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ABSTRACT 

 

Precision agriculture often uses computer-based decision-support systems 

(DSSôs) to disseminate pest and disease information to growers to more efficiently 

manage agricultural productions. In this thesis, a DSS is developed to be accessed by 

growers for management of barley yellow dwarf disease caused by Barley yellow dwarf 

virus. The disease devastates grain growing regions around the world in epidemic 

patterns. It is a well-studied disease, but management can be greatly improved with 

determination of necessity and optimal timing of insecticide-treated seed, planting date, 

pest scouting, and foliar insecticide spray treatments, in chronological order. Using 

published literature and interviews with experts in BYDV epidemiology and agricultural 

decision-making, dependency networks were used to model field conditions that would 

logically warrant these management actions. The networks represented nine possible 

outputs: use insecticide-treated seed, use untreated seed, plant crop immediately, delay 

planting, scout for aphid vectors of BYDV, do not scout, full  foliar insecticide spray, ½ 

(diluted) insecticide spray, and no insecticide spray. There were a total of 243 total 

combinations of conditions to reach the seed treatment recommendations, 9,720 to reach 

the planting date recommendations, 62,208 to reach the scouting recommendations, and 

216 to reach the insecticide spray recommendations. In this work, I consider and strive to 

improve the mechanism for inferring output recommendations even when using only 

partial data sets. 

Inference mechanisms are necessary components of DSSôs to extrapolate outputs 

from input data to give users recommendations. The dependency networks represent 
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inference mechanisms that require all input information be present before a management 

recommendation can be made. This thesis proposes a novel secondary inference 

mechanism structure to be overlaid onto the dependency networks that uses a numerical, 

rather than categorical or ordinal, calculation system to handle partial input information. 

This inference mechanism used the dependency networks as a template to make a 

prototype numerical representation of importance of field conditions in making 

management decisions. Secondly it calculates a likely success of these management 

decisions when executed, and penalizes the grower if  he or she executes an incorrect 

management tactic. The success or penalties are measured in terms of optimum yield. It is 

also proposed that this secondary inference mechanism can allow a BYD management 

decision forecast based on pest and disease statuses, as well as real-time 

recommendations.  

The purpose of the DSS developed in this thesis is to show the applicability of 

implementing DSSôs based on expert knowledge into a platform (iPIPE) that is capable 

of gathering data from users in a two-way feedback loop. Since future management 

decisions rely on previous ones the feedback loop allows management practices 

conducted by the grower to alter future management recommendations given by the 

system. It also enhances large scale (regional) pest monitoring with input of individual 

field data. The DSS reported in this thesis will serve as a basis for the evolution of 

precision management of crop diseases. It will aid in reducing input cost and increasing 

sustainability and cereal grain yield in BYD management and eventually it will serve as 

model to better manage other crop pests and diseases.  
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Chapter 1 

Introduction  

 Decision-support systems (DSS) are becoming important tools in agriculture. 

These systems can be used as an integrated pest management (IPM) strategy that helps 

farmers in planning important crop management decisions to obtain high yield, economic 

gain, and/or sustainability while following regulations. In a DSS statistical models are 

generally used to predict the probability of the outcome of any set of inputs or 

observations. Decision-support systems use these models, in conjunction with heuristic, 

experience-based algorithms to give the farmer direct suggestions on how to farm and 

increase crop yield, economic gain, and sustainability. 

 Technology has advanced enough to allow us to obtain and share information 

instantaneously via the Internet. Many agricultural processes have become automated 

using programs that control machines, such as irrigation systems, without human 

intervention (Auat Cheein & Carelli 2013; Clemmens & Schuurmans 2004). These 

systems are controlled via a feedback loop from monitors detecting environmental 

conditions, which elicit an action, which in turn changes the environment. The same 

process can be modeled with disease management for crop diseases; however, instead of 

only machines and monitors providing information, growers can directly input 

information from their fields. This allows for an accurate estimation of the best control 

strategies for any given location.  
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Barley yellow dwarf (BYD) is a disease caused by Barley yellow dwarf virus 

(BYDV). BYDV has a complex life cycle and is difficult to manage. It is the most 

economically important viral disease of small grains worldwide. Global statistics are 

difficult to estimate due to lack of data and misdiagnosis (Miller and Rasochov¨ 1997); 

however, individual wheat fields in areas prone to viral infection may experience average 

yield losses between 11 and 33% and sometimes up to 80% (Miller and Rasochov¨ 1997, 

Pike 1990). There are several components in the biology of the disease cycle that must be 

realized. BYDV is a virus complex, comprising viruses belonging to different genera. 

These viruses can be transmitted by more than 25 species of aphids worldwide. The 

aphids feed upon, and transmit BYDV to, various grain crops such as wheat, barley, oats, 

rye, and corn, as well as non-crop species. The hosts of BYDV include over 150 species 

of grasses in the family Poaceae (Miller and Rasochov¨ 1997). In Pennsylvania, where 

this thesis work is based, there are four main aphid vectors of BYDV: Rhopalosiphum 

padi (bird cherry-oat aphid), R. maidis (corn leaf aphid), Sitobion avenae (English grain 

aphid), and Schizaphis graminum (greenbug).  

 This chapter provides a brief overview of Barley yellow dwarf virus, the biology 

of its vectors and hosts, and the utility of decision-support engines in managing BYDV 

and, in general, insect-vectored pathogens. This thesis will report on a novel construction 

of a single decision-support system by modeling the logic for managing BYD in winter 

wheat, and using computer databases to accommodate real-time farmer input and 

meteorological data to calculate the most efficient course of action for any given location 

in the world. Wheat is the focal crop due to its importance in agriculture and food 

production and the economic damage from BYD worldwide. 
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Literature Review 

Taxonomy 

 The vectors of BYDV are commonly known as aphids. Aphids are insects (Class 

Insecta) in the order Hemiptera, family Aphididae. This family is very diverse, having 

500 genera and over 4,400 species, approximately 250 of which are important crop pests, 

mainly due to their ability to vector pathogens as they feed on plant phloem. The four 

main vectors of BYDV belong to the following genera and species: Rhopalosiphum padi, 

R. maidis, Sitobion avenae, and Schizaphis graminum. 

 There are five viruses in the United States that cause the disease known as barley 

yellow dwarf. These are Barley yellow dwarf virus (BYDV-PAV, BYDV-MAV, BYDV-

RMV, BYDV-SGV), and Cereal Yellow dwarf virus (CYDV-RPV). The transmission 

efficiency of each virus type depends, in part, on the vector species (Rochow 1969; 

Johnson and Rochow 1972). BYDVôs belong to the family Luteoviridae; their nucleic 

acids are made of a single linear molecule of positive-sense, single stranded RNA ranging 

from 5.7 to 6.0 kb in size (Miller et al. 2002; Smith and Barker 1999; Miller and 

Rasochov¨ 1997).  The viruses BYDV-PAV and BYDV-MAV belong to the genus 

Luteovirus, in 1999 the BYDV-RPV species was reclassified as Polerovirus and 

commmonly named Cereal yellow dwarf virus (CYDV) (Smith and Barker 1999). 

BYDV-RMV and BYDV-SGV have yet to be officially assigned to genera (Wu et al. 

2011), so for simplicity they will be referred to as BYDVôs. BYDV-PAV is transmitted 

most efficiently by Rhopalosiphum padi and Sitobion avenae, BYDV-MAV specifically 

by Sitobion avenae, BYDV-RPV specifically by R. padi, BYDV-RMV by R. maidis, and 

BYDV-SGV most efficiently, but not specifically, by Schizaphis graminum (Rochow 
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1969; Johnson and Rochow 1972). 

 BYDV can infect a wide range of grasses in the family Poaceae (formerly 

Gramineae). The host species that will be focused on primarily in this thesis will be 

Triticum aestivum (winter wheat). 

History of BYD 

 BYD first became a problem in the United States in 1890. The disease reached 

epidemic proportions and was widespread throughout the south and Midwest that year 

(Webster and Phillips 1912). The ñgreenbugò vector, now known as Schizaphis 

graminum, is thought to have been introduced to the United States from England in 1882 

(Webster and Phillips 1912). Another epidemic occurred in 1907 and T.F. Manns of Ohio 

published the first report of the disease. The disease was thought to affect oats alone, but 

was later realized to be more of a generalist. Manns believed the disease was caused by a 

bacterium and transmitted by ñplant lice,ò which later came to be known as aphids. 

Although he was correct in assuming transmission by the aphids, the claim of the disease 

caused by a bacterium was incorrect. In 1951, another epidemic year, the disease spread 

to barley crops in California. During this outbreak Oswald and Houston were first to 

describe the causal agent of the disease as a virus transmitted by multiple aphid vectors. It 

is likely that the virus that caused this outbreak was BYDV-PAV (Gray and Gildow 

2003).  

 The evolution of BYD came from a close association between the virus, aphid 

vector and host (Martin et al. 1990). Luteoviruses, are unique in that they are limited to 
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plant phloem, their interactions with aphid vectors, and limitation to specific families of 

plants (Martin et al. 1990). It is likely that Luteoviruses evolved due to recombination 

with other plant viruses, probably sharing a common ancestry with Carnation mottle 

virus or Southern bean mosaic virus (Martin et al. 1990). 

Economic Impacts 

BYDV is the most economically important cereal grain virus in the world (Lister 

& Ranieri 1995). BYD annually causes between 11 and 33% global yield loss in wheat 

(Lister & Ranieri 1995). This range is so large because BYDV symptoms are easily 

misdiagnosed by an untrained eye as nutrient deficiencies or physical stress (Comeau 

1990). There have been reports of up to 80% yield loss in infected fields (Pike 1990). In 

2012 the Food and Agriculture Organization of the United Nations, statistics division 

(FAOSTAT) estimated a global production of wheat at 671,496,872 metric tonnes. 

Assuming a conservative global BYD yield loss at 11%, a yield loss of approximately 83 

million metric tonnes can be attributed to the disease. 

Aphid Vector Biology 

 Aphids are insects of the order Hemiptera, which can be distinguished by mouth 

parts specialized for piercing and sucking. Aphids use these straw-like mouth parts to 

feed on the phloem of plants. Certain aphids, such as R. padi, S. avenae, and R. maidis 

specialize in feeding on grains and grasses of the family Poaceae. These aphids normally 

reproduce via parthenogenesis, generally a single female founds an entire colony. 
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However they can be holocyclic (sexual) or anholocyclic (parthenogenetic). Studies 

conducted in the United Kingdom show a strong occurrence of an anholocyclic 

overwintering stage for R. padi and S. avenae, although they can occasionally be found to 

be holocyclic (Pons et al. 1995; Zhou et al. 1995; Hand 1989). Rhopalosiphum maidis 

shows anholocyclic overwintering stages as well, but has also been found to be 

completely holocyclic (Huggett et al. 1999). The United States has a relatively similar 

climate to the UK, so anholocyclic overwintering of these aphids are likely to occur in the 

US as well, depending on the severity of the winter. Preliminary data from suction traps 

also shows male alatae to be quite rare in the Midwest United States (Suction trap data 

from Doris Lagos at the University of Illinois at Urbana-Champaign), suggesting that 

most colonies are founded by a single female aphid making all the individuals in a colony 

clones until a male occurs allowing sexual reproduction.  

 As most insects, aphids are ectothermic poikilotherms; thus, they rely entirely 

upon ambient temperature for internal heat. Due to this, aphids are unable to develop and 

mature when temperatures fall below a certain threshold. The base developmental 

threshold of many aphid species, below which no development occurs, is 5ÁC (Turl 

1980). The base developmental threshold of R. padi has been more specifically found to 

be 5.8ÁC with the upper threshold, above which the rate of development does not 

increase, is 25.1ÁC (Elliot and Kieckhefer 1989). Within the upper and lower threshold 

limits degree days can be calculated to predict development and migration of insects. 

The phenologies of aphid vectors are cyclic and may have one or more migratory 

phases. Aphid migrations are preceded by the production of alatae that, under the right 

conditions, will take flight and migrate to new locations. Migratory patterns are a species-
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specific trait that has been studied extensively. R. padi and R. maidis have two distinct 

migratory periods in most temperate climates (such as the United States and Northern 

Italy), one in late spring and another in autumn. S. avenae has a single migratory peak in 

late spring, but only a very small migration in autumn (Coceano et al. 2009). 

Temperature and rainfall/moisture are significant factors in predicting onset of BYDV 

aphid vector migrations (Thackray et al. 2009; Kendall et al. 1992; Fabre et al. 2006). 

Alate aphids also require a minimum temperature before internal body temperature is 

high enough to allow flight muscles to function. The threshold at which R. padi and S. 

avenae take flight on 50% of the days at a given temperature are days with a daily 

maximum temperature of 15.5°C and 16°C, respectively (Walters and Dixon 1984). 

These temperatures did vary, however, based on other variables such as substrate and 

wind speed, so it is difficult to interpret these results in the context of the single 

temperature variable. Dry and Taylor conducted lab experiments in 1970 on temperature 

thresholds for different aphid species flight. They found that the temperature threshold 

for R. maidis flight was different based on the substrate. Alatae had higher thresholds 

when on host plants, but lower thresholds when on glass. Since these studies were not 

conducted under field conditions, and much variability is observed in flight temperature 

threshold, it cannot be assumed that temperature would be a constraint in flight take-off 

in field conditions. Preliminary data from Piero Caciagli (Appendix C) indicates there 

may be more of an influence in average temperature fluctuation on alate flight rather than 

a specific temperature threshold. Concerning the fall migration of these aphids in August, 

September, and October overnight temperatures will be much lower than the maximums, 

so it is likely that migration flight occurs during specific parts of the day similar to other 
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aphid species (Lewis and Taylor 1965). Wind speed also affects the take-off of aphid 

alatae. Aphids are poor fliers and have difficulty flying in strong winds, so when strong 

winds are present flight take-off is often delayed. Time to take-off is positively correlated 

with wind speed, thus, the greater the wind speed the longer individual aphids will delay 

flight (Walters and Dixon 1984). Preliminary data from Piero Caciagli also shows a 

strong negative correlation between wind speed and aphid flight (Appendix C). 

