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Abstract

Motivated from an empirical analysis of data collected by a smoking cessation
study, this dissertation studies the methodology, computation and application of
joint modeling of longitudinal and survival data, and extends the existing modeling
framework to several new settings.

Firstly, we propose a joint model (JM) of survival data and multiple continuous
longitudinal covariates, develop an estimation procedure using likelihood-based
approach, and further establish the consistency and asymptotic normality of the
resulting estimate. Computation for the proposed likelihood-based approach in the
joint modeling framework is particularly challenging since the estimation procedure
involves numerical integration over multi-dimensional space for the random e↵ects.
Existing numerical integration methods become ine↵ective or infeasible for JM.
We introduce a numerical integration method based on computer experimental
design for JM. We conduct Monte Carlo simulations to examine the finite sample
performance of the proposed procedure and compare the new numerical integration
method with the existing ones. We further illustrate the proposed procedure via
an empirical study of smoking cessation data.

Secondly, we propose a general nonparametric JM to incorporate both the
time-varying survival coe�cients and the longitudinal process with an irregular
trajectory. Such a model is more flexible than the existing parametric joint mod-
els, and requires more powerful computational capability. We employ B-splines
to approximate the functional parameters and use a maximum joint likelihood
approach for parameter estimation. The estimates are calculated by the newly in-
troduced computing algorithm, the EM-DoIt algorithm, and simulation studies are
conducted to demonstrate the feasibility of the proposed estimation and computing
procedures. The proposed model is applied to a smoking cessation study to explore
the dynamic structure of the longitudinal process and the possible time-varying
relationships between the negative a↵ect and time to lapse.
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Finally, we propose a JM with discrete longitudinal covariates, which can also
be fitted using the maximum joint likelihood approach, and implemented via the
EM-DoIt algorithm. We conduct a few numerical studies to test the capability of
the proposed approach in handling some specific types of longitudinal covariates,
such as binary, count, and zero inflated discrete covariates.
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Chapter 1
Introduction

1.1 A brief introduction of joint modeling

In clinical trials and medical studies, longitudinal and survival data are often col-

lected together. For example, repeated measurements are usually recorded for

participants until certain event of interest happens. In these studies the relation-

ship between covariate processes and time-to-event is often the primary research

interest. A famous example in pioneer work is the CD4 count data of AIDs pa-

tients studied by Tsiatis et al. (1995), in which the goal is to find out whether CD4

count, a reflection of immune status, can be taken as a surrogate biomarker for an

active treatment of AIDs, or in other words, whether CD4 count has significant

confounding e↵ect with the active treatment on survival time. In this study, CD4

count was recorded periodically and repeatedly for the patients until their death,

and thus has multiple measurements for each individual across time. On the other

hand, the response, time-to-death, has only one record for each subject. Hence,

the challenge occurs in modeling the relationship between two variables of di↵erent

observational frequencies.

Intensive longitudinal data are a set of repeated measurements collected on

a group of participants at subject-dependent time points over a study period.

They can be conveniently collected via new technologies such as smart phones that

record the instant measurements and thus facilitate the study of continuous co-

variate process with respect to both within-subject variation and between-subject

heterogeneity. Unlike the traditional independent and identically distributed (iid)
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observations, longitudinal data have within-subject correlations. Hence they can-

not be simply treated by linear regression as for iid data. Methodologies such

as linear mixed-e↵ects models and hierarchical linear modeling (HLM) (Rauden-

bush, 2002) have been developed for these data. These models and the extended

methodologies for modeling longitudinal data are reviewed in detail in Chapter 2.

Survival data, distinct from longitudinal data, collect information regarding

time-to-event and occurrence of censoring. Survival analysis has been well studied

for decades to model the time-to-event data. Popular survival models such as

the Cox model (Cox, 1972) and accelerated life model (Cox and Oakes, 1984)

have been extensively applied to predict the risk of failure based on a series of

subject-specific covariates, and meanwhile take into account the censoring due to

death or dropouts. In this study we focus on the Cox model and its extension

to incorporate longitudinal covariates and time-varying coe�cients. The relevant

literature is reviewed in Chapter 2.

Although the methodologies are well established individually for longitudinal

data and survival data, the separate models are insu�cient for the new data struc-

ture and research questions discussed at the beginning of this chapter. New mod-

eling frameworks are required to address two issues. First, the longitudinal co-

variates collected for each individual are usually contaminated by measurement

errors; second, the complete knowledge of a covariate history for all individuals are

unavailable due to the intermittent measurements and the occurrence of events or

censoring. Due to these limitations, modeling the longitudinal and survival data

separately using mixed-e↵ects models and varying-covariate survival models might

lose information and result in biased parameter estimation and misleading statis-

tical inferences (Tsiatis et al., 1995; Wulfsohn and Tsiatis, 1997). In order to meet

such practical need, joint modeling techniques have been developed in the past two

decades as a powerful statistical tool to fit the two submodels simultaneously via

their shared information. Compared with the separate estimation procedure, joint

modeling has greatly improved the model estimation, and provided more reliable

inferences of the longitudinal-survival relationship.

The basic joint model setting consists of two submodels. The first is the mixed-

e↵ects model, which is used to address the incompleteness and measurement errors



3

of the continuous longitudinal covariates, and is given by

Wij = X(tij) + e(tij),

X(tij) = ⇢(tij)
T
bi,

(1.1)

where tij is the jth observational time point of the ith subject. Wij is the longi-

tudinal covariates observed at time tij for the ith subject. It is composed of the

true covariate process X(tij), and the measurement errors e(tij). By mixed-e↵ects

models, X(tij) is written as the product of a vector function of time, ⇢(tij), and

a vector of subject-specific random e↵ects, bi. Note that the major di↵erence be-

tween the longitudinal data and the conventional repeated measurements is that

the longitudinal data allow the observations to be collected at di↵erent frequen-

cies and have di↵erent lengths for di↵erent individuals. Thus longitudinal data

are more flexible and require more sophisticated methodologies than traditional

regression to handle the between-subject heterogeneity contained in bi and the

within-subject variation represented in e(tij). In Section 2.5 we review the ana-

lytical approaches developed to model longitudinal data, which include estimation

techniques for both parametric and nonparametric models for X(tij).

The second submodel is for survival data, which incorporate longitudinal pre-

dictors via the varying-covariate Cox model. It is of the form

�(t;Xi(t)) = �0(t) exp{Xi(t)
T
�}, (1.2)

where �0(t) is the baseline hazard, and � is the regression coe�cients of interest.

A more general model is to allow the coe�cients to vary with time, i.e., �(t), to

capture the time-varying covariate e↵ects. In Section 2.5 we review the studies

of such survival models and the techniques used to estimate the smooth function

�(t).

The two submodels (1.1) and (1.2) are linked by the true covariate process

Xi(t) which is unobservable, and troublesome for parameter estimation.

Basically, there are two broad types of model fitting procedures for joint model-

ing problems. The first type of methods link the two submodels by modifying par-

tial likelihood equations of the Cox model to incorporate longitudinal predictors.

