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ABSTRACT

Precision agriculture often uses computerbased decisiorsupport systems
(DSS¥) to disseminatepest and diseaseinformation to growersto more efficiently
manageagricultural productions.In this thesis,a DSSis devebpedto be accessedy
growersfor managementf barleyyellow dwarf diseasecausedby Barley yellow dwarf
virus. The diseasedevastategyrain growing regions around the world in epidemic
patterns.It is a well-studied disease but managementan be greatly improved with
determinationof necessityand optimal timing of insecticidetreatedseed,planting date,
pest scouting, and foliar insecticide spray treatments,in chronological order. Using
publishedliteratureandinterviewswith expertsin BYDV epidemology andagricultural
decisionmaking, dependencyetworkswere usedto modelfield conditionsthat would
logically warrant these managementctions. The networks representechine possible
outputs:useinsecticidetreatedseed,use untreatedseed,plant crop immediately,delay
planting, scoutfor aphidvectorsof BYDV, do not scout,full foliar insecticidespray,¥2
(diluted) insecticidespray, and no insecticidespray. There were a total of 243 total
combinationsof conditionsto reachthe seedtreatmentrecommendation®,720to reach
the planting daterecommendation£2,208to reachthe scoutingrecommendationsgnd
216to reachtheinsecticidesprayrecommendationsn this work, | considerandstriveto
improve the mechanismfor inferring output recomnendationseven when using only
partial datasets.

Inferencemechanismsre necessargomponent®f DSSs to extrapolateoutputs

from input datato give usersrecommendationsThe dependencynetworks represent
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inferencemechanismshatrequireall inputinformationbe presenteforea management
recommendationcan be made. This thesis proposesa novel secondaryinference
mechanisnstructureto be overlaid onto the dependencyetworksthat usesa numerical,
ratherthan categoricalor ordinal, calculationsysemto handlepartial input information.

This inference mechanismused the dependencynetworks as a templateto make a
prototype numerical representationof importance of field conditions in making
managementecisions.Secondlyit calculatesa likely succes of these management
decisionswhen executed,and penalizesthe grower if he or she executesan incorrect
managemertiactic. Thesucces®r penaltiesaremeasuredn termsof optimumyield. It is
also proposedthat this secondaryinferencemechanismcan allow a BYD management
decision forecast based on pest and disease statuses, as well as reaktime
recommendations.

The purpose of the DSS developed in this thesis is to show the applicability of
implementing DS& baed on expert knowledge into a platfoffRIPE) that is capable
of gathering data from users in a tway feedback loopSince future management
decisions rely on previous ones the feedback loop allows management practices
conducted by the grower to alter future management recommendationsbgivie
system. It also enhances large scale (regional) pest monitoringnwith of individual
field data.The DSS reported in this thesis will serve as a basis for the evolution of
precision management of crop diseases. It will aid in reducing inpuandsincreasing
sustainability and cereal grain yield in BYD management and eventually it will serve as

model to better manage other crop pests and diseases.
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Chapter 1

Introduction
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experhbeaesaedr al garviet htninse tfoar mesro nd ihroevc tt 0s U Ay ene

increase crop yield, economic gain, and su

Technology has advanced enough to all o\
instantaneously via the I nteropee. aMaoyabeg
using programs that control machi nes, S U (

i nrtveenti on (Auat 20MeeClne ndkme@ar e2 08dh uurTrherss
systems are <controlled via a feedback | o
contds onwhich elicit an action, which in tu
process can be modeled with disease manage
only machi nes and monitors providing I nf
i nf or meotm otnhefi r fi el ds. This all ows for an

strategies for any given | ocation.



2
Barl ey vyell ow dwarf ( BBvaDr)| eiys yeae | d ioswe adswea

(BYDV) . BYDV has a complex || ifescydlee morsd
economically important viral di sease of S
di fficult to estimate due to | ack of data
however, I ndi vidual wheat f iyeledxsp eirni eanrceea sa Vv
yield | osses between 11 and 33% and somet.]
Pi ke 1990). There are several components i
reali zed. BYDV is a virus w©ompbexd,ftempnt

These viruses can be transmitted by more
aphids feed upon, and transmit BYDV to, va
rye, and coraropsswetileas hvel hdstesver BYD
of grassesPoac(hMiel |Ifearmidnyd Rasochov™ 1997).
this thesis work is based, th®hepalesifpliur
padibirdoabermhiddicores | Sibbaph(&@pghash gr a
aphid3chiamnaphi 6gge ambuwnag)mn.

This ohaoyaaesi ef B8aelteyewebf,ow hdewalrifo |voi
of its wvectors and hosupporatndendieneust iiln tmga
and, iam , gemerected pathogens. This thesis w
of a singlueppdeti siyesmem by modeling the | of¢
wheat, and using computer-tidme abbagsener t 0 np@
met eor allad@@i dal cal cul ate the most efficient
in the worl d.ocoMiemtdues ttdheits i mportance

production and the economic damage from BY



Literature Review

Taxonomy

The vett 8¥®V are commonly known as aphi
|l nskepcta tHemiogtderapihliydi ddoe s family is very
500 genera and over 4,400 species, approxi
mai wluy eior tahbi | i ty taos vifeleagypromaphagenphl oe
main vectors of BYDV bel ong Rtho ptalH e sfi,plhluanwip
R. méiidiodi on &ovdeinzgaepahmisn u m.

There are five virmasesausethbeUdi seds &t
yell ow dwaBfar |l Ejeyel & B D¥PWVYr f BNWAKBUYSDV
RMVBYDWGYan@Ger eal Yel | qovy DdRvRAM Tt h ev i trruasn s mi s s
efficiency of ead¢m \wamrutshe ype¢ Rloecphecgulesd D 6 9 ;
Johnson and .BYDWosy BLO&IF@n gL utoe otvhi dn @ idaaminluy | e
acids aregmadeéi mfeaa 9iesheenssielng | ef sposaindiede RN
from 5. Kbtono6sDze (Miller et aMi | e60D2ané
Rasochov™ 1997). -PAVhendi-MBwsDeVse | BYW@V t o t he
Luteqviirrus1999-RPVie s B&dDivelsaswa 0 lkdr cauwsidr us
commmonl!l yCenraenaeld yel | omCYDWgr f( Sunirtths and Bar
BYDR®YMV and -SBYDad/vet yobfd i asaigped to gener a
2011)so for simplicity theyBWDAM ilse trreafnerni
most eff Rbbobpat bygigpridlint oppaidojn Ba¥NlEWa s peci f i c al
byitobion BavWb®ivmesci f iRal pyB¥RNY Ry mai and
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196J90hnson ahdy Rochow
BYDV can infect a wide rRoge€boer memd s
Gr ami)nedlehepecies that will be focused on

Triticunf wienstteirvuwih eat )

History of BYD

BYD first became a problem in the Unit ¢
epidemic proportions and wags Wi devepitead atttl
( We bsatngdlr Phil lips badh2 v eaddhre, k mMg®eleimzsap hi s
graminum thought to have been introduced t
(Webster andAmPht hén pspilddi)c ocanonsedfi Ohi
published the first report of the disease.
was | eaaldrozremle e of a generalist. Manns bel i e

bacterium and transmitted thoy bfeplkamawnl iase,

Al t hough he was correct in assuming transm
caused by a bacterium was incorrect. I n 19
to barley crops in Cal i fldr nminad. HDursitnogn twheir
describe the causal agent of the disease a
is |ikely that the virus H+AYt (GrapedndhiGs
2003) .

The evolution of BYD came from a close agstion between the virus, aphid

vector and host (Martin et al. 199@Quteovirusesare unique in that they are limited to
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plant phloem, their interactions with aphid vectors, and limitation to specific families of
plants (Martin et al. 1990). It is likelthat Luteovirusesevolved due to recombination
with other plant viruses, probably sharing a common ancestry @atimation mottle

virus or Southern bean mosaic vir@idartin et al. 1990).

Economic Impacts

BYDV is the most economically important cereadigrvirusin the world (Lister
& Ranieri 1995). BYDannuallycauses between 11 and 33% global yleks in wheat
(Lister & Ranieri1995). This range is so large because BYDV symptoms are easily
misdiagnosedy an untrained eyas nutrient deficiecies orphysical stress (Comeau
1990). There have been reports of up to 80%dyliess in infected fields (Pik&990). In
2012 the Food and Agriculture Organization of the United Nations, statistics division
(FAOSTAT) estimated a global production of wheat at 896,872 metric tonnes.
Assuming a conservative global BYD yield loss at 11%, a yield loss of approximately 83

million metric tonnes can be attributed to the disease.

Aphid Vector Biology

Aphids are i nkdenmitpt amha thecandéebydmstut hg
parts specialized for pi er cilnigk ea nndo ust uhc kp anr¢
feed on the phloem of RI apSahdiayv@aRatdamani daipsh i
specialize in feeding oRoagcaafebe agpprhd dgr axng a

reproduce via parthenogenfesumdhs ganeral Ilcyl
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However they can be holocyclic (sexual) C
conducted i n t he Uni t ed Ki ngdom show a ¢
over winterR.ngaas#lia gaev efmdatehough they can occa

be holoORyrd1@95ZdZhou eHamd . Rh® @, osi phum m:

shows anhol ocyclic overwintering stages a
compl etely holocyclic (Huggett et al . 199¢
climate to the UK, so anholocyclic over win
US as wel |, depending on the s esvuecrtiitoyn otfr at

al so shows male ahatae tMo dliwe $uucldin eotne dirré&tpa t
from Doris Lagos at t he -Clhraimypeas sgony gtshoaftn g | |

most colonies are founded byiaisdiuagbkei hema

clones until a male occurs all owing sexual
As most i s eaates ,ecaphihdkrtmu€, pooh&y | nehgr
upon ambient temperature for internal heat

mat umheen temperatures thalkkhodlkrd owasne cedev ali
threshold of maey okmiphh dnespdevebppment occ
1980). The base deRel thmde rboeecén snheeshotdl oy
be 8A®@i tttheep ptehr eshabdve hwai € h of devel opmen:i
increaskAl (Bl I2 ot andWikiiheicnk htefeeru plPe8r9)and
I i mi t s dceagnr ebee dcaaylsc Wlleated @ ptm@ npr echidc tmi gr at i
The phenologiesfaphid vectors are cycliand may have one or more migratory
phases Aphid migrations are preceded by the production of alatae that, under the right

conditions, will take flight and migrate to new locations. Migratory patterns are a species
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specific traitthat has been studied extensivdy. padiand R. maidishave two distinct
migratory periods in most temperate climates (such as the United States and Northern
Italy), one in late spring and another in auturBnavenadas a single migratory peak in

late spring, but only a very small migration in autumn (Coceano et al. 2009).
Temperature and rainfall/moisture are significant factors in predicting onset of BYDV
aphid vector migrations (Thackray et al. 2009; Kendall et al. 1992; Fabre et al. 2006).
Alate apids also require a minimum temperature before internal body temperature is
high enough to allow flight muscles to function. The threshold at wRicpadiand S.
avenaetake flight on 50% of the days at a given temperature are days with a daily
maximum tenperature of 15.5°C and 16°C, respectively (Walters and Dixon 1984).
These temperatures did vary, however, based on other variables such as substrate and
wind speed, so it is difficult to interpret these results in the context of the single
temperature vaable. Dry and Taylor conducted lab experiments in 1970 on temperature
thresholds for different aphid species flight. They found that the temperature threshold
for R. maidisflight was different based on the substrate. Alatae had higher thresholds
when onhost plants, but lower thresholds when on glass. Since these studies were not
conducted under field conditions, and much variability is observed in flight temperature
threshold, it cannot be assumed that temperature would be a constraint in fligbhftf take

in field conditions. Preliminary data from Piero Caciadippendix Q indicates there

may be more of an influence in average temperature fluctuation on alate flight rather than
a specific temperature threshobncerning the fall migration of these agéin August,
September, and October overnight temperatures will be much lower than the maximums,

so it is likely that migration flight occurs during specific parts of the day similar to other
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aphid species (Lewis and Taylor 1968)ind speed also affectbe takeoff of aphid

alatae. Aphids are poor fliers and have difficulty flying in strong winds, so when strong
winds are present flight takef is often delayed. Time to taladf is positively correlated
with wind speed, thus, the greater the wind spgbedonger individual aphids will delay
flight (Walters and Dixon 1984). Preliminary data from Piero Caciagli also shows a

strong negative correlation between wind speed and aphid (AgpendixC).

Winter Wheat Biology

Wheat production strategies vatlyie to climate and management goals of the
farmer.Winter wheat is used for animal feed and for flour, which is used in most bread
and baked goods. Winter wheat differs from spring wheat in that, as the name implies, it
is planted in autumn and developgotighout the winter and early spring. Normal
planting dates of winter wheat vary based on regional climate. Typical dates of planting
generally range from September through October. For example, the United States
Department of Agriculture (USDA) suggestdnter wheat planting in Pennsylvania
occurs between 15 September and 15 October (USDA 2010). Harvest dates usually range
from late May through July; the USDA suggests300July in Pennsylvania (USDA

2010).