Winter Wheat Biology 

 Wheat production strategies vary due to climate and management goals of the 

farmer. Winter wheat is used for animal feed and for flour, which is used in most bread 

and baked goods. Winter wheat differs from spring wheat in that, as the name implies, it 

is planted in autumn and develops throughout the winter and early spring. Normal 

planting dates of winter wheat vary based on regional climate. Typical dates of planting 

generally range from September through October. For example, the United States 

Department of Agriculture (USDA) suggests winter wheat planting in Pennsylvania 

occurs between 15 September and 15 October (USDA 2010). Harvest dates usually range 

from late May through July; the USDA suggests 10-30 July in Pennsylvania (USDA 

2010). 

Virus-Host Interaction 

 Barley yellow dwarf virus, like most plant viruses, is named for the symptoms it 

causes in its hosts. Infected plants exhibit symptoms of stunted growth and discoloration 
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due to chlorosis of the leaves. Severe infections of BYDV in wheat can cause up to a 

66% reduction in plant size, decreased heading, and an obvious yellow coloring due to 

chlorosis (Oswald and Houston 1953). Chlorosis in BYDV infected plants is caused by 

an accumulation of soluble carbohydrates and decrease in the nitrogen, calcium, and 

magnesium concentrations in the infected leaf tissues (Goodman et al. 1965; Riedell et al. 

2007). BYDV infection causes approximately a 45% reduction in photosynthesis per 

plant, or a 25% reduction when comparing equal masses of healthy and infected plant 

tissues (Jensen & Van Sambeek 1972). This 25% reduction in photosynthesis is 

accompanied by a 65% reduction in chloroplasts (Jensen & Van Sambeek 1972). The 

plant must increase its chloroplasts' output under these circumstances so it reallocates its 

nutrient concentration to photosynthetic processes and away from growth, which causes 

the stunted nature of infected plants. These symptoms progress the most when 

temperatures hover around 25ÁC and more extreme temperatures inhibit infection and 

symptom development (De Wolfe 2002). 

 Susceptible Poaceae species may become infected with the virus at any time 

throughout their life cycle, but winter wheat is most susceptible and damaged during its 

seedling stages, specifically when inoculated before Growth Stage 31 (GS 31), the 

beginning of stem elongation (Zadoks et al. 1974; Smith and Sward 1982; Oswald and 

Houston 1953). When infected after tillering, during stem elongation, yield losses are 

dramatically decreased (Smith and Sward 1982). 

 Resistance to BYDV does not naturally occur in wheat; however there has been 

some work to isolate a resistance gene found in other wild relatives (Zhang et al. 2009). 

The bdv2 gene isolated from plants in the genus Thinopyrum is the most widely used 
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gene to study resistance (Zhang et al. 2009; Ayala-Navarrete et al. 2013). Other 

resistance genes have been isolated from Thinopyrum as it is widely used in BYDV 

resistance studies (Ma & Tomita 2013).  

Strains of BYDV often differ in the severity of symptoms. Plumb (1974) listed 

BYDV-PAV and BYDV-RPV as ñsevereò and BYDV-MAV as ñmild.ò This makes R. 

padi the most dangerous and destructive of the BYDV aphid vectors.  

Vector-Host Interaction 

 The primary hosts of R. padi, R. maidis, and S. avenae are the bird cherry-oat 

(Prunus padus), maize (Zea mays), and in general grasses, respectively. Rhopalosiphum 

padi, R. maidis, and S. avenae therefore do not feed specifically on Triticum aestivum, 

though it is one of the preferred secondary hosts (Leather and Dixon 1982; Lushai et al. 

1997). Rhopalosiphum maidis, on the other hand, will feed on wheat but generally prefers 

barley (Foott 1977). The most preferred secondary host of R. padi is Lolium perenne, or 

perennial ryegrass, because aphids are highly attracted to this grass species and perform 

well on it (Leather and Dixon 1982). 

 Different aphid species have different fecundities based on many variables. 

Sitobion avenae has a much higher reproductive rate in wheat fields than R. padi or R. 

maidis (Coceano et al. 2009). This observation is especially apparent in seedling wheat 

plants when R. padi and S. avenae colonize the same plant (Chongrajitanameteekul et al. 

1991). On a heading plant, S. avenae prefer the head, whereas R. padi prefer lower parts 

of the plant such as the stalk or leaves (Chongrajitanameteekul et al. 1991; Vereijken 
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1979). Although S. avenae may be a stronger competitor once a field is colonized, R. padi 

and R. maidis have a more competitive migratory phase (Coceano et al. 2009). This is 

apparent in the two major migrations and number of individuals of R. padi and R. maidis 

caught in suction traps compared with the single migration of S. avenae (Coceano et al. 

2009).  

 Direct damage from aphids is actually quite rare in the autumn. Yield losses may 

occur in the spring, generally from S. avenae due to the large spring migration, but only 

under extreme infestation circumstances (Oakley and Walters 1994). However, these 

yield losses cannot be considered direct because most of the damage comes from a fungal 

pathogen in the aphid honeydew (Vereijken 1979). In fact, one of the most devastating 

outcomes of aphid infestation is due to the transmission of BYDV in the autumn. Thus, 

managing the autumn migration of aphids is just as important in preventing yield loss as 

managing spring migration of aphids. 

Vector-Virus Interaction  

BYDV are transmitted in a circulative, persistent, nonpropagative manner (i.e. no 

replication within the vector), by aphids (Miller and Rasochova 1997). The acquisition of 

viral particles by the aphid vector alters the aphidôs behavior to promote the spread of 

virus. It has been shown that aphids viruliferous for BYDV prefer healthy plants, whereas 

non-viruliferous aphids prefer diseased plants (Ingwell et al. 2012). Virions are acquired 

during feeding from infected phloem cells. Once the virions are ingested by the aphid, 

they must pass through the midgut and/or hindgut into the hemocoel. Hindgut epithelium 
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recognition of virus particles is Luteovirus specific, but not serotype specific, as any of 

the serotypes can pass to the hemocoel of any vector, even if the vector is unable to 

transmit that specific serotype (Miller and Rasochova 1997). The virions are then actively 

transported to the salivary glands (Miller and Rasochova 1997). Virions contain structural 

proteins needed for transport through the salivary glands, and these proteins, together 

with unknown host proteins, are responsible for vector specificity (Chay et al. 1996). The 

infected aphid remains viruliferous for the rest of its life, hence persistent transmission. 

Aphids require a minimum acquisition access period for BYDV transmission that ranges 

between 15 minutes and 3 hours (Gray et al. 1991). The acquisition access period and 

transmission efficiency is dependent on virus titer and age of the plant and infection stage 

(Gray et al. 1991).  

BYDVs infect monocot grasses, and not all BYDV aphid vectors feed primarily 

on these grasses (e.g. R. padi). Thus, the virus may only be present in a population after 

migration from the primary host. Proportions of viruliferous migrants in a given 

migration can range from 0% to over 10% (Coceano et al. 2009; Plumb 1976). In Italy, 

average viruliferous migrant percentages are 11.22, 0.71, 7.71, and 1.85 for R. padi, S. 

avenae, R. maidis, and Sc. graminum, respectively (Coceano et al., 2009). As low as these 

percentages may seem, considering a migration may consist of millions of aphids, the 

actual number of viruliferous aphids is quite high. 
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Management of BYD (Technological and Biological) 

Management Techniques 

BYD is a difficult disease to manage. As can be seen in the preceding literature 

review, there exists an array of complex interactions between virus, vector, and host 

making disease epidemics and outbreaks extremely difficult to track. In recent years 

several strategies have been implemented to better manage BYDV vectors, and therefore 

BYD. Some techniques include, but are not limited to, planting insecticide treated seeds, 

a delay of planting, and foliar insecticide sprays.  

Planting insecticide treated seeds is important if the crop is likely to emerge 

during times of high aphid vector migration; generally earlier in the year (Stewart 2013; 

Royer et al. 2005; Gourmet et al. 1996). The seed treatment protects the crop for 

approximately two weeks after emergence (Paulsrud et al. 2001). Since the first few 

weeks after emergence are the plantôs most susceptible ages to infection of BYDV, 

insecticide treated seeds can provide a useful barrier against disease onset. However, it is 

not always a 100% effective management option since the treatment wears off after a few 

weeks, and often needs further management tactics later in the season (Kennedy and 

Connery 2012; Stewart 2013). In addition, treated seeds are more expensive than 

untreated seeds, as using treated seeds generally entails mixing regular seed with costly 

insecticides. In addition, using seeds treated with insecticides for several years can leave 

significant concentrations of insecticide behind in the soil, often disrupting the natural 

soil and aquatic ecosystems (Krupke 2012; Goulson 2013). Insecticide seed treatments 

are often systemic and also have non-target effects on pollinators and other beneficial 

arthropods (Goulson 2013). These non-target effects can be alleviated to increase 
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agricultural sustainability by only using seed treatment when other measures are likely to 

be inefficient. 

Optimizing planting date can be important in managing aphid vectors of BYDV. 

Planting later in the year decreases BYDV infections (Kelley 2001; Miller et al. 1991; 

Irwin & Thresh 1990) because aphid migration coincides with winter-cereal emergence 

dates (McGrath & Bale 1990; Coceano et al. 2009). However, there is a trade-off 

between late planting to decrease yield loss due to BYD and winter kill. Wheat that is 

planted too late in the season may experience much higher rates of winter kill due to 

immaturity when entering the cold season (Knapp & Knapp 1978; Fowler 1982). 

Insecticide treated seeds can be used to increase the optimal planting date range for 

managing this trade-off (Stewart 2013, Gourmet et al. 1996). However, after planting, 

there is still the option to spray a foliar insecticide to manage the aphid vectors. In fact, 

aphids require time to acquire and inoculate hosts with BYDV, making insecticide a valid 

management strategy to decrease infection rate. 

BYD generally occurs in epidemic, or outbreak, fashion rather than being 

consistently present every year in the same location, but predicting outbreak years is 

difficult, so it is a common practice to spray prophylactically rather than as needed. An 

economic threshold for BYDV has been estimated at15 aphids per one foot row of plants 

(during early post-emergence; Herbert et al., 1999).  Necessity of spraying insecticide is 

also highly dependent on the previous two management decisions (using insecticide 

treated seeds or delay planting date). A method to track optimal management options 

based on previous management decisions and pest conditions would be an effective way 

to decrease unnecessary and expensive management tactics. 
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There are several available published models that can track aphid populations and 

disease status to optimize management timing. The statistical model built by Thackray et 

al., 2009 is very complex model and incorporates many environmental parameters, 

including soil moisture and drainage, temperature, rainfall, and evaporation among 

others, to calculate aphid population development. Population development is then used 

to calculate disease transmission via migration and in-field transmission. Potential yield 

loss can also be calculated by this statistical model with a 65% calculated R2. It may, 

however, only be applicable in Mediterranean climates, such as Western Australia. 

A model developed in France (Fabre et al., 2006) represents a statistical model 

available for more temperate climates. This model describes the population dynamics of 

R padi, and therefore the potential dynamics of the virus itself. It simply uses an early 

season aphid count and temperature to model the spatial and temporal spread of the 

aphids with high accuracy. 

These models have the potential to enhance data input to a decision-support 

system. Available weather engines have the ability to take these models reported in 

literature and measure the parameters to give a forecast of aphid movement and virus 

transmission. These are just two examples of statistical models that can be utilized, 

though several others exist (McElhany et al. 1995; Leclercq-Le Quillec et al. 2000; 

Kendall et al. 1992).  
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Expert Decision-Support Systems  

Decision-support systems (DSSôs) are computerized methods of taking 

unstructured data from a user to allow a broader analysis of the impacts of his or her 

actions (Turban 1993; Cox 1996). Expert DSSs utilize expert knowledge in a field to 

gauge the impacts of actions. They are an effective method of using expert knowledge to 

track and provide suggestions on important management decisions a grower makes. 

Expert DSSs can incorporate statistical model output as well as expert heuristics. There 

are four components necessary to make an expert DSS functional: databases, knowledge 

bases, inference mechanisms, and user interfaces (Travis and Latin 1991). 

The database of an expert DSS contains the required information for constructing 

a logical plan of action. It contains factual information to act as somewhat of a 

ñbackboneò to the decision process (Zili & Quixin 1989). In agriculture it may contain 

information such as banned pesticides, re-entry periods, market values, and planting date 

ranges. For example, if a certain pesticide is banned in an area, the DSS will not be able 

to suggest it as a management option in the banned region. 

The knowledge base provides a model of expert knowledge. It first requires 

acquisition of knowledge on management practices and may come from many sources 

such as interviews, scientific literature, simulations, and data analysis (Cullen & Bryman 

1988). The knowledge must then be modeled in some manner to give management 

outputs based on certain conditions. 

The inference mechanism uses the knowledge base and available information on 

conditions to output an optimal management action (Travis & Latin 1991; Zili & Quixin 

1989). Not all information on conditions is always available, so it is important to have a 
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mechanism that can interpret what is available, or be able to estimate missing 

information. The inference mechanism can, over time, evolve with feedback from the 

users (Zili & Quixin 1989). 