Such strategies, including an early regression calibration approach (Tsiatis et al.,
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1995) and conditional score approach (Tsiatis and Davidian, 2001; Song et al.,

2002b), mainly focus on the regression coe�cients in the Cox model and do not

consider the parameter estimation in longitudinal models. Regression calibration

is a “two-step” estimation approach which estimates the conditional expectations

of true longitudinal predictors given the observed measurements in the first step,

and substitute them into the partial likelihood as predictors to solve for the regres-

sion coe�cients in the second step. No asymptotic property has been developed

for this approach and it is considered highly dependent on the model assumption

of the longitudinal processes (Wulfsohn and Tsiatis, 1997). The conditional score

approach (Tsiatis and Davidian, 2001; Song et al., 2002b) treats the random e↵ects

in the mixed-e↵ects models as nuisance parameters and estimates survival regres-

sion coe�cients from a modified partial likelihood which conditions on a complete

and su�cient estimator of the random e↵ects. Although these partial likelihood-

based methods fix the bias in the survival coe�cients and are relatively fast in

computation, they have a couple of drawbacks (Wulfsohn and Tsiatis, 1997; Yu

et al., 2004). First, the survival information is not used in the estimation of the

longitudinal process, which may lead to bias and loss of e�ciency (Faucett and

Thomas, 1996); second, the recovered biomarkers used in the survival submodel

are treated as fixed, thus some degrees of uncertainty are lost (Yu et al., 2004).

The second type of methods link the two models through their joint likeli-

hood, and the parameters are estimated by maximizing the likelihood function.

Since the likelihood function involves integration over the random e↵ects, it is

challenging to find the maximizer. One solution is to use Bayesian techniques

(Faucett and Thomas, 1996; Xu and Zeger, 2001b; Wang and Taylor, 2001; Brown

and Ibrahim, 2003). Based on the joint likelihood, a Bayesian approach makes

assumptions about prior distributions of all the parameters, and updates the pa-

rameter estimates using Gibbs sampling from the full conditional distributions of

each parameter given the observed data and the current estimates of all the other

parameters. The advantage of the Bayesian approach is that it is not constrained

by the dimension random e↵ects, whereas the drawback is that the procedure

itself is quite computationally intensive. An alternative is the maximum joint

likelihood approach (Wulfsohn and Tsiatis, 1997), which maximizes the joint like-

lihood via Expectation-Maximization (EM) algorithm, treating the unobservable
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random e↵ects as missing values. This method has been widely used for simple

joint models with a single longitudinal process. The maximum joint likelihood

method is dimension-sensitive in computation, but has good theoretical proper-

ties. Zeng and Cai (2005) prove that in the single-covariate setting, the maximum

likelihood estimates have consistency and asymptotic normality properties and are

semie�cient.

1.2 Motivation of this dissertation research

This dissertation research was motivated by an empirical analysis of data from a

smoking cessation study (Piper et al., 2009). At the beginning of the program, a

group of N=1504 heavy smokers were recruited, randomly assigned to 5 treatment

groups (1 placebo group and 4 active treatment groups), and provided informa-

tion for a set of baseline covariates. During the study, the ecological momentary

assessment (EMA) data were collected 4 times a day, 2 weeks before and after the

actual quit date for each individual. As a collection method of intensive longitudi-

nal data, EMA involves repeated sampling of the subjects’ current behaviors and

experiences in real time, and in subjects natural environments (Shi↵man et al.,

2008). In this smoking cessation study, EMA data were collected to record smok-

ers’ momentary feelings of cessation fatigue and withdrawal symptoms such as

craving and negative a↵ect before and after their attempt to quit.

One of the key research interests of this study is to examine the relationships

between these longitudinal covariates and the survival outcomes such as time to

relapse, which is defined as 7 consecutive days of smoking after quit. The longitu-

dinal variables that have been considered as the potential predictors are of various

types and have di↵erent trajectories. Some of them are continuous (e.g., craving

and negative a↵ect), while others are categorical (e.g., whether or not a stressful

event occurred since the last prompt); some of them have simple trends over time,

whereas others may have complex and irregular trajectories. These diversified

features suggest various specific research questions such as

• What is the relationship between a continuous longitudinal process and the

time-to-event?
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• What is the relationship between multiple continuous longitudinal processes

and the time-to-event?

• What is the relationship between a categorical longitudinal process and the

time-to-event?

• How do we take into consideration the irregular longitudinal trajectory and

time-varying relationship between a longitudinal process and the time-to-

event?

These research questions are critical since they not only lead to the answer of

whether a specific longitudinal factor is associated with the risk of cessation failure,

but also motivate for a deeper understanding of the dynamics of the longitudinal

processes themselves and their relationships with the survival outcome over time.

Despite their significance in science, most of these questions have not been ad-

dressed well by the existing joint modeling techniques. Although abundant studies

have occurred in the related fields (Wulfsohn and Tsiatis, 1997; Song et al., 2002b;

Hsieh et al., 2006; Faucett and Thomas, 1996; Faucett et al., 1998; Henderson

et al., 2000; Tsiatis and Davidian, 2001), and many of these methods have been

applied to the medical and public studies (Wang and Taylor, 2001; Yu et al., 2004;

Liu, 2009; Yu and Ghosh, 2010), most of them only consider simple parametric

joint models with a single continuous longitudinal process. Such models may be

used to address the first question listed above, but are insu�cient in answering the

other questions, which require more flexible and complex joint models.

The development of joint modeling has been hindered by several obstacles. On

one hand, the theoretical establishment is challenging since joint models include

both constant coe�cients and functional coe�cients with infinite dimension, hence

the conventional MLE arguments do not apply (Hsieh et al., 2006). One needs to

consider empirical process-related theorems to establish the asymptotic property.

On the other hand, the model implementation is also tricky due to both the high-

dimensionality of the parameters and the complex form of the joint likelihood. The

intensive computation involved in parameter estimation makes it di�cult to extend

the model to the more flexible settings. Most of the currently available JM packages

in R and SAS can only handle simple joint models with restricted assumptions.

Therefore, the goal of this dissertation is to study the existing joint modeling
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approaches in details, overcome the computational di�culties, and generalize the

current modeling frameworks both theoretically and practically.

1.3 Contribution of this dissertation research

Based on the study of the existing joint modeling techniques, this dissertation ad-

vances the research of joint modeling in terms of model extension, methodology

development, computation improvement and theory establishment. More specifi-

cally, its contributions are in the following four aspects:

First of all, we improve the computational e�ciency of the popular joint model

fitting method, the maximum joint likelihood approach. As mentioned before, it

is computationally challenging to carry out the estimation procedure based on the

maximum joint likelihood approach because the use of the EM algorithm to opti-

mize the objective function involves numerical integration over a multi-dimensional

space for the shared random e↵ect in the E-step of the EM algorithm. The exist-

ing numerical integration techniques, though working well for the low-dimensional

cases, tend to collapse when the dimension of random e↵ects grows and the model

becomes more complicated. In this dissertation, we propose an approach to car-

rying out the numerical integration based on the design of experiments-based in-

terpolation technique (DoIt, Joseph 2012), and combine it with the EM algorithm

to form a new computing method, the EM-DoIt algorithm, for the joint modeling

framework. This new algorithm is introduced in Chapter 3 of this dissertation,

where we conducted Monte Carlo simulations to compare the proposed numerical

integration method with the existing ones under the setting of joint models with a

single covariate process. Our numerical results indicate that the proposed method

performs very well in terms of computing time and statistical estimation accuracy.

The performance of the proposed numerical method was further examined with

more complex joint models such as the joint model with multiple covariate pro-

cesses in Chapter 3, the nonparametric joint model in Chapter 5, and the joint

model with a discrete covariate process in Chapter 6. The numerical results imply

that the proposed computing method works well in all these scenarios.