Virus-Host Interaction
Barl ey yel l,ow idkwearrho svti rpulsant viruses, i

causes in its hosts. I nfected plants exhib
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due to chlorosis of the | eaves. Severe in:
66% reductizoeen idrecplearstedsiheadi ng, and an o
chl orosis (Oswald and Houston 1953). Chl or

an accumul ation of solubl e carbohydrates

magnesium cohbentnbhecbobad | maf ttRsedebkl (&bo
2007) . BYDV infection causes approxi matel:
pl ant, or a 25% reduction when comparing
ti ssues& (VeamseShlalye ) . Thi s 25% reduction

accompanied by a 65% red& cVYamnSamB acghkl oT hoep
pl ant must increase its chloroplasts' out p
nutrient concennthreatiiconprtooc ephsetsosaynd away fi
t he stunted natur e of infected pl ant s. T
temperatures25@oaed mooendxtreme temperatur
symptom devel odpmk2at (De Wol fe

Suscetible Poaceaespecies may become infected with the virus at any time
throughout their life cycle, but winter wheat is most susceptible and damaged during its
seedling stages, specifically when inoculated lefGrowth Stage 31 (GS 31ldhe
beginning of #m elongtion (Zadoks et al. 1974; Smith and Sward 198%wald and
Houston 1953). When infected after tillering, during stem elongation, yield losses are
dramatically decreased (Smith and Sward 1982).

Resistance to BYDMWoes not naturally occun wheat;however there has been
some work to isolate a resistance gene found iaratlld relatives (Zhang et a2009).

The bdv2 gene isolated from plants in the gentisnopyrumis the most widely used



10
gene tostudy resistance (Zhang et &009; AyalaNavarree et al. 2013). Other

resistance genes have been isolated fidimopyrumas it is widely used in BYDV
resistance studies (Ma & Tomi2913).

Strains of BYDV often differ in the severity of symptoms. Plumb (1974) listed
BYDV-PAV and BYDV\RPV as find 8BYD¥-MAY as fAmi |l dRO This

padithe most dangerous and destructive of the BYDV aphid vectors.

Vector-Host Interaction

The primaRy pRadgimaiodbhd awemrad he -batrd ch
(Prunus) ,pamzuesza e m@éyan)d | nggasasesa,Rhropap ect ipwhailr
padi , RanSmaiavdaraef ore do noffrfeedumpaesti
though it is one yfhdadstes p(rled eaetr r euds lsaeic o®idxaa
199Rhopal osi phwm maikding hewi || feed on whea
barl ey (Foot tprled7e7e)c.e didhae Rymdgodsdiil iodm , p eorrenne
perenni abecyegeaaphi ds are highly attracte
well on it (DL&@82her and Dixon

Di fferent aphid species have different
Sitobi omasavanmech higher reproductmakde r at e
mai ¢ Cseceano et al. 2009). This obseratati on
plantR. wipenlli avehae@ei ze the same plant (Cho
1991) . On aSheagvemdep!| amte, Rhe gpaifvelrerl ecavser

of the plant such a@armsgrtahjei tsatnaalnke t eerkduiéjakeat s -
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1979). 8l thwaghbe a stronger compd&ti tpardion

ani. mahiadies a more competitive migratory pt
apparent in the two major mRgpraadathRonsiaaddsn
caught in suction traps ¢ ®&mpar(éohcaseamnd ¢thea
2009

Direct damage from aphids is actually quite rare in the autumn. Yield losses may
occur in the spring, generally fro8 avenaelue to the lege spring migration, but only
under extreme infestation circumstances (Oakley and Walters 1994). However, these
yield losses cannot be considered direct because most of the damage comes from a fungal
pathogen in the aphid honeydew (Vereijken 1979). It fawwe of the most devastating
outcomes of aphid infestation is due to the transmission of BYDV in the autumn. Thus,
managing the autumn migration of aphids is just as important in preventing yield loss as

managing spring migration of aphids.

Vector-Virus Interaction
BYDV are transmitted in a circulative,

replication Wiyt laipmitdse (WMe ¢ FT haen da cRjaus osc ht o w

viral particles by the aphid tvecthe apteanc
vVirus. It has been shown that aphids virul
nowi rul i ferous aphids preferVidriiseras edar @ | an

during feeding from infescteadephlingemtedl Iby.

they must pass through the midgut and/ or h
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recognition oLutveosumpmsamsfritci,clbewst imot seroty
the serotypes can pascstotrqgq telveenhaerho ctoheel voefc
transmit geradt yspe c(iMiilch 88 7andTRasechoovas ar
transported to the sahow®809Y)gl ¥ndso(di tbet
proteins neededh fobhetsahspary ¢haodsyg, and
with unknown host prvoetceionrs ,s paercea flri9e@siop)oyn s(li Goel a
infected aphid remains viruliferous for th
Aphi ds r eignnum eacagumisni ti on access period fol
bet weeinnudtbesn and 3 h9ertxs. (Ghayaequiadi.ti on
transmission efficiency Iis depeénidenécbobinoni
(Grayl@®e®1l al

BYDVs infect ,mamnrdocnoott garlds sBeYsDV aphid ve
on these Brapae®Bhyfe, gthe virus may only be
mi grati on from the pri mary host . Proporti
mi gration c@®% trangeerf rbin% (Cock@an®) etl rmllt
average viruliferauwulsl.m2gr aOn.t7 1p e rRc. e7TniSaadgeersd
averrRae mai&@cwd gr,amiensupf€ct e &b yegt Aasls.|,b Weldaled
percentages may seem, considering a migrat

actual number of viruliferous aphids is qu
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Management of BYD (Technological and Biological)
Management Techniques

BYD is a difficult disease to manage. Aan be seen in the preceding literature
review, there exists an array of complex interactions between virus, vector, and host
making disease epidemics and outbreaks extremely difficult to track. In recent years
several strategies have been implementdsktter manage BYDV vectors, and therefore
BYD. Some techniques include, but are not limited to, planting insecticide treated seeds,
a delay of planting, and foliar insecticide sprays.

Planting insecticide treated seeds is important if the crop is likelgnmerge
during times of high aphid vector migratiogenerally earlier in the yegBtewart 2013
Royer et al. 2005Gourmet et al. 1996 The seed treatment protects the crop for
approximately two weeksftar emergence (Paulsrud et 2D01). Since theirst few
weeks after emergence are the plantdés mos
insecticide treated seeds can provide a useful barrier against disease onset. However, it is
not always a 100% effective management opsioce the treatment weaoff after a few
weeks,and often needs further management tactics latéhenseason (Kennedy and
Connery 2012; Stewart 2013)In addition, treated seeds are more expensive than
untreated seedsis using treated seeds generally entails mixing regularvgdedostly
insecticidesIn addition, sing seeds treated with insecticides for several years can leave
significant concentrations of insecticide behind in the soil, often disrugtegatural
soil and aquatie@cosysters (Krupke 2012 Goulson 2013 Insecticide seed treatments
are often systemic and also have #target effects on pollinators and other beneficial

arthropods (Goulson 2013). These +arget effects can be alleviated to increase
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agricultural sustainability by only using seed treatnvemn other measures are likely to
beinefficient

Optimizing planting dateanbe important in managing aphid vectors of BYDV.
Planting later in the year decreases BYDV infections (Kelley 2001; Miller et al. 1991,
Irwin & Thresh 1990) becausaphid migrationcoincides with wintercereal emergence
dates (McGrath & Bale 1990; Coceano et al. 200®wever, thereis a tradeoff
between late planting to decrease yield loss due to BYD and winter kill. Wheat that is
planted too late in the season may experience rhigtrer rates of winter kill due to
immaturity when enteringhe cold seasor{Knapp & Knapp 1978; Fowled982).
Insecticide treated seeds can be used to increase the optimal planting date range for
managing this tradeff (Stewart2013 Gourmet et al. 1996 However, after planting,
there is still the option to spray a foliar insecticide to manage the aphid vectors. In fact,
aphids require time to acquire and inoculasts withBYDV, making insecticide a valid
management strategy to decrease infectian rat

BYD generally occurs in epidemic, or outbreak, fashion rather than being
consistently present every year in the same locatiom predicting outbreak years is
difficult, soit is a common practice to spray prophylactically rather than as neg&ded.
ecanomic threshold for BYDV has been estimatetbatphids peone foot row of plants
(during early posemergenceHerbert et al., 1999 Necessity of spraying insecticide is
also highly dependent on the previous two management decisions (using insecticide
treated seeds or delay planting date). A method to track optimal management options
based on previous management decisions and pest conditions would be an effective way

to decrease unnecessary and expensive management tactics.
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There are several availablaljished models that can track aphid populations and
disease status to optimize management timing. The statistical model built by Thackray et
al., 2009 is very complex modand incorporatesnany environmental parameters
including soil moisture and draige, temperature, nmafiall, and evaporation among
others,to calculate aphid population development. Population development is then used
to calculate disease transmission via migration arfeeid transmission. Potential yield
loss can also be calculateg this statistical model with a 65% calculated R may,
however, only be applicable in Mediterranean climates, such as Western Australia.

A model developed in Frand&abre et al., 20Q6represents a statistical model
available for more temperate clireat This model describes the population dynamics of
R padj and therefore the potential dynamics of the virus itself. It simply uses an early
season aphid count and temperature to model the spatial and temporal spread of the
aphids with high accuracy.

Thee models have the potential to enhance data input to a desigport
system. Available weather engines have the ability to take these models reported in
literature and measure the parameters to give a forecast of aphid movement and virus
transmission. Mese are just two examples of statistical models that can be utilized,
though sevetaothers exist (McElhany et all995; LeclercgLe Quillec et al. 2000;

Kendall et al1992).
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Expert DecisionSupport Systems

Decisions upport Ssystems (1326 Sriethgds od rtaking ¢ o mp u
unstructured data from a user to allow a broader analysis of the impduts af her
actions (Turban 1993Cox 1996). Expert DSSs utilize expert knowledge in a field to
gauge the impacts of actions. They are an effective methosiraf expert knowledge to
track and provide suggestions on important management decisions a grower makes.
Expert DSSs can incorporate statistical model output as well as expert heuristics. There
are four components necessary to make an expert DSS fuhctiatebases, knowledge
bases, inference mechanisms, and user interfaces (Travis and Latin 1991).

The database of an expert DSS contains the required information for constructing
a logical plan of action. It contains factual information to act as somewfat
Abackboned to the @Quiioil989).dnnagripuftuoedctenaysconfaidi | i é
information such as banned pesticideseméy periods, market values, and planting date
ranges. For example, if a certain pesticide is banned in an area, theilD&3 be able
to suggest it as a management option in the banned region.

The knowledge base provides a model of expert knowledge. It first requires
acquisition of knowledge on management practices and may come from many sources
such as interviews, scigfic literature, simulations, and data analysis (Cullen & Bryman
1988). The knowledge must then be modeled in some manner to give management
outputs based on certain conditions.

The inference mechanism uses the knowledge base and available information on
conditions to output an optimal management actioa\(isr& Latin 1991; Zili & Quixin

1989). Not all information on conditions is always available, so it is important to have a
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mechanism that can interpret what is availabbe be able to estimatenissing
information The inference mechanism cawver time evolve with feedbackrom the
users (Zili & Quixin1989).

The user interface allows tww@ay communication between thear and the DSS
(Travis & Latin 1991). The user can input his or her information sewkive feedback
regarding management options. Then, the user can inform the system on the management
practices used and the success or failure of each one. A user interface is usually a web

based platform, which have been improving with the evolutideatfnology.

Recent Developments in DSS Technology

Decisionsupport systems in conjunction with wkbased platforms for tracking
pest and disease presence are an increasinglycosegonentof precision agriculture
(PA). The utility of DSS programs has bestown through aariety of systems. Fabre et
al. (2003 synthesized a model predicting BYD outbreaks to aid in planning foliar
insecticide sprays. They showed their model reduced BYD control input costs by up to
36%. As akscribed above, Thackray et €009 published a model that could predict
yield loss from BYD outbreaks with ar? Bf 65%. This may not seem like a high Rut
considering the complexity of the disease cycle, it is one of the better models for BYD
prediction.

One of the most successidES platforms is the Integrated Pest Management Pest
Information Platform for Extension and Education (soybean PIPE). This platform was

designed for the soybean rustvasion of 2004 (Isard et aR006). It was, and is,
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responsible for up to $299 million annual fungicide savings since 2005, the yean
implemented (Roberts et al. 2006; Hershman eP@l1). The PIPE arose from a dire
need of an early warning system for a disease devastating soybearagsribpaoved
from its origins in China throughAfrica and South AmericaThe appearance of the
disease in the U.S. in 2004 prompted the development and deployment of the soybean
PIPE, and itwas quickly adopted and still remains a widely accepted tool for soybean
rust, and now other diseas@and crops(Bradley et al.2010). Thelntegrated Pest
Management PIPE(ipmPIPE is the predecessor of the currehitegrated Pest
Information Platformfor Extension and Education (#E). iRPE is maintained and
publicized by industry, making it a sustainable bussn@lan to disseminate useful
information on management decisions (Personal communication with Joe Russo).