The user interface allows two-way communication between the user and the DSS 

(Travis & Latin 1991). The user can input his or her information and receive feedback 

regarding management options. Then, the user can inform the system on the management 

practices used and the success or failure of each one. A user interface is usually a web-

based platform, which have been improving with the evolution of technology. 

Recent Developments in DSS Technology 

Decision-support systems in conjunction with web-based platforms for tracking 

pest and disease presence are an increasingly used component of precision agriculture 

(PA). The utility of DSS programs has been shown through a variety of systems. Fabre et 

al. (2003) synthesized a model predicting BYD outbreaks to aid in planning foliar 

insecticide sprays. They showed their model reduced BYD control input costs by up to 

36%. As described above, Thackray et al. (2009) published a model that could predict 

yield loss from BYD outbreaks with an R2 of 65%. This may not seem like a high R2, but 

considering the complexity of the disease cycle, it is one of the better models for BYD 

prediction. 

One of the most successful DSS platforms is the Integrated Pest Management Pest 

Information Platform for Extension and Education (soybean PIPE). This platform was 

designed for the soybean rust invasion of 2004 (Isard et al. 2006). It was, and is, 
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responsible for up to $299 million in annual fungicide savings since 2005, the year it was 

implemented (Roberts et al. 2006; Hershman et al. 2011). The PIPE arose from a dire 

need of an early warning system for a disease devastating soybean crops as it moved 

from its origins in China through Africa and South America. The appearance of the 

disease in the U.S. in 2004 prompted the development and deployment of the soybean 

PIPE, and it was quickly adopted and still remains a widely accepted tool for soybean 

rust, and now other diseases and crops (Bradley et al. 2010). The Integrated Pest 

Management PIPE (ipmPIPE) is the predecessor of the current Integrated Pest 

Information Platform for Extension and Education (iPIPE). iPIPE is maintained and 

publicized by industry, making it a sustainable business plan to disseminate useful 

information on management decisions (Personal communication with Joe Russo). 

This Masterôs thesis provides the description of the construction of a DSS for 

BYD, a complex disease that is difficult to efficiently manage. The DSS will be 

integrated into the iPIPE platform. The DSS reported is novel in that it is extremely 

versatile and powerful in projecting management decisions and associating them with 

potential outcomes. Collaboration between the public and private sectors and the 

integration into the iPIPE platform will allow for an evolution of the system with the 

input of a widely untapped data source of individual grower information. Chapter Two 

describes the knowledge base, all permutations of field observations, statistical model 

outputs and historical data, organized using dependency networks, into a DSS that is 

accessible to wheat producers. Chapter Three offers a method to estimate missing input 

information, so DSS queries can be completed if the user is unable to provide answers to 
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DSS questions. Chapter Four proposes future work to enhance the DSS and describe how 

it will fit in the iPIPE. 
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Chapter 2 

Modeling the decision process for BYD management 

Introduction  

 Barley yellow dwarf (BYD), a disease of cereals, has caused major losses in grain 

yields since the late 1800ôs (Webster and Phillips 1912; Manns 1907). Recent 

advancements in management tactics can decrease virus prevalence in a field. Several 

such tactics include insecticide treated seeds, altering the planting date, and foliar 

insecticide spray treatments (Stewart 2013; Kelley 2001; Miller et al. 1991). However, 

the effectiveness of these tactics can be enhanced if they are linked with interactive and 

personalized computer-based decision support systems (DSSôs).  

 Decision-support systems are computerized methods of taking unstructured data 

from a user to allow a broader analysis of the impacts of his or her actions (Turban 1993; 

Cox 1996). DSSôs have been used for crop management since the 1980ôs (El-Azhary et 

al. 2000). Expert systems are a type of DSS in which the logic of a human expert is 

modeled to recommend actions by the user given certain conditions (Travis and Latin 

1991). Travis and Latin (1991) list four necessary components of an expert system: a 

knowledge base, an inference mechanism, a database, and a user interface.  

The knowledge base first requires acquisition of knowledge on management 

practices and may come from many sources such as interviews, scientific literature, 
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simulations, and data analysis (Cullen and Bryman 1988). This information is compiled 

in a manner that can be written in a computer language and connects conditions to actions 

via dependency networks. Dependency networks are pictorial representations of the 

logical links among observable or predicted situations and management 

recommendations based on statistical model output and expert heuristic knowledge. They 

can be read by the computer as IF condition, THEN action statements (Travis and Latin 

1991). The action represents the management decision that would be suggested by the 

experts, the information for which is obtained during the knowledge acquisition phase. 

The inference mechanism interprets the knowledge base and searches a database 

to output a recommended action (Zili and Qiuxin 1989). It can also be improved to use an 

incomplete set of conditions to give an estimated action, which is useful as most users 

will not possess knowledge on all conditions (Travis and Latin 1991). The inference 

algorithm will search the knowledge base for likely outcomes given the limited input. 

The database will include storage of factual information, including conditions and action 

restrictions (Zili and Qiuxin 1989). Finally, the user interface, such as a smartphone or 

website, allows communication between the user and the system (Travis and Latin 1991). 

In the field of agriculture and plant pathology, expert systems are not a recent tool 

(McKinion and Lemmon 1985; Travis and Latin 1991; El-Azhary et al. 2000). There 

have been many constructed and adopted systems, such as the Penn State Apple Orchard 

Consultant (Travis et al. 1992). This system was employed and showed considerable 

interest by growers, who also adopted changes in production practices conducive of 

integrated pest management (IPM) strategies (Rajotte et al. 1992; Travis et al. 1992). This 

system and others were developed before the general use of web-based technology in 
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agriculture (For example: Lemmon 1986; Travis et al. 1992; El-Azhary et al. 2000). In 

addition, early expert systems required the use of personal computers, which made the 

expert system inconvenient. With advent of smartphones and the ubiquity of internet 

access, this inconvenience is disappearing.  

Advancing technology such as high-resolution weather forecasting, internet 

mapping resources and smartphones allow more sophisticated DSS applications. A recent 

example is the industry sponsored US Department of Agriculture Soybean Rust 

Information System website. The system was developed for the soybean rust invasion in 

2004 and allowed tracking of rust incidence across the country. Certified crop advisors 

(CCA), extension specialists and other trained personnel could input rust surveillance 

data from fields. Meteorological/aerobiological models were used to predict the spread of 

the rust spores from Mexico and the southern U.S. The system helped growers determine 

necessity and timing of fungicide applications. The availability of this system across the 

US soybean belt resulted in up to a $299 million benefit during 2005 mainly because the 

predictive system information gave growers the confidence to eliminate fungicide 

applications where they were not needed (Roberts et al. 2006). CCAôs and Extension 

personnel continue to use this program as a useful tool in managing soybean rust 

(Bradley et al. 2010). The system developed later into the national Integrated Pest 

Management, Pest Information Platform for Extension and Education (ipmPIPE), which 

tracked many more crop pests and diseases. 

Pest and disease data and forecasts are displayed by the ipmPIPE, however, 

management strategies are mediated by a human expert. Expert systems can substitute for 

most expert mediation. 
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BYD disease is caused by the worldôs most economically damaging cereal grain 

viruses (Lister and Ranieri 1995). These viruses are transmitted by several aphid species 

and can infect over 150 species in Poeaceae (Barnhart 1895; Burnett and Dôarcy 1995). 

BYD has historically been known to cause major problems in epidemic years (Webster 

and Philips 1912; Oswald and Houston 1953). The disease can cause an average of 11 to 

33% yield loss in winter wheat (Triticum aestivum) (Linnaeus 1758) in areas prone to 

infection and potentially over 80% yield loss (Miller and Rasochovà 1997; Lister and 

Ranieri 1995; Pike 1990). Considering wheat is in the top three most economically 

important food crops in the world, even a small percentage loss in global yield can be 

substantial (FAOSTAT 2012; Goldschein 2011).  

Five viruses causing BYD cause the majority of damage. The viruses are of the 

family Luteoviridae, but are split between the genera Luteovirus and Polerovirus. The 

species are Barley yellow dwarf virus BYDV-PAV, BYDV-MAV, BYDV -SGV, Cereal 

yellow dwarf virus CYDV-RPV, and CYDV-RMV. These species are transmitted 

persistently by the aphids (Order: Hemiptera, Family: Aphididae) Rhopalosiphum padi 

(Linnaeus 1758) and Sitobion avenae (Fabricius 1775), R. padi, S. avenae, R. maidis 

(Fitch 1856), and Schizaphis graminum (Eastop 1961), respectively (Rochow 1969). 

Rhopalosiphum padi, S. avenae, and R. maidis are commonly known as the bird-cherry 

oat, English grain, and corn leaf aphids, respectively. They each have distinctive 

migratory patterns which often coincide, in part, with wheat growing seasons (Coceano et 

al. 2009).  

There are many environmental conditions, varying regionally, that determine the 

spread and damage of the disease, which in turn affect management practices. Aphid 
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vector migrations are highly dependent upon temperature, moisture, wind fields, and size 

of aphid populations (De Barro 1992; Thackray et al. 2009). These variables are 

important in predicting migration timing and magnitude. Virus replication and movement 

within the host plant is also temperature dependent, with an optimal temperature of 25°C 

and development of symptoms decreasing with variance from this value (De Wolfe 

2002). Environmental constraints affecting transmission success of BYDV by aphids 

include temperature, stochastic weather events, susceptibility of host plant, use of 

insecticides preventing aphid population growth in crops, and virus titer combined with 

age of infected plants (Lowles et al. 1996; Power et al. 1991; Jones 1979). These 

variables can also determine proportion of aphid vector migration that carries the virus, 

which can be greater than 10% (Coceano et al. 2009; Plumb 1976). Since these variables 

all likely interact, a model is needed to specify management actions for all combinations 

of variables.  

Barley yellow dwarf is an ideal disease to test the complexity of an insect-

vectored pathogen using an expert system based on a PIPE infrastructure. The system 

presented here will be referred to as the BYD-DSS. BYD is intensely studied, and thus 

research results as well as expert opinions can be derived from literature, predictive 

mathematical models, and from human experts. The BYD-DSS can also accommodate 

information from statistical/mathematical models, weather forecasts, and other databases 

containing pesticide and crop phenology. Using the BYD-DSS as an inference 

mechanism of the knowledge base, the suggested management decisions for a given field 

can be interpreted, which will be given as recommendations to the growers via the user 

interface.  
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As mentioned above, some inputs to the BYD-DSS can be outputs of simulation, 

statistical, and other types of models. There are several simulation models that can be 

used to predict aphid and virus changes as well as suggestions of management options for 

aphid vectors of BYDV. Several published models can be integrated into the BYD-DSS 

and include, but are not limited to, the Home Grown Cereals Authority (HGCA) BYD 

management guide which uses plant age to determine susceptibility to BYDV (HGCA 

2004), an aphid migration/BYD epidemic predictor designed for Australia (Thackray et 

al. 2009), a BYD spread model designed for Britain (Kendall et al. 1992), and an 

aphid/BYD spread model designed for France (Fabre et al. 2006). These can all be used 

to enhance the accuracy of this expert system in all locations around the globe.  

Other resources that can be used to enhance the system will include a weather 

engine similar to Skybit (ZedX, Inc & Meso, Inc. 1998). This weather forecasting system 

will be useful in tracking development and migrations of aphid vectors and can also 

utilize the models mentioned above to determine migration severity. This weather engine 

predicts events at 1 km resolution. The BYD-DSS can also interact with remote pest 

forecasting systems via the internet and smartphones, not only to deliver 

recommendations to the user, but also use user-updated local information to modify pest 

predictions in real time.   

The BYD-DSS offers decision support at several times during the season (Fig 1). 

The decisions addressing prophylactic measures, include insecticide seed treatment 

(Stewart 2013), altering planting date to avoid aphid migrations (Miller et al. 1991), 

scouting for aphids, and use a foliar insecticide. Insecticide treated seeds should be 

planted to increase yield if winter wheat is sown before USDA-recommended dates 



26 

 

and/or if the risk of BYDV transmission is high (Stewart 2013; Royer et al. 2005). 

Planting treated seeds during USDA-suggested planting dates or after risk of BYDV 

transmission shows little to no increase in yield compared to non-treated seeds (Stewart 

2013; Royer et al. 2005). Early planting of winter wheat seed may be desirable to 

minimize winter kill of seedlings in regions that experience harsh winters, in which case 

planting treated seeds becomes necessary (Stewart 2013; Fowler 1982; Knapp and Knapp 

1978). However, concerning BYD management, history of disease in a location is most 

important in determining benefits of planting treated seeds. 

Planting date is arguably the most important decision in BYD management. There 

are many consequences of early planting, such as more severe aphid infestations, Hessian 

fly infestations, and army worm infestations (Stewart 2013). On the other hand, a major 

consequence of planting too late is higher percentage of winter kill (Knapp and Knapp 

1978). Therefore, it is necessary to find an optimal planting date to reduce these risks. 

Fall migration of alate BYDV vectors is driven by aphid crowding, which is in turn 

driven by optimal meteorological and environmental conditions for development (De 

Barro 1992). Once each vector species reaches its critical point of overcrowding, alatae 

are produced (De Barro 1992). These alatae then migrate to a new host. Each aphid 

species has its own respective migratory phenology, which is relatively predictable using 

calendar date (Coceano et al. 2009). Migrations of these vector aphids often coincide 

with winter wheat phonological susceptibility to infection. Winter wheat is most 

susceptible and damaged by BYDV when inoculated during its seedling stages, 

specifically before Growth Stage 31 (GS 31), which is the beginning of stem elongation 

(Zadoks et al. 1974; Smith and Sward 1982; Oswald and Houston 1953). When 
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inoculated after the tillering phase, during stem elongation, yield losses are dramatically 

decreased (Smith and Sward 1982).  