Facilitated by the increasing computational capability of the EM-DoIt algo-

rithm, we are able to extend the parametric joint models from the basic single
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longitudinal covariate setting to a multiple longitudinal covariates setting. Moti-

vated by an empirical analysis of smoking cessation data, we propose a joint model

setting with multiple longitudinal covariate processes in Chapter 3. We develop

an estimation procedure for the proposed joint model based on the joint likeli-

hood approach. We systematically study the asymptotic property of the proposed

estimation procedure. In Chapter 4, we establish the consistency and asymp-

totic normality of the resulting estimate by using the formulation of Zeng and Cai

(2005), in which the authors established the sampling property of maximum like-

lihood estimate for joint model with a single longitudinal covariate process. The

theoretical development for the joint model with multiple longitudinal processes is

much more challenging than that for the one with a single longitudinal covariate

process since we have to deal with the covariance among the multiple longitudinal

covariates rather than variance for the single longitudinal covariate. Although the

joint model with multiple covariates has been considered in previous studies using

other parameter estimation methods (Xu and Zeger, 2001a; Song et al., 2002a;

Huang et al., 2001; Ibrahim et al., 2004; Brown et al., 2005; Chi and Ibrahim,

2006; Albert and Shih, 2010; Hatfield et al., 2011), most of this literature focuses

only on the application of the model. This is the first time that such model is

fitted by the maximum joint likelihood approach and the asymptotic properties of

the MLE are established.

Another challenge of joint modeling is to estimate standard errors of the re-

sulting estimate. We propose an estimation method for the standard error by a

bootstrap method. We conduct Monte Carlo simulations to examine finite sample

performance of the proposed estimation procedures including estimation of the pa-

rameters and estimation of their standard errors. Our numerical results indicate

that the proposed estimation procedure performs well with moderate sample size.

We further apply the proposed estimation method to a smoking cessation study

(Piper et al., 2009) to assess the relationship between time to lapse and multi-

ple longitudinal measurements of withdrawal symptoms. We find that the results

of joint models with multiple longitudinal covariates o↵er deeper insight into the

applied study than the model with a single longitudinal covariate.

Based on the study of parametric joint modeling, we propose a unified non-

parametric joint model setting that covers many of the existing parametric joint
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models as special cases in Chapter 5. Such nonparametric joint models are more

flexible and useful in practice because they do not assume any parametric form

for the longitudinal trajectories, and at the same time, they allow the associations

between the longitudinal covariates and the survival outcome to vary with time.

We propose to approximate the functional coe�cients in the model using B-spline

basis functions, and choose the number of basis functions by the model selection

criteria such as AIC and BIC. Following the methodology used for the parametric

joint modeling, we still adopt a maximum joint likelihood approach for parameter

estimation. We conduct Monte Carlo simulations to demonstrate the performance

of the proposed estimation procedure. The numerical results show that although

the dimension of the random e↵ects increases dramatically in the nonparametric

model setting, the estimators are still obtainable using the EM-DoIt algorithm,

and both the vector parameters and the functional coe�cients are accurately esti-

mated. Moreover, the numerical results also indicate that the misspecification of

the complex longitudinal trajectories with simple parametric shapes would lead to

severe bias in the estimate of survival coe�cients. We further apply the proposed

model fitting procedure to the real data of the smoking cessation study to explore

the dynamic structure of the longitudinal process and the possible time-varying

relationships between the negative a↵ect and time to lapse. To the best of our

knowledge, the nonparametric setting in both longitudinal and survival submodels

has never been studied in the joint modeling literature.

Finally, we extend the continuous-covariate joint model to the model with a

categorical longitudinal predictor. In Chapter 6, we propose to extend the current

continuous joint model setting to the generalized joint models where the observed

covariate process can take either the binary or the count values. We conduct sim-

ulation studies to show that the maximum joint likelihood approach, implemented

via the EM-DoIt algorithm, is feasible in fitting such complicated models. Com-

pared with most of the related existing studies that focus mainly on the ad-hoc

models to the specific datasets, this work provides a general modeling framework

and solution to such problems.
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1.4 Organization of this dissertation

This dissertation consists of 6 chapters. Chapter 2 provides a comprehensive review

of the related literature. Section 2.1 describes the basic joint modeling notations

and parametric model settings that have been adopted by most of the relevant

studies and this dissertation. Section 2.2 reviews 4 model fitting approaches that

have been proposed and extensively applied. Since the computation is a critical

issue for joint modeling, we review the three most popular existing computing

methods used in the field in section 2.3, and introduce a relatively new numerical

interpolation approach, the design of experiments-based interpolation technique

(DoIt), in section 2.4. In section 2.5, we review the basic model fitting methods

for varying-coe�cient models, including the varying-coe�cient longitudinal model,

the varying-coe�cient survival model, and joint models with varying-coe�cients.

Chapter 3 proposes a parametric joint model with multiple longitudinal covari-

ates. The model setting and the estimation method, the joint maximum likelihood

approach, are presented in detail in section 3.2. We also propose a new computing

method, EM-DoIt algorithm, in section 3.2. Numerical analysis are conducted in

section 3.3, where we use two simulation examples to demonstrate the proposed

estimation approach and the computing algorithm, and address the research ques-

tions of the smoking cessation study by analyzing the real data.

Chapter 4 establishes the asymptotic properties for the MLE obtained from

the estimation approach proposed in Chapter 3. In section 4.1, we state the con-

sistency, the asymptotic normality, and the e�ciency properties of the resulting

estimates based on a series of technical conditions. The detailed proofs are pro-

vided in section 4.2.

Chapter 5 proposes a nonparametric joint model where both the longitudinal

trajectory and the time-varying survival coe�cients are approximated nonpara-

metrically using B-splines. Section 5.2 describes the model setting, the estimation

approach and the computing algorithm. Section 5.3 conducts numerical studies

including both the simulation examples and real data analysis.

Chapter 6 is composed of the extension of the current work and the future

work. Based on the work of Chapter 3 through Chapter 5, in section 6.1, we

extend the current joint model setting to include discrete longitudinal covariates
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such as binary or count variables. We present several simulation studies to present

the feasibility of the proposed modeling framework and the computing scheme. In

section 6.2, we discuss future work that can be considered within the joint modeling

framework of this dissertation.



Chapter 2
Literature Review

In this chapter we introduce the modeling framework and review the estimating

procedures developed to jointly model longitudinal and survival data. We focus

on the joint likelihood method and the related computational issues, which are the

cores of this dissertation.

2.1 Joint modeling framework

We first introduce the notation used throughout the rest of this dissertation. As

mentioned in Chapter 1, in joint modeling of longitudinal and survival data, re-

searchers are usually interested in exploring the relationships between survival

time, baseline covariates and longitudinal covariates. The corresponding data are

(Ti,Zi,X i), i = 1, 2, . . . , n, (2.1)

where Ti is the survival time for the ith individual, Zi is a time-fixed vector of

q baseline covariates observed as Z = (Z1, . . . , Zq)T . In longitudinal data, we

denote by X(t) = (X1(t), . . . , Xp(t)) the p-dimensional true covariate process.

X i = (Xi(ti1), . . . ,Xi(ti,N
i

)) is the matrix of covariate process for individual i,

with Xi(tij) as the explanatory vector observed on covariate process X(t) at time

tij on individual i = 1, . . . , n.

