
The Pennsylvania State University 

 

The Graduate School 

 

Department of Ecosystem Science and Management 

CHRONIC WASTING DISEASE IN THE CENTRAL APPALACHIAN REGION OF 

THE UNITED STATES 

A Thesis in 

 

Wildlife and Fisheries Science 

 

by 

 

Tyler Scott Evans 

 2014 Tyler Scott Evans 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

Master of Science 

 

 

December 2014 

 

 



ii 

 

 

 

The thesis of Tyler Scott Evans was reviewed and approved* by the following: 

 

W. David Walter 

Adjunct Assistant Professor of Wildlife Ecology 

Assistant Unit Leader, PA Cooperative Fish and Wildlife Research Unit 

Thesis Advisor 

 

Duane R. Diefenbach 

Adjunct Professor of Wildlife Ecology 

Unit Leader, PA Cooperative Fish and Wildlife Research Unit 

 

Douglas A. Miller 

Associate Professor of Geography 

 

Michael G. Messina 

Professor of Ecosystem Science and Management 

Head of the Department of Ecosystem Science and Management 

 

*Signatures are on file in the Graduate School 

 

 

 

 

 

 

 

 

 



iii 

 

 

ABSTRACT 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that was 

first detected in white-tailed deer (Odocoileus virginianus) in the northeastern United States 

(Northeast) in 2005. Maintaining a healthy population of white-tailed deer is important to states 

in the Northeast for numerous recreational and economic reasons. The Midwest documented a 

decline in hunter participation and hunter-associated revenue following detection of CWD, and 

the presence of CWD in the Northeast could have a similar impact on local economies and 

wildlife management efforts. Considering CWD is a new and emerging disease in the Northeast, 

I investigated sampling strategies by state, ecology of deer, and environmental drivers of disease 

to better understand CWD in the region. 

I surveyed 14 state agencies responsible for CWD surveillance in the Northeast to 

identify how surveillance efforts have changed following detection of CWD in the region. 

Annual surveillance efforts throughout the region initially exceeded 15,000 deer per year. Loss 

of federal funding in 2012, however, led to a drastic reduction in these efforts (<9,000 deer per 

year), with Pennsylvania alone accounting for ~4,000 samples. This reduction in sampling 

requires states to allocate resources into areas that are at greatest risk for CWD to maximize 

efficiency of these limited resources. Literature pertaining to state responses to CWD had been 

nonexistent for the Northeast and these surveys were the initial effort for collaboration between 

adjacent states that had detected CWD. I compiled data that have been shown to influence 

movements of deer and epidemiology of CWD in other regions. This was particularly important 

because all previous analyses had been performed in regions with landscapes that were 

dominated by agriculture or rangeland in contrast to the predominantly forested landscape of the 

Northeast. 
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Spatial processes, including spread of disease, rely on the scale of deer movement (e.g., 

home range), and this scale can be related to landscape. Therefore, I estimated size of home range 

in relation to landscape for 45 white-tailed deer in Pennsylvania to identify the spatial scale that 

described movements and home range of deer in the region. I documented that size of home range 

was related to connectivity of forest, with contiguous forest associated with expansive size of 

home range. In areas with high levels of fragmentation or less contiguous forest, home ranges 

were small (e.g., 0.63 km
2
 for females) likely because deer were able to fulfill daily requirements 

for forage intake over a smaller area. Differences in size of home range by landscape likely would 

result in differences in the distribution of disease due to increased contact rates among matriarchal 

groups of deer that occupy these fragmented landscapes. Conversely, deer that occupy expansive 

tracts of contiguous forest may establish home ranges of larger size (e.g., 2.65 km
2
 for females) 

due to foraging and breeding requirements and also may introduce disease into new areas. These 

concepts suggest that surveillance in highly fragmented areas should be concentrated locally to 

reflect less expansive home ranges that may inhibit expansive spread of disease, whereas 

surveillance in contiguously forested areas should be applied to a broad scale to reflect expansive 

home ranges that may allow disease to spread into new areas. 

To further understand these concepts, I incorporated landscape into my analysis of CWD 

by linking location-based surveillance data to environmental and spatial factors that could 

influence the distribution of CWD in Maryland, Virginia, and West Virginia. I identified a 

clustering of CWD in an area where forested habitat was sparse and open (e.g., agricultural) and 

developed (e.g., suburban) habitats were more prominent. I identified areas of elevated risk that 

included a potential corridor east of the study area where spread of CWD may be expedited 

among several states. This corridor was at elevated risk because it was dominated by an 



v 

 

 

anthropogenic landscape where forests were even less prominent than in the core of the study area 

where CWD was most prevalent. These open and developed landscapes may promote contact 

between deer, and proactively sampling these areas may improve feasibility of containment 

efforts if CWD is detected. Since my research concluded, a free-ranging white-tailed deer tested 

positive for CWD in this corridor in 2013 so state agencies should consider collaborating to 

further monitor spread of CWD in this corridor and other high-risk landscapes. 
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Abstract

Chronic wasting disease (CWD) is a prion disease that affects both wild and captive cervid populations. In the past 45 y,
CWD has spread from northern Colorado to all bordering states, as well as the midwestern United States (Midwest) and
northeastern United States (Northeast), Canada, and South Korea. Because CWD is a relatively new issue for wildlife
management agencies in the Northeast, we surveyed a representative (e.g., cervid biologist, wildlife veterinarian) from
14 states to gain a better understanding of state-specific surveillance measures. Between 2002 and 2012, New York
(37,093) and Pennsylvania (35,324) tested the greatest number of harvested white-tailed deer Odocoileus virginianus in
the Northeast. Additionally, the 14 states surveyed have tested 121,730 harvested deer, or approximately 15,216/y,
since CWD was first detected in 2005. The most common tissues used by agencies in the Northeast for testing were
retropharyngeal lymph nodes, which have been determined to be the most reliable in detecting CWD in cervids.
Understanding CWD surveillance efforts at a regional scale can help to provide guidance for the development of new
surveillance plans or the improvement of existing ones. Furthermore, collaborations among state and regional
agencies in the Northeast may attempt to identify deficiencies in surveillance by state or subregion.

Keywords: cervid; chronic wasting disease; retropharyngeal lymph node; surveillance

Received: March 18, 2014; Accepted: June 5, 2014; Published Online Early: June 2014; Published: xxx

Citation: Evans TS, Schuler KL, Walter WD. 2014. Surveillance and monitoring of white-tailed deer for chronic wasting
disease in the northeastern United States. Journal of Fish and Wildlife Management 5(2):xx–xx; e1944-687X. doi:
10.3996/032014-JFWM-021

Copyright: All material appearing in the Journal of Fish and Wildlife Management is in the public domain and may be
reproduced or copied without permission unless specifically noted with the copyright symbol �. Citation of the
source, as given above, is requested.

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the
U.S. Fish and Wildlife Service.

* Corresponding author: tse119@psu.edu

Journal of Fish and Wildlife Management | www.fwspubs.org December 2014 | Volume 5 | Issue 2 | 0



Introduction

Understanding tools used to monitor diseases when
they are new and emerging is integral to surveillance and
containment efforts at local and regional scales. Chronic
wasting disease (CWD) is a transmissible spongiform
encephalopathy that was first detected in 1967 in a
captive research facility in Fort Collins, Colorado (Williams
and Young 1980). Chronic wasting disease is unique to
members of the Cervidae family, including white-tailed
deer Odocoileus virginianus, mule deer O. hemionus, elk
Cervus elaphus, and moose Alces alces. Since initial
detection, CWD has spread to more than 22 states, as
well as two Canadian provinces and South Korea (Sohn
et al. 2002; Rees et al. 2012). Of the states affected by
CWD, five are in the northeastern United States
(Northeast; Figure 1). By the turn of the 21st century,
many states had adopted surveillance plans as CWD
became increasingly prevalent. Additionally, most states
banned importation of farmed or captive cervids from
states with CWD to prevent the disease from being
introduced into wild populations (Salman 2003). Move-
ment of infected, captive cervids from South Dakota
game farms has been identified as the cause of CWD in
Canada (Kahn et al. 2004; Argue et al. 2008), and these
transfers are also the most commonly accepted expla-
nation for the presence of CWD in Wisconsin (Joly et al.
2003).

Increasing concerns over captive elk importation from
infected game farms in the west prompted the state of
Wisconsin to implement a CWD surveillance plan in 1999
(WDNR 2010). During the 2001 hunting season, three
hunter-harvested male deer in the south-central region
of the state tested positive for CWD. The earliest estimate
of overall prevalence of CWD in Wisconsin’s herd
reduction zone was 1.5% from 21,285 deer tested
between April 2002 and January 2004 (Joly et al. 2003;
Grear et al. 2006). The most recent estimates in Wisconsin
show prevalence as high as 23% in the CWD manage-
ment zone (WDNR 2009). In Illinois, surveillance did not
begin until after the disease crossed the northern border
and was identified 2 wk before the firearms season in
November 2002 (Miller 2003). Several measures have
been taken to contain the spread of CWD in Illinois,
including unlimited bag limits for antlerless deer.
However, the increase in hunting opportunities for
antlerless deer has not resulted in higher harvest rates
in those areas. Additionally, sharpshooting—defined as
the targeted culling of deer exhibiting signs character-
istic of CWD—has been unsuccessful in preventing the
spread of CWD (Shelton and McDonald 2012; Manjerovic
et al. 2014).

Unlike the endemic areas of Colorado, Wyoming, and
the Midwest, there has been no reputable determination
of the mechanism that resulted in the presence of CWD
in the Northeast in 2005, and there is no published
information on CWD occurrence since its first detection
in a captive deer herd in New York. These facts and the
varied success that states in other regions have had in
preventing the introduction of CWD and containing
spread in local populations prompted us to conduct

surveys of state agencies in the Northeast to gain a
better understanding of surveillance measures taken to
detect CWD. The objectives of our survey were to
determine 1) the number of hunter-harvested deer
tested for CWD by year in each state, 2) tissues that
were most commonly submitted for testing, and 3) the
laboratory used by each state to test CWD samples. Our
results provide valuable information for agencies respon-
sible for CWD testing regarding issues of sample size,
appropriate tissues, and laboratories available for CWD
diagnosis.

Methods

We initiated surveys of state agencies in June 2012 to
gain a better understanding of the surveillance measures
taken by 14 states in the Northeast. The survey area
included Connecticut, Delaware, Maine, Maryland, Mas-
sachusetts, New Hampshire, New Jersey, New York, Ohio,
Pennsylvania, Rhode Island, Vermont, Virginia, and West
Virginia. An agency representative (e.g., cervid biologist,
wildlife veterinarian) from each state provided informa-
tion via email regarding their state’s surveillance efforts
for detecting CWD. This information included the
number of deer harvested and tested for CWD each
year, the tissue(s) collected, and the United States
Department of Agriculture (USDA)–certified laboratory
at which the samples were tested. Although many states
use a variety of testing protocols that include hunter-
harvested, road-killed, and targeted (e.g., culled) deer, we
chose to focus on the hunter harvest for means of
comparison.

Results and Discussion

Intensive CWD surveillance in the Northeast did not
begin until 2002, but all states had established surveil-
lance plans by 2005 (Table 1). The number of harvested
deer collected for testing ranged from 41 in Rhode Island
in 2003 to 8,164 in New York in 2005. The intensive
surveillance efforts in New York were in response to the
discovery of CWD in two captive herds and two wild deer
in Oneida County, New York. Between 2005 and 2012,
states in the Northeast tested 121,730 harvested deer, or
approximately 15,216/y. However, recent surveillance
efforts have decreased sample sizes (e.g., 9,778 for all
states in 2012) because of the use of alternate methods
(e.g., road-kill) of surveillance in many states. Prevalence
(proportion of positive samples to total number of
samples tested) for all years combined was highest in
West Virginia (0.71%) using hunter-harvested deer,
whereas no other state had prevalence that exceeded
0.07%.

