a given model

size m in the 1000 replications.

The sure screening property ensures that Ps and Pa are both close to one when the

estimated model size m is sufficiently large. We choose m = [n/logn] throughout

our simulations, where [a] denotes the integer that a is rounded to.

It is expected that the performance of SJS depends on the following factors: the

structure of the covariance matrix, the values of β, the dimension of all candidate

features and the sample size n. In survival data analysis, the performance of a

statistical procedure depends on the censoring rate. Table 3.1 depicts the censoring

rates for the 12 combinations of covariance structure, the values of ρ and values of

β. It can be seen from Table 3.1 that the censoring rate ranges from 13% to 35%,

which lies in a reasonable range to carry out simulation studies.

Table 3.2 reports Ps for the active predictors and Pa when the covariance matrix

of x is the compound symmetric (i.e., S1) with sample size equal to 100. Note

that under the design of (S1) with (b1), X4 is jointly dependent but marginally

independent of the survival time for all ρ 6= 0. This setting is designed to challenge

all screening procedures, in particularly the marginal screening procedures. As
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Table 3.1. Censoring Rates

ρ = 0.25 ρ = 0.50 ρ = 0.75

Σ β in (b1) β in (b2) β in (b1) β in (b2) β in (b1) β in (b2)

S1 0.329 0.163 0.317 0.148 0.293 0.239

S2 0.323 0.181 0.353 0.135 0.342 0.227

Table 3.2. The proportions of Ps and Pa with Σ = (1− ρ)I + ρ11T (n=100)

Cox-SIS SJS

Ps Pa Ps Pa

p ρ β X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL

1000 0.25 b1 0.995 0.993 0.997 0 0 1 1 1 1 1

b2 0.892 0.885 0.882 0.882 0.603 1 1 1 1 1

1000 0.5 b1 0.967 0.972 0.966 0 0 0.987 0.989 0.992 1 0.986

b2 0.813 0.792 0.795 0.814 0.384 0.998 0.997 0.998 0.998 0.992

1000 0.75 b1 0.854 0.868 0.860 0.007 0.006 0.996 0.993 0.991 0.987 0.976

b2 0.699 0.717 0.684 0.713 0.201 0.967 0.968 0.957 0.966 0.891

2000 0.25 b1 0.993 0.992 0.988 0 0 0.999 1 0.999 1 0.998

b2 0.837 0.848 0.842 0.827 0.469 0.998 0.999 1.000 0.998 0.997

2000 0.5 b1 0.942 0.95 0.946 0 0 0.973 0.975 0.977 1 0.966

b2 0.730 0.729 0.718 0.727 0.259 0.989 0.986 0.984 0.984 0.962

2000 0.75 b1 0.801 0.774 0.782 0.006 0.002 0.979 0.980 0.975 0.982 0.952

b2 0.610 0.613 0.609 0.621 0.117 0.926 0.911 0.906 0.916 0.760

shown in Table 3.2, Cox-SIS fails to identify X4 as an active predictor completely

when β is set to be the one in (b1). This is expected. The newly proposed

SJS procedure, on the other hand, includes X4 with nearly every simulation. In

addition, SJS has the value of Pa very close to one for every case when β is set
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Table 3.3. The proportions of Ps and Pa with Σ = (1− ρ)I + ρ11T (n=200)