Scouting, or walking fields to determine pest presence and population changes, is 

another potential practice to manage aphid vectors of BYDV that can be done after 

planting. Hiring a CCA to scout fields has associated costs and can be more useful with 

optimal timing. Some growers may wish to do the scouting themselves to save on costs. 

Even if a grower chooses to scout his/herself this practice is time consuming and to 

obtain a more accurate knowledge of the risk of BYDV infection it requires the ability to 

identify specific aphid vector species and knowledge of BYDV strains most common in 

the area. Pest and disease forecast models can be used as an alternative or sentinel to 

scouting. In reality, there is no benefit to scouting if the pest or disease is known not to 

affect a certain area. Also, there would be little need to scout for BYDV vectors after 

tillering, since wheat susceptibility to the disease decreases after this stage (Smith and 

Sward 1982). These conditions and others are important to consider when a grower is 

deciding whether or not scouting is necessary. 

While scouting, growers or CCAôs should look for densities of BYDV vectors, 

and potentially BYD symptoms to manage the disease. The literature suggests an 

economic threshold of 15 aphid vectors per 1 ft. row in fall, but significant damage can 

still occur even if aphids do not reach this density (Herbert et al. 1999). These aphids are 

generally dispersed in an aggregated pattern (in patches) due to individual ñfounderò 

females, so it is important to scout a large portion of a field to better estimate aphid 

populations. The remedial management option if there is a high population of aphids is a 
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foliar insecticide spray (Herbert et al. 1999) to be considered when seedlings are 0-4 

weeks old and if seedlings emerged from non-treated seeds. 

All of these tactics are designed to prevent a cropôs exposure to aphid vectors of 

BYDV during its most susceptible stage. Optimal timing of these treatments can be 

determined by using environmental conditions, and can be modeled by dependency 

networks. This paper describes the use of dependency networks in modeling BYD 

management. Inputs to the model are: environmental variables including temperature, 

moisture, and wind speed and direction; pest assessments including aphid trap data, pest 

history, and disease history; crop production practices including planting date, scouting 

and plant growth. Some of these data are derived from predictive mathematical models, 

and other factors are heuristic, derived from human experts. 

The knowledge base that underpins the BYD-DSS and is depicted by the 

dependency networks will be integrated into a web/smart phone app. To our knowledge 

no dynamic, projective, and location-specific DSSôs have been developed using a website 

and smart phone app created to address a complex insect-vectored viral disease cycle. 

Methods 

Dependency Networks  

Dependency networks were constructed using design networks LibreOffice Draw 

(The Document Foundation, open source) on the Ubuntu operating system. The inputs to 
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the networks were listed at the bottom of the networks (referred to as conditions). Input 

condition values were classified into ordinal categories (e.g. high, medium and low) 

called variables. The range of values within a variable is defined. Variable range can 

come from forecast models, direct user input, or other dependency networks. 

Combinations of variables from the inputs, denoted by Boolean operators produced an 

output for a particular dependency. Outputs were placed at the top of the network. An 

output could be the input to another network or present a recommendation to the user. A 

path describes a single combination of a variable from each condition, operators, and 

outputs. All possible combinations of variables for the decisions were connected to 

satisfy all possible paths, using different colored arrows.  

Decision Framework 

The overall framework for selecting and linking dependencies is shown in Figure 

2-1, and each element of the timeline is described in Table 2-1. First, appropriate 

dependencies were assigned to a portion of the winter wheat growing season (Figure 2-1). 

Next, input condition information was identified for each decision (Table 2-1). Finally, 

the relationships among input conditions and the resulting decision options were 

connected by operators and displayed in dependency networks. 

 

Figure 2-1. Timeline of BYD decision-making with winter wheat and aphid events overlaid. This timeline is designed 

for the Pennsylvania region, thus other regions may have slightly different dates, but similar chronology. 
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¶ Treated Seeds: PA July 30th ï Sep 15th 

o Aphid migration prediction for the coming season (Coceano et al. 2009)  

o Crop damage from BYD in the previous season: Immediate history of the 

field 

o Aphid/BYD problem in previous years: History of the field (Personal 

communication with Piero Caciagli, Ed Rajotte, and Joe Russo) 

Á Average aphid counts in previous years 

Á Average BYD prevalence in previous years 

Á Average yield loss due to BYD in previous years 

¶ Planting Date: PA Sep 15th ïplanting (USDA 2010) 

o Extent of overlap between crop susceptible phase and aphid migration 

Á Current weather conditions for aphid development (Personal 

communication with Piero Caciagli) 

Á Prediction of migration peak stats based on suction trap 

observations (Yearly suction trap data from Piero Caciagli 

published in Coceano et al. 2009; Appendix C) 

Á Expected time to emergence if seeds sown immediately (Plant 

growth model from ZedX, Inc.) 

o Likelihood of having an aphid problem this season 

Á Predicted magnitude of migration 
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Á Aphid/BYD problem in previous years: History of the field 

(Personal communication with Piero Caciagli, Ed Rajotte, and Joe 

Russo) 

¶ Average aphid counts in previous years 

¶ Average BYD prevalence in previous years 

¶ Average yield loss due to BYD in previous years 

o Use of treated seeds, resistant variety, GMO (if developed in the future), 

etcé(Stewart 2013; Royer et al. 2005; Gourmet et al. 1996) 

o Ideal planting date for winter wheat in the growerôs region compared to 

the current date (USDA 2010; Stewart 2013; Fowler 1982; Knapp and 

Knapp 1978) 

¶ Scouting: Between planting and wheat GS 32/stem extension 

o Current plant susceptibility to infection of BYDV 

Á Current age of plant (Personal communication with Fred Gildow; 

Smith and Sward 1982; Oswald and Houston 1953) 

Á Seed treatment or previous spray in effect (Stewart 2013; personal 

communication with John Tooker) 

o Current aphid/BYD risk 

Á Aphid counts in the region 

Á Changes in number of migrant alatae  

Á Risk of aphids being virulent 



32 

 

¶ % of virulent migrants likely to be present (Coceano et al. 

2009; Plumb 1976) 

¶ Aphid/BYD problem in previous years: History of the field 

(Personal communication with Piero Caciagli, Ed Rajotte, 

and Joe Russo) 

o Average aphid counts in previous years 

o Average BYD prevalence in previous years 

o Average yield loss due to BYD in previous years 

Á Grower observations of aphid migration (Personal communication 

with Joe Russo; gives user ability to calibrate models with 

observations) 

¶ Aphids seen in growerôs field 

¶ Increase in aphids in the field 

¶ Aphids been seen in nearby fields 

¶ Spraying: Between planting and wheat GS 32/stem extension (user may wish 

to override decision to scout, in which case scouting decision can be used as 

spraying decision) 

o Population of alate migrants increasing, decreasing, or the same 

o Projected aphid field count (Personal communication with Joe Russo; 

aphid development model) 
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o Aphid/BYD problem in previous years: History of the field (Personal 

communication with Piero Caciagli, Ed Rajotte, and Joe Russo) 

Á Average aphid counts in previous years 

Á Average BYD prevalence in previous years 

Á Average yield loss due to BYD in previous years 

 

Table 2-1. Conditions considered when managing BYD. Controllable management decisions are in bold, whereas 

uncontrollable environmental conditions used to decide best management practices are in normal font (controllable 

management actions may be considered an environmental condition if the management action has already been 

implemented at the time of the current recommendation. For example, treated seeds at time of planting are already 

determined by the growerôs previous actions). Each subset describes the conditions used in determining the condition 

above it. Source of reasoning for influence of each variable in decision process are listed after each condition, if 

applicable. 

 

 

Results 

Overall, considering all possible combinations of growing season period, field 

history, weather and pest predictions, previous grower decisions, and pest observations, 

there were nine possible recommendations managed by the BYD-DSS (called: Treated 

seed, no treated seed, plant immediately, delay planting, scout, do not scout, full spray, ½ 

spray, no spray). There were 243 total combinations of variables to reach the seed 

treatment recommendation, 9,720 to reach the planting date recommendation, 62,208 to 

reach the scouting recommendation, and 216 to reach the spray recommendation. 

However, there are an unlimited number of possibilities when the time component is 

introduced. All recommendations are shown in Appendix A. 
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Figure 2-2 shows how all conditions and management decisions interact. It shows 

how each input condition interacts to alter the management recommendation, and how 

each management decision alters future recommendations. Figure 2-3 shows that the 

dependency networks do not function separately, but require several interactions with 

other web-based databases and mechanisms to give real-time recommendations. They 

also need input from models and weather engines to determine variables of pest 

conditions. It is important to have feedback from the user on management practices 

conducted since that alters later recommendations. Users are also able to input data from 

their respective fields when other analyses for inputs are unavailable. Once all conditions 

are entered, either by the user, models, or automated sensors (e.g. weather forecasting 

stations); an optimal management recommendation can be generated. 

 



35 

 

 

Figure 2-2. General outline of the BYD-DSS system interconnectedness of conditions listed in Table 1. Controllable 

conditions are in ovals, whereas uncontrollable environmental conditions are in rectangles. Connections are color-

coded in chronological order pertaining to the management recommendation they affect. Red connections are 

calculated to determine necessity of treated seeds first, then green connections to determine planting date, blue 

connections to determine timing and necessity of scouting, and finally violet to determine timing and necessity of 

insecticide spray. Dashed lines indicate where a projective development model will need to be run to output the 

connected condition. Dotted lines indicate there is an incomplete source of data that may need to be filled in by the user 

using the system. 
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Figure 2-3. Flow chart of entire the BYD-DSS. The BYD-DSS describes the knowledge base of dependency networks 

reported in this chapter. 

Dependency Networks 

 Figure 2-4 shows an example of a dependency network. The Current Plant 

Susceptibility network estimates a cropôs susceptibility to infection at any given time 

throughout the season. The Current Plant Susceptibility network estimates a cropôs 

susceptibility to infection at any given time throughout the season. For this network it is 

assumed that plants that are greater than 4 weeks old are less susceptible than plants 2 to 

4 weeks old, which are in turn less susceptible than plant less than 2 weeks old. Plants 

that have already reached stem elongation are at very little risk of damage from infection. 

The other condition in this network, having a seed treatment or previous spray, 

determines whether a crop may be much less vulnerable to infection since a seed 

treatment or spray will likely kill most potential aphid vectors before inoculation. 
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Figure 2-4. Current plant susceptibility dependency network. Using operators the networks can be read in ñIF/THENò 

format. For example, the orange path can be read as ñIF the plant is less than 2 weeks of age AND a seed 

treatment/previous spray is in effect on the crop, THEN the crop has a medium susceptibility to infection of BYDV.ò 

Secondly, there can be multiple variables combined in a single path as seen with the red path. This can be read as ñIF 

the plant is less than two weeks of age OR 2-4 weeks of age, AND there is no seed treatment/previous spray in effect, 

THEN the crop has a high susceptibility to infection of BYDV.ò 

 

Treated Seeds  

 The first decision that needs to be addressed for the winter wheat growing season 

is the decision to buy insecticide treated seeds. The conditions of highest importance in 

this decision will be the aphid/BYD history of the field and the previous season yield loss 

due to BYD. Considering that a forecast of aphid movement and virulence for a date 

possibly several months in the future will likely have a large amount of error, it will be 

more useful to use the history to estimate a field's risk (Personal communication with 
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Piero Caciagli, Ed Rajotte, and Joe Russo). Thus, a model that describes a forecast of 

aphid or BYDV spread in a region will carry lower importance in the decision, but may 

still be used to roughly predict severity of aphid/BYD problem.  

Aphid/BYD Problem in Previous Years (History of field) (Figure A-1) 

 Field history is important in every decision a grower makes throughout the wheat 

growing season, therefore this network is present in every management decision that is 

mapped. However, as the time of aphid migration approaches, it will be more effective to 

use real-time data to determine the dynamics of the aphid migration (Personal 

communication with Joe Russo). Thus, as the season progresses, history of the field will 

have less influence on the decisions a grower will make about the aphid threat. 

 Three conditions that can determine whether a given field has had an aphid/BYD 

problem in previous years are average aphid vector populations (Herbert et al. 1999), 

average BYD prevalence in previous years (measured in percentage of field infected), 

and the average yield loss from BYD in previous years.  

 There is an easily defined correlation between BYD prevalence and yield loss 

(Perry et al. 2000; Mckirdy et al. 2002), though it is likely that this correlation varies 

based on the year and location since there is indication of temperature gradients in which 

BYD symptoms are able to develop (De Wolfe 2002). Thus, it is important to view each 

field and region as a separate entity. This means, for example, that because a field may 

have a high prevalence of BYD, it will not necessarily experience a high yield loss due to 

other conditions, such as temperature constraining symptom development. To account for 

this potential gradient, the user will input his or her fieldôs data of BYD prevalence and 
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yield loss. The network also takes into account that fields with high BYD prevalence are 

more prone to epidemic years if conditions become optimal for the virus. In other words, 

a region may experience high prevalence but low yield loss or vice versa. 