This Masterods thesis provides the desci
BYD, a complex disease that is difficult to efficiently manage. TheS D@l be
integrated into the iPE platform. The DSS reported is novel in that it is extremely
versatile and powerful in projecting management decisions and associating them with
potential outcomes. Collaboration between the public and private semtdrshe
integration into the iAPE platform will allow for an evolution of the system with the
input of a widely untapped data source of individual grower informa@dmapter Two
describes the knowledge base, all permutations of field observations, statisbidel
outputs and historical data, organized using dependency networkss D&S that is
accessible to wheat producers. Chapter Three offers a method to estimate missing input

information, so DSS queries can be completed if the user is unable tdgemgwers to
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DSS questions. Chapter Four proposes future work to enhance the DSS and describe how

it will fit in the IPIPE.
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Chapter 2

Modeling the decision process for BYD mnagement

Introduction

Barley yellow dwarf (BYD), a disease of cereals, hased major losses in grain
yields since the late D80 6 s (Webster a Mathns P907).| Recept s 191
advancements in management tactics can decrease virus prevalence in a field. Several
such tactics include insecticide treated seeds, altering the ngjadéte, and foliar
insecticide spray treatments (Stewart 20€8lley 2001;Miller et al. 1991). However
the effectiveness ofthese tacticgan be enhanced if they are linkedh interactive and
personalized computdrased deci si on sSupport systems (LC
Decisionsupport systems are computerized methods of taking unstructured data
from a user to allow a broader analysis of the impacts of his or her actions (Turban 1993
Cox 1996) . DSS6s have been used -Azmnyegcr op r
al. 2000). Expert systems are a type of DSS in which the logic of a human expert is
modeled torecommendactionsby the usermiven certain conditions (Travis and Latin
1991). Travis and Latin (1991) list four necessary components of an expert system: a
knowledge base, an inference mechanism, a database, and a user interface.
The knowledge base first requires acquisition of knowledge on management

practices and may come from many sources such as interviews, scientific literature,
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simulations, and data dgais (Cullen and Bryman 1988). This information is compiled
in a manner that can be written in a computer language and connects conditions to actions
via dependency networks. Dependency networks are pictorial representatitms of
logical links among obarvable or predicted situations and management
recommendationsased orstatistical model output arekpert heuristic knowledge. They
can be read by the computer as IF condition, THEN action statements (Travis and Latin
1991). The action represents the egement decision that would be suggested by the
experts, the information for which is obtained during the knowledge acquisition phase.

The inference mechanism interprets the knowledge #adesearches a database
to outputa recommendedction (Zili and Quxin 1989). It caralsobe improved taise an
incomplete set of conditions to give an estimated action, which is useful as most users
will not possess knowledge on all conditions (Travis and Latin 19B18. inference
algorithmwill search the knowledge ba for likely outcomes given the limited input.
The database will include storage of factual informatinaluding conditions and action
restrictions(Zili and Qiuxin 1989). Finally, the user interface, such as a smartphone or
website, allows communicatidoetween the user and the system (Travis and Latin 1991).

In the field of agriculture and plant patholo@yxpert systems are not a rectadl
(McKinion and Lemmon 1985; Travis and Latin 19®H:Azhary et al. 2000). There
have been many constructed atbpted systems, such as the Penn State Apple Orchard
Consultant (Travis et al. 1992). This system was employed and showed considerable
interestby growers, who also adopted changes in production practices conducive of
integrated pest management (IP8ffetegies (Rajotte et al. 199Zravis et al. 1992)This

system and otheragere developedbefore the general use wfeb-based technology in
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agricdture (For example: Lemmon 198®ravis et al. 1992El-Azhary et al. 2000)In

addition, early expert systemsquired the use of personal compsiterhich made the
expert system inconvenient. With advent of smartphones and the ubiquity of internet
access, this inconvenience is disappearing.

Advancing technology such as higsolution weather forecasting, interne
mapping resources and smartphones allow more sophisticated DSS applications. A recent
example is the industry sponsoradS Department of Agriculture Soybean Rust
Information System websitd he system was developed for the soybean rust invasion in
2004 and allowed tracking of rust incidence across the coueytified crop advisors
(CCA), extension specialists and other trained persoooeld input rust surveillance
data from fieldsMeteorological/aerobiological models were used to predict the spfead
the rust spores from Mexiand the southern U.§he system helped growers determine
necessity and timing of fungicide applications. The availability of this system across the
US soybean belt resulted in up to a $299 million benefit during &@06ly because the
predictive system information gave growers the confidence to eliminate fungicide
applications where they were not needqBwmberts et al2 0 0 6 ) . CCAG6s and
personnel continue to use this program as a useful tool in managing soybean rust
(Bradley et al. 2010). The system developed latép the national Integrated Pest
ManagementPest Information Platform for Extension and EducatipmPIPE) which
tracked many more crop pests and diseases

Pest and disease data and forecasts areageplby the ipmPIPE, however,
management strategies are mediated by a human expert. Expert systems can substitute for

most expert mediation.
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BYD disease i s caused b ydamagimgcensa grdind 6 s ma

viruses (Lister and Ranieri 1995). Heeviruses are transmitted by several aphid species

and can infect over 150 speciesHoeaceadBarnhart 1895Bur nett and Dobar c
BYD has historically been known to cause major problems in epidgeais (\Webster

and Philips 19120swald and Housto1953). The disease can cause an average of 11 to

33% vyield loss in winter wheafl {iticum aestivurp (Linnaeusl758) in areas prone to

infection and potentially over 80% yield loss (Miller and &dwva 1997; Lister and

Ranieri 1995; Pike 1990). Considag wheat is in the top three most economically
important food crops in the world, even a small percentage loss in gl@hélcgn be

substantial (FAOSTAR012 Goldschein 2011).

Five viruses causing BYD cause the majority of damage. The viruses are of th
family Luteoviridae but are split between the genénateovirusand Polerovirus The
species ar®Barley yellow dwarf viru8YDV-PAV, BYDV-MAYV, BYDV -SGV, Cereal
yellow dwarf virus CYDV-RPV, and CYDVRMV. These species are transmitted
persistently bythe aphids (Order: Hemiptera, Family: Aphidida@hopalosiphum padi
(Linnaeus1758) and Sitobion avenadFabricius1775),R. padj S. avenaeR. maidis
(Fitch 1856), and Schizaphis graminunfEastop1961), respectively (Rochow 1969).
Rhopalosiphum padi, S. ave andR. maidisare commonly known as the bictherry
oat, English grain, and corn leaf aphids, respectively. They each have distinctive
migratory patterns which often coincide, in part, with wheat growing seasons (Coceano et
al. 2009).

There are manyrneironmental conditions, varying regionally, that determine the

spread and damage of the disease, which in turn affect management practices. Aphid
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vector migrations are highly dependent upon temperature, moisture, wind fields, and size
of gphid populations(De Barro 1992;Thackray et al. 2009). These variables are
important in predicting migration timing and magnitude. Virus replication and movement
within the host plant is also temperature dependent, with an optimal temperature of 25°C
and development ofymptoms decreasing with variance from this value (De Wolfe
2002). Environmental constraints affecting transmission success of BYDV by aphids
include temperature, stochastic weather events, susceptibility of host plant, use of
insecticides preventing aphmbpulation growth in crops, and virus titer combined with
age of infected plants (Lowles et al. 19%ower et al. 1991Jones 1979). These
variables can also determine proportion of aphid vector migration that carries the virus,
which can be greater thd®% (Coceano et al. 200Blumb 1976). Since these variables
all likely interact,a model is needed to specify management actions for all combinations
of variables

Barley yellow dwarf is an ideal disease to test the complexity of an insect
vectored pathgen using an expert system based onRERhNfrastructure. Theystem
presented here will be referred to as the B¥BS BYD is intensely studied, and thus
research results as well as expert opinions can be derived from liteqatedestive
mathematicamodels, and from human experithe BYD-DSS can also accommodate
information fromstatistical/mathematical models, weather forecastsp#ret databases
containing pesticide and crop phenology. Usitige BYD-DSS as & inference
mechanism of th&nowledgebase the suggested management decisions for a given field
can be interpreted, which witle given asrecommendationt the growers via the user

interface.



25

As mentioned above, some inputs to B¥D-DSScan be outputs of simulation,
statistical, and othietypes of models. There are several simulation models that can be
used to predict aphid and virus changes as walliggesbns ofmanagenent options for
aphid vectors of BYDV. Several published modeds beintegrated intdhe BYD-DSS
and include, buare not limited to, the Home Grown Cereals Authority (HGCA) BYD
management guide which uses plant age to determine susceptibility to BYDV (HGCA
2004), an aphid migration/BYD epidemic predictor designed for Australia (Thackray et
al. 2009), a BYD spread meddesigned for Britain (Kendall et al. 1992), and an
aphid/BYD spread model designed for France (Fabre et al. 2006). These can all be used
to enhance the accuracy of this expert system in all locations around the globe.

Other resources thatan be usedd enhance the system will include a weather
engine similar to Skybit (ZedX, Inc & Meso, Inc. 1998). This weather forecasting system
will be useful in tracking development and migrations of aphid vectors and can also
utilize the models mentioned above tdedmine migration severity. Thweather engine
predicts events at km resolution.The BYD-DSS can also interact with remote pest
forecasting systems via the internet and smartphones, not only to deliver
recommendations to the user, but also use-wsé#ed local information to modify pest
predictions in real time.

The BYD-DSSoffersdecision support at several times during the season (Fig 1).
The decisions addrasg prophylactic measures, include insecticide seed treatment
(Stewart 2013), altering piing date to avoid aphid migrations (Miller et al. 1991),
scouting for aphids, and use a foliar insecticide. Insecticide treated seeds should be

planted to increase yield if imter wheat is sown before USBrecommended dates
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and/or if the risk of BYDV trasmission is high (Stewart 201Royer et al. 2005

Planting treated seeds during USBAggested planting dates or after risk of BYDV
transmission shows little to no increase in yield compared tetreated seeds (Stewart
2013 Royer et al. 2005 Early planting of winter wheat seed may be desirable to
minimize winter kill of seedlings in regions that experience harsh winters, in which case
planting treated seedi&comes necessary (Stewart 2013; Fowler 1B832pp and Knapp
1978). However, concerning BYManagement, history of disease in a location is most
important in determining benefits of planting treated seeds.

Planting date is arguably the most important decision in BYD management. There
are many consequences of early planting, such as more seliléenégstations, Hessian
fly infestations, and army worm infestations (Stewart 2013). On the other hand, a major
consequence of planting too late is higher percentage of winter kill (Knapp and Knapp
1978). Therefore, it is necessary to find an optimahtplg date to reduce these risks.
Fall migration of alate BYDV vectors is driven by aphid crowding, which is in turn
driven by optimal meteorological and environmental conditions for development (De
Barro 1992). Once each vector species reaches its kcpboa of overcrowding, alatae
are produced (De Barro 1992). These alatae then migrate to a new host. Each aphid
species has its own respective migratory phenology, which is relatively predictable using
calendar date (Coceano et al. 2009). Migrationsheté vector aphids often coincide
with winter wheat phonological susceptibility to infectiowinter wheat is most
susceptible and damaged by BYDWhen inoculatedduring its sedling stages,
specificallybefore Growth Stage 31 (GS 31), which is the begmmif stem elongation

(Zadoks et al. 1974Smith and Sward 1982Qswald and Houston 1953). When
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inoculated after the tillering phase, during stem elongation, yield losses are dramatically
decreased (Smith and Sward 1982).

Scouting,or walking fields todetermire pest presence and population changes, is
another potential practice to manage aphid vectors of BYDV that can be done after
planting. Hiring a CCA to scout fieldsas associated cosiad can be more useful with
optimal timing.Some growers may widio do the scouting themselveEssave on costs
Even if a growerchooss to scout his/herself this practice is time consuming t&nd
obtain a more accurate knowledge of the risk of BYDV infectioaquiresthe abilityto
identify specificaphidvectorspeciesand knowledge of BYDV strains most common in
the areaPest and disease forecast models can be used as an alternative or sentinel to
scouting.In reality, there is no benefiio scouting if the pest or disease is known not to
affect a certain arealso, there would be little need to scout for BYDV vectors after
tillering, since wheat susceptibility to the disease decreases aftatage(Smith and
Sward 1982)These conditions and others are important to consider when a grower is
deciding whetheor not scouting is necessary.