In (2.1) both Ti and X i are di�cult to observe in practice. In survival data

the event time Ti is subject to censoring. Right censoring is assumed throughout
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this dissertation. Thus instead of Ti, Vi = min(Ti, Ci) is the observed event time,

where Ci corresponds to the censoring time. Denote by �i the failure indicator

taking value 1 if the failure is observed (i.e., Ti  Ci) and 0 otherwise. For the ith

individual the observed survival data is actually (Vi,�i). Similarly, in longitudinal

data, the true covariate process X(t) is usually subject to measurement errors and

cannot be observed directly. To take into account the measurement errors, denote

the observed covariate process by

W i = (Wi1, . . . ,WiN
i

), (2.2)

with

Wij = Xi(tij) + ei(tij), i = 1, . . . , n; j = 1, . . . , Ni, (2.3)

where ei(tij) is a zero-mean random error vector at time tij for the ith individual.

Therefore, in practice the actual data observed on (2.1) become

Do = (Vi,�i,Zi,W i, ti), (2.4)

where ti = (tij : 1  j  Ni and tij  Vi) is the observed time points for the ith

individual. Since the longitudinal process is observed until the event or censoring

happens, the observed covariate process is also truncated at Vi, i.e., {Wij : tij 
Vi}.

Most joint modeling research uses similar modeling framework as that proposed

by Tsiatis et al. (1995), which was reviewed in detail in more recent literature

(Tsiatis and Davidian, 2004; Li and Ren, 2011). This joint modeling framework is

also adopted in this thesis and introduced in the following paragraphs.

Denote by X

H
i (t) = {Xi(s); 0  s < t} the history of the longitudinal process

up to time t. The survival time is modeled by the Cox model:

�(t;Zi,X
H
i (t)) = �0(t) exp(Z

T
i �Z +Xi(t)

T
�X), (2.5)

where �Z 2 Rq and �X 2 Rp are the unknown regression parameters of baseline

and longitudinal covariates, respectively, �0(t) is an unspecified baseline hazard

function, and �(t;Zi,X
H
i (t)) is the conditional hazard function of T given Z =
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Zi,X
H(t) = X

H
i (t) in the following sense

�(t;Zi,X
H
i (t)) = lim

h!0
h�1P{t  Ti < t+ h|Ti � t,Zi,X

H
i (t)}. (2.6)

In joint modeling literature it is usually assumed that the right censoring is

noninformative, i.e.,

lim
h!0

h�1P{t  Ti < t+ h,� = 1|Ti � t,Zi,X
H
i (t)}

= lim
h!0

h�1P{t  Ti < t+ h|Ti � t,Zi,X
H
i (t)}.

This assumption is critical because what we actually observe is the cause-specific

hazard on the left-hand side of the above equation, not the right-hand side, which

we shall model. Without this assumption it is impossible for us to link the observ-

able hazard with (2.6), based on which all the fitting procedures are developed.

In longitudinal data, a standard approach used to model the true covariate

process Xi(t) is by the model:

Xi(t) = ⇢(t)
T
bi, (2.7)

where ⇢(t) is a vector of functions of time t including basis functions of t, such as

polynomial functions, as a special case. bi is a vector of subject-specific random

e↵ects. Accordingly, the model for the observed longitudinal process Wi is given

by the mixed-e↵ects model

Wij = Xi(tij) + ei(tij) = ⇢(t)
T
bi + ei(tij). (2.8)

In many previous studies (De Gruttola and Tu, 1994; Tsiatis et al., 1995; Wulfsohn

and Tsiatis, 1997; Dafni and Tsiatis, 1998; Bycott and Taylor, 1998), a simple linear

model Xi(t) = b0i + b1it has been used to specify the covariate process. In such

case, bi = (b0i, b1i)T , and ⇢(t) = (1, t)T .

Common assumptions on (2.7) and (2.8) require that the random e↵ects bi are

independent of the baseline covariate Zi and the errors ei(t), and are normally

distributed, representing the within-subject variation. Usually if ei(t) is used to

represent the deviation due to only the measurement errors and “local” variation,
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they can be assumed independent across time and participants. Otherwise, if ei(t)

also involves the variation caused by a longer-term within-subject autocorrelation

process, the corresponding covariance matrix should be specified for ei(t) to address

such autocorrelation across time for each individual. For simplicity, ei(tij) are

often assumed to account only for the measurement error, and are independent

and identically distributed with the normal distribution

ei(tij) ⇠ N(0, �2), i = 1, . . . , n; j = 1, . . . , ni. (2.9)

The random e↵ects bi are usually assumed to be independent and identical from

the multivariate normal distribution

bi ⇠ Nd(µ,⌃), i = 1, . . . , n, (2.10)

where d is the dimension of the vector function ⇢(t).

An alternative approach considered by Taylor et al. (1994), Henderson et al.

(2000), Wang and Taylor (2001), among others, is to characterize the true covariate

process by

Xi(t) = ⇢(t)
T
bi + Ui(t), (2.11)

where Ui(t) is a mean-zero stochastic process, usually taken to be independent

of bi and Zi. The involvement of Ui(t) allows the covariate trend to vary with

time and induces a within-subject autocorrelation structure that may be viewed

as arising from evolving individual fluctuations in the process of a smooth trend.

More philosophical considerations of Ui(t) were reviewed by Tsiatis and Davidian

(2004).

It is important to specify the measurement error in longitudinal process (2.8)

because it addresses one of the two main concerns of joint models we present in

Chapter 1. Without such specification, a naive solution is to use the raw mea-

surements W (t) in survival analysis (2.5) to substitute X(t). However, this direct

approach would lead to biased estimates. Prentice (1982) pointed out that mea-

surement error can cause the estimated regression parameter in the time-dependent

Cox model to be biased toward the null, and the magnitude of the bias is propor-

tional to measurement error in the observed predictors.
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The second concern deals with the incompleteness of the longitudinal process

(Tsiatis and Davidian, 2004; Li and Ren, 2011). Note that (2.5) is di↵erent from

the usual Cox model with time-varying covariates that can be estimated by partial

likelihood (Cox, 1975)

n
Y

i=1

"

exp{�XXi(Vi) + �T
ZZi}

Pn
j=1 exp{�XXj(Vi) + �T

ZZj}I(Vj � Vi)

#�
i

. (2.12)

It is clear that the equation (2.12) requires Xi(t) obtained for all i = 1, . . . , n at

each observed failure time. If all individuals were measured at the same time, this

would not be a problem. However, it is common that some individuals’ covari-

ates are not measured at other individuals’ event times. For example, individuals

may have di↵erent scheduled visiting time points. In that case, one individual’s

covariate value may be missing in the sense that there exists an event time which

does not fall on this individual’s schedule. An ad hoc approach, also known as the

method of “Last Value Carried Forward (LVCF)”, is to use the latest observation

from the same individual, and treat it as if it were the current value of the covariate

at the failure time. If the time-dependent covariate does not change sharply over

time, this imputation will probably work well. Otherwise, this ad hoc approach is

not guaranteed to lead to good estimates (Prentice, 1982).

In the following sections we review the methods developed to tackle these prob-

lems and estimate the parameters. All of them are based on the joint modeling

framework (2.5) and (2.8), and the set of parameters of interest is

⌦ = (�0,�Z ,�X ,µ,⌃, �2), (2.13)

where the regression parameters �X and �Z are of primary interest.