Alternate methods included use of weighted surveil-
lance in New York (e.g., testing of high-risk deer based on
sex and age; Walsh and Miller 2010), testing of road-killed
deer, and targeted surveillance of deer exhibiting signs
characteristic of CWD. West Virginia and Pennsylvania
were the only states in the Northeast that detected CWD
in road-killed deer, totaling three positive cases since
2005. West Virginia also identified 63 positives using
targeted surveillance and was the only state in the
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Northeast that detected CWD using this method.
Because of high costs associated with processing
thousands of samples, weighted surveillance became
the preferred method for detecting CWD in New York,
where it is unknown whether CWD still persists in the
state’s deer herd (NYSDEC 2013). All states dealing with
CWD in the Northeast drastically increased surveillance
efforts after initial detection of CWD in their respective
states, but later reduced these efforts after either failing
to detect additional cases of CWD in large sample sizes
(e.g., New York) or implementing alternate methods of
surveillance. Pennsylvania also followed this trend by
increasing surveillance efforts after detecting CWD in
both captive and free-ranging deer in 2012, but it
remains to be seen how sampling will change over time.

Tissues submitted for CWD testing included retropha-
ryngeal lymph nodes, tonsil lymph nodes, and the
medulla oblongata sectioned at the obex. Retropharyn-
geal lymph nodes were most common, as 13 of 14 states

(92.9%) in the Northeast submitted this type of tissue.
However, some states, including Maryland and Pennsyl-
vania, also extracted the obex from hunter-harvested
deer, and others extracted the obex only from deer
exhibiting signs characteristic of CWD. Connecticut was
the only state surveyed that relied primarily on testing of
tonsil tissue (Table 2).

Miller and Williams (2002) found that immunohisto-
chemistry staining of the three major tissues collected
from infected deer resulted in detection inconsistencies.
Deer in the early stages of infection stained positive only
in retropharyngeal lymph nodes and tonsil lymph nodes
but the obex provided negative results in the same deer.
In a different study, 80% of 269 infected deer tested
positive based on prion detections in both the retro-
pharyngeal lymph nodes and obex, but retropharyngeal
lymph nodes were the only indicators of CWD in the
remaining 55 positive deer (Keane et al. 2008). The
effectiveness of using retropharyngeal lymph nodes to

Figure 1. Map of the northeastern United States with shading of counties in states with captive or wild white-tailed deer
Odocoileus virginianus diagnosed as positive for chronic wasting disease (CWD), 2005–2012.
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detect CWD in nearly all stages of infection is presumably
the reason that this tissue was most commonly
submitted by state agencies in the Northeast.

The Wisconsin Veterinary Diagnostic Laboratory in
Madison, Wisconsin, was the most-used USDA-certified
laboratory prior to 2012, and was still used by 29% of
states (4 of 14) in the Northeast to analyze CWD samples
in 2012. Six states sent CWD samples to laboratories
within the Pennsylvania Animal Diagnostic Laboratory
System, consisting of the Pennsylvania Veterinary Labo-
ratory in Harrisburg and New Bolton Center Veterinary
Laboratory in Kennett Square (Table 2). Location and
lower overall costs associated with processing samples
were identified as primary reasons for using these
Pennsylvania laboratories. Certified laboratories in other
states, including the Animal Disease Diagnostic Labora-
tory in Reynoldsburg, Ohio, and the Colorado State
University Diagnostic Laboratory in Fort Collins, Colora-
do, also were used to analyze samples from the
Northeast. The laboratory chosen by each state was
not as important as the tissue submitted for detection of
CWD, because all states sent samples to laboratories that
were certified by the USDA and therefore appropriate for
processing CWD samples.

Given the postulated spread of CWD from captive
facilities to wild populations that is believed to have
occurred in the CWD endemic region of Colorado and
Wyoming (Miller et al. 2000), this seemed likely to be the
case elsewhere. New York confirmed CWD in two captive
herds in March 2005 and later in two wild deer in April
2005. However, investigations into the causes of these
cases were inconclusive because of complexities that

occurred within the captive herd in which CWD was first
detected. Complexities ranged from captive deer escap-
ing the fenced facilities to undocumented transfers
between facilities. Surveillance efforts have continued
in New York since 2005 but no additional cases have
been found in wild or captive herds.

West Virginia had its first case of CWD in a wild, road-
killed deer in Hampshire County in 2005. Between 2005
and 2012, testing of harvested deer in West Virginia has
yielded 63 CWD-positive cases out of 8,860 test samples
(Table 1). All but two of these deer were collected in
Hampshire County, with the remaining deer found in
bordering Hardy County. Despite the proximity between
Hampshire County, West Virginia, and bordering states
(such as Virginia, Maryland, and Pennsylvania), CWD was
not detected in these states until Virginia confirmed its
first case in 2009 in a wild deer that was harvested ,2 km
from the West Virginia state line. Similarly, Maryland’s
only two cases to date were detected in deer harvested
in 2010 and 2013 in Allegany County, just north of the
initial Hampshire County outbreak in West Virginia. In
October 2012, Pennsylvania’s first case of CWD was
detected in a captive deer from a farm in Adams County,
and CWD was also found in three wild deer that were
harvested during the 2012 rifle season. Two of these deer
were harvested in Blair County and the other came from
Bedford County. In November 2013, Bedford County’s
second case was found in a road-killed deer. Although it
is possible that CWD crossed the Potomac River into
these bordering areas, studies examining movements of
deer between populations are needed to determine
routes of transmission. There is also a difference between

Table 1. Summary of surveillance efforts to detect chronic wasting disease (CWD) in white-tailed deer Odocoileus virginianus
harvested by hunters in the northeastern United States by year, with number of positive cases in parentheses.

Year CTa DE MAa,b MDb MEd NJ NH NYc OHa PA RI VAa,b VTa WV

1997 — — — — — 502 — — — — — — — —

1999 — — — — 299 — — — — — — — — —

2000 — — — — — — — — — — — — — —

2001 — — — — — — — — — — — — — —

2002 — — 87 304 830 900 259 1,194 500 — 160 1,112 251 —

2003 239 300 301 542 804 51 388 988 500 500 41 32* 297 —

2004 317 300 294 872 747 364 385 551 500 2,003 160 90* 323 —

2005 643 625 577 999 819 505 402 8,164 (2) 737 3,833 183 700 276 996

2006 667 615 464 982 909 537 460 7,907 1,097 4,334 158 899 363 1,336 (1)

2007 623 600 487 983 848 339 405 7,473 941 3,944 180 1,098 407 1,272 (6)

2008 632 487 400 997 791 374 426 2,971 1,021 4,224 196 433 403 1,349 (6)

2009 623 592 489 1,130 699 384 439 2,682 571 4,029 150 286 (1) 410 1,084 (15)

2010 615 582 627 369 (1) 717 392 405 1,792 588 3,882 225 592 (1) 7* 1,054 (10)

2011 565 605 615 305 702 360 431 1,807 n/a 3,766 198 1,588 (2) 8* 1,111 (9)

2012 2* 663 * 278 412 398 384 1,564 * 4,809 (3) 279 333 (1) 8* 658 (16)

Total 4,924 (0) 5,369 (0) 4,341 (0) 7,761 (1) 8,577 (0) 5,106 (0) 4,384 (0) 37,093 (2) 6,455 (0) 35,324 (3) 1,930 (0) 7,041 (5) 2,730 (0) 8,860 (63)

a For the states of Connecticut, Massachusetts, Ohio, Vermont, and Virginia, asterisks (*) indicate exclusive use of either a targeted surveillance for
deer exhibiting clinical signs of CWD or a protocol of testing road-killed deer.

b In addition to harvested deer, the annual surveillance figures for the states of Massachusetts, Maryland, and Virginia included road-killed and
targeted individuals.

c In 2011, New York changed hunter-harvest surveillance to a point system weighted by sex and age class (Walsh and Miller 2010).
d In 2012, Maine changed surveillance protocols in favor of testing a higher number of moose Alces alces in the northern region of the state.
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CWD not being ‘‘detected’’ and CWD not being
‘‘present,’’ and the dates of initial detection in each state
may not provide an accurate timeline of CWD in the
Northeast.

As of 2002, Wisconsin and Illinois were the only states
east of the Mississippi River that had confirmed cases of
CWD (Saunders et al. 2012). However, CWD has been
found in five states in the Northeast during the past
decade. New York is the only state that has detected
CWD but not redetected it in subsequent sampling
efforts. In New York, a containment area 16 km in
diameter was established around the 2005 index cases
with the following emergency regulations to prevent
further spread of the disease: mandatory check stations
and testing of all harvested deer within the containment
area; bans on deer rehabilitation, movement of intact
carcasses, use of deer or elk urine, and possession of deer
killed by motor vehicles in the containment area.
Requirements were also increased for taxidermist record
keeping and reporting. All states dealing with CWD in
the Northeast have containment and/or management
plans with similar regulations.

Potential spread of CWD into new regions, specifically
if expedited by transfer of captive cervids, may be a
serious issue for additional states in the future. As of
fiscal year 2012, the USDA provided the primary source
of funding for CWD surveillance taking place at the state
level. However, lack of USDA funding since 2012 has
been problematic for states currently dealing with CWD
or those at risk to have CWD in populations of wild
cervids in the future. The loss of funding provided by the
USDA for surveillance suggests that each state’s future
plans will require state funds or some other source to
continue to monitor for CWD. Pennsylvania, West

Virginia, and Virginia spend considerable state funding
on CWD sampling, but this is not the case with many
other states in the Northeast. After years of USDA-funded
testing, Colorado documented a 90% reduction in
samples submitted for CWD testing in response to a
sample fee of US$25 that was imposed on hunters that
wanted their deer tested (CDPW 2011). States in the
Northeast may alter surveillance efforts with an emphasis
on weighted (Walsh and Miller 2010) or targeted
surveillance to reduce sample size and cost, and others
that are at risk for CWD infection may not continue
surveillance without the availability of federal funding.

Weighted sampling efforts appear to be warranted in
areas that are at the greatest risk for CWD infection
based on associations of CWD with environmental and
landscape covariates (Osnas et al. 2009; Walsh and Miller
2010; Walter et al. 2011). For example, a 1% increase in
clay particle content increased odds of infection by up to
8.9% in mule deer in Colorado, because clay soil binds
the infectious prion that causes CWD, making it bio-
available for long durations (Walter et al. 2011). Other
studies have documented that the presence of landscape
characteristics such as low-lying grasslands that provide
high-quality winter habitat, as well as riparian ecosys-
tems, concentrate deer and increased the odds of CWD
infection in north-central Colorado and Saskatchewan,
Canada, respectively (Farnsworth et al. 2006; Rees et al.
2012). Assessing variables specific to the Northeast, such
as forest cover linked to deer dispersal and habitats that
concentrate deer during the winter, may provide the
information needed to improve surveillance for CWD
throughout the Northeast and is currently ongoing (T. S.
Evans, The Pennsylvania State University, unpublished
data). Furthermore, with new financial constraints,

Table 2. Summary of tissues submitted and the United States Department of Agriculture–certified laboratory used by each state
in the Northeast for chronic wasting disease (CWD) testing.

State

Tissue(s) submitted

Most recent laboratory usedObex
Retropharyngeal

lymph nodes Tonsil

CT X X Wisconsin Veterinary Diagnostic Laboratory (Madison, WI)

DE X X Pennsylvania Animal Diagnostic Laboratory (Harrisburg, PA)

MA X X Pennsylvania Animal Diagnostic Laboratory (Kennett Square, PA)

MD X X Pennsylvania Animal Diagnostic Laboratory (Harrisburg, PA)

ME X Colorado State University Diagnostic Laboratory (Fort Collins, CO)

NHa X Pennsylvania Animal Diagnostic Laboratory (Kennett Square, PA)

NJb X Pennsylvania Animal Diagnostic Laboratory (Kennett Square, PA)

NYa X New York State Veterinary Diagnostic Laboratory (Ithaca, NY)

OH X X Animal Disease Diagnostic Laboratory (Reynoldsburg, OH)

PA X X Pennsylvania Animal Diagnostic Laboratory (Harrisburg, PA)

RI X Wisconsin Veterinary Diagnostic Laboratory (Madison, WI)

VAb X Wisconsin Veterinary Diagnostic Laboratory (Madison, WI)

VTa X Wisconsin Veterinary Diagnostic Laboratory (Madison, WI)

WVb X Animal Disease Diagnostic Laboratory (Reynoldsburg, OH)

a Earlier surveillance protocols (e.g., 2002–2010) in these states included submission of the obex and/or tonsils but now retropharyngeal lymph
nodes are the only tissues submitted.

b The obex is also submitted in captive cervids and/or deer exhibiting signs characteristic of CWD.
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collaborations among state agencies have been initiated
in the Northeast and may improve efficiency of disease
surveillance at a regional scale.
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Chapter 2  
 

Home range is related to landscape heterogeneity in deciduous forests 

 Chapter 2 was written in collaboration with David Stainbrook, Bret Wallingford, Chris 

Rosenberry, Duane Diefenbach and W. David Walter. I have included this manuscript on the 

following pages as formatted for the Journal of Wildlife Management. 
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ABSTRACT  

Spatial heterogeneity, or composition and configuration of a landscape, plays a role in 

many biological and ecological processes. In spatial ecology, understanding movements of a 

species in relation to the landscape can assist wildlife managers in better understanding other 

processes, including habitat use and disease transmission. In the northeastern United States 

(Northeast), chronic wasting disease has been detected in populations of white-tailed deer 

(Odocoileus virginianus), and understanding the relationship between landscape and size of 

home range may provide a basis for disease surveillance and containment efforts. The objectives 

of our study were to (1) compare size of home range between sexes and among study areas for 

white-tailed deer occupying a continuum of forested landscapes from highly fragmented to 

contiguous and (2) investigate relationships between size of home range and measures of 

landscape composition and configuration. We observed differences in size of 95% home range 

between males (3.77 km
2
) and females (1.83 km

2
) across all study areas, as well as between deer 

in highly fragmented and contiguous landscapes. We developed 20 linear regression models that 

contained measures of landscape that were correlated with size of home range, and the best 

model showed that size of home range increased with connectivity of forest cover. 