Whil e scouting, growers or CCAOG6s shoul c
and potentially BYD symptoms to manage the diseds$e literature suggests an
economic threshold of 15 aphid vectors per 1 ft. noviall, but sigrficant damage can
still occur even if aphids do not reach this density (Herbert et al. 1999). These aphids are
generally dispersed in an aggregated patt
females, so it is important to scout a large portion dela to better estimate aphid

populations. The remedial management option if there is a high population of aphids is a
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foliar insecticide spray (Herbert et al. 1999) to dmnsidered when seedlings arel O
weeks old and if seedlings emerged from-tr@aed seeds.

Al of these tactics are designed to pr
BYDV during its most susceptible stage. Optimal timing of these treatments can be
determined by using environmental conditions, and can be modeled by dependency
networks. This paper describes the use of dependency networks in modeling BYD
management. Inputs to the model are: environmental variables including temperature,
moisture, and wind speed and direction; pest assessments including aphid trap data, pest
history, and disease history; crop production practices including planting date, scouting
and plant growth. Some of these data are derived from predictive mathematical models,
and other factors are heuristic, derived from human experts.

The knowledge basehat urderpins the BYD-DSS and is depicted by the
dependency networksill be integrated into a web/smart phone app.our knowledge
no dynamic, projective, and locatisnp e ci fi ¢ DSSO0s have been de

and smart phone app created to addressyglex insectrectored viral disease cycle.

Methods

Dependency Networks

Dependency networ ksdeveirgn coetswo ukd edi urs

(The Document Foundati on, open source) on
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the net wotr&kds amertehd isottom of the InpuworKks

condi tiom ev alluaessd ioweoerdd i n al categories (e.og
call ed .valrheeape ®loWet hin a vari ablreanogsendef ir
C 0Ome foamt model s, direct user i nput, 0

Combinations of v ar idaebnloetse df rboyms Bt ghaelda amgp eiot pse
out put for a paQutipwelpdraadceaeperedetnocpy .of t he
outpoubledhe t mpanot hepresewbrhk oercommerddat i
path describes aasivmmglieabt embirjoanbd peeancahio dcrosn d
out put s. Al l possi ble combinations of var

satisfy atlHhs ,pousssiinogd edipfaf er ent col ored arrov

Decision Framework

The overall framework for selecting and linking dependencies is shown in Figure
2-1, and each element of the timeline is described in TaHe First, appropriate
dependenciewereassigned to a ption of the winter wheat growing season (Figv®).
Next, inputconditioninformation was identified for each decisiohaple 2-1). Finally,
the relationships among input conditiomsd the resulting decision options were

connected by operators and damd in dependency networks.

Migration

(Potentially Planting
September to (September to
Harvest (July) November) October)
o [ ] () () (] o ()
Seed Treatment Decision to Decision to Decision to
Decision Delay Planting Scout (October) Spray

(August) (September to
October)

Figure 2-1. Timeline of BYD decisiormaking with winter wheat and aphid events overlaid. This timeline is designed

for the Pennsylvania region, thus other regions may have slightly different dates, but similar chronology.
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1 Treated Seeds: PA July 307 Sep 1%

o Aphid migration prediction for the coming season (Coceano et al. 2009)

o Crop damage from BYD in the previous season: Immediate history ofl the

field

o Aphid/BYD problem in previous years: History of the field (Personal

comnunication with Piero Caciagli, Ed Rajotte, and Joe Russo)

A Average aphid counts in previous years

A Average BYD prevalence in previous years

A Average yield loss due to BYD in previous years

1 Planting Date: PA Sep 1% i planting (USDA 2010)

o Extent of overlap beteen crop susceptible phase and aphid migration

A Current weather conditions for aphid development (Personal

communication with Piero Caciagli)

A Prediction of migration peak stats based on suction trap
observations (Yearly suction trap data from Piero Caciag|

published in Coceano et al. 2009 pendixC)

A Expected time to emergence if seeds sown immediately (Plant

growth model from ZedX, Inc.)

o Li

kelihood of having an aphid problem this season

A Predicted magnitude of migration
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A Aphid/BYD problem in previous yearslistory of the field
(Personal communication with Piero Caciagli, Ed Rajotte, and

Russo)

Joe

1 Average aphid counts in previous years

1 Average BYD prevalence in previous years

1 Average yield loss due to BYD in previous years

0 Use of treated seeds, resistaatiety, GMO (if developed in the future),

et c é( St e vRayertet ak ZDA53Gourmet et al. 1996

o |l deal planting date for winter
the current date (USDA 2018tewart 2013; Fowler 198Rnapp and

Knapp 1978)

wheat

1 Scouing: Between planting and wheat GS 32/stem extension

o Current plant susceptibility to infection of BYDV

A Current age of plant (Personal cmumication with Fred Gildow;

Smith and Sward 1988)swald and Houston 1953)

A Seed treatment or previsspray in effectStewart 2013personal

communication with John Tooker)

0 Current aphid/BYD risk

A Aphid counts in the region

A Changes in number of migrant alatae

A Risk of aphids being virulent
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1 % of virulent migrants likely tde present (Coceano et al

2009;Plumb 1976)

1 Aphid/BYD problem in previous years: History of the fie
(Personal communication with Piero Caciagli, Ed Rajott

and Joe Russo)

0 Average aphid counts in previous years

0 Average BYD prevalence in previous years

0 Average yield loss due to BYD in previous years

A Grower observations of aphid migration (Personal communicat
with Joe Russo; gives user ability to calibrate models with

observations)

T Aphids seen in growero6s f

1 Increase in aphids in the field

91 Aphids been seen in nearby fields

1 Spraying: Between plantingand wheat GS 32/stem extension (user may wish

to override decision to scout, in which case scouting decision can be used as

spraying decision)

o Population of alate migrants increasing, decreasing, or the same

o Projected aphid field count (Personal commumndcawith Joe Russo;

aphid development model)

ion

el
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o Aphid/BYD problem in previous years: History of the field (Personal

communication with Piero Caciagli, Ed Rajotte, and Joe Russo0)

A Average aphid counts in previous years

A Average BYD prevalence in previous years

A Average yield loss due to BYD in previous years

Table 2-1. Conditionsconsidered when managirg)yD. Controllable management decisions are in bold, whereas
uncontrollable environmental conditions used to decide best management practices are in norrahtfofiable
management actionsiay be considered an environmental condition if the management action has already been
implemented at the time of the current recommendati@n example, treated seeds at time of plantirg already
determined by the grasvr 6 s p r e V).iEach subsat ddsdrilzes the conditions used in determining the condition
above it. Source of reasoning for influence of each variable in decision process are listed after each condition, if

applicable.

Results

Overall, considering Iapossible combinations of growing season period, field
history, weather and pest predictions, previous grower decisions, and pest observations,
there werenine possible recommendations managedthy/BYD-DSS (called: Treated
seed, no treated seed, planmediately, delay planting, scout, do not scout, full spray, %
spray, no spray). There were 243 total combinations of variables to reach the seed
treatment recommendation, 9,720 to reach the planting date recommendation, 62,208 to
reach the scouting recaonendation, and 216 to reach the spray recommendation.
However, there are an unlimited number of possibilities when the time component is

introduced All recommendations are shown in Appendix
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Figure2-2 shows how all conditions and management decisiunsaict.lt shows
how each input condition interacts to alter the management recommendation, and how
each management decision alters future recommendatonse 23 shows that the
dependency networks do not function separately, but require severaktiioties with
other web-based databases and mechanismgive reattime recommendations. They
also need input from models and weather engines to determine variables of pest
conditions. It is important to have feedback from the user on management practices
conductedsincethat alters later recommendations. Users are also able to input data from
their respectivdields when other analyses for inputs are unavailaDlece all conditios
are entered either by the usemodels,or automated sensors (e.g. weatf@ecasting

stations);an optimal management recommendation cagenerated
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Average aphid counts
In previous years

Average BYD Incldence | | Average yleld loss dus
In previous years 1o BYD In previous years

ApNABYD pratiem

‘Aphid migration prediction || Crop damage from BYD
In previous years

for the coming saason the pravious season

Predicted magnitude
of migration

Cument weather condRions

| ‘Suction irap data
far aphild development

of migration

Expacted time fo emergence
It seeds planted now

..'.I..."
Likelihaod of having an aghidl Wihen Is the deal planting
BYD problem this season date with no pests?

[ Apria migrationswneat
phase ocverlap|

R CF’Jant’lng :Iate)
% viulent migrants " ———— .
llkzly to be present ., Y
-,
N N
| Treated seeds
or previaus spray

Aphid counts

Curment age
In the reglon

Have apnids been
of plant

522 In grower's flela?

Has there been an Ncrease

Risk of aphits | |Changes In number
In aphids In the fleld?

being viruient | | of migrant latae

Have any aphids been
se2n In neightoring flelds?

Tl R
Curment aphld/ Grower observations
BYD risk of aphid migration

Increass In migrants

— —

-
Projectsd aphid
fleid count

Gt

Figure 2-2. General outline of thBYD-DSS system interconnectedness of conditions listedahle 1.Controllable
conditions are in ovals, whereas uncontrollable enviromaheronditions are in rectangles. Connections are €olor
coded in chronological ordepertaining to the management recommendation they affeet connections are
calculated to determine necessity of treated seeds first, then green connections to detantiiige date, blue
connections to determine timing and necessity of scouting, and finally violet to determine timing and necessity of
insecticide spray. Dashed lines indicate where a projective development model will need to be run to output the

connecteatondition. Dotted lines indicate there is an incomplete source of data that may need to be filled in by the user

using the system.
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 J
Models
A
Weather VN Inference _ User
Forecast \.____fl_BYE)____/_ Mechanism "| Interface

Database (Planting
dates, pesticide info)

Figure 2-3. Flow chart of entireheBYD-DSS The BYD-DSSdescribes the knowledge base of dependency networks

reported irthis chapter

Dependency Networks

FigudAe sBows an example of a dependenc)

Susceptibility network estimates a cropos
t hroughout the season. TherlCuesénmattéant
susceptibility to infection at any given t

assumed that plants that are greater than
4 weeks ol d, which ame phabhurhetesshansae]
that have already reached stem el ongation
The ot her condi tion i n t his net wor k, hav
determines whether a Icmreorpa brmmaey tloe imuchct i e

treatment or spray will | bkéebyeki.hbcmbatip
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Current Plant Susceptibility

High Medium Low

<2 Weeks ><2-4 w$ >4 Weeks X Yes No
Tillering,
e a

Current Age of Plant Seed Treatment or Previous Spray in Effect?

(From Grower) (From Grower)
Figad€urrent plant susceptibility dependency net wor k. Us
format. Epr tberamplange path can be read as Al F the pla
treat ment/ previous spray is in effect on the crop, THEN
Secondly, there can be amuwslitnigplee pwdrhi alsl esse emo mMi itrhe d hien r e
the plant is |l ess 24dwaekswofwaglks ANDagbeOR is no seed tr
THEN the crop has a high susceptibility to infection of
TreatedSeeds

The first deci sion that needs to be add

is the decision to buy insecticide treated
this decision wild.@ be the aphidésB¥WDyhesdot
due to BYD. Considering that a forecast 0
possibly sever al months in the future wil!/

more wuseful to use the historcyommunestat man
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Piero Caciagli, Ed Rajotte, and Joe RussoO)
aphid or BYDV spread in a region wil!/ carr
still be used to roughly predict severity

Aphid/BYD Problem in Previous Years (History of fi€kigure A1)

Field history is important in every decision a grower makes throughout the wheat
growing season, therefore this network is present in every management decision that is
mapped. Howevegs the time of aphid migration approaches, it will be more effective to
use reatime data to determine the dynamics of the aphid migration (Personal
communication with Joe Russo). Thus, as the season progresses, history of the field will
have less influece on the decisions a grower will make about the aphid threat.

Three conditions that can determine whether a given field has had an aphid/BYD
problem in previous years are average aphid vector populations (Herbert et al. 1999),
average BYD prevalence iprevious years (measured in percentage of field infected),
and the average yield loss from BYD in previous years.

There is an easily defined correlation between BYD prevalence and yield loss
(Perry et al. 2000Mckirdy et al. 2002), though it is likelyhat this correlation varies
based on the year and location since there is indication of temperature gradients in which
BYD symptoms are able to develop (De Wolfe 2002). Thus, it is important to view each
field and regionas a separate entity. This mears, dxample, that because a field may
have a high prevalence of BYD, it will not necessarily experience a high yield loss due to
other conditions, such as temperature constraining symptom development. To account for

this potential gradient, the user willpru t his or her fieldbés dat
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yield loss. The network also takes into account that fields with high BYD prevalence are
more prone to epidemic years if conditions become optimal for the virus. In other words,
a region may experience highevalence but low yield loss or vice versa.