2.2 Estimation methods

Several estimation procedures have been developed to estimate the parameters in

(2.13), especially the regression parameters �X and �Z in the survival model (2.5).

Below we summarize four commonly used methods: regression calibration method,

Bayesian method, conditional score method and joint likelihood method.
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2.2.1 Regression calibration method

Tsiatis et al. (1995) proposed the regression calibration method (also known as the

“two-stage” method) to first approximate the covariate process X(t), and then

plug the approximated values in (2.12) to solve for �’s. The starting assumption

for this inferential strategy is that neither the measurement error nor the timing of

the visits prior to time t are prognostic. That is, given the true covariate history,

the observed covariate history is independent of the hazard rate. This assumption

implies that

�(t|Z,X(t),W (t)) = �(t|Z,X(t)) = �0(t) exp(Z
T
�Z +X(t)T�X). (2.14)

Thus it follows by the law of conditional probability that

�(t|Z,W (t)) =

Z

�(t|Z,X(t),W (t))dP (X(t)|Z,W (t), V � t)

= �0(t) exp(Z
T
�Z)E

⇥

exp(X(t)T�X)|W (t), V � t
⇤

, (2.15)

where W(t) = {W (t1), . . . ,W (tJ); tJ  t}. The goal is to estimate the condi-

tional expectation E
⇥

exp(X(t)T�X)|W (t), V � t
⇤

and substitute it in the partial

likelihood equation (2.12) to solve for �X and �Z .

In the first stage, the empirical Bayes estimator for X(t) is obtained from a

standard fit of the mixed e↵ects model defined by (2.8) for all subjects still in

the risk set, i.e., satisfying Vi � t. With the model setting of (2.8) and the nor-

mal assumption of the random e↵ects bi it is convenient to obtain the joint nor-

mal distribution of {W (t),X(t)}, and the conditional distribution of X(t) given

W (t). Denote the conditional mean by µ·|W (t) = E(X(t)|W (t)), and conditional

variance by ⌃·|W (t) = Var(X(t)|W (t)). Then moment generating function of

{X(t)|W(t)} is obtained by

E
�

exp(X(t)T�X)|W (t), V � t
 

= exp{µ·|W (t)T�X +
1

2
�

T
X⌃·|W (t)�X}. (2.16)

In particular, if the longitudinal process is specified by the mixed-e↵ects model

as in (2.8) with the assumptions (2.9) and (2.10), for any time point t before

the event time V , X(t) is a normal process with the mean E(X(u)|V  t) =
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⇢(u)Tµ and covariance cov(X(u), X(v)) = ⇢(u)T⌃⇢(v)
�
= Ct(u, v) for any u, v 

t. Thus for any time point t before the event time V , the joint distribution of

{W (t), X(t)} = {W (t1), . . . ,W (tj), X(t)} is normal with mean {µ̄w(t), µx(t)} �
=

{⇢(t1)Tµ, . . . ,⇢(tj)Tµ,⇢(t)Tµ}, and variance

Mt =

0

B

B

B

B

@

Ct(t1, t1) . . . Ct(t1, tj) Ct(t1, t)
...

Ct(tj, t1) . . . Ct(tj, tj) Ct(tj, t)

Ct(t, t1) . . . Ct(t, tj) Ct(t, t)

1

C

C

C

C

A

+

0

B

B

B

B

@

�2 0 . . . 0
...

0 . . . �2 0

0 0 . . . 0

1

C

C

C

C

A

,

where tj is the last observing time point before t. All the parameters can be spec-

ified by the estimates of µ, ⌃ and �2 from the mixed-e↵ects model. Accordingly,

the conditional distribution of X(t) given W (t) at any t before V is also normal,

and the conditional mean µ·|W (t) and variance ⌃·|W (t) can be calculated from the

joint mean and variance using the property of multivariate normal distribution.

In the second stage, the estimated value of the conditional expectation of (2.16)

is plugged into the partial likelihood (2.12) to substitute exp{�XX(t)} at each

event time point. Then the regression coe�cients �X and �Z are estimated by

maximizing the partial likelihood function.

As pointed out by Wulfsohn and Tsiatis (1997), this two-step modeling ap-

proach has several limitations. First, the assumption that the random e↵ects are

normally distributed in those at risk at each event time is probably unreasonable.

If the covariate is predictive of survival time, patients with the steepest negative

slope of the covariate trajectories may be at higher risk for mortality, and thus

removed from the population early on. This may result in the random e↵ects

having a distribution shift toward a nonnormal distribution as time progresses.

The violation of the normality assumption may cause biased estimation. Second,

a first-order approximation is required in order to use polynomial growth curve

models to simplify the partial likelihood to be maximized (Tsiatis et al., 1995).

The validity of this approximation depends on the scaling of the covariate. Fi-

nally, the two-stage model does not use any survival information in modeling the

covariate process, and thus information is not used as e�ciently as it might be.



19

2.2.2 Bayesian method

Another well-developed estimation method for the joint modeling framework (2.5)

and (2.8) is the Bayesian approach proposed by Faucett and Thomas (1996). Based

on the density functions specified my model assumptions, the authors used a

Markov chain Monte Carlo (MCMC) technique to estimate the posterior distri-

bution of the unknown parameters in ⌦ given the observed data Do.

In the Bayesian approach, Gibbs sampling is used to generate random samples

from the joint posterior distribution of unknown parameters in a model one at

a time, conditional on the observed data and other parameters. It is useful in

joint modeling because the joint distribution of parameters is intractable, but the

generation of samples from each full conditional distribution is feasible. Given a

set of initial estimates for each of the unknown parameters, the authors generated

samples in turn from the full conditional distributions of each unknown parameter

conditional on the current assignment of all other parameters and data.

Based on Faucett and Thomas (1996), Xu and Zeger (2001b) considered gener-

alizations of this MCMC approach, and allowed models of form (2.9). The author

used the empirical characteristic statistics from the generated samples to estimate

the parameters and draw statistical inferences based on them. Wang and Taylor

(2001) fit a joint model to HIV data using MCMC and incorporating a longitu-

dinal model of form (2.9). Brown and Ibrahim (2003) proposed a semiparametric

Bayesian joint model of form (2.5) and (2.8) that furthermore makes no parametric

assumption on the random e↵ects. More discussion of the Bayesian approach can

be found in the review of Tsiatis and Davidian (2004).

2.2.3 Conditional score method

Both the regression calibration and the Bayesian approach require specification of

the distribution of random e↵ect bi. To minimize reliance on parametric modeling

assumptions, Tsiatis and Davidian (2001) developed a set of unbiased estimat-

ing equations that yields consistent and asymptotically normal estimators of the

survival coe�cients with no assumptions on bi. The idea of conditional score

(Stefanski and Carroll, 1987) was employed to treat the random e↵ects bi as the

“nuisance parameters” and estimate �X and �Z conditional on an appropriate
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“su�cient statistic” for bi.