Understanding this relationship may provide a foundation for disease surveillance efforts, 

because size of home range may represent the scale at which disease will spread. Therefore 

surveillance should be conducted in a manner that reflects connectivity of landscape at a local 

scale.  
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Spatial patterns of a landscape play a role in many biological and ecological processes. 

These patterns, referred to as spatial heterogeneity, are described best by measures of landscape 

composition and configuration (Li and Reynolds 1994). Composition includes numbers and 

proportions of distinct patches of land cover, and configuration includes shapes, arrangements, 

and contrast between patches. Landscapes also can be defined by spatial categories including 

patch, edge, diversity, contagion, and shape (McGarigal and Marks 1995). 

Studies in the western (West) and Midwestern (Midwest) United States identified 

characteristics of landscapes (e.g., edge density, patch shape) that were related to size of home 

range for mule deer (Odocoileus hemionus; Kie et al. 2002) and white-tailed deer (Odocoileus 

virginianus; Walter et al. 2009). Studies in the northeastern United States (Northeast) have 

shown that features of the landscape, such as terrain, roads, rivers, and forest cover influenced 

dispersal behaviors of white-tailed deer (Long et al. 2005, Long et al. 2010). Assessments of 

spatial heterogeneity and how it relates to size of home range, however, are lacking in the 

Northeast. 

Increased use of Global Positioning System (GPS) technology for tracking wildlife 

movements has resulted in development of estimators of home range for serially correlated 

locations. In comparison with traditional estimators that include only location-based parameters 

(e.g., fixed kernel density estimators), movement-based kernel density estimators take advantage 

of greater amounts of data available with GPS technology that was not available with 

transmitters that required locations estimated via triangulation (Horne et al. 2007, Benhamou and 

Cornelis 2010). Movement-based kernel density estimators (hereafter referred to as MKDE) 

incorporate serially correlated locations, duration between locations, positional error of GPS 

technology, and habitat and provide estimates of home range that better account for movements 
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that relate to the landscape (Benhamou and Cornelis 2010). Applied use of MKDE, however, has 

not been reported in the literature for cervids in North America. 

Understanding the relationship between landscape and movements of white-tailed deer 

can assist wildlife managers with alleviating issues that include forest regeneration, crop damage, 

and disease transmission (Alverson et al. 1988, Vecellio et al. 1994, Conner and Miller 2004). 

The spatial distribution of chronic wasting disease was related to features of the landscape in the 

West and Midwest (Farnsworth et al. 2006, Walter et al. 2011a, Storm et al. 2013). Movements 

of deer (e.g., dispersal and home range) also were related to landscape in these regions and the 

Northeast (Long et al. 2005, Walter et al. 2009, Long et al. 2010). Furthermore, it is likely that 

the spatial distribution of chronic wasting disease in the Northeast is related to both movements 

of deer and landscapes that relate to these movements, and identifying the scale at which deer 

establish home range can provide a basis for disease surveillance and containment. The 

objectives of our study were to (1) compare size of home range between sexes and among study 

areas for white-tailed deer occupying a continuum of forested landscapes from highly 

fragmented to contiguous and (2) investigate relationships between size of home range and 

measures of landscape composition and configuration.  

STUDY AREA 

We estimated home range for white-tailed deer in 6 study areas in Pennsylvania, USA 

(Fig. 1). Each area was classified based on a continuum of forested landscapes ranging from 

highly fragmented to contiguous (Table 1). The highly fragmented area was located in the 

Gettysburg National Military Park in central Adams County and elevation ranged from 87 m to 

236 m. Pasture and cropland were dominant classes of land cover throughout the area, and the 

town of Gettysburg was located in the center. Forest cover was sparse and highly fragmented in 
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this area due to the dominant presence of anthropogenically-modified habitats. The 2 moderately 

fragmented areas were located approximately 50 km northeast of Pittsburgh and in the 

northeastern region of the state, respectively (Table 1). These areas represented rural and 

moderately fragmented landscapes where open (e.g., pasture, cropland) and forested classes 

created a mosaic, and elevation in these areas ranged from 225 m to 819 m. The 2 evenly divided 

areas were located in central Pennsylvania and were characterized by contiguous forests along 

ridgelines and contiguous distributions of pasture and cropland in valleys. Elevation in these 

areas ranged from 111 m to 737 m. The contiguous area was located in the north-central region 

of the state in homogeneous forests that represented the dominant class of land cover. Although 

sparse, other classes (e.g., pasture) were present and elevation ranged from 406 m to 785 m 

(Table 1).  

METHODS 

Home range estimation.– We captured and equipped 45 white-tailed deer with GPS 

collars across the study areas for various projects on white-tailed deer movements and survival 

between 2009 and 2013 (Stainbrook 2011, Buderman et al. 2014, Lutz et al. 2014). We captured 

deer using a combination of rocket nets (Beringer et al. 1996), single-gate Clover traps (Clover 

1956), and drop nets (modified from Ramsey 1968). All capture and handling methods were in 

accordance with protocols approved by the Pennsylvania State University Institutional Animal 

Care and Use Committee (IACUC No. 29677 and 34910) and within guidelines of the American 

Society of Mammalogists (Sikes et al. 2011). We used adehabitatLT and adehabitatHR packages 

(Calenge 2011, Calenge 2014) in program R (R Foundation for Statistical Computing, Vienna, 

Austria) to estimate mean daily distance traveled and home range for each deer, respectively. We 
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estimated mean distance traveled by each deer across a 24-hour period, provided >3 recorded 

locations were available (range: 3–7 locations; Appendix A). 

We incorporated duration of time between recorded locations (1–10 hr), a minimum 

distance of 30 m that needed to be traveled between consecutive locations to be considered 

active, and landscape-specific diffusion coefficients into the MKDE to estimate 95% and 99% 

isopleths of annual home range for each deer. We defined annual as late winter of one year 

through late winter of the following year with no overlapping dates (e.g., 1 February–31 

January), because dates of capture varied for each deer. We grouped deer according to sex and 

landscape (e.g., highly fragmented) and used a single-factor ANOVA with a confidence level of 

95% (α=0.05) to assess differences in size of home range between sexes, as well as pairwise t-

tests with Bonferroni correction (Rice 1989) to assess differences among all sex-landscape 

comparisons. 

Land cover reclassification.– We reclassified the 2006 National Land Cover Database 

with 30 m resolution into 5 classes: developed, forested, open, water, and wetland (Fry et al. 

2011). Prominent water sources and wetlands were present in only 2 study areas and represented 

less than 1% of the landscape in home ranges of 5 deer in these areas. Therefore we did not 

consider these 2 classes in our analysis and reclassified water as open (e.g., pastures, grasslands 

and croplands) and wetland as forested, given the association of woody wetlands with forest 

vegetation (Fry et al. 2011). The developed class contained roads and all intensities of 

development, including urban, suburban, and exurban. 

Landscape metrics.– We used the SDMTools package to calculate measures of landscape 

configuration and connectivity for each class of land cover and the plyr package to automate the 

process for each deer within 2 spatial scales (95% and 99% isopleths of home range) in program 
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R (VanDerWal et al. 2012, Wickham 2014). We calculated 37 measures for each class within 

each spatial scale and subsequently subset each class and conducted Pearson correlation matrices 

between our response variable, natural log of home range size, and each measure. We used 

natural log of home range because the original distribution was positively skewed (Kie et al. 

2002, Walter et al. 2009), and we also used a Bonferroni correction to account for Type I error in 

multiple comparisons (Rice 1989). 

We retained measures that were correlated (r > 0.5) with natural log of home range but 

not correlated with each other. Some measures were not correlated with home range for all 3 

classes of land cover, however, and we prioritized correlations between the forested class and 

home range as most important. We believed the forested class would be most influential given 

the association of forest with movement and disease epidemiology in white-tailed deer in the 

Northeast and Midwest (Long et al. 2005, Nixon et al. 2007, Kelly et al. 2014). We selected 4 

covariates that included proportion of landscape (proportion of each class), patch density 

(number of patches/km
2
), edge density (m/ha), and patch cohesion index (measure of physical 

connectivity for each class). We selected these covariates due to their relationships with 

definitions of spatial heterogeneity (Li and Reynolds 1994, McGarigal and Marks 1995) and also 

with size of home range in previous studies of cervids (Kie et al. 2002, Anderson et al. 2005, 

Walter et al. 2009). We chose covariates that were relative (e.g., edge density) rather than 

absolute (e.g., total edge) because we were comparing landscapes with varying extents of 

configuration and connectivity occupied by white-tailed deer. 

Linear regression modeling.– We created 20 linear models with combinations of the 4 

covariates as independent variables and natural log of home range as the response variable for 

each spatial scale (Table 2). We used covariates that corresponded to each spatial scale to 



16 

 

 

determine if changing the scale of analysis from 95% to 99% would influence model selection 

results (Kie et al. 2002, Walter et al. 2009). Each model contained covariates specific to one 

class of land cover (e.g., forested), and we used Aikake’s Information Criterion with correction 

for small sample size to evaluate the set of models (AICc; Burnham and Anderson 2002). We did 

not use hypothesis testing because we were interested only in determining which covariates were 

related to size of home range. 

RESULTS 

Mean distance traveled by females ranged from 179.5 m in the highly fragmented area to 

287.1 m in an evenly divided area (Appendix A). Similarly, mean distance traveled by males 

ranged from 222.1 m in the highly fragmented area to 445.1 m in an evenly divided area. Size of 

95% home range for females ranged from 0.40 km
2
 in the highly fragmented area to 5.96 km

2
 in 

a moderately fragmented area (Table 3). Size of 95% home range for males ranged from 1.12 

km
2
 in the highly fragmented area to 8.55 km

2
 in an evenly divided area. 

Males established 95% home ranges (3.77 km
2
) that were more than twice the size of 

home ranges established by females (1.83 km
2
) across all study areas (F1,43 = 8.82, P < 0.005). 

Mean size of 99% home range also varied between males (7.73 km
2
) and females (3.37 km

2
; 

F1,43 = 12.53, P < 0.001). We observed differences in 95% home range for females in highly 

fragmented (0.63 km
2
) and contiguous (2.65 km

2
) areas (P < 0.05; Fig. 2). Males from 

contiguous (5.61 km
2
) and evenly divided (5.78 km

2
) areas established home ranges that were 3 

times greater in size than home ranges for males in the highly fragmented area (1.84 km
2
; P < 

0.02). 

All 45 deer established home ranges that encompassed forest cover. Developed and open 

classes of land cover, however, were present in home ranges of only 42 and 37 of these deer, 
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respectively. Patch density was inversely related to size of home range for all 3 classes (forested: 

r = –0.66, P < 0.001; developed: r = –0.55, P < 0.001; open: r = –0.68, P < 0.001). Edge density 

also had an inverse relationship with home range for all classes (forested: r = –0.54, P < 0.001; 

developed: r = –0.57, P < 0.001; open: r = –0.55, P < 0.001). Patch cohesion index (r = 0.79,     

P < 0.001) and proportion of landscape (r = 0.50, P < 0.001) were correlated with home range 

for only the forested class, but the positive relationship between patch cohesion index and size of 

home range appeared to be stronger than any other relationship. 