The logic behind the aphid count condition in this network is simple. A high
average aphid count will be considered to b&%%r more aphids per 1 ft. row of plants
in autumn (Herbert et al. 1999). Thereaiorrelation between aphid count and BYD
prevalence due to variance in efficacy of uptake and transmission of teebyimphids
(Lowles et al. 1996; Power et al. 199gnes 1979). As with the prevalencel/yield loss
interaction, there will likely be a gional gradient of these variables, and therefore a
gradient of BYD prevalence (Seabloom et al. 2010). To simplify this interaction the
number of aphids in the past will be compared to BYD prevalence to determine risk. For
example, a high aphid count armiM prevalence indicates that although the aphids are
present, transmission efficacy in the given area is low. Again, this network takes into
account that a high aphid count, under the right conditions is capable of producing

outbreaks even though histotdigaBYD may occur at low frequencies.

Decision to Buy Treated Seg@dsgure A-2)

The three conditions used to aid a grow
whether the farm has had an aphid/BYD problem in previous years, a probable aphid
migration pediction for the coming season, and yield loss from BYD in the previous
season. These conditions will be determined by the Aphid/BYD Problem in Previous

Years network, model output, and usgput data, respectively.
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The aphid problem in previous yeam@rable addresses the issue as to whether a
grower 6s field is generally at ri sk of apt
estimate of a potential problem while knowing nothing about future environmental
variabl es of c¢ondirdage aphidBYD gdrdblens is a goodfbasis fod 6 s &
projecting the coming year o6s probl em. Due
this decision.

The probable aphid migration count for the following season is a variable
predicting severity of aphid migtion that will be determined by a statistical model that
can be used early enough in the season that it can give the grower enough time to
purchase treated seeds if necessary. This means it will use climate and biofixture (a
l andmar k 1 n agysdata ohbtameddat lgast ene anlonth before the next
seasond6s planting dates.

The yield loss from BYD the previous season variable is similar to the variables
determining aphid problem in previous years, however, instead of looking at the long
term prolem of BYD and aphid data it will look at the immediate past. This means that
recent trends in the field will affect the outcome of the decision (Personal communication

with small grain growers in Italy).

Planting

The planting dateseeéeéecipuireamhasec wams afitler
potenti al pl anting dat es of wi nter wheat
mi gration from planting too early and wint

seminal as it wil Ilhebeedessisgned otfo beulyii mign a tr
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and spraying insecticides; otwhhda cédn vairreo ncnoesnttl
decision wil/ al so take into account that
the field (etigcideyaysogiinwiel | not be unc

Likelihood of Aphid Problem during the Coming Sead$ogure A-3)

The variables considered when determining the likelihood of having an aphid
problem in the coming season are whether the field hdsah aphid/BYD problem in
previous years and an aphid count for the approaching season. The data for these
variables are obtained by the Aphid/BYD Problem in Previous Years network, and a
predictive statistical model, respectively.

The aphid problem inrpvious years variable allows the history of the field to
play a role in this decision. However, the influence of it is decreased by the model
predicting the magnitude of the migration. Considering this model will be run at a time
much closer to the actualigration there will be many more variables that will account

for variation in the migration (Personal communication with Joe Russo).

Migration Peak/Susceptible Phase Over(&pure A4)

Aphid migration timing in comparison with wheat growth is impartanvector
avoidance. Migration timing can be estimated from climate and weather predictions as
well as suction trap data. To determine this, the variables of current weather conditions
for alate development, time until end of migration, and expecteditireeed germination
are considered. The data for these variables can come from weather forecasting engines,
which can also forecast parameters of aphid development predictive models and a wheat

growth models.
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Current weather information can give a rouggtimate of the magnitude of the
migration five weeks in the future since ideal conditions cause development and
crowding of aphids, which causes production of alatae (personahugnication with
Piero Caciagli; Coceano et al. 20@% Barro 1992AppendixC).

Using realtime suction trap data that informs about the number of alatae flying
over the trap each day and the species of aphids flying, the approximate number of days
until large migrations of alatae can be estimated (Observed during analystsiah $rap
data from ltaly). There is often a period of time before the autumn migration when
suction traps catch few aphids sporadically for two to three weeks before a sustained
catch is maintained. This information is important in determining whemtie portion
of the migration will occur.

Wheat plants are most susceptible to BYDV before the tillering phase (Smith and
Sward 1982). Thus, it can be generally assumed that younger plants will be the most

susceptible to BYD.

Delay Planting DecisioifFigure A5)

The decision of whether to plant immediately or postpone planting uses the
conditions of overlap of migration and crop susceptible phase, likelihood of aphid/BYD
problem during the coming season, whether the grower has resistant crop (eel. treat
seeds, resistant/tolerant wheat wvarieties,
the ideal planting date for the region. These data are obtained from Migration
Peak/Susceptible Phase Overlap network, Likelihood of Aphid/BYD Problem during the

Coming Season network, user input, and USDA planting dates, respectively.
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The migration peak/susceptible phase overlap condition has a very strong
correlation with the amount of time from the ideal planting date for the region. The
migration peak/suscepte phase condition will influence the decision towards delay
planting if the migration will occur before the wheat emerges and the ideal planting date
is in the future. However, if the ideal planting date is in the past the decision will be
influenced tovards planting immediately. On the other hand, if the migration will occur
during the cropbds susceptible stages, then
in the season delaying the suggested planting date.

The likelihood of aphid/BYD probla during the coming season variable is most
highly correlated with peak/susceptible overlap condition. These two conditions assess
the projected risk of the crop to BYDV infection if planted at any given point during the
potential planting dates. Thus, awler likelihood of having a problem will mean
peak/susceptible overlap will have less influence on the decision. On the other hand, a
higher likelihood of having an aphid problem will mean peak/susceptible overlap will
have greater influence.

Having cropresistance to aphids or BYD is a dominating variable in this decision
because it will make the crop essentially invulnerable to aphids and BYD for a period of
time, thus it would be best to plant before or on trealigplanting date (Stewart 2013;
Kennedyand Connery 2012).

If the ideal planting date is greater than three weeks away, then it will always be
suggested that the grower delays planting until closer to the date because there may be
other consequences from planting warly (McMullen and RansorB009; Mississippi

State Coordinated Access to the Research and Extension System 2010). Conversely, if
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the grower has not planted later than three weeks past the ideal planting date, then it will
be suggested that he or she plants immediately to decredse kill (Knapp and Knapp

1978).

Scouting

After the grower has planted, it is important to decide when and if to fmout
BYD vectors This decision will rely heavily on redéiime and upto-date information
from other growers using the system or esshleld sentinels, such as suction traps
(similar to PIPE). A slight influence of the history of the field will be present, but would
not be as applicable to the situation as any deviation from the average history will be

apparent in redime data.

Infectivity Risk(Figure A6)

The Infectivity Risk network uses conditions of aphid problem in previous years
and the probable percentage of viruliferous aphids in a migration to determine what the
chances are of a migratory population carrying the virus. ApNiD/Boroblem in
previous years provides information on a
BYD come harvest. Combining these two variables gives information on whether a
location, in general, has the right conditions to support developmehkofitus, and

therefore assesses the risk.

Current Aphid Risk Staty&igure A7)
The Current Aphid Risk Status combs the likelihood of having a viruliferous
migratory population and number of aphids that are likely to be in the field. These

conditiors can be viewed as multiplicative as having a high infectivity risk and high
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population count means a large number of infective aphids are probable, but low risk and
low population means a very low number of infective aphids are probable. This network
usesaphids already established in farms nearby, and therefore a likely count for the given
field, and a change in suction trap catches to determine whether the sheer number of
aphids is going to be high enough in a field to cause problems. The number of @grhid
1 ft. row plants i n nearby farms uses 5 1in
of aphids because scouting should be conducted before aphid densities reach economic
threshold levels (Herbert et al. 1999). Changes in suction trap cat¢besides whether
the migration numbers are rising or falling, which combined with number of aphids
already in the field gives a good estimate of whether aphid densities will soon reach
threshold levels (Observed during analysis of suction trap data fabyn It

Infectivity risk, as stated above, will be a good indication of whether the aphid

migratory population will have a chance of transmitting the disease.

Current Plant SusceptibilitgFigure 24)

The logic behind this network is explained under Figlideabove.

Observational Data of Aphid Populatig¢krigure A-8)

The Observational Data of Aphid Population network is basically giving the user
a chance to enhance the model 6s decisions
actually seen in the fieldlhe network asks the grower whether he or she has actually
seen aphids in the field, whether there has been an increase in the number of aphids in the
field, and whether any neighbors have observed aphids in their fields. This recalibrates

the networks tobe more accurate for a more specific location. The outcome of this
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net wor k i s t he determinati on of whet her t

migration that is on the rise (incoming), stationary, or not present.

Decision to ScoufFigure A9)

This network is the final step i n aidin
hire a scout for aphids in the field. All the variables in this network are outputs from other
networks listed above in this section. It takes current plant susceptibilitsent aphid
risk status, and observational data from the grower to determine whether a field is at high
enough risk to warrant hiring a scout. Fields with higher crop susceptibility will influence
the decision towards scouting immediately, while loweasceptibility influences the
decision towards delaying scouting to save money. Higher aphid risk statuses influence
the decision towards scouting and lower influence towards delaying scouting. The
observational data is an enhancement of the aphid riskbl@rand works in the same

way.

Spraying(Figure A10)

A grower should decide to spray his/her winter wheat crop for aphids when the
aphid population density reaches a critical level called economic threshold at
approximately 15 aphids per 1 ft. row pisuHerbert et al. 1999), though it is determined
by weighing the costs of treatment against the cost of losing yield. This network uses
information from scouting and forecasting to determine when a field will likely exceed
the economic threshold. The agiBYD problem in previous years influences the

decision by determining whether the virus will likely cause problems in the location of
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the field, since there may be a difference in number of aphids present and ability of virus

to develop and cause symptomghe plant.

Discussion

The BYD-DSS represents a way of capturing whgt known about BYD
managerant and making it available growess in auserfriendly and timelyformat. The
BYD-DSS quickly analyzes which of the thousands pssibe BYD situations le
grower is facing and gives a recommendationtfiat situation. Required inputs either
come directly from the grower or from remote sources, such asbasdyl weather
forecasts.

TheBYD-DSSSs | ogic is the product ofasBYD r «
well as decisiormaking rules created by human experts after many years of experience.
Hence,the BYD-DSShas a Opersonality6 that refl ect
systemb6s builders. A BYD expert sysntem bui
results.

The dependency networkfr this program will show a projected set of best
management practices throughout the winter wheat season for any Ideamorhich a
user may loginThe model will be updated as the season progresses to give rdore up
date information on suggested management practices. This projection will be
accomplished by assigning weights and risk values to each controllable and
environmental condition and variable for tt@mputerto calculate probabilities. Weights

control theimportance of an input in a network and values control the importance of
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variables. Thecomputerwill sum the values to obtain a score that will determine the
output of that network. Some data points may not currently be available, such as
percentage ofiwulent aphids in a migration, so a constant, or average, value will be used
by the computerin its place. This scoring system is similar to the Peanut Rx system
developed by the University of Georgia, University of Florida, and Auburn University
(Culbreah et al. 2009). These risk values will be calculated to determine probability of
the suggested best course of action providing high, medium, or low yield. Users will be
able to see the variables that determine the suggested best course of action and change
them if he or she believes it necessary, which will cause the mechanism to recalculate the
probabilities of actions and yields. This is important because there are often scenarios in
which growers are unable to access his or her fields due temarmnnental factors.

This is accounted for by allowing the user to manipulate decisions to go down a different
path. The models will then be adjusted to report on best management decisions for factors
other than yield, such as economic gain, sustainabilityptrets.

The BYD-DSScan evolve. As more research is dpor as new environmental
monitoring technology is developed, the expert system can be modified to accommodate
the changes, becoming more accurate and useful.

The decision framework mapped with thedependency networks will later be
adapted to be integrated into a website and smart phone app to dissemintiteereal
decisionsupport to growers around the world. This program will be similar to others such
as Pennsyl vani abds P00B)Ebutswi be teenfirst(of its &inddo e t

dynamically model a complex pathogen, vector, host system.
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The BYD-DSShas not been validated by testing its effectiveness in wheat fields
in real time. This should be done before general release.

There are manyp t her factors determining a <cro
management decisionsTreated seeds may increase slug damage (personal
communication with John Tooker). Planting date may affect both BYDV and Fusarium
head blight conversely (Kelley 2001). Scogtifor many other pests and diseases is
almost always mandatp at some point in the season. To address these issues more
expert systems addressing any winter wheat disease should be created to make an overall
winter wheat growing recommendation guideliidéith more expert systems such as this
one for other pests and diseases, a computer can combine and optimize all possible
conditions for all pests and diseases and output a set of recommendations. Some
management recommendations may not affect other pestiseases. However, when
recommendations do interact between multiple pests and diseases the computer can
optimize the recommendation. For example, treated seeds may decrease BYD and other
aphid transmitted viruses and increase slug damage. If this eveeethe case, then the
computer could search multiple networks to determine the most optimal seed treatment
decision.