Cox-SIS SJS

Ps Pa Ps Pa

p ρ β X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL

1000 0.25 b1 1 1 1 0 0 1 1 1 1 1

b2 0.983 0.982 0.989 0.988 0.942 1 1 1 1 1

1000 0.5 b1 1 1 1 0 0 1 1 1 1 1

b2 0.961 0.974 0.965 0.964 0.871 1 1 1 1 1

1000 0.75 b1 0.996 0.997 0.993 0 0 1 1 1 1 1

b2 0.916 0.944 0.919 0.925 0.721 1 1 0.999 1 0.999

2000 0.25 b1 1 1 1 0 0 1 1 1 1 1

b2 0.972 0.974 0.979 0.973 0.903 1 1 1 1 1

2000 0.5 b1 1 1 0.999 0 0 1 1 1 1 1

b2 0.940 0.943 0.938 0.942 0.779 1 1 1 1 1

2000 0.75 b1 0.993 0.996 0.988 0 0 1 1 1 0.998 0.998

b2 0.886 0.891 0.873 0.877 0.591 0.999 1 0.999 0.999 0.997

to be the one in (b1). There is no doubt that SJS outperforms Cox-SIS easily in

this setting. Increasing our sample size from 100 to 200 as shown in Table 3.3, we

have similar results to Table 3.2 with even better screening performance due to

the larger sample size.

We next discuss the performance of the Cox-SIS and the SJS when the covari-

ance matrix of x is compound symmetric and β is set to be the one in (b2). In this

setting, there is no predictor that is marginally independent of, but jointly depen-

dent with the response. Tables 3.2 and 3.3 clearly show that how the performance

of Cox-SIS and SJS is affected by the sample size, the dimension of predictors and

the value of ρ. Overall, the SJS outperforms the Cox-SIS in all cases in terms of
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Ps and Pa. The improvement of SJS over Cox-SIS is quite significant when the

sample size is small (i.e., n = 100) or when ρ = 0.75. The performance of SJS

becomes better as the sample size increases. This is consistent with our theoretical

analysis since the SJS has the sure screening property.

Tables 3.2 and 3.3 also indicate that the performance of Cox-SIS is better as the

sample size increases, the feature dimension decreases or the value of ρ decreases.

However, these factors have less impacts on the performance of SJS. For every

case listed in Tables 3.2 and 3.3, SJS outperforms Cox-SIS no matter whether

there presents marginally independent but jointly dependent predictors or not.

Table 3.4. The proportions of Ps and Pa with Σ = (ρ|i−j|) (n=100)

Cox-SIS SJS

Ps Pa Ps Pa

p ρ β X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL

1000 0.25 b1 0.999 1 1 0.32 0.32 1 1 1 1 1

b2 0.995 1 1 0.994 0.989 1 1 1 1 1

1000 0.5 b1 1.000 1 0.971 0.575 0.546 0.999 1 0.994 1.000 0.994

b2 0.999 1 1 1 0.999 1 1 1 1 1

1000 0.75 b1 1.000 1.000 0.643 0.423 0.140 0.998 0.992 0.885 0.990 0.879

b2 1 1 1 1 1 1 1 1 1 1

2000 0.25 b1 1 1 0.998 0.217 0.216 1 1 1 0.999 0.999

b2 0.985 1 0.999 0.986 0.970 1 1 1 1 1

2000 0.5 b1 1 1 0.939 0.436 0.382 1 0.996 0.981 0.996 0.979

b2 0.999 1 1 1 0.999 1 1 1 1 1

2000 0.75 b1 1 1 0.579 0.344 0.074 0.984 0.965 0.751 0.952 0.733

b2 1 1 1 1 1 1 1 1 1 1

Tables 3.4 and 3.5 depict the simulation results for the AR covariance structure

(S2) with sample size equal to 100 or 200. It is worth to note that with the AR
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Table 3.5. The proportions of Ps and Pa with Σ = (ρ|i−j|) (n=200)

Cox-SIS SJS

Ps Pa Ps Pa

p ρ β X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL

1000 0.25 b1 1 1 1 0.699 0.699 1 1 1 1 1

b2 1 1 1 1 1 1 1 1 1 1

1000 0.5 b1 1 1 1 0.929 0.929 1 1 1 1 1

b2 1 1 1 1 1 1 1 1 1 1

1000 0.75 b1 1 1 0.953 0.849 0.802 1 1 1 1 1

b2 1 1 1 1 1 1 1 1 1 1

2000 0.25 b1 1 1 1 0.595 0.595 1 1 1 1 1

b2 0.999 1 1 1 0.999 1 1 1 1 1

2000 0.5 b1 1 1 1 0.871 0.871 1 1 1 1 1

b2 1 1 1 1 1 1 1 1 1 1

2000 0.75 b1 1 1 0.92 0.773 0.693 1 1 1 1 1

b2 1 1 1 1 1 1 1 1 1 1

covariance structure and β being set to the one in (b1) or (b2), none of the active