The conditional score approach is similar to the regression calibration approach

in that it is also a “two-stage” inference technique requiring the estimation of

the covariate process Xi(t) and using the partial likelihood equation to solve for

the regression parameters. The di↵erences between them are twofold. First, the

regression calibration method we described before uses empirical Bayesian esti-

mators for Xi(t) at each event time, while in the conditional score approach,

ordinary least squares (OLS) estimators are used to approximate Xi(t). Second,

the regression parameters in approximation method are estimated by partial like-

lihood for the risk P{t  Vi < t + dt|bi,Zi(t),XH
i (t), Vi � t}, where the distri-

bution of bi is required. For conditional score approach, however, the regression

parameters are obtained by solving the partial likelihood equation for the risk

P{t  Vi < t + dt|Si(t, �, �2
e),Zi(t),XH

i (t), Vi � t}, where Si(t, �, �2
e) is a “suf-

ficient statistic” for bi based on X̂i(t). Tsiatis and Davidian (2001) suggested

that conditioning on Si(t, �, �2
e) would remove the dependence of the conditional

distribution on the “nuisance parameter” bi.

More specifically, in the first stage, Tsiatis and Davidian (2001) obtained the

OLS estimators X̂i(t) based on the observed data Wi(t), with the assumption that

�2
e is known. For instance, in one-dimensional simple linear case, X̂i(t) = (1, t)T b̂i,

where b̂i = {⇢(t)T⇢(t)}�1
⇢(t)Twi(t), and ⇢(t) is the usual {ni ⇥ 2} design matrix

with first column all ones and second column tij for the ith subject. Note that b̂

and hence X̂i(t) are defined only if there are at least two measurements prior to

t. Define Yi(t) = I(Vi � t, ti2  t). Assume that the distribution of “error” ei(tij)

at time tij is N(0, �2
e), given that a measurement is taken at tij, i is at risk at tij,

the measurement history prior to tij, bi and Zi. The authors demonstrated that

under these conditions and noninformative assumptions regarding the censoring

and timing processes,

{X̂i(t)
�

�Yi(t) = 1, bi,Zi} ⇠ N(Xi(t), �
2
e✓i(t)) , (2.17)

where �2
e✓i(t) is the usual variance of the predicted value X̂i(t), which depends on

the time and the variance structure of bi. Define dNi(u) = I(u  Vi < u+du,�i =

1, ti2  u), which puts point mass at time u for an observed event time after the
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second longitudinal measurement on subject i. The motivation for the conditional

score estimating equations relies on identifying a “su�cient statistic” for bi.

At time u, given i is at risk, the conditional density for {dNi(u) = r, X̂i(u) = x}
is

p{dNi(u) = r, X̂i(u) = x | Yi(u) = 1, ti(u), bi,Zi}
= p{dNi(u) = r | X̂i(u) = x, Yi(u) = 1, ti(u), bi,Zi}
⇥ p{X̂i(u) = x | Yi(u) = 1, ti(u),↵i,Zi}.

The first term on the right hand side of the above equation is a Bernoulli density

with probability �0(u)du exp{�Xi(u) + ⌘TZi}, and the second term is a normal

density of N{Xi(u), �2
e✓i(u)}. Substituting the associated densities into the above

equation and simplifying yields

exp

"

Xi(u)

(

��2
e✓i(u)dNi(u) + X̂i(u)

�2
e✓i(u)

)#

⇥ �0(u) exp(⌘T
Zi)dNi

(u)

{2⇡�2
e✓i(u)}1/2

exp

(

�X̂2
i (u) +X2

i (u)

2�2
e✓i(u)

)

.

This contains a “su�cient statistic” for bi: Si(u, �, �2
e) = ��2

e✓i(u)dNi(u) + X̂i(u).

Conditional on this su�cient statistic and observed data, the survival process is

lim
du!0

du�1p{dNi(u) = 1 | Si(u, �, �
2
e),Zi, ti(u), Yi(u)}

= �0(u) exp{�Si(u, �, �
2
e)� �2�2

e✓i(u)/2 + ⌘
T
Zi}Yi(u)

�
= �0(u)E

⇤
0i(u, �,⌘, �

2
e).

Based on this equation, Tsiatis and Davidian (2001) proposed the estimating equa-

tions for � and ⌘ by equating “observed” and “expected” quantities in a spirit

similar to such a derivation for the usual partial likelihood score equations:

n
X

i=1

Z

{Si(u, �, �
2
e), Z

T
i }T{dNi(u)� E⇤

0i(u, �,⌘, �
2
e)�0(u)du} = 0,

n
X

i=1

{dNi(u)� E⇤
0i(u, �,⌘, �

2
e)�0(u)du} = 0,
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with dN(u) =
Pn

j=1 dNj(u) and E⇤
0(u, �,⌘, �

2
e) =

Pn
j=1 E

⇤
0j(u, �,⌘, �

2
e). The sec-

ond equation yields

�̂0(u)du =
dN(u)

E⇤
0(u, �,⌘, �

2
e)
.

By substitution of �̂0(u)du in the first equation, the conditional score estimating

equation for � and ⌘ are

n
X

i=1

Z



{Si(u, �, �
2
e),Z

T
i }T � E⇤

i (u, �,⌘, �
2
e)

E⇤
0(u, �,⌘, �

2
e)

�

dNi(u) = 0, (2.18)

where E⇤
1j(u, �,⌘, �

2
e) = {Sj(u, �, �2

e),Z
T
i }TE⇤

0j(u, �,⌘, �
2
e), and E⇤

1(u, �,⌘, �
2
e) =

Pn
j=1 E

⇤
1j(u, �,⌘, �

2
e).

This equation reduces to the partial likelihood score equations when �2
e = 0

(i.e., X̂i(u) = Xi(u)). When �2
e is unknown, Tsiatis and Davidian (2001) proposed

an additional estimating equation for �2
e based on residuals from individual least

squares fits to the Ni measurements for each i and gave arguments indicating

that the resulting estimators for � and ⌘ are consistent and asymptotically normal

under assumptions specified above, with standard errors that may be derived based

on the usual sandwich approach.

It is worth mentioning that the violation of the normality assumptions may

not be a concern for some methods. For example, Song et al. (2002b) and Hsieh

et al. (2006) investigated the robustness of joint likelihood procedures when the

normal assumptions of the random e↵ects are violated. They found the estima-

tions of the parameters of interest are basically unbiased and as e�cient as those

estimated when normality is imposed, and the estimated cumulative hazards are

almost identical in the two scenarios. For details on the rationale and the deriva-

tion of these estimating equations with their properties, see Tsiatis and Davidian

(2004) for further discussions.

2.2.4 Joint likelihood method

The most popular method used to estimate joint models is the joint likelihood

approach proposed by Wulfsohn and Tsiatis (1997), which simultaneously fits (2.5)

and (2.8) linked by the random e↵ects bi via the joint likelihood. To specify the

joint likelihood we need to assume the observed longitudinal process Wi(t) and
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the event processes {Vi,�i} are independent given the random e↵ects bi. For

simplicity we first consider the one-dimensional covariate process X(t), which can

be extended to the multi-dimensional cases. With the above assumption, the joint

likelihood of the observed data can be written as follows:

L(⌦) =
n
Y

i=1

Li(⌦) =
n
Y

i=1

Z

fV
i

,�
i

|b
i

· fW
i

|b
i

· fb
i

dbi, (2.19)

where

fV
i

,�
i

|b
i

=
n

�0(Vi)e
�
X

⇢(V
i

)T b
i

+ZT

i

�
Z

o�
i

exp

⇢

�
Z V

i

0

�0(u)e
�
X

⇢(u)T b
i

+ZT

i

�
Zdu

�

,

(2.20)

fW
i

|b
i

= (
1p
2⇡�2

)Ni exp

(

� 1

2�2

N
i

X

j=1

(wij � ⇢(tij)Tbi)2
)

, (2.21)

fb
i

=
1

2⇡
|⌃|�1/2 exp

⇢

�1

2
(bi � µ)T⌃�1(bi � µ)

�

. (2.22)

Using the joint likelihood function (2.19), there is no need to recover the true

covariate process Xi(t) as in the regression calibration and the conditional score

approaches. The density for the survival data in equation (2.20) assumes that the

current value of the covariate is the appropriate component of the covariate history

to use in the model.