Many fields may have conflicting data with surrounding areas. Thus, it may be
useful to look at moving averages of conditions over aoredgb give the best
management recommendations. For example, a field that is rotated with other crops or
has never grown winter wheat before may not have a history of aphids or disease. In this
case, the history of the surrounding area will provide sefficinformation to give an

optimal recommendation.
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Any new information technology must face the adoption process. Human factors
and attitudes must be addressetha8YD-DSSis introduced to the grower community.
Grower attitudes, relationships with thevélopers, availaliy of technical training and
support will all play a role in successful adoption. These access cosdit®mescribed
in Rajotte and Bowsd1991).Increasingaccesso web-based information willlsoallow
quicker adoption of systsn si mi |l ar to this one in the f
desires towards smartphone technology and this app specifigally evaluatedy
Babbie(2014. The app wil!l be tailored to grower
the field and ultimaty increase yield, decrease insecticide use, increase sustainability
and overall provide a template for a system that can create a more efficient agricultural
environment.

Many areas do not see a high yield loss from BYD in most years. It is quite
possiblethat much of the damage from BYD is misdiagnosed as nutrient deficiencies
(Mckirdy and Jones 1993) or that current cultivars exhibit fewer symptoms of the disease,
but still experience yield loss (Personal communication with Fred Gildow). Ability to
detec virus conditions used in these dependency networks will be greatly enhanced in the
near future with the development and improvement of unmanned drones using infrared to
detect pathogens in individual crops (Jones 2013). This technology could alsolye easi
adapted to obtain information on aphid vector populations by distinguishing species by
cornicle size, which is currently a highlgborintensive task Fersonal communication
with Piero Caciagli). These monitors will help eliminate any human error ngrése
detection of variables necessary in managing Bbibbnebased inputs can easily be

used intheBYD-DSS
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The use of dependency networks to model management recommendations for an
expert system is a simple method of accomplishing this gisihg these networks it is
easy to break the management process down to see the impact of each condition. It allows
the creator to combine a very complex set of conditions into a few easily understood
figures. It is also possible to follow a single path of condgiasing the dependency
networks alone. However, with this task being accomplished by a computer, the process
will be made usefriendly. When expert systems are created in this way for other pests and

diseases general and optimal winter wheat managenpésnt can be inferred and will greatly

increase the efficiency of winter wheat production.
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Chapter 3

A proposedmechanism forestimating missing information in the BYD-
DSSknowledgebase for thebarley yellow dwarf decisionsupport

system

Introduction

O0fRrci sion agricultured may be d@pedficned a:
management using informati on t-Pebdem2004)o gy o (
In recent years precision agriculture has been adopted in agricultural programs to greatly
increasefood security by increasing yields and reitigclabor (Gebbers and Adamchuk
2010). Data integration tools that can be used in precision agriculture are decision
suppot systems (DSBEGBRY) (Zhhsgdéetameé.computer.
unstrucured data from a user to allow a broader analysis of the impacts of his or her
actions (Turban 1993Cox 1996). Expert systems are a type of DSS that use expert
knowledge to determine a logical management plan. Travis and Latin (1991) list the
following components of an expert system: a knowledge base, an inference mechanism, a
database, and a user interface.

In chapter 2 the knowledge bagmformation sources to build dependency
networks)and deterministic inference mechaniqaependency networks)f a barley
yellow dwarf (BYD) decision support system was proposed aedailed for the

management of thdisease in winter wheat. This D&Shereby referred to dse BYD-
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DSS. The BYD-DSS knowledge base and inference mechanism are represented by
dependencynetworks that require that all input information be supplemr to a
recommendation. In reality this may not always be possible, so a way of estimating
missing information is necessary. While a user may guess at missing inforni@ation,
would be preferré to havea more quantified, lagal method.

In this chapter a modéd proposedo integrate the knowledge base contained in
theBYD-DSSusing a novel inference mechanism to optimize management dedsions
unknown information.

The novel inference mechiam consists of ghilosophicalquantitative scheme
that finds an acceptable cumulative correlation among inputs, operators, and outputs.
These cumulative correlations were chosen so as to remain true to the heuristic and expert
knowledge modeled in the pendency networks from chapter Zo validate this
mechanism, field trials should be conductexl gain better understanding of the
interactions between the input conditions. Currently, the numbers are based on the thesis
aut hor 6s under actioasilrdeiBYiDgDS8dnd rtev iaference tmechanism
will use theBarley yellow dwarf viruglisease complex as a model to provide a template
platform that can be adapted to more effectively manage crop pests and diseases that
follow a similar dynamic.

This expert system is likely tonatureand improve in two ways. First, it magain
access to webased databases that are accumulations of the experiences of other
grower s6 BYDSemxdytehé egrcewer 6 s danrbereplacedo bser v

by informationfrom remote sensing, robotic monitoring systearsd more sophisticated
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mathematical modelsAs the system evolves in these waysments of this proposed

inference mechanism may be changed or eliminated.

Decisionsupport system (DSS) components
Knowledge base

The knowledge base is an accumulation of information about management
practices that can come from interviews of experts, scientific literature, simulations, and
data analysis (Cullen & Bryman, 1988). This information may be interconnected and
expressed with the use of dependency networks, which can be seen as pictorial
representations of the relationship between the information that is contained in the
knowledge base (Travis & Latih991). The networks can be read by a computer as IF
condition, THEN adion statements (Travis & Latit991). Each action represents the
management decision that would be suggested by experts to address a particular situation

given specific conditions.

Inference mechanism

The inference mechanism is responsible for nwakinalculations and
interpretations of the knowledge base. It can be viewed as a type of aritifieibdence
(Travis and Latinl991). Users often do not possess all information that can be utilized in
making a decision, so an inference mechantapableof filling in the gaps and
extrapolatingresultsis desirable(Travis and Latin1991). This is extremely useful in

agriculture because often times some information on conditions necessary to make a
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decision may not be readily available. The inference amsm adjusts for this by
assuming the most likely scenario based on other information given.

Database and User Interface

The database consists of factual information, such as rules and regulations that
cannot be manipulated, directly or indirg¢tby theuser (Zili and Qiuxin1989). This
database is queried by the inference mechanism to ensure that management tactics
conform to theelationshipsstored in the database.

The user interface allows twway communication between the D&R&d the user
(Travis aml Latin 1991). It can be a staralone application on a personal computer,
tablet or smartphone, or wdilased. First, the user provides responses to DSS queries
from the knowl edge base about conditions
appropriate ogputs of models from the database and knowledge base are interpreted by
the inference mechanism to provide a recommendation. This interaction can be done
multiple times throughout a management process.

The IntegratedPest Information Platforrfor Extensim and Education (ifPE) is
a program designed and maintained by indudtrigas a user interface in the form of a
smartphone app and a website RElis an ideal platform for decisianaking.It evolved
from a combination of the NCSU APHIS Plant Pest Easting System (NAPPFAST)
(Magarey et al. 2007gnd the Integrated Pest Management Pest Information Platform for
Extension and Education (ipmPIPgatforms. NAPPFAST was a platform designed and
developed in 2002 by the North Carolina State Universityoitalgoration with ZedX,

Inc. as a general pest and disease tracking arddsting system (Magarey et 2007).

ipmPIPE was a platform that wasolving from the USDA Soybean Rust Information
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Systemin 2005 tobettermanage theliseases including soybeaust (Isard et al. 2006).

Both platforms have been proven effective in managing diseases, with the ipmPIPE
saving growers up to $299 million in fungicide oatone in 2005 (Roberts et 2D06).

It has also shown considerable adoption and utility bffieet crop advisors (Bradley et

al. 2010). This platform will be responsible for incorporating tB¥D-DSS once it is

complete.

BYD-DSS
Brief explanation of the BYD-DSS

As reported in chapter 2, tlBYD-DSSrepresents the knowledge base of a DSS
for managment of barley yellow dwarf (BYD) diseasghich is caused bythe aphid
vectoredbarley yellow dwarf virus (BYDV). BYDV infects approximately 15®aceae
species worldwide and is a devastating disease of barley, rye, wheat, and many other
cerealgraincpps ( D6 ar ¢ y199%)nBeingBawcomplextand sporadic disease that
is difficult to predict with simple mathematical models and causing an estima&gpd 1
yield loss in what annually (Lister and Raniet95), BYD is a disease that is in dire
need ofexpertbased precision management.

The BYD-DSSis used to determinthe necessity of BYD management tactics
given certain conditions. If these conditions are not met, then no management action is
necessary. The BYD management ficas addressed by theYB-DSS are the use of
insecticide treated seeds, planting date alterations, scouting for virus vectors (aphids), and
foliar insecticide spray (See chapter 2 for more details). All of these management tactics

are aimed at decreasing aphid vector populatiassvector management is the only
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prophylactic measure useful to avoid plant infections. Insecticide treated seeds will
protect the crop from aphid vectors during its most susceptible stages, the first several
weeks of growth (Smith and Sward 1982; Stew2113). However, treated seeds are
expensive, harmful to the environment, not always effective, and can lead ticidsect
resistance (Stewa2013). Planting date is an extremely important decision in BYD
management and can help alleviate need for iltsgées (Thackray et al. 2009). This is
because the later the grower plants, the less the probability for seedlings to be exposed to
viruliferous aphids during fall migration. The result of scouting for aphids in the winter
wheat fields is used to considéthere is a need to spray insecticide. Finally, insecticidal
spray on seedlings and young plants has environmental costs and is not always necessary
in managing BYD, for instance if the vector and virus are not currently present in an area.

In addition to the literature and knowledge of the thesis author, most of the
knowledge contained in the dependency networkbeBYD-DSScurrently comes from
Dr. Piero Caciagli (CNR, Italy), an expert in barley yellow dwarf epidemiology with over
three decades ofxperience in the field. He has confirmed that the outputs of the
networks are decisions an expert would make given the input conditions.

On their own, thdBYD-DSSdependency networks are not able to output optimal
management recommendatiandess all inpt queries are determinedowever, once it
is integrated into a webased platform that has the capability of using an inference
mechanism to interpret the management strategies even when most ofptie
conditions are not available, it will be a mucbnmeusefulmanagement tool.

In this chapter a scoring mechanism to estimate missing data in the dependency

networks is proposedhe numbers seen in the scoring system are based on the thesis
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aut horos knowledge of i nt ertaecommendatonsolh | npu
addition to the scoring mechanism a separate calculation called Success is proposed.
Success calculates the probable benefit of a management decision using the scoring
mechanismand penalizes the grower if the incorrect managemeigideds madeThis

ASuccesso wildl | ater be directly correlate

Methods

Scoring Dependency Networks

To incorporatethe BYD-DSSin a system able to output management decisions
without knowledge of all input conditions, | added a seaoypdnference mechanism to
the dependency networks. This inference mechanism was loosely based on the concept of
the Peanut Rx program developed by the University of Georgia (Culbreath et al. 2009).
The novel inference mechanisnimcluded a scoring systenorf environmental/pest
conditions that determine necessity of a management action

A benefit of this novel inference mechanism is that measurements of the accuracy
of recommendations given certain input conditions can be calculatgdrithms to
determine efficacy of management tacticdirectly correlate with expected yield
(explainedin detail below) This scoring system wadased on the broad literature
avail abl e on BYDV, on t he t hesi s aut hor 6
mechanism reported heig a prototypeandrepresentsa preliminary mechanism which

will be built uponas more access to growiaput data is attainedt is not currently based
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on any experimental data, as hard datatie does not currently exist in an analyzable
format.
Inf erence mechanism

A method of inferring an output of networks with missing information, built in
this chapter with the use of a scoring systeRefer to Figure3-1 for a visual

representation of the layout of this inference mechanism.

Output
End productof a network (can be a management recommendation or an input for
another network). Seen in Figuel at the top of the figurdt is determined by the Score

of valuesin relation to the threshold.

Where:
Threshold

This threshold is a number thiattheminimum (and maximum) Score necessary
to solidify a pathoés output.

DOONODM X aQUOONOOR B QU OONOO

Score

A Score refers to the sum of the values for any condition in a given dependency network.
The Score is used in determining the output of a path using thassBath: Connection

of values of conditions to outputs using operators represented by colored lines in

dependency networks
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Values
Weights and risks were multiplied to obtain a valliee \alue represents the
combined importance of the weight and risk.

WOA oMW YQ Q

Weights

Weights refer to an overall importance of each environmental condition in making
a management decision based ongetphedousiyhesi s
modeled in Chapter 2. The weights for each condition used as a final dependency
network output had to sum to 100%ondition: Environmental or pest status

information that is considered necessary in determining the output of a network

W 'Q W0 primb
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Risks
Risks refer to relative disease probability of any variable of a condition compared

to the other variables of a condition. These risks must also sum to/afi@ble: A

separation of conditions into categpal or ordinal ranges.