predictors X1, · · · , X4 is marginally independent of the survival time. Thus, it

is expected that the Cox-SIS works well for both cases (b1) and (b2). Table 3.4

indicates that both Cox-SIS and SJS perform very well when β is set to be the

one in (b2). On the other hand, the Cox-SIS has very low Pa when n = 100 and

β is set to be the one in (b1), while Pa becomes much higher when the sample

size increases from 100 to 200 as shown in Table 3.5. In summary, SJS outperform

Cox-SIS in all cases considered in Table 3.4 and Table 3.5, in particular, when β

is set to be the one in (b1).
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We next compare SJS with the iterative Cox-SIS. Table 3.2 and Table 3.3

indicate that Cox-SIS fails to identify the active predictor X4 under the compound

symmetric covariance (S1) when β is set to be the one in (b1) because this setting

leads X4 to be jointly dependent but marginally independent of the survival time.

Fan, Feng and Wu (2010) proposed iterative SIS for Cox model (abbreviated as

Cox-ISIS). Thus, it is of interest to compare the newly proposed procedure with the

Cox-ISIS. To this end, we conduct simulation under the settings with S1, b1 and

n = 100. In this simulation study, we also investigate the impact of signal strength

to the performance of the proposed procedure by considering β1 = β2 = β3 = 5τ ,

β4 = −15τρ, and other βjs equal 0. We take τ = 1, 0.75, 0.5 and 0.25. To

make a fair comparison, the Cox-ISIS is implemented by iterating Cox-SIS twice

(each with the size m/2) so that the number of the included predictors equals

m = [n/log(n)] = 22 for both Cox-SIS and the SJS.

The simulation results are summarized in Tables 3.6 and 3.7. In addition to

the two criteria Ps and Pa, we report the computing time consumed by both

procedures due to their iterative essence. Tables 3.6 and 3.7 indicates that when

ρ = 0.25 is small, both Cox-ISIS and SJS work quite well while SJS takes less time

than ISIS. When ρ = 0.5 and 0.75, SJS can significantly outperform Cox-ISIS in

terms of Ps and Pa. SJS has less computing time than Cox-ISIS when p = 1000,

and is comparable in computing time to Cox-ISIS when p = 2000.

Tables 3.6 and 3.7 with τ = 1 together with Tables 3.2 and 3.3 indicate that

Cox-ISIS outperforms Cox-SIS in the presence of predictors that are marginally

independent of, but jointly dependent of the survival time, although SJS still

outperforms Cox-ISIS. An important question is: does Cox-ISIS always perform

better than Cox-SIS?

To address this question, we conduct simulations to directly compare the per-
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Table 3.6. Comparison with Cox-ISIS (p=1000)

Cox-ISIS SJS

Ps Pa Time Ps Pa Time

τ ρ X1 X2 X3 X4 ALL (second) X1 X2 X3 X4 ALL (second)