 The logic behind the aphid count condition in this network is simple. A high 

average aphid count will be considered to be 15-25 or more aphids per 1 ft. row of plants 

in autumn (Herbert et al. 1999). There is a correlation between aphid count and BYD 

prevalence due to variance in efficacy of uptake and transmission of the virus by aphids 

(Lowles et al. 1996; Power et al. 1991; Jones 1979). As with the prevalence/yield loss 

interaction, there will likely be a regional gradient of these variables, and therefore a 

gradient of BYD prevalence (Seabloom et al. 2010). To simplify this interaction the 

number of aphids in the past will be compared to BYD prevalence to determine risk. For 

example, a high aphid count and low prevalence indicates that although the aphids are 

present, transmission efficacy in the given area is low. Again, this network takes into 

account that a high aphid count, under the right conditions is capable of producing 

outbreaks even though historically BYD may occur at low frequencies. 

Decision to Buy Treated Seeds (Figure A-2) 

 The three conditions used to aid a growerôs decision on buying treated seeds are 

whether the farm has had an aphid/BYD problem in previous years, a probable aphid 

migration prediction for the coming season, and yield loss from BYD in the previous 

season. These conditions will be determined by the Aphid/BYD Problem in Previous 

Years network, model output, and user-input data, respectively. 
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 The aphid problem in previous years variable addresses the issue as to whether a 

growerôs field is generally at risk of aphid and BYD problems. The average is the best 

estimate of a potential problem while knowing nothing about future environmental 

variables of conditions. Thus, a fieldôs average aphid/BYD problem is a good basis for 

projecting the coming yearôs problem. Due to this, this variable has the most influence in 

this decision. 

 The probable aphid migration count for the following season is a variable 

predicting severity of aphid migration that will be determined by a statistical model that 

can be used early enough in the season that it can give the grower enough time to 

purchase treated seeds if necessary. This means it will use climate and biofixture (a 

landmark in a speciesô phenology) data obtained at least one month before the next 

seasonôs planting dates.  

 The yield loss from BYD the previous season variable is similar to the variables 

determining aphid problem in previous years, however, instead of looking at the long-

term problem of BYD and aphid data it will look at the immediate past. This means that 

recent trends in the field will affect the outcome of the decision (Personal communication 

with small grain growers in Italy).  

Planting 

 The planting date decision occurs after seed purchase and will use the range of 

potential planting dates of winter wheat (USDA 2010) to balance threat of aphid 

migration from planting too early and winter kill from planting too late. This decision is 

seminal as it will be designed to eliminate the necessity of buying treated seeds, scouting, 
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and spraying insecticides; which are costly to the grower and/or the environment. This 

decision will also take into account that there are other methods of evading the disease in 

the field (e.g. spraying insecticide), so it will not be unconditionally dominating.  

Likelihood of Aphid Problem during the Coming Season (Figure A-3) 

 The variables considered when determining the likelihood of having an aphid 

problem in the coming season are whether the field has had an aphid/BYD problem in 

previous years and an aphid count for the approaching season. The data for these 

variables are obtained by the Aphid/BYD Problem in Previous Years network, and a 

predictive statistical model, respectively. 

 The aphid problem in previous years variable allows the history of the field to 

play a role in this decision. However, the influence of it is decreased by the model 

predicting the magnitude of the migration. Considering this model will be run at a time 

much closer to the actual migration there will be many more variables that will account 

for variation in the migration (Personal communication with Joe Russo). 

Migration Peak/Susceptible Phase Overlap (Figure A-4) 

 Aphid migration timing in comparison with wheat growth is important in vector 

avoidance. Migration timing can be estimated from climate and weather predictions as 

well as suction trap data. To determine this, the variables of current weather conditions 

for alate development, time until end of migration, and expected time to seed germination 

are considered. The data for these variables can come from weather forecasting engines, 

which can also forecast parameters of aphid development predictive models and a wheat 

growth models. 
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 Current weather information can give a rough estimate of the magnitude of the 

migration five weeks in the future since ideal conditions cause development and 

crowding of aphids, which causes production of alatae (personal communication with 

Piero Caciagli; Coceano et al. 2009; De Barro 1992; Appendix C).  

 Using real-time suction trap data that informs about the number of alatae flying 

over the trap each day and the species of aphids flying, the approximate number of days 

until large migrations of alatae can be estimated (Observed during analysis of suction trap 

data from Italy). There is often a period of time before the autumn migration when 

suction traps catch few aphids sporadically for two to three weeks before a sustained 

catch is maintained. This information is important in determining when the main portion 

of the migration will occur.  

 Wheat plants are most susceptible to BYDV before the tillering phase (Smith and 

Sward 1982). Thus, it can be generally assumed that younger plants will be the most 

susceptible to BYD.  

Delay Planting Decision (Figure A-5) 

 The decision of whether to plant immediately or postpone planting uses the 

conditions of overlap of migration and crop susceptible phase, likelihood of aphid/BYD 

problem during the coming season, whether the grower has resistant crop (i.e. treated 

seeds, resistant/tolerant wheat varieties, GMOôs [if developed in the future], etcé), and 

the ideal planting date for the region. These data are obtained from Migration 

Peak/Susceptible Phase Overlap network, Likelihood of Aphid/BYD Problem during the 

Coming Season network, user input, and USDA planting dates, respectively.  
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 The migration peak/susceptible phase overlap condition has a very strong 

correlation with the amount of time from the ideal planting date for the region. The 

migration peak/susceptible phase condition will influence the decision towards delay 

planting if the migration will occur before the wheat emerges and the ideal planting date 

is in the future. However, if the ideal planting date is in the past the decision will be 

influenced towards planting immediately. On the other hand, if the migration will occur 

during the cropôs susceptible stages, then the planting date will essentially be pushed later 

in the season delaying the suggested planting date.  

 The likelihood of aphid/BYD problem during the coming season variable is most 

highly correlated with peak/susceptible overlap condition. These two conditions assess 

the projected risk of the crop to BYDV infection if planted at any given point during the 

potential planting dates. Thus, a lower likelihood of having a problem will mean 

peak/susceptible overlap will have less influence on the decision. On the other hand, a 

higher likelihood of having an aphid problem will mean peak/susceptible overlap will 

have greater influence. 

 Having crop resistance to aphids or BYD is a dominating variable in this decision 

because it will make the crop essentially invulnerable to aphids and BYD for a period of 

time, thus it would be best to plant before or on the ideal planting date (Stewart 2013; 

Kennedy and Connery 2012).  

 If the ideal planting date is greater than three weeks away, then it will always be 

suggested that the grower delays planting until closer to the date because there may be 

other consequences from planting too early (McMullen and Ransom 2009; Mississippi 

State Coordinated Access to the Research and Extension System 2010). Conversely, if 
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the grower has not planted later than three weeks past the ideal planting date, then it will 

be suggested that he or she plants immediately to decrease winter kill (Knapp and Knapp 

1978). 

Scouting 

 After the grower has planted, it is important to decide when and if to scout for 

BYD vectors. This decision will rely heavily on real-time and up-to-date information 

from other growers using the system or established sentinels, such as suction traps 

(similar to PIPE). A slight influence of the history of the field will be present, but would 

not be as applicable to the situation as any deviation from the average history will be 

apparent in real-time data. 

Infectivity Risk (Figure A-6) 

 The Infectivity Risk network uses conditions of aphid problem in previous years 

and the probable percentage of viruliferous aphids in a migration to determine what the 

chances are of a migratory population carrying the virus. Aphid/BYD problem in 

previous years provides information on a fieldôs probable prevalence and yield loss from 

BYD come harvest. Combining these two variables gives information on whether a 

location, in general, has the right conditions to support development of the virus, and 

therefore assesses the risk.  

Current Aphid Risk Status (Figure A-7) 

 The Current Aphid Risk Status combines the likelihood of having a viruliferous 

migratory population and number of aphids that are likely to be in the field. These 

conditions can be viewed as multiplicative as having a high infectivity risk and high 
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population count means a large number of infective aphids are probable, but low risk and 

low population means a very low number of infective aphids are probable. This network 

uses aphids already established in farms nearby, and therefore a likely count for the given 

field, and a change in suction trap catches to determine whether the sheer number of 

aphids is going to be high enough in a field to cause problems. The number of aphids per 

1 ft. row plants in nearby farms uses 5 instead of 15 as a threshold for the ñhighò number 

of aphids because scouting should be conducted before aphid densities reach economic 

threshold levels (Herbert et al. 1999). Changes in suction trap catches determines whether 

the migration numbers are rising or falling, which combined with number of aphids 

already in the field gives a good estimate of whether aphid densities will soon reach 

threshold levels (Observed during analysis of suction trap data from Italy). 

 Infectivity risk, as stated above, will be a good indication of whether the aphid 

migratory population will have a chance of transmitting the disease. 

Current Plant Susceptibility (Figure 2-4) 

 The logic behind this network is explained under Figure 2-4 above. 

Observational Data of Aphid Population (Figure A-8) 

 The Observational Data of Aphid Population network is basically giving the user 

a chance to enhance the modelôs decisions by telling the program what he or she has 

actually seen in the field. The network asks the grower whether he or she has actually 

seen aphids in the field, whether there has been an increase in the number of aphids in the 

field, and whether any neighbors have observed aphids in their fields. This recalibrates 

the networks to be more accurate for a more specific location. The outcome of this 
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network is the determination of whether the growerôs observations are indicative of a 

migration that is on the rise (incoming), stationary, or not present.  

Decision to Scout (Figure A-9) 

 This network is the final step in aiding the farmerôs decision on whether or not to 

hire a scout for aphids in the field. All the variables in this network are outputs from other 

networks listed above in this section. It takes current plant susceptibility, current aphid 

risk status, and observational data from the grower to determine whether a field is at high 

enough risk to warrant hiring a scout. Fields with higher crop susceptibility will influence 

the decision towards scouting immediately, while lower susceptibility influences the 

decision towards delaying scouting to save money. Higher aphid risk statuses influence 

the decision towards scouting and lower influence towards delaying scouting. The 

observational data is an enhancement of the aphid risk variable and works in the same 

way. 

Spraying (Figure A-10) 

 A grower should decide to spray his/her winter wheat crop for aphids when the 

aphid population density reaches a critical level called economic threshold at 

approximately 15 aphids per 1 ft. row plants (Herbert et al. 1999), though it is determined 

by weighing the costs of treatment against the cost of losing yield. This network uses 

information from scouting and forecasting to determine when a field will likely exceed 

the economic threshold. The aphid/BYD problem in previous years influences the 

decision by determining whether the virus will likely cause problems in the location of 
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the field, since there may be a difference in number of aphids present and ability of virus 

to develop and cause symptoms in the plant. 

Discussion 

The BYD-DSS represents a way of capturing what is known about BYD 

management and making it available to growers in a user-friendly and timely format. The 

BYD-DSS quickly analyzes which of the thousands of possible BYD situations the 

grower is facing and gives a recommendation for that situation. Required inputs either 

come directly from the grower or from remote sources, such as web-based weather 

forecasts.  

The BYD-DSSôs logic is the product of BYD research found in the literature as 

well as decision-making rules created by human experts after many years of experience. 

Hence, the BYD-DSS has a ópersonalityô that reflects the knowledge and ideas of the 

systemôs builders. A BYD expert system built by other experts may produce different 

results.  

The dependency networks for this program will show a projected set of best-

management practices throughout the winter wheat season for any location from which a 

user may login. The model will be updated as the season progresses to give more up-to-

date information on suggested management practices. This projection will be 

accomplished by assigning weights and risk values to each controllable and 

environmental condition and variable for the computer to calculate probabilities. Weights 

control the importance of an input in a network and values control the importance of 
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variables. The computer will sum the values to obtain a score that will determine the 

output of that network. Some data points may not currently be available, such as 

percentage of virulent aphids in a migration, so a constant, or average, value will be used 

by the computer in its place. This scoring system is similar to the Peanut Rx system 

developed by the University of Georgia, University of Florida, and Auburn University 

(Culbreath et al. 2009). These risk values will be calculated to determine probability of 

the suggested best course of action providing high, medium, or low yield. Users will be 

able to see the variables that determine the suggested best course of action and change 

them if he or she believes it necessary, which will cause the mechanism to recalculate the 

probabilities of actions and yields. This is important because there are often scenarios in 

which growers are unable to access his or her fields due to non-environmental factors. 

This is accounted for by allowing the user to manipulate decisions to go down a different 

path. The models will then be adjusted to report on best management decisions for factors 

other than yield, such as economic gain, sustainability, and others.  

The BYD-DSS can evolve. As more research is done, or as new environmental 

monitoring technology is developed, the expert system can be modified to accommodate 

the changes, becoming more accurate and useful.  

The decision framework mapped with these dependency networks will later be 

adapted to be integrated into a website and smart phone app to disseminate real-time 

decision-support to growers around the world. This program will be similar to others such 

as Pennsylvaniaôs PIPE system (Isard et al. 2006), but will be the first of its kind to 

dynamically model a complex pathogen, vector, host system.  
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The BYD-DSS has not been validated by testing its effectiveness in wheat fields 

in real time. This should be done before general release.  

There are many other factors determining a cropôs success other than BYD 

management decisions. Treated seeds may increase slug damage (personal 

communication with John Tooker). Planting date may affect both BYDV and Fusarium 

head blight conversely (Kelley 2001). Scouting for many other pests and diseases is 

almost always mandatory at some point in the season. To address these issues more 

expert systems addressing any winter wheat disease should be created to make an overall 

winter wheat growing recommendation guideline. With more expert systems such as this 

one for other pests and diseases, a computer can combine and optimize all possible 

conditions for all pests and diseases and output a set of recommendations. Some 

management recommendations may not affect other pests or diseases. However, when 

recommendations do interact between multiple pests and diseases the computer can 

optimize the recommendation. For example, treated seeds may decrease BYD and other 

aphid transmitted viruses and increase slug damage. If this were to be the case, then the 

computer could search multiple networks to determine the most optimal seed treatment 

decision. 