To finalize the inference mechanism of the networks, a threshold between outputs
had to be reachedVeights and risks were manipulated, within reason, untdre3c
achieved thresholds determining outputs similar to paths determined BYdOSS
networksbuilt in Chapter 2Eventually risks, weights, and thresholds will be replaced by

analysis of accumulated grower data.
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Output 1 Output 2 Output 3
N\ “ /

= Threshold 1| Threshold 1 Threshold 2 Threshold 2- 0l

S TS -2
&&)’ &5 ;-“ ﬂif'ﬂ,)
i i
| | |
Weight (1) * Risk (X) ‘ | Weight (2) * Risk (X) ‘ ‘ Weight (3) * Risk (X)

Figure 3-1. Correlation of Weights, Rks, Values, Scores, Thresholds, and Outputs in the new inference

mechanism. Where X refers to any variable of the condition.

Success oManagement Decisions
Success

The added benefibf this inference mechanism uses the calculated Scores to
determine ifa management decision suggested by the system was followied user
(Success) or to determirtbe extent ofa penalty if the suggested decision was not
followed (Failure). The Success ofsingle management option is set to a maximum
value of 100 For each management recommendationthe BYD-DSS the Success of

each decisiomxecuted by the grower can bdded tahe Success of eacprevious and
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following decisioncausing a chain of interacting decisiahat will add up to a final
Success at the end tfie fall (as the management recommendations are ones to be
conducted during the fall).

The algorithms determining Success vary for each of the three management
decisions addressed and are found in AppeBdiAgain, these numbers are, based on
magnitude othe Scores from the dependency networks, in a range of 0 to 100 and for
now they were assigned based on the auth

management options.

Results

To illustrate theresults ofthe BYD-DSS dependency networks based on the
scoring system outlined aboyeé  wi | | use the dependency ne
Buy Treat ed 32)eAl disebscareB negvarksean be found in Apperilix
The Infectivity Risk network was omitted from this mechanism and replaced by
aphid/BYD problem in previous years. This was done because the percentage of virulent

migrants during any given year is generally not available.

Threshold
Thresholds determine outputs of networks as follows:
YOET QU O®I QOOQQ
YOET Q uvfBodl Qoo QQ

YOETI Q VOB QHoQQ



"YOET Q LIBOGEOTI QOO QQ
YOET Q LT 6 &I QOO QQ
YOETQ VLIBOG®EDI QHOQQ
YOET Q uBOGEOT QOOQQ

YOET Q VLIMMOGEDI QOO QQ

Scores
The Scores determined for each path are as follows:
YORWD ¢cPY pt CEIpC Q@@ ILT
01 Qe pg pT ¢T LT
OQAME®d Y @eéim ¢1T VW ILC
ODIN GTFD cPYpt T TO
O (W GO pg Qéim ¢ctT1 TEIi0Q
D01 MAID cyY @éin pgit 1 doix fE io¢
SAMRdd p¢ @éinm pgit ofméctEipo

Oi QR&E® p¢ p1 pgit oyWiom

Values
The values determined for each variable are as follows:
Qi Ty T QY
0 TmRPoT p¢

O ¢cnpkxmprt
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Weights

In determining the necessity of treated seeds to reduce risk to infection of BYDV,
the long term history and short term history of the field is most important because long
term forecasts of aphid migration and BYDV transmission will be relatively inaccurate.
Thus, these are the most i mportant conditi
Aphid/ BYD Problem in Previous Yearso6 = 40¢
Season &) A motldél that forecasts magnitude of aphid migration several

(potentially) several months in the future is likely to have a large error and should not

carry quite as much weight in the decisior
Seasond6 = 20%) .
Risks

The risk of BYDV inoculation and subsequent BYD damage in fields that have
had a longerm history of aphid/BYD is much higher than fields that have not. In Figure
31, for the O6Consistent Aphid/ BYD PrOobl em

is assigned to O0Yes, 6 and 30 is assigned t
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the Following Seasond condition the risk ¢
60Medium, 6 and O is assigned to O6LlPewawud Fina
Seasond6 condition the risk of 6-29i 9%aésagd

10 is as9i §med to 060

Decision to Buy Treated Seeds

Buy Treated Seeds Don't Buy Treated Seeds

[50 ]

[e8. 54] [58.52]

If sum > 50,

Buy Treated

If sum < 50,
Buy Untreated

2] [ i 2] [ 4
G )

O & 0 @ @© € @9 @9
Consi: Aphid/BYD Problem in Aphid Migration Prediction 5
Previous Years (From Aphid/BYD for Following Crop, gamage ?m BYF F:tevmus

Problem in Previous Years Network) Season (From Model) S (Coweninput)

Weight = 40% Weight = 20% Weight = 40%

Figure3-2.Scored &éDecision to Buy Treated Seedsd depende

Success of Management Decisions

Figure3-3is an examie of a flow chart the user may be able to access in the DSS
for BYD management. Each decision made (Yes) comes with a Success and a Failure.
Failure is calculated simply by 1@&Ruccess (as described in TaBld). Thus, failure

represents a penalty for hoonducting the suggested management decision. There will



67

be many potential combinations of management tactics leading to a final, cumulative
Success. This final Success will be translatable into a probable yield value. With this
Success/probable yielde input cost and sustainability of management decisions that are
used to reach this Successlyield can be calculated and optimized for profit and
sustainability (and others later, if deemed important). In terms of yield, the Success of
planting treated sels and conducting full foliar insecticide spray will always be the
greatest. However, these tactics are generally not optimal based on input costs and
sustainability.

For example, the highest Success may be 300 (Success of treated seeds + planting
date + pray). However, another set of management tactics may lead to a Success of 275
(example Success), but the input cost will be lower and thus the profit will be greater, so
this set of tactics will be suggested rather than the tactics leading to the Sic@8s
Since the calculations of input cost and sustainability are separate calculations, they are
not addressed by the scoring system in this chapter, but will be incorporated into the final
inference mechanism.

These values will be based on whetheratrthe correct decision was made at the
correct time, which is in turn based on the first level of scoring described above. If a

mistake is made executing a management option, then the yield will be lowered.
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{ Success|
Untreated Seeds

Mot Planting:
End Process

Planting Date

Success

Planting Date |—-{Plant W -2

Failura

Success

Faliar

....... L Insecticide

Plant W 0

Foliar
Inzecticide
Spray

Full Spray

Failure Spray

Figure 3-3. Flow chart of management decisiBnccess (and failure). Each management decision proposed by the system

can be followed or not, and the failure to follow an advised decision carries penalties that can be calculated ancesgenvby dn

a smart phone app or web based interface. Toweag will be able to see a decision tree similar to this one, but the computer will

optimize the management program by finding the set of practices leading to the highest Success, profit, and sustainedbibty de

the user (the latter two are not adlted by this tree). As seen from this figure, each management decision affects the others.

Treated SeedgTable 3-1)

Success of planting untreated seeds varies based on the following equations:

Equation 1:

If(Score > Threshold, then Success = (((6&core)/20)*100))

Equation 2:
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| f ( Score O Threshold, then Success = 10

Where 66 represents largest Score in the Treated Seeds dependency network, 20
represents the difference between the largest Score (66) and the largest Score in which it
would be suggested to buy untreated seed3, @&d 100 represents the maximum
possible Success.

If the Score is less than the threshold, then, according to the dependency
networks, untreated seeds should be just as successful as treated seeds. Thus, Success of

both planting treated and untreateddse®uld equal 100.

Example of how success can be calc@dtusing incomplete information

As an example, assume the only information on conditions for the treated seeds
decision is that he or she had over 30% vyield loss attributable to BYD in the previous
season. Referring to TabB1, notice that the average Score knowing only this piece of

information is 50.667 (calculated by the equation:

WwaoQ , CT @ QX
¢ 1 v fp @)xFrom this information it is assumed that the average Score knowing only
over 30% vyield loss is 50.667. Using this average Score the average Success can be
calculated using the equations aboVe. begin the thrshold is 50 for this decision,
50.667 > 50, thus equation 1 is us&diccess = ((6650.667)/20)*100 = 76.667 . This
Success indicates that the average Score will lead to a Success of 76.667 for planting
untreated seeds (and a Success of 100 for plantiatedreseeds). There is a range

associated with this, but the average is the most likely sce@ara@ more information is
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obtained and as time gets closer to the management tactic execution the range will
decrease due to more accurate forecdstsse calalations can be accomplished even if
the grower and forecasts possess absolutely no information on the conditions by

assuming average values for all variables of all conditions.

Average Average Condition Average Scor Success Success

Condition Score  Condition Score (Dam Prev (Dam Prev (Treated (Untreated
(History) Value (History) (Prediction) Value (Prediction) Season) Value Season) Scoreseeds) seeds)

Yes 28 48 High 14 47.333333330ver 30% 24 50.6666666766.0C 100.00 0
Yes 28 48 High 14 47.33333333L0-29.9% 12 38.6666666754.0C 100.00 60
Yes 28 48 High 14 47.33333331-9.9% 4  30.6666666746.0C 100.00 10
Yes 28 48 Medium 6 39.333333330ver 30% 24 50.6666666758.0C 100.00 40
Yes 28 48 Medium 6 39.3333333310-29.9% 12 38.6666666746.0C 100.00 10
Yes 28 48 Medium 6 39.33333331-9.9% 4  30.6666666738.0C 100.00 10
Yes 28 48 Low 0 33.333333330ver 30% 24 50.6666666752.0C 100.00 70,
Yes 28 48 Low 0 33.3333333310-29.9% 12 38.6666666740.0C 100.00 10
Yes 28 48 Low 0 33.33333331-9.9% 4  30.6666666732.0C 100.00 10
No 12 32 High 14 47.333333330ver 30% 24 50.6666666750.0C 100.00 80,
No 12 32 High 14 47.33333333L0-29.9% 12 38.6666666738.0C 100.00 10
No 12 32 High 14 47.33333333-9.9% 4 30.6666666730.0C 100.00 10
No 12 32 Medium 6 39.333333330ver 30% 24 50.6666666742.0C 100.00 10
No 12 32 Medium 6 39.3333333310-29.9% 12 38.6666666730.0C 100.00 10
No 12 32 Medium 6 39.33333331-9.9% 4 30.6666666722.0C 100.00 10
No 12 32 Low 0 33.333333330ver 30% 24 50.6666666736.0C 100.00 10
No 12 32 Low 0 33.3333333310-29.9% 12 38.6666666724.0C 100.00 10
No 12 32 Low 0 33.33333331-9.9% 4 30.6666666716.0C 100.00 10

Table 3-1.Treated seeds management decision scoring table. This is tabl@ doncerning management

decision scoring. Others can be seen in AppeBdi€olumns 1, 4, and 7 are the conditions and variables
present in the Decision to Buy Treated Seeds network. Columns 2,5, and 8 are the values of each variable.
Column 10 is the &re of each combination of variables based on the sum of observed values. Columns 11
and 12 are the Success of treated seeds and untreated seeds, respectively. Columns 3, 6, and 9 are the
average Scores given only knowing the variables in columns 1,d47 arespectively (e.g. the average

Score given the only data available is that the field has had a history is 48; and for knowing the field has
not had a history, the average Success is 32). The equation to calculate the Success of untreated seeds is If

Score > 46, then ((6&core)/20)*100, otherwise 100. 46 is the highest Score that would be suggested to by
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untreated seeds. 66 is the highest overall Score. 20 is the difference between 66 and 46. Finally, 100 is the

highest possible Success.

Planting Date (Table B-1)

Optimal planting date for a region can be calculated by climate data and plant
growth models alone, which weather engines can run. However, aphid BYDV vector
migration data is necessary to alter this date to avoid BYD damage. In the table and
subsequent equations displayed in Appendix5 weeks are addressed as potential
planting dates. They may suggest wegkwhich corresponds to 2 weeks before the ideal
date calculated only by climate and growth model data, to week 3, which corresponds to
3 weeks after the ideal date. Week O corresponds to the same week suggested by the plant

growth model and climate data.