1 0.25 1 1 1 0.999 0.999 13.13 1 1 1 1 1 3.91

0.5 0.931 0.935 0.945 1 0.824 13.18 0.990 0.986 0.992 1 0.986 4.40

0.75 0.775 0.782 0.739 1 0.425 11.77 0.998 0.996 0.998 0.991 0.987 4.37

0.75 0.25 1 0.999 0.999 0.999 0.997 7.69 1 1 1 1 1 2.30

0.5 0.934 0.937 0.933 1 0.812 10.58 0.993 0.996 0.993 1 0.991 3.65

0.75 0.777 0.782 0.769 1.000 0.439 7.72 0.993 0.990 0.994 0.984 0.976 2.76

0.50 0.25 0.998 0.999 0.999 0.999 0.995 14.65 1 1 1 1 1 4.48

0.5 0.922 0.931 0.942 1 0.805 13.95 0.986 0.989 0.994 1 0.986 5.19

0.75 0.761 0.744 0.760 1 0.402 14.44 0.978 0.983 0.975 0.98 0.943 5.28

0.25 0.25 0.988 0.992 0.988 0.994 0.965 11.17 0.996 0.995 0.992 0.985 0.969 2.99

0.5 0.869 0.884 0.873 1 0.65 7.62 0.933 0.925 0.940 0.999 0.902 2.68

0.75 0.647 0.637 0.643 1 0.245 7.59 0.776 0.758 0.755 0.947 0.479 2.43

Table 3.7. Comparison with Cox-ISIS (p=2000)

Cox-ISIS SJS

Ps Pa Time Ps Pa Time

τ ρ X1 X2 X3 X4 ALL (second) X1 X2 X3 X4 ALL (second)

1 0.25 1 0.998 1.000 0.998 0.996 13.64 1 0.998 0.999 0.999 0.997 10.94

0.5 0.893 0.895 0.912 1 0.714 13.52 0.979 0.980 0.983 1 0.975 12.86

0.75 0.720 0.675 0.70 1 0.315 13.39 0.971 0.969 0.97 0.991 0.952 13.96

0.75 0.25 0.999 0.999 1 0.997 0.995 13.90 1 0.999 0.999 1 0.998 11.56

0.5 0.884 0.888 0.897 1 0.689 14.05 0.961 0.950 0.958 1 0.942 13.66

0.75 0.681 0.720 0.686 1 0.319 13.75 0.973 0.969 0.966 0.989 0.945 14.41

0.50 .25 1 0.997 0.997 0.997 0.992 13.97 1 1 0.999 0.999 0.998 11.31

0.5 0.903 0.909 0.884 1 0.718 13.84 0.961 0.966 0.963 0.999 0.947 14.41

0.75 0.689 0.682 0.692 1 0.307 13.49 0.941 0.948 0.954 0.973 0.879 13.71

0.25 0.25 0.973 0.971 0.972 0.986 0.91 13.83 0.979 0.983 0.983 0.963 0.92 9.79

0.5 0.818 0.831 0.843 1 0.555 13.74 0.857 0.849 0.855 0.996 0.779 13.03

0.75 0.548 0.516 0.535 1 0.128 13.64 0.624 0.634 0.616 0.942 0.303 12.51
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Table 3.8. Comparison among Cox-SIS, Cox-ISIS and SJS (Σ = S1, n=200)

Cox-SIS Cox-ISIS SJS

τ p ρ Pa Time (s) Pa Time (s) Pa Time (s)

1 1000 0.25 0.940 4.43 1 13.94 1 2.59

0.50 0.855 3.72 1 12.34 1 2.29

0.75 0.742 4.47 0.999 15.77 1 2.91

1 2000 0.25 0.915 6.86 1 21.15 1 10.07

0.50 0.779 6.95 1 22.96 1 10.67

0.75 0.613 6.96 0.994 23.98 0.999 11.49

0.5 1000 0.25 0.929 4.99 1 14.67 1 2.71

0.50 0.796 4.99 0.996 14.78 1 2.90

0.75 0.660 5.90 0.856 17.38 0.928 3.91

0.5 2000 0.25 0.879 7.08 0.999 20.43 1 9.35

0.50 0.725 7.07 0.989 20.55 0.996 9.97

0.75 0.546 6.94 0.706 21.13 0.851 11.17

formance of Cox-SIS, Cox-ISIS and SJS, with the setting of βj = τ(−1)U(a+ |Vj|)

for j = 1, 2, 3 and 4, where a = 4logn/
√
n, U ∼ Bernoulli(0.4) and Vj ∼ N (0, 1)

with τ = 1 and 0.5. To save space, Table 3.8 depicts simulation results for only the

cases of n = 200 with the covariance matrix set to be S1, and the case of n = 100

with the covariance matrix set to be S2 are summarized in Table 3.9. The values

of Pa and computing time are reported in Tables 3.8 and 3.9 from which, it can be

seen that Cox-ISIS outperforms Cox-SIS in terms of Pa in all scenarios included

this table. While Cox-SIS needs less computing time than Cox-ISIS. Tables 3.8

and 3.9 also indicate that SJS outperforms both Cox-SIS and Cox-ISIS in terms
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Table 3.9. Comparison among Cox-SIS, Cox-ISIS and SJS (Σ = S2, n=100)