Many fields may have conflicting data with surrounding areas. Thus, it may be 

useful to look at moving averages of conditions over a region to give the best 

management recommendations. For example, a field that is rotated with other crops or 

has never grown winter wheat before may not have a history of aphids or disease. In this 

case, the history of the surrounding area will provide sufficient information to give an 

optimal recommendation. 
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Any new information technology must face the adoption process. Human factors 

and attitudes must be addressed as the BYD-DSS is introduced to the grower community. 

Grower attitudes, relationships with the developers, availability of technical training and 

support will all play a role in successful adoption. These access conditions are described 

in Rajotte and Bowser (1991). Increasing access to web-based information will also allow 

quicker adoption of systems similar to this one in the future.  Growersô attitudes and 

desires towards smartphone technology and this app specifically were evaluated by 

Babbie (2014). The app will be tailored to growersô desires to benefit their operations in 

the field and ultimately increase yield, decrease insecticide use, increase sustainability 

and overall provide a template for a system that can create a more efficient agricultural 

environment. 

Many areas do not see a high yield loss from BYD in most years. It is quite 

possible that much of the damage from BYD is misdiagnosed as nutrient deficiencies 

(Mckirdy and Jones 1993) or that current cultivars exhibit fewer symptoms of the disease, 

but still experience yield loss (Personal communication with Fred Gildow). Ability to 

detect virus conditions used in these dependency networks will be greatly enhanced in the 

near future with the development and improvement of unmanned drones using infrared to 

detect pathogens in individual crops (Jones 2013). This technology could also be easily 

adapted to obtain information on aphid vector populations by distinguishing species by 

cornicle size, which is currently a highly labor-intensive task (Personal communication 

with Piero Caciagli). These monitors will help eliminate any human error present in 

detection of variables necessary in managing BYD. Drone-based inputs can easily be 

used in the BYD-DSS. 
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 The use of dependency networks to model management recommendations for an 

expert system is a simple method of accomplishing this goal. Using these networks it is 

easy to break the management process down to see the impact of each condition. It allows 

the creator to combine a very complex set of conditions into a few easily understood 

figures. It is also possible to follow a single path of conditions using the dependency 

networks alone. However, with this task being accomplished by a computer, the process 

will be made user-friendly. When expert systems are created in this way for other pests and 

diseases a general and optimal winter wheat management plan can be inferred and will greatly 

increase the efficiency of winter wheat production.  
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Chapter 3 

A proposed mechanism for estimating missing information in the BYD-

DSS knowledge base for the barley yellow dwarf decision-support 

system 

Introduction  

óPrecision agricultureô may be defined as a ñmethod of automating site-specific 

management using information technologyò (Bongiovanni & Lowenberg-Deboer 2004). 

In recent years precision agriculture has been adopted in agricultural programs to greatly 

increase food security by increasing yields and reducing labor (Gebbers and Adamchuk 

2010). Data integration tools that can be used in precision agriculture are decision-

support systems (DSSôs) (Zhang et al. 2002).  DSSôs are computerized methods of taking 

unstructured data from a user to allow a broader analysis of the impacts of his or her 

actions (Turban 1993; Cox 1996). Expert systems are a type of DSS that use expert 

knowledge to determine a logical management plan. Travis and Latin (1991) list the 

following components of an expert system: a knowledge base, an inference mechanism, a 

database, and a user interface.  

In chapter 2 the knowledge base (information sources to build dependency 

networks) and deterministic inference mechanism (dependency networks) of a barley 

yellow dwarf (BYD) decision support system was proposed and detailed for the 

management of  the disease in winter wheat. This DSS is hereby referred to as the BYD-



53 

 

DSS. The BYD-DSS knowledge base and inference mechanism are represented by 

dependency networks that require that all input information be supplied prior to a 

recommendation. In reality this may not always be possible, so a way of estimating 

missing information is necessary. While a user may guess at missing information, it 

would be preferred to have a more quantified, logical method. 

In this chapter a model is proposed to integrate the knowledge base contained in 

the BYD-DSS using a novel inference mechanism to optimize management decisions for 

unknown information. 

The novel inference mechanism consists of a philosophical quantitative scheme 

that finds an acceptable cumulative correlation among inputs, operators, and outputs. 

These cumulative correlations were chosen so as to remain true to the heuristic and expert 

knowledge modeled in the dependency networks from chapter 2. To validate this 

mechanism, field trials should be conducted to gain better understanding of the 

interactions between the input conditions. Currently, the numbers are based on the thesis 

authorôs understanding of the interactions. The BYD-DSS and new inference mechanism 

will use the Barley yellow dwarf virus/disease complex as a model to provide a template 

platform that can be adapted to more effectively manage crop pests and diseases that 

follow a similar dynamic. 

This expert system is likely to mature and improve in two ways. First, it may gain 

access to web-based databases that are accumulations of the experiences of other 

growersô BYD experiences. Secondly, the growerôs direct observations can be replaced 

by information from remote sensing, robotic monitoring systems, and more sophisticated 
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mathematical models. As the system evolves in these ways elements of this proposed 

inference mechanism may be changed or eliminated.  

 

Decision-support system (DSS) components 

Knowledge base 

 The knowledge base is an accumulation of information about management 

practices that can come from interviews of experts, scientific literature, simulations, and 

data analysis (Cullen & Bryman, 1988). This information may be interconnected and 

expressed with the use of dependency networks, which can be seen as pictorial 

representations of the relationship between the information that is contained in the 

knowledge base (Travis & Latin 1991). The networks can be read by a computer as IF 

condition, THEN action statements (Travis & Latin 1991). Each action represents the 

management decision that would be suggested by experts to address a particular situation 

given specific conditions.  

 

Inference mechanism 

The inference mechanism is responsible for making calculations and 

interpretations of the knowledge base. It can be viewed as a type of artificial intelligence 

(Travis and Latin 1991). Users often do not possess all information that can be utilized in 

making a decision, so an inference mechanism capable of fill ing in the gaps and 

extrapolating results is desirable (Travis and Latin 1991). This is extremely useful in 

agriculture because often times some information on conditions necessary to make a 
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decision may not be readily available. The inference mechanism adjusts for this by 

assuming the most likely scenario based on other information given. 

Database and User Interface 

The database consists of factual information, such as rules and regulations that 

cannot be manipulated, directly or indirectly, by the user (Zili and Qiuxin 1989). This 

database is queried by the inference mechanism to ensure that management tactics 

conform to the relationships stored in the database. 

The user interface allows two-way communication between the DSS and the user 

(Travis and Latin 1991). It can be a stand-alone application on a personal computer, 

tablet or smartphone, or web-based. First, the user provides responses to DSS queries 

from the knowledge base about conditions specific to the userôs situation. Then, 

appropriate outputs of models from the database and knowledge base are interpreted by 

the inference mechanism to provide a recommendation. This interaction can be done 

multiple times throughout a management process.  

The Integrated Pest Information Platform for Extension and Education (iPIPE) is 

a program designed and maintained by industry. It has a user interface in the form of a 

smartphone app and a website. iPIPE is an ideal platform for decision-making. It evolved 

from a combination of the NCSU APHIS Plant Pest Forecasting System (NAPPFAST) 

(Magarey et al. 2007) and the Integrated Pest Management Pest Information Platform for 

Extension and Education (ipmPIPE) platforms. NAPPFAST was a platform designed and 

developed in 2002 by the North Carolina State University in collaboration with ZedX, 

Inc. as a general pest and disease tracking and forecasting system (Magarey et al. 2007). 

ipmPIPE was a platform that was evolving from the USDA Soybean Rust Information 
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System in 2005 to better manage the diseases including soybean rust (Isard et al. 2006). 

Both platforms have been proven effective in managing diseases, with the ipmPIPE 

saving growers up to $299 million in fungicide costs alone in 2005 (Roberts et al. 2006). 

It has also shown considerable adoption and utility by certified crop advisors (Bradley et 

al. 2010). This platform will be responsible for incorporating the BYD-DSS once it is 

complete. 

BYD-DSS 

Brief explanation of the BYD-DSS 

As reported in chapter 2, the BYD-DSS represents the knowledge base of a DSS 

for management of barley yellow dwarf (BYD) disease, which is caused by the aphid-

vectored barley yellow dwarf virus (BYDV). BYDV infects approximately 150 Poaceae 

species worldwide and is a devastating disease of barley, rye, wheat, and many other 

cereal grain crops (Dôarcy and Burnett 1995). Being a complex and sporadic disease that 

is difficult to predict with simple mathematical models and causing an estimated 11-33% 

yield loss in wheat annually (Lister and Ranieri 1995), BYD is a disease that is in dire 

need of expert-based precision management.  

The BYD-DSS is used to determine the necessity of BYD management tactics 

given certain conditions. If these conditions are not met, then no management action is 

necessary. The BYD management practices addressed by the BYD-DSS are the use of 

insecticide treated seeds, planting date alterations, scouting for virus vectors (aphids), and 

foliar insecticide spray (See chapter 2 for more details). All of these management tactics 

are aimed at decreasing aphid vector populations, as vector management is the only 
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prophylactic measure useful to avoid plant infections. Insecticide treated seeds will 

protect the crop from aphid vectors during its most susceptible stages, the first several 

weeks of growth (Smith and Sward 1982; Stewart 2013). However, treated seeds are 

expensive, harmful to the environment, not always effective, and can lead to insecticide 

resistance (Stewart 2013). Planting date is an extremely important decision in BYD 

management and can help alleviate need for insecticides (Thackray et al. 2009). This is 

because the later the grower plants, the less the probability for seedlings to be exposed to 

viruliferous aphids during fall migration. The result of scouting for aphids in the winter 

wheat fields is used to consider if there is a need to spray insecticide. Finally, insecticidal 

spray on seedlings and young plants has environmental costs and is not always necessary 

in managing BYD, for instance if the vector and virus are not currently present in an area. 

In addition to the literature and knowledge of the thesis author, most of the 

knowledge contained in the dependency networks of the BYD-DSS currently comes from 

Dr. Piero Caciagli (CNR, Italy), an expert in barley yellow dwarf epidemiology with over 

three decades of experience in the field.  He has confirmed that the outputs of the 

networks are decisions an expert would make given the input conditions. 

On their own, the BYD-DSS dependency networks are not able to output optimal 

management recommendations unless all input queries are determined. However, once it 

is integrated into a web-based platform that has the capability of using an inference 

mechanism to interpret the management strategies even when most of the input 

conditions are not available, it will be a much more useful management tool. 

In this chapter a scoring mechanism to estimate missing data in the dependency 

networks is proposed. The numbers seen in the scoring system are based on the thesis 
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authorôs knowledge of interactions of input conditions and output recommendations. In 

addition to the scoring mechanism a separate calculation called Success is proposed. 

Success calculates the probable benefit of a management decision using the scoring 

mechanism and penalizes the grower if the incorrect management decision is made. This 

ñSuccessò will later be directly correlated with probable yield. 

 

Methods 

Scoring Dependency Networks 

To incorporate the BYD-DSS in a system able to output management decisions 

without knowledge of all input conditions, I added a secondary inference mechanism to 

the dependency networks. This inference mechanism was loosely based on the concept of 

the Peanut Rx program developed by the University of Georgia (Culbreath et al. 2009). 

The novel inference mechanism included a scoring system for environmental/pest 

conditions that determine necessity of a management action.  

A benefit of this novel inference mechanism is that measurements of the accuracy 

of recommendations given certain input conditions can be calculated. Algorithms to 

determine efficacy of management tactics directly correlate with expected yield 

(explained in detail below). This scoring system was based on the broad literature 

available on BYDV, on the thesis authorôs and expertsô opinions. The inference 

mechanism reported here is a prototype and represents a preliminary mechanism which 

will be built upon as more access to grower-input data is attained. It is not currently based 
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on any experimental data, as hard data for this does not currently exist in an analyzable 

format. 

Inf erence mechanism 

 A method of inferring an output of networks with missing information, built in 

this chapter with the use of a scoring system. Refer to Figure 3-1 for a visual 

representation of the layout of this inference mechanism. 

 

Output   

 End product of a network (can be a management recommendation or an input for 

another network). Seen in Figure 3-1 at the top of the figure. It is determined by the Score 

of values in relation to the threshold. 

Where: 

Threshold 

This threshold is a number that is the minimum (and maximum) Score necessary 

to solidify a pathôs output.  

ὕόὸὴόὸὝὬὶὩίὬέὰὨὕόὸὴόὸὝὬὶὩίὬέὰὨὕόὸὴόὸ 

Score 

A Score refers to the sum of the values for any condition in a given dependency network. 

The Score is used in determining the output of a path using thresholds. Path: Connection 

of values of conditions to outputs using operators represented by colored lines in 

dependency networks. 
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ὛὧέὶὩ ὠὥὰόὩ  

Values 

Weights and risks were multiplied to obtain a value. The value represents the 

combined importance of the weight and risk. 

ὠὥὰόὩὡὩὭὫὬὸz ὙὭίὯ 

Weights 

 Weights refer to an overall importance of each environmental condition in making 

a management decision based on the thesis authorôs opinion and knowledge previously 

modeled in Chapter 2. The weights for each condition used as a final dependency 

network output had to sum to 100%. Condition: Environmental or pest status 

information that is considered necessary in determining the output of a network 

 

ὡὩὭὫὬὸ ρππϷ 
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Risks 

 Risks refer to relative disease probability of any variable of a condition compared 

to the other variables of a condition. These risks must also sum to 100. Variable: A 

separation of conditions into categorical or ordinal ranges. 