Spraying(Table B-2)

Optimal foliar insecticide spray timing using aphid population data was
determined. Success of conducting a fmdldcticide spray is always 100, because it will
always be more successful in terms of yield, than conducting a half (or diluted) spray or
no spray (assuming no cost or sustainability barriers since these will be calculated

separately).
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Discussion

This chaper reports a prototype of an inference mechanism that will be integrated
together with theBYD-DSS knowledge base in the BYD disease decision support
system. The inference mechanism is used to provide the most probable successful
decision taking into acemt only the available information. A projected set of best
management decisions can be calculated from the Scores in this inference mechanism to
keep the grower within the scope of a general management goal. This scoring system is a
very powerful mechanm because it is not necessary to possess information on all
environmental/pest conditions to obtain a management decision. If there is missing
informationon conditionsthe inference mechanismmca c al cul ate ©Dhefaver
a network. With this aver g e 6Scoreb t he probabl e ben
recommendation will be calculated as a 0Su

This is a novelise of big data analysibat will be opimized for the inclusion of
theBYD-DSS into thdntegraed Pest Information Platform for Extension and Education
(iPIPE). IPIPE is an already established platform that contains databases on crop pests
and diseases management strategies as well as a user interface available via smartphone
app and website. It careceive pest and disease information from sensors and give work
orders to task controllers. It also allows a feedback between sensors and task controllers;
in this case via a user interface available to growers.

iPIPE incorporates environmental, pesttistegal models, and expert advice data
into its platform to report accurate and precise conditions for individual fields. The
models are constantly updated to give the growertieal information. TheBYD-DSS

reported in this thesis will be integratedanthe iRPE platform using the inference
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mechanism proposed in this chapter and then made available to any grower in any
location at any time around the world. Since this platform is maintained by industry there
IS @ monetary incentive to sustain the pamg, giving it a major potential to make a
difference in winter cereal grain production.

Before its integration into IPE theBYD-DSS will be adjusted to output final
wheat yield (which will be directly correlated to Success), profitability and sustiiyabi
forecasts. Since this inference mechanism is not based on factual data, at this point it is
likely to have many illogical assumptions. However, after many years of accumulated
grower input data, the mechanism can be rebuilt to more accurately répopsenal
management practices. For now, however, the best inference mechanism that can be built
i s based on expert and the thesis authords

Once this inference mechanism is finalizedwili be integrated into the IPE
user interface. This asr i nterface wild/l be altered to
study on growers6 adoption of smartphone
investigated by a sociologic@lomponentof this project Gruber 2013 In the past,
DSS6s have 9toonates albng gith mandgement improvements (Releer
al. 2006; Bradley et aR010). Sociological information will make it easier to market the
program to growers by showing them that it can benefit farming efficiency.

Precision agriculture and DSSewklopment is the direction that agricultural
systens are heading (Jones 2013; Magarey €Qil0; McBratne\et al. 2005; Gebbers &
Adamchuk2010). Many potential inventions that are being developed currently will aid

this systembs ac enusiaclude.dron® uetettiondoé pathdbgens m



74

plants, detection of insect populations using drones, and communication between sensors
in the field anddatabases to name a few (Jones 2013; Primicerioz2H?).

With the industry backing this program, itilwbe able to remain active in
agricultural system for an extended time and will also be adapted to manage many other
crop pests and diseases. High adoption of this platform will save growers money on

pesticide costs and increase sustainability and efffoyi of agriculture worldwide.
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Chapter 4: Discussion

Barley yellow dwarf virugBYDV) is the causal agent of barley yellow dwarf
(BYD) diseasewhich causes 133% global yield loss in wintevheat (Lister & Ranieri
1995). Its occurrence is difficult foredict due to the complexity of interactions between
virus, vector, and host, arttie diseasalevastates grain growing regions in epidemic
years Many researchers have developed models to predict the occurrence and spread of
BYDV and its vectors. Webased platforms for precision agriculture crop management
are generally available for many crop pests and diseases, but they lack a mechanism for
analysis of unstructured user data.

In this thesis | integrated the available BYDV literature together with the
knowledge of experts in BYDV epidemiology in an expert decisigpport system
(DSS). The DSS was built to determine BYD management recommendations for winter
wheat based on input conditions, such as history of virus and vector presence in a
geographicahrea, farming decisions and weather forecasting data. The DSS developed in
this thesis is to be implemented into the Integrated Pest Information Platform for
Extension and Education (iPIPE) maintained by industry. This DSS serves as a model of
how expert kowledge can be used to efficiently manage complex pest and pathogen
systems in a precise field by field mann@recision management of BYD will help to
increase productivity of fields at risk of BYD while decreasing management costs by

applying managemeipracticesvith morelogical timing
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Major accomplishments

Aside from using existing mathematical models and expert knowledge on BYDV
and its vectors, suction trap data of aphid migration was analyzed to better understand the
phenology of the disease. Badata collected for over 20 years in Northern Italy from
two locations having a climate similar to Pennsylvania were provided by Dr. Piero
Caciagli (CNR Italy). These data were analyzed for correlations between the environment
and aphid vector migratiomyvhich can potentially be used to track the aphid vectors. As
expected from the literatur®. padiand R. maidispopulations migrate twice per year,
while S. avenaenigrates primarily in the spring with a small migration in the fall. Since
winter wheat ignost susceptible to BYDV early in the growing season, | looked at what
environmental factors could be used to predict the beginning of the fall migration for
aphids that serves as main vectors of BYDV in temperate regions. As seen in appendix C,
migration of R. padi usually starts at various degree day (DD) accumulations, but
typically centers regional migraticaround 1500 DD. The earlier the migration starts, in
terms of DD, the more severe the migration tends to be. Also, aphids tend not to fly when
thewind speeds exceed 15 km/hour. While suction trap data on aphid migrations are also
collected in the US, these data were not collected consistently which prevented in depth
analysis of the aphid migration, but can be used to roughly estimate aphid anidoati
the dependency networks created in chapter 2. Although the analyses in Appendix C and
other previously published models may give a good indication of aphid vector migration,
often wheat fields are located far from suction traps and at the momeareviacking
field data to demonstrate that aphid migrations in Pennsylvania occur exactly as in Italy.

Suction trap data from the Midwest United States was analyzed, but it was not as
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complete as the data from lItaly, so it was only used to observe catatdgrhenology
of the migrationsThus, in my worldogical assumptiongere made to reduce complexity
of conditionsleading to managemergcommendations (e.g. aphid/BYD history of a field
can convey information on whether environmental conditions incatitm generally
allow transmission of BYDV and the progression of symptoms in host plants).

In chapter 2, dependency networks were used to connect field conditions to
management recommendations. These recommendations included the use of insecticide
treaed seed, optimal planting date, timing and necessity of scouting for aphid vectors,
and timing and necessity of foliar insecticide sprayBese conditions were then
separated into ordinal ranges callegriables. Dependency networks connected these
variades to a management recommendation, with a total of 72,387 combinations of
variables to reach management recommendatidns DSS will be hereby referred to as

theBYD-DSS

Inference Mechanism

The dependency networks are a type of deterministic infereechanism that
requires knowledge of every condition to give a management recommendation. The
development of a novel inference mechanism capable of interpreting missing data, as
reported in chapter 3, will make the DSS maseful to more growers. This wille
useful becausgrowes, generally, daot possesall information used as inputs for the
dependency network€Eur r ent | vy, mo st DSS6s give exact

that do not change over the course of the season. However, the inference mechanism



78

proposed in chapter 3 allows for a flexible and dynamic management plan that increases
in accuracy as the growing season progresses antimeapest data comes in. Future
management recommendations are also altered by the previous management actions
determined by grower feedbackny amount offield condition informationcan be put

into theBYD-DSSnetworks (even nonddr the numerical inference mechanisogive

an optimal management recommendation given the available inform&hennference
mechansm will then calculatéghe maximum yield a grower can expect after following all

the recommendations, or a penalized yiettle grower fails to meet the recommendation

given bythe system.

Possible Improvements

Eventually, as grower input data accumelain the databases, heuristic
components of the dependency networks will begin to be replaced by statistical models
generated using real data. Models will increase the local accuracy of the DSS. The more
access to growdnput information there is, the mmaccurate the system will eventually
be. After many years of data accumulation, the models and dependency networks can be
reevaluated to give optimal BYD management recommendafidres.knowledge base
and inference mechanisms in chapt2rand 3are the rost accurate methods of making
management recommendations given the current statistical model availability.

The BYD-DSS addresses management options for only a single disease in winter

wheat (and possibly useful for other winter cereals). However, thist ihe only disease
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or pest that affects winter wheat. Winter wheat is also not the only crop that encounters
problems from disease and pests. Management options addressed by tHSBYDay

not solely affect BYD managemenfA more encompassing method Jdube to
accumulate multiple DSSs (similar to the one here) for managing all winter wheat pests
and diseases. Since the DSS reported here only regards BYD management it ignores
impacts one management option may have on another problem in the fieldsarffptesx
treated seeds may increase slug damage and late planting may irfeusaseim
prevalence (Personal communication with John Tooker, Kelley 2001). To deal with these
potential conflictehe numerical mechanism and yield calculations from chapten Bea
used. A computer could take these yield (or eventually sustainability and profit)
calculations from multiple pest and/or disease DSSs and optimize the management
regimen. From this a winter wheat DSS could be obtained.

The dependency networks ftire BYD-DSS are laborious and often difficult to
design It would take a very long time and many mawurs for similar DSSs to be
designed for all the pests and disease of winter wheat. It would have positive effects in
the long run; however, there may be slenpvays to accumulate a knowledge base and
design inference mechanisms. For example, if the iPIPE platform could have extension
agents and consultants answer survey questions on how to best manage certain pests and
diseases and what environmental factars important in making these decisions a
computer program could design dependency networks theoretically. To accomplish this,
the program could recognize key words in the responses and after analyzing many
responses connechost commonly mentionedonditions with management options

recommended by the experts. This is a rough idea, but if it were to be studied and
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expanded on, it would streamline the process of determining best management practices
for other pests and diseases in winter wheat (and othgs ex@ntually).

A series of surveys could also be used to improve the-B®S. There are likely
many more management options for BYD not addressed by the dependency networks,
e.g. fertilizer or crop rotation. The impact of these management practices orcd&ND
be obtained by more experts submitting their opinions on optimal management of BYD.
The dependency networks are simply the start to a more complex accumulation of
knowledge of how to better manage the disease.

As indicated above, this system reqgsifeedback in order to improva@hus,its
success will depend on the adoption rate of the final prodeaving the management of
this product to the industigould create a sustainable business model that will perpetuate
the project in the absence of &dl government fundingrhe promise ofintegration of
the DSS into the already establisHategratedPest Information Platfornfor Extension
and Education (iFHE) removes the labentensive task of creating a publically available
platform as there is mady an established one to adop#iso, sociological studies are
being conducted by a collaborating sociologisco gauge growerso6 ac
adoption of wekbased platforms, such as the iPIPE (Gruber 2014). These studies will

helpto increase disseination of theBYD-DSS
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Future Work

Before theBYD-DSS is ntegrated into iPIPE it mustccount forthe cost and
sustainability of management decisions. Since the Success sepogted in chapter 3
are only correlated to yield, the cost and sustairigbdf the management practices
recommended by the systenust be calculated and optimized along with yield

After the DSS has been integrated intdPP grower input data will start
accumulating.Instrumens to better measure input data ftre BYD-DSS will be an
important improvement to the system. Drones are already being developed for virus
detection in crops (Jones, 2013), and could be easily altered to enhance this system. They
could be altered to detect aphid populations at low levels in fields usiwaged, or
possibly plant stress volatiles. Other automated sensors, can be developed as well. If a
suction trap were to be designed to automatically count aphid migrants of certain species
(possibly by measuring cornicle length), labor for inputs ao$ tystem would be
decreased significantlyThere are many waysf automating the farming process and
making it a more efficient business.

BYDV surveys should be done to better understand the species of viruses present
in certain areas. This informatiomrt help reduce the number of variables necessary in
predicting BYD damage in certain areas. For example, knowledge that a location has
only one species of virus that is vectored specifically by a species of aphid indicates that
other potential BYDV vectorsan be ignored in aphid population calculations. Appendix

D gives the protocol of a specispecific BYDV test to be used to see if wheat is infected
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by BYDV and to identify the BYDV species. Results from these tests can be used in the

scouting and sprayg recommendations, and also in aphid migration modeling.

One of the main goals of this project is to educate individuals in the field of
agriculture about the possibility and utility of sharing field information to better manage
crops. This includes nainly growers who can directly use systems similar to this one,
but also students. Classes should be implemented to educate students studying agriculture
on how to use and create DSS06s similar to
in the dissenmation of information from the DSS and hopefully lead to greater
acceptance of it, which wil!/ I n theBYD- propa
DSSfor many other crop diseases.

This project is given the potential to be very successful duleetexpansion of pblic
access to online informatiomia databassearchingplatforms, such as iPE, and
availability of portable internetapable devicesPlatforms capable of using multiple
databases of user input information to gain knowledge on largkr gest and disease
information allow for advance knowledge of crop pest and disease forecasts. Better
forecasts of crop pest and disease information allows for a more optimized management
plan. Web-based platformssuch as iFRE, can combine these dataorfr various
databasego give accurate and ttp-date informationand forecast®n crop pest and
disease statuses. Precision agriculture is the link between this increase in information
availability and farm management. Réiahe disease management platfsrdelivered by
precision agriculture methods are the future tools to help growers make more informed

management decisions to decrease input cost while increasing yield and sustainability.
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Appendix A

Dependency Networkfrom Chapter 2

In this appendix & thedeterministicdependency networks as described in chapter 2, before the

addition of the novel inference mechanism.
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