The same model, containing forest edge density and patch cohesion index (physical 

connectivity of forest), best described the relationship between landscape and size of home range 

at our 2 spatial scales. This model accounted for 89% and 76% of AICc weights at 95% and 99% 

scales, respectively (Tables 4–5). Forest edge density was inversely related to size of home range 

with parameter estimates of –0.250 and –0.270 at 95% and 99% scales, respectively (Figs. 3–4). 

Patch cohesion index was positively related with estimates of 1.341 and 1.618 at these 2 scales, 

respectively (Figs. 5–6). At each spatial scale, the second best model differed only in that edge 

density was not included. 

DISCUSSION 

We expected size of home range to vary between sexes, given associations of expansive 

home range with males, as well as increased movements by males for dispersal, migration, and 

breeding (Beier and McCullough 1990, McCoy et al. 2005, Nixon et al. 2007, Long et al. 2008, 

Long et al. 2010). Expansive home range for males in the Northeast was consistent with findings 

in the Midwest that identified several factors that influenced differences in size between sexes, 

including increased nocturnal movement by males during the breeding season, decreased diurnal 

movement by females during the growing season, and higher site fidelity by females across all 
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seasons (Beier and McCullough 1990, Walter et al. 2011b). Increased rates and distances of 

dispersal were observed for males in the Northeast and Midwest and supported our findings of 

expansive home range and greater daily distance traveled by males than females in each study 

area in which both sexes were included for analysis (Nixon et al. 2007, Long et al. 2008). 

Home ranges for males and females in the highly fragmented area were less expansive 

than home ranges in all other study areas. Kie et al. (2002) observed a negative relationship 

between areas of high fragmentation and size of home range for female mule deer. It is possible 

that home ranges that were less expansive in the highly fragmented area were related to the 

landscape comprised of small woodlots and high intensities of open and developed classes that 

may provide forage for white-tailed deer (Vecellio et al. 1994, Grund et al. 2002). Our highly 

fragmented area more closely resembled an agricultural landscape than any other study area, and 

size of home range for females in this area (0.63 km
2
) was more comparable to home ranges 

reported in agricultural landscapes of the Midwest (0.99–1.47 km
2
; Walter et al. 2009) than to 

any of our other study areas (Fig. 2). In areas where open and developed classes were as 

prominent as they were in the highly fragmented area, deer likely were able to obtain suitable 

forage without being required to traverse a large distance (Nixon et al. 1991).  

Deer located in contiguously forested areas established home ranges that were largest of 

all deer in our analysis. Areas that are predominantly forested may be viewed as less productive, 

because deer that rely on food sources (e.g., mast and browse) that can vary on a seasonal or 

annual basis may be required to establish home ranges that are expansive to ensure access to 

sufficient resources (Alverson et al. 1988, McShea and Schwede 1993, Rooney and Waller 

2003). In areas that are predominantly forested, mast can comprise >76% of the diet of deer in 

these areas (Harlow et al. 1975). Female deer in Virginia expanded seasonal home ranges into 
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oak (Quercus spp.) stands during years in which production of mast exceeded 300 kg/ha, 

whereas size of home range remained unchanged during years of poor mast production (<100 

kg/ha; McShea and Schwede 1993). Production in this area varied greatly from year to year (e.g., 

396 kg/ha to 3 kg/ha) and suggested that shifts in home range by deer in predominantly forested 

landscapes are in response to availability of forage. 

In the highly fragmented area, changing the spatial scale from 95% to 99% encompassed 

greater amounts of edge and other patches that were occupied less often by deer. Conversely, 

changing the scale in the contiguous area encompassed only greater amounts of forest rather than 

other classes of land cover given the homogeneously forested landscape in this area. Our model 

selection results, however, remained the same without regard to the scale that was used. This was 

inconsistent with findings in female mule deer in the West, where measures of landscape that 

influenced size of home range changed as the scale of analysis was increased from 250 m to 

2,000 m from the centroid location of each home range (Kie et al. 2002). In a similar study of 

female white-tailed deer in the Midwest, measures of landscape that influenced size of home 

range changed as the spatial scale was modified (Walter et al. 2009). Although changing spatial 

scale yielded similar results in our study, further research using other extents (e.g., buffered 

circles around locations; Kie et al. 2002) would be necessary to further evaluate influence of 

spatial scale in the Northeast. 

A caveat of our study was that we were unable to assess deer densities across our study 

areas. High deer densities in our highly fragmented area (>40 deer/km
2
; Stainbrook 2011) were 

linked to crop damage (Vecellio et al. 1994), and similar densities (47–51 deer/km
2
) were 

identified as the cause of forest regeneration issues on a predominantly forested landscape in 

Connecticut (Kilpatrick et al. 1997). Deer in high-density areas also have been shown to exhibit 
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greater site fidelity, especially during winter months (Lesage et al. 2000). Reduction in deer 

density appears to have varying effects on expansion of home range. Seasonal home range 

expanded by 30% in a developed area in South Carolina following a 50% reduction in herd size 

(Henderson et al. 2000), however, home ranges remained unchanged in Connecticut following 

reduction of the deer herd from 88 to 17 deer/km
2
 (Kilpatrick et al. 2001). Although assessments 

of home range expansion in response to herd reduction are not feasible in Pennsylvania, lower 

densities (~18 deer/km
2
; Tilghman 1989) in contiguously forested areas in the state may require 

males to traverse greater distances in search of females during the breeding season. Therefore 

landscape is one of many factors that likely play a role in differences in size of home range 

between highly fragmented and contiguously forested landscapes. 

Epidemiology of disease is likely to vary in areas with differing landscapes and deer 

densities, because rates of contact also differ in these areas (Schauber et al. 2007, Kelly et al. 

2014). In fragmented areas with high deer densities, contact rates are likely higher at a local scale 

due to frequent interactions among social groups and therefore may limit spread of disease to a 

local scale. Increased dispersal rates and distances among juvenile males in these areas, however, 

also may influence outward expansion of disease into previously unaffected areas (Long et al. 

2005). In contiguously forested areas, spread of disease may reflect expansive home ranges that 

influence contact rates or deposition of infectious disease agents at a broad scale. Interactions 

between deer in these areas may be lower, however, due to low densities and greater isolation of 

philopatric groups (Kelly et al. 2014).  

Spread of disease likely is related to the scale at which deer establish home range, and 

our findings show that size of home range varies in fragmented and contiguously forested 

landscapes that also likely contain deer densities that differ. State agencies that are responsible 
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for disease surveillance should sample deer at a scale that reflects size of home range established 

by deer in each type of landscape, because size of home range likely best represents the scale at 

which disease will spread. Surveillance efforts in highly fragmented areas should be 

concentrated locally to reflect concentrated movements and home ranges that lead to higher 

contact rates between social groups that likely utilize similar resources. Conversely, surveillance 

in contiguously forested areas should be conducted at a broader scale to reflect home ranges that 

are more expansive and dispersed due to limitations in foraging and breeding opportunities at the 

local scale. Most states in the Northeast are characterized by a continuum of fragmented and 

contiguous landscapes, thus the scale of disease surveillance should account for variability in 

landscape that also likely relates to the scale at which deer may transmit disease. 
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FIGURE LEGENDS 

Figure 1. Study areas used to assess the relationship between heterogeneity of landscape and size 

of home range for white-tailed deer (Odocoileus virginianus) between 2009 and 2013 in 

Pennsylvania. 

 

Figure 2. Mean size of 95% home range by sex and study area for white-tailed deer (Odocoileus 

virginianus) between 2009 and 2013 in Pennsylvania. 

 

Figure 3. Relationship between forest edge density and size of 95% home range for white-tailed 

deer (Odocoileus virginianus) between 2009 and 2013 in Pennsylvania. Males (M) are denoted 

above each corresponding symbol. 

 

Figure 4. Relationship between forest edge density and size of 99% home range for white-tailed 

deer (Odocoileus virginianus) between 2009 and 2013 in Pennsylvania. Males (M) are denoted 

above each corresponding symbol. 

 

Figure 5. Relationship between patch cohesion index, or physical connectivity of forest cover, 

and size of 95% home range for white-tailed deer (Odocoileus virginianus) between 2009 and 

2013 in Pennsylvania. Males (M) are denoted above each corresponding symbol. 

 

Figure 6. Relationship between patch cohesion index, or physical connectivity of forest cover, 

and size of 99% home range for white-tailed deer (Odocoileus virginianus) between 2009 and 

2013 in Pennsylvania. Males (M) are denoted above each corresponding symbol.  
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Table 1. Forest type, physiographic province
1
, and proportions of 3 classes of land cover summarized within the extent of each 

study area used in analysis of home range for white-tailed deer (Odocoileus virginianus) between 2009 and 2013 in Pennsylvania. 

Study Area Forest type Physiographic province Developed Forested Open 

Highly Fragmented Appalachian oak Gettysburg-Newark Lowland 0.162 0.221 0.617 

Moderately Fragmented Appalachian oak Pittsburgh Low Plateau 0.100 0.623 0.277 

Moderately Fragmented Northern hardwoods Glaciated Low Plateau 0.037 0.717 0.246 

Evenly Divided Appalachian oak Appalachian Mountain 0.064 0.723 0.213 

Evenly Divided Appalachian oak Appalachian Mountain 0.073 0.676 0.251 

Contiguous Northern hardwoods Deep Valleys 0.018 0.893 0.089 

1
 Bureau of Topographic and Geologic Survey, Commonwealth of Pennsylvania Department of Conservation and Natural Resources. 
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Table 2. Candidate set of models investigating the relationship between heterogeneity of 

landscape and size of home range for white-tailed deer (Odocoileus virginianus) between 2009 

and 2013 in Pennsylvania. The first term in some models refers to proportion of landscape 

(e.g., FOR = proportion of forested). Subscripts for forested (F), open (O), and developed (D) 

classes refer to covariates pertaining to that class of land cover, including PCOH (patch 

cohesion index), EDGE (edge density), and PDEN (patch density). 

Covariates Explanation 

FOR  +  --------- + EDGEF + -------- 
Forest model with patch cohesion index and patch 

density removed 

------- +  PCOHF + EDGEF + -------- 
Forest model with proportion of forest and patch density 

removed 

------- +  --------- + EDGEF + PDENF 
Forest model with proportion of forest and patch 

cohesion index removed 

FOR  +  --------- + ---------- + -------- Proportion of forest retained 

------- +  PCOHF + --------- + -------- Forest patch cohesion index retained 

------- +  --------- + EDGEF + -------- Forest edge density retained 

------- +  --------- + --------- + PDENF Forest patch density retained 

OPEN + -------- + --------- + PDENO 
Open model with patch cohesion index and edge density 

removed 

------- + PCOHO + --------- + PDENO 
Open model with proportion of open and edge density 

removed 

------- + --------- + EDGEO + PDENO 
Open model with proportion of open and patch cohesion 

index removed 

------- + PCOHO + --------- + --------- Open patch cohesion index retained 

------- + --------- + EDGEO + --------- Open edge density retained 

------- + --------- + -------- + PDENO Open patch density retained 

DEV  + PCOHD  + ------- + PDEND Developed model with edge density removed 

DEV  + PCOHD  + -------- + --------- 
Developed model with edge density and patch density 

removed 

DEV  + ---------- + -------- + PDEND 
Developed model with patch cohesion index and edge 

density removed 

------- + --------- + EDGED + PDEND 
Developed model with proportion of developed and 

patch cohesion index removed 

DEV  + ---------  + --------- + --------- Proportion of developed retained 

------- + ---------  + EDGED + -------- Developed edge density retained 

------- + ---------  + --------  + PDEND Developed patch density retained 
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Table 3. Number of locations and size of 95% and 99% home range (km
2
) for female (F) and 

male (M) white-tailed deer (Odocoileus virginianus) between 2009 and 2013 in Pennsylvania. 