This approach also assumes that censoring is independent of the random e↵ects.

However, if this is not the case, the appropriate density for the censoring process

should be incorporated in the model. If the censoring process that leads to drop-

out is not correctly modeled, the resulting estimates of the regression coe�cients

�X and �Z may be biased.

Usually the parameters µ,⌃, �2
e , �X and �Z are estimated using parametric

maximum likelihood and the baseline hazard �0(u) using nonparametric maximum

likelihood. The baseline hazard �0(u) is assumed to take mass at each failure time,

and its dimension is equal to the number of unique failure times.

The maximum likelihood approach is a popular modeling procedure for joint

modeling problems, and has been extensively employed in many studies. However,

the asymptotic properties for the resulting MLE has not been theoretically justified

until Zeng and Cai (2005). In this study, the authors built up a joint modeling
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framework that is very similar to the one we specified in this section. The main

di↵erence is that in this work, the continuous covariate process X(t) is assumed

to be fully observed instead of being recorded intermittently. Under this and other

related assumptions, the authors proved that the MLE ⌦̂ for ⌦ has the desired

properties of strong consistency, asymptotic normality, and semie�ciency.

Solving for the MLE of the joint likelihood (2.19) is quite challenging because

the integrals involved make it di�cult to optimize. Wulfsohn and Tsiatis (1997)

proposed to calculate the MLE of (2.19) using an expectation-maximization (EM)

algorithm, where the unobserved random e↵ects are treated as missing data, and

the parameter estimates are updated iteratively until the algorithm converges.

This method has been widely applied and proved feasible and robust in the later

related studies (Henderson et al., 2000; Tsiatis and Davidian, 2001; Song et al.,

2002b; Hsieh et al., 2006). This approach is also the main focus of this study, and

we explain it in detail as follows.

Taking logarithm of the joint likelihood of (2.19),

l(⌦) = log(L(⌦)) = ⌃n
i=1 log

Z

fV
i

,�
i

|b
i

· fW
i

|b
i

· fb
i

dbi

= log(f(Vi,�i,Wi)). (2.23)

Let ✓ denote any of the parameters in ⌦. Taking the derivative of l(⌦) with respect

to ✓ and assuming the derivative and integral are interchangeable under certain

conditions, it follows that

S(✓) =
@l(⌦)

@✓
=

@

@✓
log(f(Vi,�i,Wi))

=
1

f(Vi,�i,Wi)

@

@✓

Z

fV
i

,�
i

|b
i

· fW
i

|b
i
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i

dbi
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Z

@

@✓
log(fV
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i
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i

)
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i
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i
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i

f(Vi,�i,Wi)
dbi
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@✓
{log(fV
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i

) + log(fW
i

|b
i

}+ log(fb
i

))
f(Vi,�i,Wi, bi)

f(Vi,�i,Wi)
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=
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{log(fV
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i

) + log(fW
i

|b
i

}+ log(fb
i

))fb
i
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o

,⌦̂dbi

=
@

@✓
{E(l1(bi)) + E(l2(bi)) + E(l3(bi))} , (2.24)
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where E(·) is conditional expectations of bi given observed data Do defined in (2.4)

and the updated parameter estimates ⌦̂ in the EM algorithm, and

l1(bi) = log{fV
i

,�
i

|b
i

}

=�i log{�0(Vi)}+�i

�

�X⇢(Vi)
T
bi +Z

T
i �Z

 �
Z V

i

0

�0(u)e
�
X

⇢(u)T b
i

+ZT

i

�
Zdu

=�i log{�0(Vi)}+�i

�

�X⇢(Vi)
T
bi +Z

T
i �Z
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n
X

j=1

�0(Vj)e
�
X

⇢(V
j

)T b
i

+ZT

i

�
ZI(Vi � Vj,�j = 1),

l2(bi) = log(fW
i

|b
i

) = �Ni

2
log(2⇡�2)� 1

2�2

N
i

X

j=1

(wij � ⇢(tij)Tbi)2,

l3(bi) = log(fb
i

) = � log(2⇡)� 1

2
log(|⌃|)� 1

2
(bi � µ)T⌃�1(bi � µ).

The corresponding conditional expectations in (2.24) are

E{l1(bi)} =�i log{�0(Vi)}+�i�XE
�

⇢(Vi)
T
bi +Z

T
i �Z

 

�
n
X

j=1

�0(Vj)E
n

e�X⇢(V
j

)T b
i

+ZT

i

�
ZI(Vi � Vj,�j = 1)

o

, (2.25)

E(l2(bi)) =� Ni

2
log(2⇡�2)� 1

2�2

N
i

X

j=1

E(wij � ⇢(tij)Tbi)2, (2.26)

E(l3(bi)) =� log(2⇡)� 1

2
log(|⌃|)� 1

2
E(bi � µ)T⌃�1(bi � µ). (2.27)

From (2.24) it is clear that to obtain the MLE of (2.19) the first task is to specify

the conditional expectations of lk(bi), the functions of bi, in (2.25) through (2.27).

This is what the E-step does in the EM algorithm. In the M-step, the log likelihood

is maximized by taking partial derivatives of E(l1(bi)), E(l2(bi)), E(l3(bi)) with

respect to their corresponding parameters, i.e., calculating S(✓) in (2.24) (Flury

and Zoppè, 2000). All the parameters in ⌦ except �X and �Z have the closed-form

maximum likelihood estimates:

µ̂ =
1

n

n
X

i=1

E(bi), (2.28)
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⌃̂ =
1

n

n
X

i=1

E(bi � µ̂)(bi � µ̂)T , (2.29)

�̂2 =
1

Pn
i=1 Ni

n
X

i=1

N
i

X

j=1

E(wij � ⇢(tij)Tbi)2, (2.30)

�̂0(u) =

Pn
i=1�iI(Vi = u)

Pn
j=1 Ee�X⇢(u)T b

j

+�T

Z

Z
jI(Vj � u)

, (2.31)

where u only takes value at the event points. For other time points, �̂0(t) = 0.