 

 

ὙὭίὯ ȟ   ρππ 

 

To finalize the inference mechanism of the networks, a threshold between outputs 

had to be reached. Weights and risks were manipulated, within reason, until Scores 

achieved thresholds determining outputs similar to paths determined by the BYD-DSS 

networks built in Chapter 2. Eventually risks, weights, and thresholds will be replaced by 

analysis of accumulated grower data. 
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Figure 3-1. Correlation of Weights, Risks, Values, Scores, Thresholds, and Outputs in the new inference 

mechanism. Where X refers to any variable of the condition. 

 

Success of Management Decisions 

Success 

The added benefit of this inference mechanism uses the calculated Scores to 

determine if a management decision suggested by the system was followed by the user 

(Success) or to determine the extent of a penalty if the suggested decision was not 

followed (Failure). The Success of a single management option is set to a maximum 

value of 100. For each management recommendation in the BYD-DSS the Success of 

each decision executed by the grower can be added to the Success of each previous and 
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following decision causing a chain of interacting decisions that will add up to a final 

Success at the end of the fall (as the management recommendations are ones to be 

conducted during the fall). 

The algorithms determining Success vary for each of the three management 

decisions addressed and are found in Appendix B. Again, these numbers are, based on 

magnitude of the Scores from the dependency networks, in a range of 0 to 100 and for 

now they were assigned based on the authorôs understanding of the BYD disease 

management options.  

Results  

To illustrate the results of the BYD-DSS dependency networks based on the 

scoring system outlined above, I will use the dependency network called óDecision to 

Buy Treated Seedsô (Figure 3-2). All other scored networks can be found in Appendix B. 

The Infectivity Risk network was omitted from this mechanism and replaced by 

aphid/BYD problem in previous years. This was done because the percentage of virulent 

migrants during any given year is generally not available. 

Threshold 

Thresholds determine outputs of networks as follows: 

ὛὧέὶὩυπȟὄόώ ὸὶὩὥὸὩὨ 

ὛὧέὶὩ υπȟὄόώ ὸὶὩὥὸὩὨ 

ὛὧέὶὩ υπȟὄόώ ὸὶὩὥὸὩὨ 
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ὛὧέὶὩ υπȟὄόώ όὲὸὶὩὥὸὩὨ 

ὛὧέὶὩ υπȟὄόώ όὲὸὶὩὥὸὩὨ 

ὛὧέὶὩ υπȟὄόώ όὲὸὶὩὥὸὩὨ 

ὛὧέὶὩ υπȟὄόώ όὲὸὶὩὥὸὩὨ 

ὛὧέὶὩ υπȟὄόώ όὲὸὶὩὥὸὩὨ 

Scores 

The Scores determined for each path are as follows: 

ὙὩὨ ὴὥὸὬ ςψ ρτ ςτ έὶ ρς φφ έὶ υτ 

ὕὶὥὲὫὩ ὴὥὸὬ ρς ρτ ςτ υπ 

ὣὩὰὰέύ ὴὥὸὬ ςψ φ έὶ π ςτ υψ έὶ υς 

ὈὥὶὯ ὦὰόὩ ὴὥὸὬ ςψ ρτ τ τφ 

ὒὭὫὬὸ ὦὰόὩ ὴὥὸὬ ρς φ έὶ π ςτ τς έὶ σφ 

ὖόὶὴὰὩ ὴὥὸὬ ςψ φ έὶ π ρς έὶ τ τφȟσψȟτπȟέὶ σς 

ὄὰὥὧὯ ὴὥὸὬ ρς φ έὶ π ρς έὶ τ σπȟςςȟςτȟέὶ ρφ 

ὋὶὩὩὲ ὴὥὸὬ ρς ρτ ρς έὶ τ σψ έὶ σπ 

Values 

The values determined for each variable are as follows: 

ὣὩίτπϷzχπ ςψ 

ὔέ τπϷzσπ ρς 

ὌὭὫὬ ςπϷzχπ ρτ 
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ὓὩὨὭόάςπϷzσπ φ 

ὒέύςπϷzπ π 

σπϷ τπϷzφπ ςτ 

ρπ ςωȢωϷ τπϷzσπ ρς 

π ωȢωϷ τπϷzρπ τ 

Weights 

In determining the necessity of treated seeds to reduce risk to infection of BYDV, 

the long term history and short term history of the field is most important because long-

term forecasts of aphid migration and BYDV transmission will be relatively inaccurate. 

Thus, these are the most important conditions, they carry the most weight (óConsistent 

Aphid/BYD Problem in Previous Yearsô = 40% & óCrop Damage from BYD Previous 

Seasonô = 40%). A model that forecasts magnitude of aphid migration several 

(potentially) several months in the future is likely to have a large error and should not 

carry quite as much weight in the decision (óAphid Migration Prediction for Following 

Seasonô = 20%).  

Risks 

The risk of BYDV inoculation and subsequent BYD damage in fields that have 

had a long-term history of aphid/BYD is much higher than fields that have not. In Figure 

3-1, for the óConsistent Aphid/BYD Problem in Previous Yearsô condition the risk of 70 

is assigned to óYes,ô and 30 is assigned to óNo.ô For the óAphid Migration Prediction for 
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the Following Seasonô condition the risk of 70 is assigned to óHigh,ô 30 is assigned to 

óMedium,ô and 0 is assigned to óLow.ô Finally, in the óCrop Damage from BYD Previous 

Seasonô condition the risk of 60 is assigned to ó>30%,ô 30 is assigned to ô10-29.9%,ô and 

10 is assigned to ó0-9.9%.ô  

 

Figure 3-2. Scored óDecision to Buy Treated Seedsô dependency network.  

Success of Management Decisions 

Figure 3-3 is an example of a flow chart the user may be able to access in the DSS 

for BYD management. Each decision made (Yes) comes with a Success and a Failure. 

Failure is calculated simply by 100-Success (as described in Table 3-1). Thus, failure 

represents a penalty for not conducting the suggested management decision. There will 
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be many potential combinations of management tactics leading to a final, cumulative 

Success. This final Success will be translatable into a probable yield value. With this 

Success/probable yield, the input cost and sustainability of management decisions that are 

used to reach this Success/yield can be calculated and optimized for profit and 

sustainability (and others later, if deemed important). In terms of yield, the Success of 

planting treated seeds and conducting full foliar insecticide spray will always be the 

greatest. However, these tactics are generally not optimal based on input costs and 

sustainability. 

For example, the highest Success may be 300 (Success of treated seeds + planting 

date + spray). However, another set of management tactics may lead to a Success of 275 

(example Success), but the input cost will be lower and thus the profit will be greater, so 

this set of tactics will be suggested rather than the tactics leading to the Success of 300. 

Since the calculations of input cost and sustainability are separate calculations, they are 

not addressed by the scoring system in this chapter, but will be incorporated into the final 

inference mechanism. 

These values will be based on whether or not the correct decision was made at the 

correct time, which is in turn based on the first level of scoring described above. If a 

mistake is made executing a management option, then the yield will be lowered.  
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Figure 3-3. Flow chart of management decision Success (and failure). Each management decision proposed by the system 

can be followed or not, and the failure to follow an advised decision carries penalties that can be calculated and seen by the grower on 

a smart phone app or web based interface. The grower will be able to see a decision tree similar to this one, but the computer will 

optimize the management program by finding the set of practices leading to the highest Success, profit, and sustainability desired by 

the user (the latter two are not calculated by this tree). As seen from this figure, each management decision affects the others.  

Treated Seeds (Table 3-1) 

Success of planting untreated seeds varies based on the following equations: 

Equation 1: 

If(Score > Threshold, then Success = (((66 ï Score)/20)*100)) 

Equation 2: 
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If(Score Ò Threshold, then Success = 100) 

Where 66 represents largest Score in the Treated Seeds dependency network, 20 

represents the difference between the largest Score (66) and the largest Score in which it 

would be suggested to buy untreated seeds (46), and 100 represents the maximum 

possible Success. 

If the Score is less than the threshold, then, according to the dependency 

networks, untreated seeds should be just as successful as treated seeds. Thus, Success of 

both planting treated and untreated seed would equal 100. 

 

Example of how success can be calculated using incomplete information 

As an example, assume the only information on conditions for the treated seeds 

decision is that he or she had over 30% yield loss attributable to BYD in the previous 

season. Referring to Table 3-1, notice that the average Score knowing only this piece of 

information is 50.667 (calculated by the equation: 

 ὠὥὰόὩ Ϸ ςτφȢφφχ

ςπ υπȢφφχ). From this information it is assumed that the average Score knowing only 

over 30% yield loss is 50.667. Using this average Score the average Success can be 

calculated using the equations above. To begin, the threshold is 50 for this decision, 

50.667 > 50, thus equation 1 is used. Success = ((66-50.667)/20)*100 = 76.667 . This 

Success indicates that the average Score will lead to a Success of 76.667 for planting 

untreated seeds (and a Success of 100 for planting treated seeds). There is a range 

associated with this, but the average is the most likely scenario. Once more information is 
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obtained and as time gets closer to the management tactic execution the range will 

decrease due to more accurate forecasts. These calculations can be accomplished even if 

the grower and forecasts possess absolutely no information on the conditions by 

assuming average values for all variables of all conditions. 

 

 

Table 3-1.Treated seeds management decision scoring table. This is table 1 of 3 concerning management 

decision scoring. Others can be seen in Appendix B. Columns 1, 4, and 7 are the conditions and variables 

present in the Decision to Buy Treated Seeds network. Columns 2,5, and 8 are the values of each variable. 

Column 10 is the Score of each combination of variables based on the sum of observed values. Columns 11 

and 12 are the Success of treated seeds and untreated seeds, respectively. Columns 3, 6, and 9 are the 

average Scores given only knowing the variables in columns 1, 4, and 7, respectively (e.g. the average 

Score given the only data available is that the field has had a history is 48; and for knowing the field has 

not had a history, the average Success is 32). The equation to calculate the Success of untreated seeds is If 

Score > 46, then ((66-Score)/20)*100, otherwise 100. 46 is the highest Score that would be suggested to by 

Condition 

(History) Value

Average 

Score

(History)

Condition

(Prediction) Value

Average 

Score

(Prediction)

Condition 

(Dam Prev 

Season) Value

Average Score 

(Dam Prev 

Season) Score

Success 

(Treated 

seeds)

Success 

(Untreated 

seeds)

Yes 28 48 High 14 47.33333333Over 30% 24 50.6666666766.00 100.00 0

Yes 28 48 High 14 47.3333333310-29.9% 12 38.6666666754.00 100.00 60

Yes 28 48 High 14 47.333333330-9.9% 4 30.6666666746.00 100.00 100

Yes 28 48 Medium 6 39.33333333Over 30% 24 50.6666666758.00 100.00 40

Yes 28 48 Medium 6 39.3333333310-29.9% 12 38.6666666746.00 100.00 100

Yes 28 48 Medium 6 39.333333330-9.9% 4 30.6666666738.00 100.00 100

Yes 28 48 Low 0 33.33333333Over 30% 24 50.6666666752.00 100.00 70

Yes 28 48 Low 0 33.3333333310-29.9% 12 38.6666666740.00 100.00 100

Yes 28 48 Low 0 33.333333330-9.9% 4 30.6666666732.00 100.00 100

No 12 32 High 14 47.33333333Over 30% 24 50.6666666750.00 100.00 80

No 12 32 High 14 47.3333333310-29.9% 12 38.6666666738.00 100.00 100

No 12 32 High 14 47.333333330-9.9% 4 30.6666666730.00 100.00 100

No 12 32 Medium 6 39.33333333Over 30% 24 50.6666666742.00 100.00 100

No 12 32 Medium 6 39.3333333310-29.9% 12 38.6666666730.00 100.00 100

No 12 32 Medium 6 39.333333330-9.9% 4 30.6666666722.00 100.00 100

No 12 32 Low 0 33.33333333Over 30% 24 50.6666666736.00 100.00 100

No 12 32 Low 0 33.3333333310-29.9% 12 38.6666666724.00 100.00 100

No 12 32 Low 0 33.333333330-9.9% 4 30.6666666716.00 100.00 100
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untreated seeds. 66 is the highest overall Score. 20 is the difference between 66 and 46. Finally, 100 is the 

highest possible Success.  

 

Planting Date (Table B-1) 

Optimal planting date for a region can be calculated by climate data and plant 

growth models alone, which weather engines can run. However, aphid BYDV vector 

migration data is necessary to alter this date to avoid BYD damage. In the table and 

subsequent equations displayed in Appendix B, 5 weeks are addressed as potential 

planting dates. They may suggest week -2, which corresponds to 2 weeks before the ideal 

date calculated only by climate and growth model data, to week 3, which corresponds to 

3 weeks after the ideal date. Week 0 corresponds to the same week suggested by the plant 

growth model and climate data. 

Spraying (Table B-2) 

Optimal foliar insecticide spray timing using aphid population data was 

determined. Success of conducting a full insecticide spray is always 100, because it will 

always be more successful in terms of yield, than conducting a half (or diluted) spray or 

no spray (assuming no cost or sustainability barriers since these will be calculated 

separately). 
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Discussion 

This chapter reports a prototype of an inference mechanism that will be integrated 

together with the BYD-DSS knowledge base in the BYD disease decision support 

system. The inference mechanism is used to provide the most probable successful 

decision taking into account only the available information. A projected set of best 

management decisions can be calculated from the Scores in this inference mechanism to 

keep the grower within the scope of a general management goal. This scoring system is a 

very powerful mechanism because it is not necessary to possess information on all 

environmental/pest conditions to obtain a management decision. If there is missing 

information on conditions, the inference mechanism can calculate the average óScoreô of 

a network. With this average óScoreô the probable benefit of the management 

recommendation will be calculated as a óSuccess,ô which is directly correlated with yield. 