Study area Sex Locations 95% 99% 

Highly Fragmented F 1,784 0.701 1.071 

Highly Fragmented F 987 0.414 0.679 

Highly Fragmented F 1,031 0.922 1.671 

Highly Fragmented F 833 0.568 0.887 

Highly Fragmented F 872 0.546 0.872 

Highly Fragmented F 983 0.500 0.812 

Highly Fragmented F 994 0.398 0.536 

Highly Fragmented F 831 0.610 1.001 

Highly Fragmented F 847 0.430 0.713 

Highly Fragmented F 928 0.584 0.810 

Highly Fragmented F 1,966 1.226 2.358 

Highly Fragmented M 1,622 1.524 3.067 

Highly Fragmented M 1,016 2.621 3.951 

Highly Fragmented M 1,727 1.119 2.615 

Highly Fragmented M 1,796 2.086 8.005 

Moderately Fragmented F 3,320 1.154 2.167 

Moderately Fragmented F 3,032 1.231 2.315 

Moderately Fragmented F 3,367 5.963 11.087 

Moderately Fragmented F 3,029 4.396 7.858 

Moderately Fragmented F 3,341 1.249 2.139 

Moderately Fragmented F 3,270 0.997 1.578 

Evenly Divided F 1,484 1.495 2.092 

Evenly Divided F 1,752 1.672 3.216 

Evenly Divided F 1,732 1.858 4.670 

Evenly Divided F 1,665 1.560 2.174 

Evenly Divided F 1,710 3.035 4.603 

Evenly Divided F 1,728 2.871 4.371 

Evenly Divided M 1,688 8.552 14.034 

Evenly Divided M 1,653 3.010 5.921 

Evenly Divided F 3,238 1.812 5.738 

Evenly Divided F 2,824 1.480 2.253 

Evenly Divided F 2,336 0.874 1.559 

Evenly Divided F 3,161 0.707 1.188 

Evenly Divided F 3,422 4.786 8.527 

Evenly Divided F 3,405 2.450 5.471 

Contiguous F 1,737 3.637 5.748 

Contiguous F 1,743 2.969 6.557 

Contiguous F 1,714 1.512 2.324 
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Contiguous F 1,702 2.728 3.840 

Contiguous F 1,565 1.193 2.642 

Contiguous F 1,686 2.355 6.399 

Contiguous F 1,699 1.716 3.164 

Contiguous F 1,613 5.086 9.624 

Contiguous M 1,502 4.950 9.248 

Contiguous M 1,721 6.269 15.014 
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Table 4. Model selection results for the candidate set of models investigating the relationship 

between heterogeneity of landscape and size of 95% home range for white-tailed deer 

(Odocoileus virginianus) between 2009 and 2013 in Pennsylvania. The first term in some 

models refers to proportion of landscape (e.g., FOR = proportion of forested). Subscripts for 

forested (F), open (O), and developed (D) classes refer to covariates pertaining to that class, 

including PCOH (patch cohesion index), EDGE (edge density), and PDEN (patch density). 

Model Terms K AICc ∆AICc Weight 

-------  +  PCOHF + EDGEF + -------- 4 64.295 0.000 0.886 

-------  +  PCOHF + --------- + -------- 3 68.534 4.240 0.106 

-------  +  PCOHO + --------- + PDENO 4 75.018 10.724 0.004 

-------  + ---------- + --------- + PDENO 3 76.725 12.430 0.002 

-------  + ---------- + EDGEO + PDENO 4 78.128 13.834 0.001 

OPEN + ---------  + ---------- + PDENO 4 78.851 14.557 0.001 

-------  + ---------  + EDGEO  + --------- 3 85.923 21.629 0.000 

-------  +  --------- + --------- + PDENF 3 87.712 23.417 0.000 

-------  +  --------- + EDGEF + PDENF 4 89.138 24.844 0.000 

-------  + ---------  + EDGED + PDEND 4 89.367 25.072 0.000 

DEV   + ---------- + ---------  + PDEND 4 91.277 26.982 0.000 

-------  + ---------  + EDGED + -------- 3 91.714 27.419 0.000 

-------  + ---------  + ---------  + PDEND 3 92.599 28.305 0.000 

DEV   + PCOHD  + --------- + PDEND 5 92.986 28.691 0.000 

FOR   +  --------- + EDGEF  + -------- 4 93.996 29.702 0.000 

------- + PCOHO  + ---------  + --------- 3 94.676 30.381 0.000 

DEV  + ---------  + ---------  + --------- 3 97.513 33.218 0.000 

------- +  --------- + EDGEF + -------- 3 97.618 33.323 0.000 

DEV  + PCOHD  + --------- + --------- 4 98.147 33.853 0.000 

FOR  +  --------- + ---------- + -------- 3 100.229 35.934 0.000 
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Table 5. Model selection results for the candidate set of models investigating the relationship 

between heterogeneity of landscape and size of 99% home range for white-tailed deer 

(Odocoileus virginianus) between 2009 and 2013 in Pennsylvania. The first term in some 

models refers to proportion of landscape (e.g., FOR = proportion of forested). Subscripts for 

forested (F), open (O), and developed (D) classes refer to covariates pertaining to that class, 

including PCOH (patch cohesion index), EDGE (edge density), and PDEN (patch density). 

Model Terms K AICc ∆AICc Weight 

------- +  PCOHF + EDGEF + ---------- 4 81.469 0.000 0.763 

------- +  PCOHF + --------- + ---------- 3 83.822 2.353 0.235 

------- + ---------- + --------- + PDENO 3 95.779 14.310 0.001 

------- + ---------- + EDGEO + PDENO 4 96.079 14.609 0.001 

OPEN + --------- +  --------- + PDENO 4 96.916 15.447 0.000 

-------- + PCOHO + --------- + PDENO 4 97.339 15.870 0.000 

-------- + --------- + EDGEO + ---------- 3 98.087 16.617 0.000 

-------- + --------- + EDGED + ---------- 3 105.068 23.598 0.000 

-------- +  -------- + EDGEF  + PDENF 4 106.252 24.783 0.000 

-------- +  -------- + ---------- + PDENF 3 106.632 25.163 0.000 

-------- +  -------- + EDGED  + PDEND 4 107.477 26.008 0.000 

DEV   + PCOHD + ---------- + ---------- 4 107.715 26.246 0.000 

FOR   +  --------- + EDGEF  + ---------- 4 108.839 27.370 0.000 

DEV   + --------- + ---------- + ---------- 3 109.942 28.473 0.000 

-------- +  -------- + EDGEF  + ---------- 3 109.990 28.521 0.000 

DEV   + PCOHD + ---------  + PDEND 5 110.018 28.549 0.000 

-------- + PCOHO + --------- + ---------- 3 111.441 29.972 0.000 

DEV   + ---------- + --------- + PDEND 4 111.864 30.395 0.000 

-------- + ---------- + --------  + PDEND 3 111.994 30.525 0.000 

FOR   +  ---------- + --------- + ---------- 3 112.136 30.667 0.000 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Chapter 3  
 

Odds of exposure to chronic wasting disease driven by habitat occupied by       

white-tailed deer 

 Chapter 3 was written in collaboration with Megan S. Kirchgessner, Brian Eyler, 

Christopher W. Ryan, and W. David Walter. I have included this manuscript on the following 

pages as formatted for the Journal of Wildlife Management. 
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ABSTRACT 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that was 

first detected in 1967 in a captive research facility in Colorado. In the northeastern United States 

(Northeast), CWD was first confirmed in white-tailed deer (Odocoileus virginianus) in 2005. 

Because CWD is a new and emerging disease with a spatial distribution that had yet to be 

assessed in the Northeast, we examined fixed (demographic and environmental) and random 

effects to determine how each related to this spatial distribution. The objectives of our study 

were to (1) identify fixed and random effects that best described the spatial distribution of CWD 

in free-ranging white-tailed deer and (2) identify areas at risk for CWD infection in the 

Northeast. Demographic covariates included sex and age, and environmental covariates included 

elevation, slope, riparian corridor, percent clay, and proportion of 3 habitat types (developed, 

forested, and open). The model with the most support contained habitat covariates and random 

spatial effects that represented clustering of CWD in adjacent grid cells. Forested habitat had the 

strongest relationship with the distribution of CWD, with increased risk of CWD occurring in 

areas that had lesser amounts of forest. Our results will assist resource managers in 

understanding the spatial distribution of CWD not only within the study area, but also in 

surrounding areas where CWD has yet to be found. Efficiency of disease surveillance and 

containment efforts can be improved by allocating resources used for surveillance into areas that 

are at greatest risk for infection. 
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Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that was 

first detected in captive mule deer (Odocoileus hemionus) in Colorado (Williams and Young 

1980). Other members of the Cervidae family, including white-tailed deer (Odocoileus 

virginianus), elk (Cervus canadensis), and moose (Alces alces), also are affected by CWD. In 

2005, CWD was first detected in the northeastern United States (Northeast) in white-tailed deer 

in New York and West Virginia and since has been found in Virginia, Maryland and 

Pennsylvania. Studies in other regions identified demographic and environmental covariates that 

influenced the spatial distribution of CWD (Farnsworth et al. 2006, Walter et al. 2011, Storm et 

al. 2013). An assessment of the relationship between these covariates and the distribution of 

CWD is lacking, however, in the Northeast where the disease is still new and emerging. 

Bayesian methods are used in a variety of fields to explain epidemiology of disease and 

resulting spatial patterns (Levin 1992). Bayesian hierarchical modeling provides a framework 

that can be used to examine disease presence or absence across the landscape, as well as fixed 

and random effects that explain the spatial distribution of disease (Clayton and Kaldor 1987, 

Waller et al. 1997). Random effects account for spatial autocorrelation because estimates of 

fixed effects could be biased and inappropriately precise otherwise, leading to increased Type I 

error rates (Diniz-Filho et al. 2008). In comparison with earlier methods of disease mapping 

(e.g., Empirical Bayes) that incorporate less information, fully Bayesian approaches provide 

estimates of disease risk that account for variability and randomness at local scales (Bernardinelli 

et al. 1995, Elliott and Wartenburg 2004). Bayesian hierarchical modeling allows for 

simultaneous investigation of fixed effects that pertain to environmental covariates as well as 

variability caused by random effects that can be either spatially dependent or independent 
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(Farnsworth et al. 2006, Osnas et al. 2009). Combined with demographic covariates, any of these 

fixed or random effects or combinations of effects can influence the spatial distribution of 

disease across the landscape. 

In a predominantly agricultural-forest matrix, fixed effects (e.g., forest cover, edge) 

promoted high deer densities and CWD prevalence in Wisconsin and Illinois, and these fixed 

effects likely contributed to spread of CWD at a local scale (Storm et al. 2013, Kelly et al. 2014). 

We would expect the epidemiology of CWD to differ in the Northeast because the landscape is 

composed predominantly of large homogeneous forests. The Northeast presents a new 

environment in which CWD has yet to be assessed and an opportunity to better understand the 

epidemiology of CWD in white-tailed deer. As CWD continues to expand in the region, an 

assessment of its spatial distribution is needed for improvement of surveillance and containment 

strategies for not only the Northeast but also other regions (e.g., southeastern U.S.) with 

predominantly forested landscapes. In this study, we examined factors to determine how each 

related to the spatial distribution of CWD and potentially controlled odds of CWD infection in 

the central Appalachian region of the Northeast. The objectives of our study were to (1) identify 

fixed and random effects that best described the spatial distribution of CWD in free-ranging 

white-tailed deer and (2) identify areas at risk for CWD infection in the Northeast. 

STUDY AREA 

Our study area consisted of 2,340 km
2
 in northwestern Maryland, northern Virginia, and 

eastern West Virginia (Fig. 1). The core was located in West Virginia, where CWD was first 

confirmed in a deer killed by a vehicle in 2005 and since has been found in deer harvested in 

nearby counties and in adjacent states (Evans et al. 2014). Primary land cover consisted of 
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deciduous oak-hickory forests with sparse stands of conifers. Pastures and croplands were 

prominent land uses in the area, and intensities of urban development also were present in the 

form of roads and small communities. Elevation ranged from 131 m to 875 m, and mean annual 

snowfall ranged from 57 cm to 163 cm. 

METHODS 

Sampling grid.– We used estimates of annual home range for 45 white-tailed deer in the 

region to determine the spatial resolution for our analysis (Chapter 2). We used a movement-

based kernel density estimator to estimate 99% isopleths of home range for each deer. The 

combined mean size of home range for males (7.7 km
2
) and females (3.4 km

2
) was 

approximately 6 km
2
, and this constituted the resolution of a spatial sampling grid (e.g., size of 

each cell) over the study area (hereafter referred to as sampling grid). Within each cell of our 

sampling grid, data for environmental covariates was calculated for each deer in our dataset. We 

assumed that each deer’s location of harvest reflected its natural home range within the sampling 

grid. 