Cox-SIS Cox-ISIS SJS

τ p ρ Pa Time (s) Pa Time (s) Pa Time (s)

1 1000 0.25 0.981 3.48 1 8.49 1 2.06

0.50 1 3.73 1 9.32 1 2.08

0.75 1 3.47 1 9.17 0.999 1.81

1 2000 0.25 0.961 5.75 1 13.64 1 9.47

0.50 1 5.86 1 14.50 1 9.05

0.75 1 5.85 1 14.94 1 8.80

0.5 1000 0.25 0.974 3.75 1 8.79 1 2.28

0.50 1 3.16 1 7.37 0.999 1.87

0.75 1 3.14 1 7.32 0.989 1.82

0.5 2000 0.25 0.945 5.76 1 13.33 0.999 9.65

0.50 0.998 5.92 1 13.76 0.999 9.75

0.75 1 5.88 1 13.68 0.982 9.56

of Pa. Furthermore, SJS needs less computing time than Cox-ISIS for all cases,

and needs less computing times than Cox-SIS when p = 1000, but needs more

computing time than Cox-SIS when p = 2000.

3.3 An Application: DLBCL Data Study

As an illustration, we apply the proposed feature screening procedure for an empir-

ical analysis of microarray diffuse large-B-cell lymphoma (DLBCL) data (Rosen-

wald et al., 2002). Given that DLBCL is the most common type of lymphoma
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in adults and has a survival rate of only about 35 to 40 percent after the stan-

dard chemotherapy, there has been continuous interest to understand the genetic

markers that may have impacts on the survival outcome.

This data set consists of the survival time of n = 240 DLBCL patients after

chemotherapy, and p = 7399 cDNA microarray expressions of each individual pa-

tient as predictors. Given such a large number of predictors and the small sample

size, feature screening seems to be a necessary initial step as a prelude to so-

phisticated statistical modeling procedure that cannot deal with high dimensional

survival data. All predictors are standardized so that they have mean zero and

variance one.

There are five patients with survival time being close to 0. After removing them

from our analysis, our empirical analysis in this example is based on the sample of

235 patients. As a simple comparison, Cox-SIS, Cox-ISIS, and SJS are all applied

to this data and obtain the reduced model with [235/ log(235)] = 43 genes. The

IDs of genes selected by the three screening procedures are listed in Table 3.10. The

maximum of partial likelihood function of three corresponding models obtained by

SJS, Cox-ISIS and Cox-SIS procedures are −556.9332, −561.0333, and −600.0885,

respectively. This implies that both SJS and Cox-ISIS performs much better than

Cox-SIS with SJS performing the best.

We first apply penalized partial likelihood with the L1 penalty (Tibshirani,

1997) and with the SCAD penalty (Fan and Li, 2002) for the models obtained

from the screening stage. We refer to these two variable selection procedures as

Lasso and SCAD for simplicity. The tuning parameter in the SCAD and the Lasso

was selected by the BIC tuning parameter selector, a direct extension of Wang, Li

and Tsai (2007). The IDs of genes selected by the SCAD and the Lasso are listed in

Table 3.11. The likelihood, the degree of freedom (df), the BIC score and the AIC
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Table 3.10. Fourty-three gene IDs selected by Cox-SJS, Cox-ISIS and Cox-SIS