This is a novel use of big data analysis that will be optimized for the inclusion of 

the BYD-DSS into the Integrated Pest Information Platform for Extension and Education 

(iPIPE). iPIPE is an already established platform that contains databases on crop pests 

and diseases management strategies as well as a user interface available via smartphone 

app and website. It can receive pest and disease information from sensors and give work 

orders to task controllers. It also allows a feedback between sensors and task controllers; 

in this case via a user interface available to growers. 

iPIPE incorporates environmental, pest, statistical models, and expert advice data 

into its platform to report accurate and precise conditions for individual fields. The 

models are constantly updated to give the grower real-time information. The BYD-DSS 

reported in this thesis will be integrated into the iPIPE platform using the inference 
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mechanism proposed in this chapter and then made available to any grower in any 

location at any time around the world. Since this platform is maintained by industry there 

is a monetary incentive to sustain the program, giving it a major potential to make a 

difference in winter cereal grain production. 

Before its integration into iPIPE the BYD-DSS will be adjusted to output final 

wheat yield (which will be directly correlated to Success), profitability and sustainability 

forecasts.  Since this inference mechanism is not based on factual data, at this point it is 

likely to have many illogical assumptions. However, after many years of accumulated 

grower input data, the mechanism can be rebuilt to more accurately represent optimal 

management practices. For now, however, the best inference mechanism that can be built 

is based on expert and the thesis authorôs knowledge. 

Once this inference mechanism is finalized, it will be integrated into the iPIPE 

user interface. This user interface will be altered to better address growersô needs. A 

study on growersô adoption of smartphone precision agriculture programs is being 

investigated by a sociological component of this project (Gruber 2014). In the past, 

DSSôs have shown high adoption rates along with management improvements (Roberts et 

al. 2006; Bradley et al. 2010). Sociological information will make it easier to market the 

program to growers by showing them that it can benefit farming efficiency. 

Precision agriculture and DSS development is the direction that agricultural 

systems are heading (Jones 2013; Magarey et al. 2010; McBratney et al. 2005; Gebbers & 

Adamchuk 2010). Many potential inventions that are being developed currently will aid 

this systemôs accuracy. Such developments include drone detection of pathogens in 
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plants, detection of insect populations using drones, and communication between sensors 

in the field and databases to name a few (Jones 2013; Primicerio et al. 2012). 

With the industry backing this program, it will be able to remain active in 

agricultural system for an extended time and will also be adapted to manage many other 

crop pests and diseases. High adoption of this platform will save growers money on 

pesticide costs and increase sustainability and efficiency of agriculture worldwide. 
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Chapter 4: Discussion 

Barley yellow dwarf virus (BYDV) is the causal agent of barley yellow dwarf 

(BYD) disease, which causes 11-33% global yield loss in winter wheat (Lister & Ranieri 

1995). Its occurrence is difficult to predict due to the complexity of interactions between 

virus, vector, and host, and the disease devastates grain growing regions in epidemic 

years. Many researchers have developed models to predict the occurrence and spread of 

BYDV and its vectors.  Web-based platforms for precision agriculture crop management 

are generally available for many crop pests and diseases, but they lack a mechanism for 

analysis of unstructured user data.  

In this thesis I integrated the available BYDV literature together with the 

knowledge of experts in BYDV epidemiology in an expert decision-support system 

(DSS). The DSS was built to determine BYD management recommendations for winter 

wheat based on input conditions, such as history of virus and vector presence in a 

geographical area, farming decisions and weather forecasting data. The DSS developed in 

this thesis is to be implemented into the Integrated Pest Information Platform for 

Extension and Education (iPIPE) maintained by industry. This DSS serves as a model of 

how expert knowledge can be used to efficiently manage complex pest and pathogen 

systems in a precise field by field manner. Precision management of BYD will help to 

increase productivity of fields at risk of BYD while decreasing management costs by 

applying management practices with more logical timing. 
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Major accomplishments 

Aside from using existing mathematical models and expert knowledge on BYDV 

and its vectors, suction trap data of aphid migration was analyzed to better understand the 

phenology of the disease. Daily data collected for over 20 years in Northern Italy from 

two locations having a climate similar to Pennsylvania were provided by Dr. Piero 

Caciagli (CNR Italy). These data were analyzed for correlations between the environment 

and aphid vector migration, which can potentially be used to track the aphid vectors. As 

expected from the literature, R. padi and R. maidis populations migrate twice per year, 

while S. avenae migrates primarily in the spring with a small migration in the fall. Since 

winter wheat is most susceptible to BYDV early in the growing season, I looked at what 

environmental factors could be used to predict the beginning of the fall migration for 

aphids that serves as main vectors of BYDV in temperate regions. As seen in appendix C, 

migration of R. padi usually starts at various degree day (DD) accumulations, but 

typically centers regional migration around 1500 DD. The earlier the migration starts, in 

terms of DD, the more severe the migration tends to be. Also, aphids tend not to fly when 

the wind speeds exceed 15 km/hour. While suction trap data on aphid migrations are also 

collected in the US, these data were not collected consistently which prevented in depth 

analysis of the aphid migration, but can be used to roughly estimate aphid migration for 

the dependency networks created in chapter 2. Although the analyses in Appendix C and 

other previously published models may give a good indication of aphid vector migration, 

often wheat fields are located far from suction traps and at the moment we are lacking 

field data to demonstrate that aphid migrations in Pennsylvania occur exactly as in Italy. 

Suction trap data from the Midwest United States was analyzed, but it was not as 
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complete as the data from Italy, so it was only used to observe calendar date phenology 

of the migrations. Thus, in my work logical assumptions were made to reduce complexity 

of conditions leading to management recommendations (e.g. aphid/BYD history of a field 

can convey information on whether environmental conditions in a location generally 

allow transmission of BYDV and the progression of symptoms in host plants).  

In chapter 2, dependency networks were used to connect field conditions to 

management recommendations. These recommendations included the use of insecticide 

treated seed, optimal planting date, timing and necessity of scouting for aphid vectors, 

and timing and necessity of foliar insecticide sprays. These conditions were then 

separated into ordinal ranges called variables. Dependency networks connected these 

variables to a management recommendation, with a total of 72,387 combinations of 

variables to reach management recommendations. This DSS will be hereby referred to as 

the BYD-DSS 

Inference Mechanism 

The dependency networks are a type of deterministic inference mechanism that 

requires knowledge of every condition to give a management recommendation. The 

development of a novel inference mechanism capable of interpreting missing data, as 

reported in chapter 3, will make the DSS more useful to more growers. This will be 

useful because growers, generally, do not possess all information used as inputs for the 

dependency networks. Currently, most DSSôs give exact management recommendations 

that do not change over the course of the season. However, the inference mechanism 
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proposed in chapter 3 allows for a flexible and dynamic management plan that increases 

in accuracy as the growing season progresses and real-time pest data comes in. Future 

management recommendations are also altered by the previous management actions 

determined by grower feedback. Any amount of field condition information can be put 

into the BYD-DSS networks (even none) for the numerical inference mechanism to give 

an optimal management recommendation given the available information. The inference 

mechanism will then calculate the maximum yield a grower can expect after following all 

the recommendations, or a penalized yield if the grower fails to meet the recommendation 

given by the system.  

Possible Improvements 

Eventually, as grower input data accumulate in the databases, heuristic 

components of the dependency networks will begin to be replaced by statistical models 

generated using real data. Models will increase the local accuracy of the DSS. The more 

access to grower-input information there is, the more accurate the system will eventually 

be. After many years of data accumulation, the models and dependency networks can be 

reevaluated to give optimal BYD management recommendations. The knowledge base 

and inference mechanisms in chapters 2 and 3 are the most accurate methods of making 

management recommendations given the current statistical model availability. 

The BYD-DSS addresses management options for only a single disease in winter 

wheat (and possibly useful for other winter cereals). However, this is not the only disease 
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or pest that affects winter wheat. Winter wheat is also not the only crop that encounters 

problems from disease and pests. Management options addressed by the BYD-DSS may 

not solely affect BYD management. A more encompassing method would be to 

accumulate multiple DSSs (similar to the one here) for managing all winter wheat pests 

and diseases. Since the DSS reported here only regards BYD management it ignores 

impacts one management option may have on another problem in the fields. For example, 

treated seeds may increase slug damage and late planting may increase Fusarium 

prevalence (Personal communication with John Tooker, Kelley 2001). To deal with these 

potential conflicts the numerical mechanism and yield calculations from chapter 3 can be 

used. A computer could take these yield (or eventually sustainability and profit) 

calculations from multiple pest and/or disease DSSs and optimize the management 

regimen. From this a winter wheat DSS could be obtained. 

The dependency networks for the BYD-DSS are laborious and often difficult to 

design. It would take a very long time and many man-hours for similar DSSs to be 

designed for all the pests and disease of winter wheat. It would have positive effects in 

the long run; however, there may be simpler ways to accumulate a knowledge base and 

design inference mechanisms. For example, if the iPIPE platform could have extension 

agents and consultants answer survey questions on how to best manage certain pests and 

diseases and what environmental factors are important in making these decisions a 

computer program could design dependency networks theoretically. To accomplish this, 

the program could recognize key words in the responses and after analyzing many 

responses connect most commonly mentioned conditions with management options 

recommended by the experts. This is a rough idea, but if it were to be studied and 
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expanded on, it would streamline the process of determining best management practices 

for other pests and diseases in winter wheat (and other crops eventually). 

A series of surveys could also be used to improve the BYD-DSS. There are likely 

many more management options for BYD not addressed by the dependency networks, 

e.g. fertilizer or crop rotation. The impact of these management practices on BYD could 

be obtained by more experts submitting their opinions on optimal management of BYD. 

The dependency networks are simply the start to a more complex accumulation of 

knowledge of how to better manage the disease. 

As indicated above, this system requires feedback in order to improve. Thus, its 

success will depend on the adoption rate of the final product. Leaving the management of 

this product to the industry could create a sustainable business model that will perpetuate 

the project in the absence of federal government funding. The promise of integration of 

the DSS into the already established Integrated Pest Information Platform for Extension 

and Education (iPIPE) removes the labor-intensive task of creating a publically available 

platform as there is already an established one to adopt it. Also, sociological studies are 

being conducted by a collaborating sociologist to gauge growersô acceptance and 

adoption of web-based platforms, such as the iPIPE (Gruber 2014). These studies will 

help to increase dissemination of the BYD-DSS. 



81 

 

Future Work  

Before the BYD-DSS is integrated into iPIPE it must account for the cost and 

sustainability of management decisions. Since the Success scores reported in chapter 3 

are only correlated to yield, the cost and sustainability of the management practices 

recommended by the system must be calculated and optimized along with yield.  

After the DSS has been integrated into iPIPE grower input data will start 

accumulating. Instruments to better measure input data for the BYD-DSS will be an 

important improvement to the system. Drones are already being developed for virus 

detection in crops (Jones, 2013), and could be easily altered to enhance this system. They 

could be altered to detect aphid populations at low levels in fields using infrared, or 

possibly plant stress volatiles. Other automated sensors, can be developed as well. If a 

suction trap were to be designed to automatically count aphid migrants of certain species 

(possibly by measuring cornicle length), labor for inputs of this system would be 

decreased significantly. There are many ways of automating the farming process and 

making it a more efficient business.  

BYDV surveys should be done to better understand the species of viruses present 

in certain areas. This information can help reduce the number of variables necessary in 

predicting BYD damage in certain areas. For example, knowledge that a location has 

only one species of virus that is vectored specifically by a species of aphid indicates that 

other potential BYDV vectors can be ignored in aphid population calculations. Appendix 

D gives the protocol of a species-specific BYDV test to be used to see if wheat is infected 
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by BYDV and to identify the BYDV species. Results from these tests can be used in the 

scouting and spraying recommendations, and also in aphid migration modeling.  

One of the main goals of this project is to educate individuals in the field of 

agriculture about the possibility and utility of sharing field information to better manage 

crops. This includes not only growers who can directly use systems similar to this one, 

but also students. Classes should be implemented to educate students studying agriculture 

on how to use and create DSSôs similar to this one. Education of this technology will aid 

in the dissemination of information from the DSS and hopefully lead to greater 

acceptance of it, which will in turn propagate development of DSSôs similar to the BYD-

DSS for many other crop diseases. 

This project is given the potential to be very successful due to the expansion of public 

access to online information via database-searching platforms, such as iPIPE, and 

availability of portable internet-capable devices. Platforms capable of using multiple 

databases of user input information to gain knowledge on larger scale pest and disease 

information allow for advance knowledge of crop pest and disease forecasts. Better 

forecasts of crop pest and disease information allows for a more optimized management 

plan. Web-based platforms, such as iPIPE, can combine these data from various 

databases to give accurate and up-to-date information and forecasts on crop pest and 

disease statuses. Precision agriculture is the link between this increase in information 

availability and farm management. Real-time disease management platforms delivered by 

precision agriculture methods are the future tools to help growers make more informed 

management decisions to decrease input cost while increasing yield and sustainability.  
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Appendix A

Dependency Networks from Chapter 2 

In this appendix are the deterministic dependency networks as described in chapter 2, before the 

addition of the novel inference mechanism. 

 

Figure A-1 
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Figure A-2 
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Figure A-3 
































