Demographic covariates.– We received geo-referenced data for 11,357 hunter-harvested 

white-tailed deer that were tested for CWD between 2005 and 2012 from the Maryland 

Department of Natural Resources, Virginia Department of Game and Inland Fisheries, and West 

Virginia Division of Natural Resources. We retained data for deer (n = 7,427) that were located 

within the extent of the outermost CWD-positive deer (Fig. 1), due to computing limitations with 

Bayesian models over large spatial dimensions. All locations of harvest were reported by hunters 

in accordance with each state’s surveillance protocol (Evans et al. 2014). Locations of harvest in 

West Virginia and Virginia were provided on grids with 2.6 km
2
-cells, and we extracted centroid 
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locations from each grid cell. Exact coordinates were provided for all locations of harvest in 

Maryland. In addition to location of harvest, the sex, age, and test result for CWD (positive or 

negative) also were provided for each deer. We aggregated all data collected between 2005 and 

2012, because temporal trends were not found to be significant in other studies of CWD 

(Farnsworth et al. 2006, Osnas et al. 2009). We removed fawns (n = 8) from our dataset, because 

fawns were removed from past analyses due to low prevalence (<0.005) in the age class and 

none of the hunter-harvested fawns in our study area tested positive for CWD (Grear et al. 2006). 

 Given the association of CWD with males and increased prevalence of CWD in older 

deer of both sexes, sex and age were considered as covariates (Miller and Conner 2005, Grear et 

al. 2006). Assuming that these associations could be used to describe demographic trends of 

CWD in our study area, all male deer were coded as one and females as zero in the sex category. 

Several detections of CWD in yearling males (<2.5 years) in the region prompted us to code both 

yearling and adult males (≥2.5 years) as one in the age category. Additionally, all females that 

were >2.5 years of age at time of harvest also were coded as one in this category. Therefore 

yearling females were the baseline demographic, providing an average infection risk that would 

be represented by the intercept in each model (Osnas et al. 2009, Walsh and Miller 2010). 

Environmental covariates.– Environmental covariates were based on location of harvest, 

landscape covariates specific to the central Appalachian region, and findings from studies of 

CWD in other regions (Farnsworth et al. 2006, Rees et al. 2011, Walter et al. 2011). We 

calculated data for environmental covariates using soil, land cover, elevation, and stream layers 

in ArcMap 10.1 (ArcMap; Environmental Systems Research Institute, Redlands, CA, USA). We 

included a covariate representing percent of clay-sized particles in the soil (hereafter referred to 
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as percent clay) that was found to be most important in explaining the distribution of CWD in 

mule deer in Colorado (Walter et al. 2011). We extracted percent clay within the Soil Data 

Viewer using the Soil Survey Geographic database (SSURGO; USDA 2007), and we estimated 

an area-weighted mean of percent clay for each cell of our sampling grid using the Geospatial 

Modeling Environment (Beyer 2012).  

We used the 2006 National Land Cover Database to estimate proportion of 3 habitat 

types (developed, forested, and open) within each cell of the sampling grid (Fry et al. 2011). The 

developed class included roads and urban, suburban, and exurban levels of development. All 

types of forested habitat (deciduous, coniferous, and mixed) were reclassified as forested, and the 

open class included all pastures, grasslands, and croplands. We chose classes of habitat that 

covered broader spectrums, because we viewed sub-habitats (e.g., cropland and pasture) 

similarly in regard to basic movements and function to white-tailed deer. 

We used a 30 m digital elevation model provided by the United States Geological Survey 

in the National Elevation Dataset to estimate mean slope (degrees) and elevation (m) in each cell 

of our sampling grid (Gesch 2007). We estimated percent of riparian corridor for each cell in our 

sampling grid using a stream layer that was generated with data collected by the United States 

Geological Survey (National Atlas of the United States 2012). We created buffered corridors 

around each stream, and the size of each buffer (274 m on each side of the stream) was based on 

mean daily distances traveled by deer used to estimate home range (Appendix A). We examined 

distributions of each environmental covariate, log-transformed riparian corridor and habitat to 

follow normal distributions, and assigned data to each deer in our dataset based on location of 

harvest within the sampling grid. 



45 

 

Bayesian hierarchical modeling.– We created 25 logistic regression models in a Bayesian 

hierarchical modeling framework and compared the fit of each model to the data. Models were 

additive and represented 25 combinations of demographic and environmental covariates, as well 

as spatial and non-spatial random effects (Table 1). We included sex and age in 23 models to 

account for presumed effects of each on occurrence of CWD (Miller and Conner 2005, Grear et 

al. 2006). We grouped covariates from the digital elevation model (slope and elevation) and land 

cover layer (habitat) as DEM and HAB, respectively, such that they were either included or 

removed as one set of covariates in each model (Table 1). 

We addressed random effects, represented by local clustering of disease in adjacent grid 

cells (CAR) and region-wide heterogeneity (HET), by creating a spatial adjacency matrix using 

our sampling grid and spdep package (Bivand et al. 2011) in program R (R Foundation for 

Statistical Computing, Vienna, Austria). Relationships between neighboring cells were 

represented using an intrinsic Gaussian conditional autoregressive model that specified a 

dependent relationship between neighboring grid cells but conditional independence between 

non-neighboring cells (Besag et al. 1991). 

We assumed that each deer’s CWD infection status (coded one for positive and zero for 

negative) was Bernoulli distributed and conditionally independent given the probability of 

infection. We used the logit-link function to describe probability of infection as a function of the 

covariates and effects incorporated within each model (Besag et al. 1991). After testing prior 

distributions from other studies in our full model (Appendix B), we estimated gamma-distributed 

priors that represented our study area with the following equation: 
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where   refers to the prior conditional standard deviation, m  refers to mean number of 

neighbors, and ( )jSD  refers to the prior marginal standard deviation of j  parameters 

(Bernardinelli et al. 1995, Banerjee et al. 2004). Hyperparameters of 17.04 and 4.13 were 

assigned to the random effect capturing region-wide heterogeneity (HET) for shape and scale 

parameters, respectively, and hyperparameters of 1.0 were assigned to both shape and scale 

parameters for the random effect capturing local clustering (CAR). We calculated lambda, or the 

ratio of the standard deviation of CAR to combined standard deviations of CAR and HET, to 

assess how each random effect accounted for variability that was not accounted for by fixed 

effects. 

We performed all modeling in program R and used the R2WinBUGS package to call 

Markov Chain Monte Carlo simulation methods within program WinBUGS (Spiegelhalter et al. 

2003, Sturtz et al. 2005). These simulations were used to estimate posterior distributions for all 

model parameters. We used initial values of zero for all beta parameters, as these starting values 

were not considered detrimental to convergence rates (Eberly and Carlin 2000). For each model, 

we ran 3 independent chains for 250,000 iterations, while discarding the first 100,000 and 

thinning each chain by keeping every twentieth iteration (Appendix C). 

Model evaluation.– We used the deviance information criterion (DIC) to compare fit of 

each model to the data, and we recorded complexity of each model using the effective number of 

parameters (pD) produced in the summary output (Spiegelhalter et al. 2002). The model with the 

most support had a DIC that was lowest of all candidate models. We used DIC weights (WDIC) to 
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estimate model selection uncertainties while providing a measure of model strength given the 

data (Farnsworth et al. 2006). Weights were estimated with ΔDIC referring to difference in DIC 

between the model with the lowest DIC and the model of interest (Table 2). We assessed chain 

convergence using the Bayesian analysis package boa (Smith 2007). After examining several 

graphical tools, including autocorrelation and trace plots, we calculated univariate corrected 

scale reduction factors and a multivariate potential scale reduction factor to ensure that all 

parameters had converged simultaneously (Brooks and Gelman 1998). 

Predicting risk of CWD.– We used land cover data that was reclassified into developed 

(Dev), forested (For), and open (Open) classes to identify areas at risk for CWD in the Northeast. 

We created 3 separate raster layers with each class of habitat coded as one in a layer while the 

other classes were coded as zero. We applied parameter estimates from the best supported model 

to each corresponding layer using a resource selection function represented by the following 

equation: 

(( *1.06) ( * 6.50) ( * 0.86))

1 (( *1.06) ( * 6.50) ( * 0.86))

Exp Dev For Open
Risk

Exp Dev For Open

   


    
, (2) 

where each class of habitat was represented with its corresponding estimate (Manly et al. 2002). 

We used results to identify areas at high (50–75%), medium (25–50%), and low (0–25%) risk for 

CWD occurrence in the Northeast. 

RESULTS 

Of the 7,427 samples analyzed from harvested white-tailed deer, 69 tested positive for 

CWD and yielded a prevalence of 0.93% within our sampling grid. The adult male class 

contained the greatest number of positive cases (n = 50), followed by yearling males (n = 9), 

adult females (n = 8), and yearling females (n = 2). The adult male class also contained the 
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greatest number of negatives (n = 3,457), followed by yearling males (n = 2,082), adult females 

(n = 1,339), and yearling females (n = 480). 

Bayesian hierarchical modeling showed strong support for models containing 

environmental and spatial components. With exceptions made for sex and age, which were 

included in all but 2 models, the model with the most support contained habitat (HAB) and the 

local clustering effect (CAR) and accounted for 80.3% of the overall weight (Table 2). The top 5 

models contained the local clustering effect and received greater than 99% of the combined 

weight for all models considered, suggesting that random spatial effects (clustering of disease 

among neighboring grid cells) combined with habitat (proportion of developed, forested, and 

open) better accounted for the spatial distribution of CWD than any other random or fixed 

effects. In the second best model (14.5%), mean slope was the only influential covariate and 

shared a slightly inverse relationship (–0.32; 95% CI = –0.07 to –0.56) with the spatial 

distribution of CWD. Model results and parameter estimates suggested that other environmental 

covariates (elevation, riparian corridor and percent clay) did not influence odds of CWD 

infection in our study area. 

The value of lambda was 0.78 in the best model, suggesting that random effects captured 

by local clustering of CWD better accounted for variability not described by other random or 

fixed effects (Fig. 2). Specifically, local clustering accounted for between 71% and 84% of this 

variability (Table 3). Models that contained either or both random effects (n = 18) had estimates 

of lambda that ranged from 0.53 to 0.80, suggesting that local clustering better accounted for this 

variability in all models that incorporated random effects.  
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Among all habitat covariates, forested habitat had the strongest relationship with odds of 

CWD infection (odds ratio = 0.9371; 95% CI = 0.8864 to 0.9932), indicating that a decrease in 

forest increased odds of CWD infection. Open and developed habitats also were influential and 

had slightly inverse and positive relationships with odds of CWD infection, respectively (Table 

3). The influence of habitat on odds of infection ranged from 0.1% to 8.3% within all cells of our 

sampling grid. 

Our analysis showed that effects of sex (odds ratio = 1.0056; 95% CI = 0.9982 to 1.0142) 

and age (odds ratio = 1.0063; 95% CI = 0.9906 to 1.0263) could not be identified, as both had 

95% credible intervals that contained zero (Table 3). The intercept (–7.62; 95% CI = –10.30 to   

–4.99) quantified average risk of infection throughout the study area among yearling females, 

which represented the baseline demographic in our analysis.  

DISCUSSION 

Spatial effects, represented as clusters of neighboring cells that contained CWD-infected 

deer, influenced odds of infection in the central Appalachian region in a similar manner to results 

in other regions of the U.S. (Farnsworth et al. 2006, Osnas et al. 2009, Walter et al. 2011). A 

clustering of CWD-positive samples was identified in the center of the study area where CWD 

was first detected in 2005 and has been detected every year since (6–15 samples/year) using 

samples from the hunter harvest (Fig. 2; Evans et al. 2014). This clustering, possibly representing 

an effect of increased horizontal transmission between deer occupying the same social groups, 

also was apparent when choosing prior distributions for random effects describing local 

clustering and region-wide heterogeneity. If effects of clustering and heterogeneity described by 

CAR and HET had been equal, then estimates of lambda would have been approximately 0.5. 
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Estimates were consistently above 0.75, however, regardless of the set of gamma-distributed 

priors tested (Appendix B). 

The effect of local clustering on the distribution of CWD may be explained by presumed 

methods of direct and indirect transmission that occur in cervid populations affected by CWD. 