SJS Cox-ISIS Cox-SIS

Gene 66 3813 5476 427 2108 4548 1072 1841 5027

IDs 773 3819 5668 655 2109 4721 1188 2437 5054

1112 3820 5953 1188 2244 4723 1439 2579 5055

1662 3824 6125 1456 2246 5034 1456 2672 5297

1664 3825 6598 1579 2361 5055 1660 3799 5301

1680 3826 6607 1662 2579 5301 1662 3810 5614

1681 4317 6860 1671 3799 5614 1663 3811 5950

1753 4531 7175 1681 3811 5649 1664 3812 5953

1825 4573 7301 1682 3813 5950 1671 3813 6365

3361 4574 7302 1825 3822 6956 1672 3820 6519

3362 5025 7307 1878 3824 7098 1678 3821 7096

3497 5172 7343 1996 3825 7343 1680 3822 7343

3595 5214 7357 2064 4131 7357 1681 3824 7357

3799 5297 2106 4317 1682 3825

3810 5362 2107 4448 1825 4131

score of the resulting models are listed in Table 3.12, from which SJS-SCAD results

in the best fit model in terms of the AIC and BIC. The partial likelihood ratio test

for comparing the model selected by SJS-SCAD and SJS without SCAD is 20.6646

with df=21. This leads to the P-value of this partial likelihood ratio test to be

0.480. This implies the model selected by SJS-SCAD is in favor, compared with the

one obtained in the screening stage. The resulting estimates and standard errors

of the model selected by SJS-SCAD are depicted in Table 3.13, which indicates
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Table 3.11. IDs of selected genes by SCAD and Lasso

Gene IDs

SJS-SCAD
1112 1664 1680 1681 1825 3497 3810 3813 3819 3820 3825

3826 4317 4531 4574 5668 5953 6498 6607 7175 7307 7357

SJS-Lasso

66 773 1112 1662 1664 1681 1825 3362 3497 3595 3813

3820 3825 4317 4531 4573 4574 5172 5362 5476 5668 5953

6125 6498 6607 6860 7175 7302 7307 7343 7357

ISIS-SCAD

1188 1456 1662 1681 1682 1825 1878 1996 2108 3799 3822

3824 3825 4317 4448 4548 4723 5043 5055 5301 5649 5950

6956 7098 7343 7357

ISIS-Lasso

427 655 1188 1456 1579 1662 1671 1681 1825 1878 1996

2106 2107 2108 2579 3813 3822 3825 4131 4317 4448 4548

4723 5034 5055 5301 5614 5649 5950 6956 7098 7343 7357

SIS-SCAD 1671 1672 1825 3799 3810 3822 3824 7069 7357

SIS-Lasso
1188 1456 1664 1671 1825 2437 3821 4131 5027 5297 6519

7069 7343 7357

Table 3.12. Likelihood, df, AIC and BIC of Resulting Models.

Likelihood df BIC AIC

SJS-SCAD -567.2655 22 1254.642 1178.531

SJS-Lasso -565.1238 31 1299.495 1192.248

ISIS-SCAD -572.1241 26 1286.197 1196.248

ISIS-Lasso -565.0359 33 1310.238 1196.072

SIS-SCAD -622.5386 9 1294.213 1263.077

SIS-Lasso -610.6605 14 1297.755 1249.321
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Table 3.13. Estimates and standard errors (SE) based on SJS-SCAD

Gene ID Estimate(SE) P-value

1112 -0.3339(0.1024) 5.54e-04

1664 0.55814(0.1339) 1.53e-05

1680 -0.3597(0.3762) 0.1695

1681 0.5299(0.3893) 0.0867

1825 0.8251(0.1149) 3.49e-13

3497 0.3283(0.1001) 5.21e-04

3810 0.8080(0.3606) 0.0125

3813 -0.9893(0.3639) 3.28e-03

3819 0.4356(0.2469) 0.0389

3820 -0.9841(0.3493) 2.42e-03

3825 -0.4024(0.2850) 7.90e-02

3826 0.6696(0.3519) 0.0285

4317 0.5435(0.1151) 1.16e-06

4531 -0.1489(0.0545) 3.14e-03

4574 0.3054(0.0968) 8.09e-04

5668 -0.6550(0.1321) 3.57e-07

5953 0.4244(0.1185) 1.72e-04

6498 0.0582(0.0237) 7.11e-03

6607 0.5278(0.1067) 3.82e-07

7175 -0.0796(0.0274) 1.82e-03

7307 -0.4131(0.1246) 4.60e-04

7357 -0.4718(0.1022) 1.97e-06
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that most selected genes have significant impact on the survival time. We further

compare Tables 3.10 and 3.13, and find that Gene 4317 was selected by both SJS

and Cox-ISIS, but not by Cox-SIS. From Tables 3.11, this gene is also included in

models selected by SJS-SCAD, SJS-Lasso, Cox-ISIS-SCAD and Cox-ISIS-Lasso.

This motivates further investigation of this variable.

Table 3.14 presents likelihoods and AIC/BIC scores for models with and with-

out Gene 4317. The P-values of the likelihood ratio tests indicate that Gene 4317

should be included in the models. This clearly indicates that Cox-SIS fails to

identify this significant gene.

Table 3.14. Likelihood, AIC and BIC of Models with and without Gene 4317.

SJS SJS-SCAD SJS-Lasso ISIS ISIS-SCAD ISIS-Lasso

LKHD with Gene4317 -556.9332 -567.2655 -565.1238 -561.0333 -572.1241 -565.0359

LKHD w/o Gene4317 -569.451 -575.6539 -576.577 -567.9259 -576.527 -571.4108

df 1 1 1 1 1 1

BIC w/o Gene4317 1368.205 1265.959 1316.942 1365.154 1289.544 1317.528

AIC w/o Gene4317 1222.902 1193.308 1213.154 1219.852 1203.054 1206.822

p-value of LRT 5.63e-07 4.20e-05 1.70e-06 0.0002 0.0030 0.0004

For the DLBCL data, we also conduct LRT to compare the full models obtained

by screening procedures in Table 3.10 and their reduced models based on SCAD

and Lasso in Table 3.11. All p-values there are greater than 0.05, which indicates

that the penalized sub-models work as well as their corresponding full models.

Moreover, the overlapped gene IDs among the fourty-three potential gene IDs

are reported in Table 3.15. The overlapped selected variables based on SJS/ISIS/SIS-

SCAD and SJS/ISIS/SIS-Lasso are given in Tables 3.17 and 3.18.

From Table 3.15, we notice that gene 4317 is included in both SJS and ISIS

models, but not in models based on SIS. And the smallest screening model obtained
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Table 3.15. Overlapped features by three different screening procedures

SJS ∩ ISIS SJS ∩ SIS ISIS∩ SIS SJS∩ISIS∩ SIS

1662 4317 1662 3813 7357 1188 2579 4131 1662 7343

1681 7343 1664 3820 1456 3799 5055 1681 7357

1825 7357 1680 3824 1662 3811 5301 1825

3799 1681 3825 1671 3813 5614 3799

3813 1825 5297 1681 3822 5950 3813

3824 3799 5953 1682 3824 7343 3824

3825 3810 7343 1825 3825 7357 3825

# of genes = 10 15 21 9

by (SJS∩ISIS∩SIS) only misses gene 4317 compared with model (SJS∩ISIS). We

also can conclude that gene 4137 is significant since p-value for the corresponding

likelihood ration test is smaller than 0.05 and the likelihood/BIC/AIC criteria of

model (SJS∩ISIS) are all better than those of model (SJS∩ISIS∩SIS). Table 3.16

lists the results of the likelihood ratio test (LRT) for model (SJS∩ISIS) and model

(SJS∩ISIS∩SIS).