The CWD prion has been found in several secretions, including saliva, blood, urine, and feces 

(Sigurdson 2008). Prions also are found in high concentrations at mortality sites and these areas 

enable potential uptake by other deer (Jennelle et al. 2009). Increased deposition and 

environmental persistence of prions was identified during early stages of CWD infection in the 

Midwest and may play a similar role in the central Appalachian region (Almberg et al. 2011). 

Deposition of prions in areas where CWD has been present for several years may explain the 

clustered distribution of CWD within a 1,671 km
2
 county where 61 of 69 positive cases (via 

hunter harvest) were found between 2005 and 2012 in the central Appalachian region. Of the 

other 8 cases, 5 were detected 14 km southeast in Virginia (2009–2012), 2 were 25 km south in 

West Virginia (2010, 2012), and the remaining case was 21 km north in Maryland (2010). An 

additional 5 positive deer were identified >85 km north in Pennsylvania from 2012 to 2014, 

however, these cases were not included in our analysis. This may describe a gradual spread 

outward from this cluster that is more dependent on spatial effects rather than a temporal 

component (Osnas et al. 2009). However, the role that captive cervid facilities play in CWD 

transmission in Pennsylvania, second in numbers only to Texas, has not been evaluated and 

requires further research.  

We observed an inverse relationship between forested habitat and odds of CWD infection 

in the central Appalachian region. Long et al. (2005) found that distance of deer dispersal in the 
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region was influenced by forest cover, with greater distances associated with areas that had lesser 

amounts of forest cover. Similar behaviors of dispersal have been identified in Illinois, a state 

infected with CWD since 2002, where increased forest cover negatively influenced dispersal of 

white-tailed deer (Nixon et al. 2007). In the core of our study area in West Virginia, open and 

developed habitats appear to be more prominent and CWD has spread rapidly since 2005. 

Detection of CWD did not occur in Maryland until 2010, however, suggesting that the 

contiguously forested landscape in this area may limit dispersals of infected deer to a local scale. 

However, recent detections of CWD in Pennsylvania (e.g., 5 positive cases in free-ranging deer 

tested between 2012 and 2014) suggest that sparse cases found in contiguously forested areas 

outside of the core area may play a role in the spatial distribution of CWD in the central 

Appalachian region. Cases detected in free-ranging deer in Pennsylvania may or may not be 

related to this core, and determining the origins of these cases will require further research that 

identifies measures of genetic relatedness and structuring of subpopulations. 

Other habitat types were not as highly associated with odds of CWD infection. 

Farnsworth et al. (2006) found a strong relationship between low-elevation grassland habitat and 

odds of CWD infection in mule deer. In Colorado, this habitat is used as core wintering habitat 

where higher interactions are likely to occur. In our study area, open habitat such as pasture, 

grassland, and cropland had a slightly inverse relationship with odds of CWD infection (odds 

ratio = 0.9914; 95% CI = 0.9843 to 0.9990). Similar to wintering habitat in Colorado, we 

expected an increase in open habitat to have a positive relationship with odds of CWD infection 

due to increased interactions during winter months. Milder winters (e.g., lower snow depths and 

warmer temperatures) in the central Appalachian region (Horsley et al. 2003), however, as well 



52 

 

as behavioral differences between white-tailed deer and mule deer, may explain why open 

habitat was less influential in our study area than others. 

The habitat type representing intensities of urban development positively influenced odds 

of CWD infection (odds ratio = 1.0106; 95% CI: 1.0004 to 1.0233). Although developed habitats 

in our study area had less of an effect on odds of CWD infection than in other regions where 

urban landscapes influenced CWD and even doubled odds of infection, the positive relationship 

we observed was consistent with findings from those studies (Wolfe et al. 2004, Farnsworth et al. 

2005). Because open and developed habitats could be misclassified in some cases, especially 

when dealing with land cover data, we combined these classes and repeated our modeling 

procedure with a new habitat covariate consisting only of the forested class and this combined 

class (i.e., open and developed). The strong inverse relationship between forested habitat and 

odds of infection persisted. Combining classes, however, did not result in the strong positive 

relationship that we expected. This also could be an effect of both open and developed classes 

occurring at lower elevations, thus providing a similar niche to ecology of white-tailed deer. 

Because we did not find sex and age to be as important in controlling odds of infection as 

in previous studies, we examined the effect of changing our baseline infection class and found 

that age became significant when we retained the age effect for adult males only and designated 

all other classes as the baseline for age. Adult females are presumed to be at elevated risk due to 

increased time of exposure, however, and we used recent detections of CWD in yearling males in 

the Midwest and Northeast as a basis for including the age effect for these classes (Miller and 

Conner 2005, Grear et al. 2006, Storm et al. 2013). Regardless of the baseline infection class 

assigned for demographic covariates in our analysis, estimates for environmental and random 
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effect parameters did not change. Further analysis of the relationship between demographic 

covariates and epidemiology of CWD is needed in the central Appalachian region and will 

require age-specific data collected using a method (e.g., sharpshooting or road-kill) that is less 

biased than the hunter harvest (Conner et al. 2000). 

The region east of our study area is characterized by sparse forested habitat and high 

intensities of developed and open habitats. As of 2012, CWD had not been detected in this area, 

however, a yearling male that was harvested during the fall of 2013 tested positive for CWD 

approximately 16 km to the southeast of the eastern-most deer included in our analysis. 

Predictions of risk for CWD suggested that this area was not only at elevated risk for CWD 

exposure, but also may expedite spread into northern Virginia and southeastern Pennsylvania 

(Fig. 3). With CWD now present, future surveillance should focus on this expedited front, as 

well as in bordering areas with similar landscapes. 

The spatial distribution of CWD in the central Appalachian region yielded insights into 

roles played by covariates that had not been observed in other regions as well as other anecdotal 

observations (Farnsworth et al. 2006, Osnas et al. 2009, Walter et al. 2011). For example, 140 

positive cases were detected over a 7-year span in the central Appalachian region from samples 

collected by all methods of surveillance (i.e., hunter harvest, road-kills, and sharpshooting). Over 

a comparable time period using the same methods of surveillance, more than twice and nearly 3 

times the number of positives were detected in Wisconsin’s disease eradication zone (n = 316; 

Grear et al. 2006) and along the Wisconsin-Illinois border (n = 382; O' Hara Ruiz et al. 2013), 

respectively. The lower number of positives in the homogenously forested region of the 

Northeast (Evans et al. 2014) compared to the agricultural-forest dominated landscape of the 
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Midwest with comparable sampling efforts would appear to support our assumptions of a lower 

potential for spread of CWD due to greater isolation of deer matriarchal groups in large 

homogenous forests. Further research on genetic relatedness and subpopulation structuring is 

underway and will provide additional information on movements of deer in this region similar to 

previous research in the Midwest (Kelly et al. 2014). In any region, understanding movements of 

hosts and distribution of disease in relation to factors that influence odds of disease presence or 

absence allows surveillance and containment measures to be improved by allocating resources 

into areas that are determined to be at greatest risk for infection. 
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FIGURE LEGENDS 

Figure 1. Study area in the central Appalachian region of the northeastern United States. The 

inset identifies the sampling grid and locations of all positive (+) and negative (
.
) samples used to 

model chronic wasting disease between 2005 and 2012. 

 

Figure 2. Estimates of the spatial effect capturing local clustering. Estimates are from the best 

model investigating the effect of demographic and environmental covariates on odds of chronic 

wasting disease infection between 2005 and 2012 in the central Appalachian region. 

 

Figure 3. Chronic wasting disease (CWD) infection risk in the northeastern United States. 

Infection risk is represented by low (0–25%), medium (25–50%), and high (50–75%) classes. 

Risk was estimated using a resource selection function that incorporated region-wide land cover 

data and parameter estimates from the best model describing the spatial distribution of CWD 

between 2005 and 2012 in the central Appalachian region. 
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Table 1. Candidate set of models investigating the effect of demographic and environmental 

covariates on odds of chronic wasting disease infection from 2005 to 2012 in the central 

Appalachian region. In addition to sex and age, Clay represents the area-weighted mean of 

percent soil clay content in the 6 km
2
 grid cell containing each sampled deer. DEM represents 

mean slope and elevation, RIP represents riparian corridor, and HAB represents proportion of 3 

habitat types (developed, forested, and open). Random effects include the effect capturing local 

clustering (CAR) and the effect capturing region-wide heterogeneity (HET).  

Covariates Explanation 

Sex + Age + Clay + DEM + RIP + HAB + CAR + HET 
Full model of all covariates including 

random effects 

Sex + Age + Clay + DEM + RIP + ------- + CAR + ------ 
Full model with habitat covariates 

and heterogeneity effect removed 

Sex + Age + Clay + DEM + ----- + HAB + CAR + ------ 

Full model with the riparian 

covariate and heterogeneity effect 

removed 

Sex + Age + Clay + DEM + ----- + ------  + CAR + HET 
Full model with riparian and habitat 

covariates removed 

Sex + Age + Clay + ------- + RIP + HAB + ------- + HET 
Full model with elevation covariates 

and local clustering effect removed 

Sex + Age + Clay + ------- + RIP + ------- + CAR + HET 
Full model with elevation and habitat 

covariates removed 

Sex + Age + ------ + DEM + RIP + ------- + CAR + HET 
Full model with percent clay and 

habitat covariates removed 

Sex + Age + ------ + DEM + ----- + HAB + CAR + HET 
Full model with percent clay and 

riparian covariates removed 

Sex + Age + ------- + ------ + RIP + HAB + CAR + HET 
Full model with percent clay and 

elevation covariates removed 

Sex + Age + Clay  + ------- + ----- + HAB + ------ + HET 
Percent clay, habitat covariates and 

heterogeneity effect retained 

Sex + Age + Clay  + ------- + ------ + ----- + CAR + HET 
Percent clay and both random effects 

retained 

Sex + Age + ------ + DEM + RIP + ------- + CAR + ----- 
Elevation, riparian covariates and 

local clustering effect retained 

Sex + Age + ------- + ------ + RIP + HAB + CAR + ------ 
Riparian, habitat covariates, and 

local clustering effect retained 

Sex + Age + ------- + ------ +  RIP + ------ + CAR + HET 
Riparian covariate and both random 

effects retained 

Sex + Age + Clay  + ------ + ------ + HAB + ------ + ----- 
Percent clay and habitat covariates 

retained 

Sex + Age + ------  + DEM + RIP + ------- + ------ + ----- 
Elevation and riparian covariates 

retained 

Sex + Age + ------- + DEM + ----- + HAB + ------ + ----- 
Elevation and habitat covariates 

retained 

Sex + Age + ------- + DEM + ----- + ------ + ------ + HET 
Elevation covariates and 

heterogeneity effect retained 
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Sex + Age + ------- + ------- + RIP + HAB + ------ + ----- 
Riparian and habitat covariates 

retained 

Sex + Age + ------- + ------- + ----- + HAB + CAR + ----- 
Habitat covariates and local 

clustering effect retained 

Sex + Age + ------- + ------- + ----- + HAB + ------ + HET 
Habitat covariates and heterogeneity 

effect retained 

Sex + Age + ------- + ------- + ----- + HAB + ----- + ------ Habitat covariates retained 

Sex + Age + ------- + ------- + ----- + ------ + ------ + ----- Sex and age retained 

----- + ----- + ------- + ------- + ----- + ------ + CAR + HET 
Local clustering and heterogeneity 

effects retained 

Intercept Only Intercept retained 
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Table 2. Model selection results for the candidate set of models investigating the effect of demographic and environmental 

covariates on odds of chronic wasting disease infection from 2005 to 2012 in the central Appalachian region. In addition to sex 

and age, Clay represents the area-weighted mean of percent soil clay content in the 6 km
2
 grid cell containing each sampled deer. 

DEM represents mean slope and elevation, RIP represents riparian corridor, and HAB represents proportion of 3 habitat types 

(developed, forested, and open). Random effects include the effect capturing local clustering (CAR) and the effect capturing 

region-wide heterogeneity (HET). 