Table 3.16. Likelihood ratio tests for gene 4317

Model (SJS∩ISIS) (SJS∩ISIS∩SIS)

Likelihood -621.0064 -627.0382

BIC 1296.609 1303.213

AIC 1262.013 1272.076

p-value 0.000514 -
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Table 3.17. Overlapped genes obtained from SCAD penalty based on three different

screening procedures

SJS ∩ ISIS SJS ∩ SIS ISIS ∩ SIS SJS ∩ ISIS ∩ SIS

Intersect

1681 4317 1825 1825 3824 1825

1825 7357 3810 3799 7357 7357

3825 7357 3822

Counts of genes 5 3 5 2

Table 3.18. Overlapped genes obtained from LASSO penalty based on three different

screening procedures

Intersect SJS ∩ ISIS SJS ∩ SIS ISIS ∩ SIS SJS ∩ ISIS ∩ SIS

Intersect

1662 3825 1664 1188 4131 1825

1681 4317 1825 1456 7343 7343

1825 7343 7343 1671 7357 7357

3813 7357 7357 1825

Counts of genes 8 4 7 3

Likelihood ratio test (LRT) is also applied to compare the overlapped models

with their corresponding full models. The results of LRT are summarized in Table

3.19. From Table 3.19, we can first conclude that the post-screening model based

on SJS results in largest partial likelihood, and hence is considered the best in terms

of likelihood. Moreover, the p-values for SJS models compared with its overlapped

models nested in SIS and ISIS models are 3.53e-14 and 3.80e-13, which indicates

that the SJS models is significantly different from the overlapped models. In other

words, We should not neglect the effects of the other variables in SJS model besides

the overlapped ones. Similarly, ISIS model is also significantly from its overlapped
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models nested in other procedures. For SIS model, the p-value for SIS/(SIS ∩

SJS) is around 0.09, which considers (SIS ∩ SJS) a reduced but explanatory model

for SIS. In other words, sub-SJS model carries the spirit of SIS model indeed.

However, sub-ISIS model would miss some information from SIS model since the

p-value for SIS/(SIS ∩ ISIS) is around 0.027, smaller than 0.05.

Table 3.19. Likelihood ratio tests for models based on different procedures

SJS Cox-ISIS SIS

Likelihood -556.9332 -561.0333 -600.0885

AIC 1199.866 1208.067 1286.177

BIC 1348.629 1356.829 1434.939

Comparison SJS ∩ SIS SJS ∩ ISIS ISIS ∩SIS ISIS ∩SJS SIS ∩ ISIS SIS ∩ SJS

Likelihood -619.3188 -621.0064 -618.3533 -621.0064 -618.3533 -619.3188

BIC 1320.531 1296.609 1351.358 1296.609 1351.358 1320.531

AIC 1268.638 1262.013 1278.707 1262.013 1278.707 1268.638

p-value 3.53e-14 3.80e-13 1.62e-14 8.39e-12 0.027 0.090



Chapter 4
Conclusion and Future Research

Survival data with ultrahigh dimensional covariates such as genetic markers is of

great interest in medical studies and other fields. In this thesis, we propose a

sure joint screening (SJS) procedure for feature screening in the Cox model with

ultrahigh dimensional covariates.

The proposed SJS is distinguished from the existing Cox-SIS and Cox-ISIS in

that SJS is based on joint likelihood of potential candidate features. We propose

an effective algorithm to carry out the feature screening procedure, and show that

the proposed algorithm possesses ascent property. We study the sampling property

of SJS, and establish the sure screening property for SJS. We conduct Monte Carlo

simulation to evaluate the finite sample performance of SJS and compare it with

Cox-SIS and Cox-ISIS. Our numerical comparison indicates that SJS outperforms

Cox-SIS and Cox-ISIS, and SJS can effectively screen out inactive covariates and

retain truly active covariates. We further illustrate the proposed procedure using

a real data example.

In this thesis, we focus the empirical performance and application of the pro-

posed methods. We examine the finite sample performance of the proposed pro-
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cedure and compare it with existing procedures by Monte Carlo simulations. It is

of great interest to investigate the theoretical property of the proposed procedure.

This can be an excellent topic for future research.
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