Model Terms D
  1

 �̂� 2 pD
3 

DIC
4
 DIC

5
 WDIC

6
 

Sex + Age + ------ + ------- + ----- + HAB +  CAR + ----- 601.93 541.79 60.13 662.06 0.00 0.803 

Sex + Age + ------ + DEM  + RIP + ------ +  CAR + ----- 605.67 545.86 59.81 665.48 3.42 0.145 

Sex + Age + ------ + ------- + RIP + HAB  + CAR + ----- 604.14 540.34 63.80 667.93 5.87 0.043 

Sex + Age + Clay + DEM  + RIP + ------- + CAR + ----- 609.13 546.62 62.51 671.64 9.58 0.007 

Sex + Age + Clay + DEM  + ----- + HAB  + CAR + ----- 607.51 541.64 65.87 673.38 11.32 0.003 

---- + ----- + ------ + ------- + ------ + ------- + CAR + HET 607.78 539.07 68.70 676.48 14.42 0.000 

Sex + Age + ------ + ------- + ----- + HAB  + ------ + HET 649.27 618.31 30.96 680.23 18.17 0.000 

Sex + Age +  Clay + ------- + ----- + HAB  + ------ + HET 654.61 627.45 27.16 681.77 19.71 0.000 

Sex + Age +  Clay + ------- + ----- + ------- + CAR + HET 610.16 537.96 72.20 682.35 20.29 0.000 

Sex + Age + ------ + ------- +  RIP + ------- + CAR + HET 609.48 536.41 73.07 682.55 20.49 0.000 

Sex + Age +  Clay + ------- + RIP + HAB + ------- + HET 655.10 627.16 27.95 683.05 20.99 0.000 

Sex + Age + ------ + DEM  + ----- + ------ + ------- + HET 655.43 627.60 27.83 683.26 21.20 0.000 

Sex + Age +  Clay + DEM + -----  + ------ + CAR + HET 615.73 542.88 72.86 688.59 26.53 0.000 

Sex + Age +  Clay + ------- +  RIP + ------ + CAR + HET 612.87 536.84 76.03 688.90 26.84 0.000 

Sex + Age +  ------ + DEM +  RIP + ------ + CAR + HET 616.69 541.82 74.87 691.56 29.50 0.000 

Sex + Age + ------- + DEM + ----- + HAB + CAR + HET 614.72 536.89 77.82 692.54 30.48 0.000 

Sex + Age + ------- + ------- + RIP  + HAB + CAR + HET 614.67 536.72 77.95 692.61 30.55 0.000 

Sex + Age +  Clay  + DEM + RIP  + HAB + CAR + HET 620.23 537.39 82.85 703.08 41.02 0.000 

Sex + Age +  Clay + ------- + ----- + HAB + ------- + ----- 723.92 717.17 6.75 730.66 68.60 0.000 

Sex + Age +  ------ + DEM + ----- + HAB + ------- + ----- 728.94 721.27 7.67 736.60 74.54 0.000 

Sex + Age +  ------ + DEM +  RIP + ------ + ------- + ----- 736.80 730.94 5.86 742.66 80.60 0.000 

Sex + Age +  ------ + ------- + ----- + HAB + ------- + ----- 742.83 737.03 5.80 748.63 86.57 0.000 
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Sex + Age +  ------ + ------- + RIP +  HAB + ------- + ----- 742.06 735.24 6.82 748.87 86.81 0.000 

Sex + Age +  ------ + ------- + ----- + ------  + ------- + ----- 781.64 778.68 2.96 784.60 122.54 0.000 

Intercept Only 784.04 783.03 1.00 785.04 122.98 0.000 
 

1
D  is the posterior mean of the deviance.  

2 �̂� is a point estimate of the deviance.  
3
 pD is the effective number of parameters.  

4 
DIC is the Deviance Information Criterion.  

5
DIC is the difference between each model’s DIC value and the smallest DIC value among models compared.  

6 
WDIC, or weights, were calculated by dividing the likelihood value for each model by the sum of likelihood values for all 

candidate models in the set. 
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Table 3. Parameter estimates, odds ratios and 95% credible intervals for the best-fitting model investigating the effect of 

demographic and environmental covariates on odds of chronic wasting disease infection from 2005 to 2012 in the central 

Appalachian region. In addition to sex and age, μ defines the baseline infection probability for a yearling female white-tailed 

deer. The covariate HAB represents 3 habitat types (developed, forested, and open), and CAR represents the spatial effect 

capturing local clustering. 

Parameter  Mean 

 Standard 

deviation 

 Monte Carlo 

error 2.50% Median 97.50% Odds ratio 95% CI 

μ –7.62 1.36 0.02 –10.30 –7.61 –4.99 0.9266 0.9021 to 0.9513 

Sex 0.56 0.40 0.00 –0.18 0.54 1.41 1.0056 0.9982 to 1.0142 

Age 0.62 0.90 0.01 –0.94 0.56 2.60 1.0063 0.9906 to 1.0263 

Developed 1.06 0.58 0.01 0.04 1.02 2.30 1.0106 1.0004 to 1.0233 

Forested –6.50 2.89 0.03 –12.06 –6.52 –0.69 0.9371 0.8864 to 0.9932 

Open –0.86 0.37 0.00 –1.58 –0.87 –0.10 0.9914 0.9843 to 0.9990 

CAR 0.78 0.03 0.00 0.71 0.78 0.84 1.0078 1.0071 to 1.0085 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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APPENDICES 

Appendix A. Estimates of mean daily distance in meters traveled by male (M) and female (F) white-tailed deer (Odocoileus 

virginianus) in six study areas in Pennsylvania. Outer percentiles (0% and 100%) refer to minimum and maximum distances, 

respectively, and the median (50%) and quartiles (25% and 75%) also are shown. 

        Percentiles   

Study area Sex No. Deer n1 Mean  SD 0% 25% 50% 75% 100% 

Highly Fragmented F 11 1,583 179.45 139.89 72.74 113.81 157.88 230.54 316.29 

Highly Fragmented M 4 919 222.09 161.06 99.05 150.81 206.14 281.98 368.75 

Moderately Fragmented F 2 645 223.41 181.09 65.59 116.17 180.88 291.87 510.53 

Moderately Fragmented F 4 1,229 234.75 208.10 59.26 111.46 184.88 307.42 583.16 

Evenly Divided F 6 1,983 287.09 203.08 111.08 183.16 260.48 372.03 500.96 

Evenly Divided M 2 666 445.06 327.43 156.03 277.50 413.26 590.56 783.89 

Evenly Divided F 6 1,755 250.84 231.30 58.02 111.53 190.46 327.76 651.74 

Contiguous F 8 2,690 266.65 198.26 100.05 167.72 241.85 346.44 471.55 

Contiguous M 2 658 404.05 307.06 144.31 244.15 360.44 531.46 727.20 

1
 Number of 24-hr periods. 
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Appendix B. Estimates of lambda, or the ratio of spatial effects to total random effects, 

corresponding to each set of priors tested in the full model containing all covariates and random 

effects. 

 

   Fair priors 

 

Tau.car 

 

Tau.epsi 

 

Lambda 

 

Source 

   Evans1 dgamma(1.0, 1.0) dgamma(17.04, 4.13) 0.7821 This study 

   Del Rio Vilas dgamma(0.1, 0.01) dgamma(0.1, 0.01) NA2 
Del Rio Vilas et al. 

2011 

   Walter dgamma(0.5,0.015) dgamma(0.5, 0.0005) 0.9605 
Kelsall and Wakefield 

1999 

   Farnsworth dgamma(1.0, 1.0) dgamma(10.37, 3.22) 0.7621 Farnsworth et al. 2006 

   Cross dgamma(0, 20) dgamma(0, 20) NA3 Cross et al. 2010 

1
 These priors were used in all models that incorporated random effects. 

2 
Tau.car priors (0.1, 0.1) resulted in a trap window and would not run in WinBUGS. 

3
 Tau.car priors (0, 20) would not load initial values in WinBUGS. 
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Appendix C. R script for full CWD model. 

 

##### LIBRARIES ##### 

library(R2WinBUGS) 

library(spdep) 

library(maptools) 

gpclibPermit() 

library(maptools) 

 

##### DATA ##### 

df<-read.table('Smp1205.txt', na.strings='NA', header=T) 

summary(df) 

 

Result <- df$Result 

Grid_ID <- df$Grid_ID 

Sex <- df$Sex 

Age <- df$Age 

Clay <- df$Clay 

Elev <- df$Elev 

Slope <- df$Slope 

Rip <- df$Rip 

Dev <- df$Dev 

For <- df$For 

Open <- df$Open 

 

##### ADJACENCY MATRIX FOR CAR MODEL ##### 

Shape <- readShapePoly("H:\\New_Data\\Grid.shp", IDvar = "ID") 

shape_nb <- poly2nb(shape) 

NumCells = length(shape_nb) 

num = sapply(shape_nb,length) 

adj = unlist(shape_nb) 

sumNumNeigh = length(unlist(shape_nb)) 

 

##### SPATIAL MODEL ##### 

sink("globalmodel.bug") 

cat("model { 

###PRIORS FOR CAR MODEL ### 

b.car[1:NumCells] ~ car.normal(adj[], weights[], num[], tau.car)  

for (k in 1:sumNumNeigh)  

{ 

     weights[k] <- 1 

} 

for (j in 1:NumCells) 

{ 

epsi[j] ~ dnorm(0,tau.epsi) 

} 
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###OTHER PRIORS ### 

alpha ~ dflat() 

beta1 ~ dnorm(0,1.0E-5) 

beta2 ~ dnorm(0,1.0E-5) 

beta3 ~ dnorm(0,1.0E-5) 

beta4 ~ dnorm(0,1.0E-5) 

beta5 ~ dnorm(0,1.0E-5) 

beta6 ~ dnorm(0,1.0E-5) 

beta7 ~ dnorm(0,1.0E-5) 

beta8 ~ dnorm(0,1.0E-5) 

beta9 ~ dnorm(0,1.0E-5) 

tau.car ~ dgamma(1.0,1.0) 

tau.epsi ~ dgamma(17.0393,4.1279) 

 

sd.car<-sd(b.car[]) 

sd.epsi<-sd(epsi[]) 

lambda <- sd.car/(sd.car+sd.epsi) 

 

for (i in 1 : 7427) 

{ 

Result[i] ~ dbern(pi[i]) 

logit(pi[i]) <- mu[i]  

mu[i] <- alpha + beta1*Sex[i] + beta2*Age[i] + beta3*Clay[i] + beta4*Elev[i] + beta5*Slope[i] 

+ beta6*Rip[i] + beta7*Dev[i] + beta8*For[i] + beta9*Open[i] + b.car[Grid_ID[i]] + 

epsi[Grid_ID[i]] 

} 

}", fill=TRUE) 

sink() 

 

##### BUNDLE DATA ##### 

bugs.data <- list(Result = Result, Grid_ID = Grid_ID, NumCells = NumCells, sumNumNeigh = 

sumNumNeigh, num = num, adj = adj, Sex = Sex, Age = Age, Clay = Clay, Elev = Elev, Slope = 

Slope, Rip = Rip, Dev = Dev, For = For, Open = Open) 

 

##### SPECIFY INITIAL VALUES ##### 

inits1 <- list(alpha =0, beta1 =0,  beta2 =0, beta3 =0, beta4 =0, beta5 =0, beta6 =0, beta7 =0, 

beta8 =0, beta9 =0) 

inits2 <- list(alpha =0, beta1 =0,  beta2 =0, beta3 =0, beta4 =0, beta5 =0, beta6 =0, beta7 =0, 

beta8 =0, beta9 =0) 

inits3 <- list(alpha =0, beta1 =0,  beta2 =0, beta3 =0, beta4 =0, beta5 =0, beta6 =0, beta7 =0, 

beta8 =0, beta9 =0) 

inits <- list(inits1, inits2, inits3) 
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##### PARAMETERS TO ESTIMATE ##### 

parameters <- c("alpha","beta1","beta2", "beta3", "beta4", "beta5", "beta6", "beta7", "beta8", 

"beta9", "lambda") 

 

##### SETTINGS FOR MCMC ##### 

niter <- 250000 

nthin <- 20 

nburn <- 100000 

nchains <- 3 

 

##### LOCATE WINBUGS ##### 

bugs.dir <- "C:\\WinBUGS14" 

 

##### CALL WINBUGS FROM R ##### 

out <- bugs(data = bugs.data, inits = inits, parameters.to.save = parameters, model.file = 

"globalmodel.bug", n.chains = nchains, n.thin = nthin, n.iter = niter, n.burnin = nburn, debug = 

TRUE, bugs.directory = bugs.dir) 

 

print(out, 3) 

 

 