The MLE of �X and �Z are obtained by applying Newton-Raphson algorithm

to the profile likelihood of l1(bi) after plugging in �̂0(t) in (2.31):

�̂

(k) = �̂(k�1) + I�1
�̂(k�1)S�̂(k�1) ,

where S�̂(k�1) and I�̂(k�1) are the score and information equations of �’s taking

values at the (k � 1)th updated estimates. The score and the information of �X

and the lth element of �Z are calculated as below:

S(�X) =
@E(l1(bi))

@�X

=
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X
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T
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(2.32)

I(�X) =
�@S(�X)
@�X

=
n
X

i=1

�i

(

Pn
j=1 E(⇢(Vi)Tbj)2e

�
X

⇢(V
i

)T b
j

+ZT

j

�
ZI(Vj � Vi)

Pn
j=1 Ee�X⇢(V

i

)T b
j

+ZT

j

�
ZI(Vj � Vi)

�
"

Pn
j=1 E(⇢(Vi)Tbj)e

�
X

⇢(V
i

)T b
j

+ZT

j

�
ZI(Vj � Vi)

Pn
j=1 Ee�X⇢(V

i

)T b
j

+ZT

j

�
ZI(Vj � Vi)

#2
9

=

;

, (2.33)
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)
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. (2.35)

In an EM algorithm, the above E-step and M-step are calculated iteratively

until the algorithm converges. By (2.28) through (2.35), in each iteration, condi-

tional expectations need to be evaluated for the following six functions of b for the

ith subject, i = 1, . . . , n:

g1(bi) = bi,

g2(bi) = bib
T
i ,

g3(bi) = ⇢(Vi)
T
bi, (2.36)

g4(bj) = e�X⇢(V
i

)T b
j , for j = 1, . . . , n, and Vj � Vi,

g5(bj) = (⇢(Vi)
T
bi)e

�
X

⇢(V
i

)T b
j , for j = 1, . . . , n, and Vj � Vi,

g6(bj) = (⇢(Vi)
T
bi)

2e�X⇢(V
i

)T b
j , for j = 1, . . . , n, and Vj � Vi.

Since multi-dimensional integrals are involved in the conditional expectations

E{g(bi)} in the E-step, they need to be approximated by numerical integration

techniques, which are quite time-consuming and cause instability in the EM results.

This numerical challenge is confronted by all joint modeling approaches, especially

when the random e↵ects have high dimension. In the following section we discuss

the numerical methods that are used to solve this problem.

2.3 Computing issue in joint likelihood

Despite the popularity of the EM algorithm in joint modeling, most of the applica-

tions are restricted to the simple parametric joint models, in which the longitudinal

process is assumed to be captured well by low-dimensional random e↵ects and event

process by low-dimensional regression coe�cients. Such constraint is caused by the

di�culty in approximating the posterior expectations of the random e↵ects in the

E-step of the EM algorithm. The numerical methods applied to approximate these
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posterior densities and expectations can be divided into three categories. One is

the deterministic interpolation techniques using the Gaussian quadrature points

(Wulfsohn and Tsiatis, 1997; Song et al., 2002b); another is the random sampling

methods based on Monte Carlo Markov Chain (Hsieh et al., 2006; Tseng et al.,

2005; Ding and Wang, 2008); the other is Laplace approximation based on Taylor

expansion of the integrand (Rizopoulos et al., 2009). In this and the following chap-

ter, we will compare these methods both theoretically and numerically in terms

of accuracy and computational time in low-dimensional parametric joint model

settings. A newly proposed numerical method, design of interpolation techniques

(Joseph, 2012), is introduced to the joint modeling framework as an alternative

technique to approximate the posterior expectations.

2.3.1 Gaussian-Hermite quadrature

The most common numerical integration technique used for joint modeling is the

Gaussian-Hermite quadrature proposed by Wulfsohn and Tsiatis (1997). The pos-

terior density of the random e↵ects of the ith subject can be written as

f(bi|Do, ⌦̂) =
f(bi, Vi,�i|wi, zi, ⌦̂)

f(Vi,�i|wi, zi, ⌦̂)
=

fV
i

,�
i

|b
i

fb
i

|W
i

R

fV
i

,�
i

|b
i

fb
i

|W
i

dbi
,

where fb
i

|W
i

is the posterior density of bi given wi. Since both {Wi|bi} and bi are

normally distributed by assumption, the posterior distribution of bi|Wi is

bi|Wi ⇠ N(µ+D21D
�1
11 (Wi � ⇢(ti)Tµ), D22 �D21D

�1
11 D12),

where D11 = ⇢(ti)T⌃⇢(ti) + �2In
i

, D21 = ⌃⇢(ti), D12 = DT
21, and D22 = ⌃. Thus

the conditional expectation of g(bi) can be written as

E(g(bi)) =

R

g(bi)fV
i

,�
i

|b
i

fb
i

|W
i

dbi
R

fV
i

,�
i

|b
i

fb
i

|W
i

dbi
. (2.37)

In the Gaussian quadrature method, in order to get rid of the dependence

structure of the random e↵ects, bi is transformed into b

⇤
i = q(bi) such that b⇤i ⇠

N(0, 12I). Now that b⇤i has independent elements, the conditional expectation can

be approximated by evaluating the functions at the pre-specified Gaussian-Hermite
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quadrature points and calculating their weighted sum:

E(g(bi)) ⇡
Pm

s=1

Pm
t=1 g(q

�1(b⇤i ))fV
i

,�
i

|q�1(b⇤
i

)wswt
Pm

s=1

Pm
t=1 fVi

,�
i

|q�1(b⇤
i

)wswt

, (2.38)

where b⇤i takes m abscissa values on each of its two coordinates. ws and wt are the

associated weights for the sth point of the first coordinate and the tth point of the

second coordinate.

As a fundamental technique used for numerical integration in joint modeling,

the Gaussian-Hermite quadrature method is implemented in the PROC NLMIXED

procedure in SAS and the JM package in R (Rizopoulos, 2010, 2012), both of

which can be used to fit low-dimensional parametric joint models. However, as

the dimension of random e↵ects increases, the number of quadrature points grows

exponentially. This results in the soaring computing time and the potential failure

to converge (Joseph, 2012).

Let M = s ⇥ m be the total number of interpolating points, with s being

the number of integration dimension, and m being the number of points on each

dimension. The convergence rate of the Gaussian quadrature method is of order

O(M�1), and thus higher accuracy can be achieved by adding more interpolating

points. Although the Gaussian quadrature method with m = 2 worked well for

the data in Wulfsohn and Tsiatis (1997), the JM package in R uses m = 35

as default. In my simulation study with two-dimensional bi, the performance

of the standard Gaussian quadrature method of (2.38) with m = 3 is far from

satisfactory. It performs worse than other numerical integration methods in terms

of estimating accuracy and stableness. It is unstable because the numerator and

the denominator in (2.38) are approximated separately and the denominator is

subject to problems: the density function fV
i

,�
i

|q�1(b⇤
i

) contains exponential terms,

and can thus get to extremely large or small values during parameter updating

for some outlier observations. This might hinder the calculation of E(g(bi)) and

hence need special attention in programming.
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2.3.2 Monte Carlo Markov Chain

Monte Carlo Markov Chain (MCMC) is another popular method used to evaluate

the conditional expectations in the E-step in joint modeling (Henderson et al.,

2000). The key is to sample bi from appropriate posterior densities fb
i

|D
o

,⌦̂ that

does not have a closed form. To make things easier, Tseng et al. (2005), Ding and

Wang (2008) proposed to generate random samples {b1i , . . . , bMi } of size M for bi

from the partial posterior density fb
i

|W
i

and approximate E(g(bi)) by

E(g(bi)) ⇡
PM

l=1 g(b
l
i)fV

i

,�
i

|bl
i

PM
l=1 fV

i

,�
i

|bl
i

. (2.39)

To ensure the accuracy of the approximation, M has to be large enough, usually

taking the value of several hundreds or even thousands. Thus the estimating

accuracy is abstained at the cost of computational time.

Instead of generating the MCMC samples from the partial posterior distribu-

tion fb
i

|W
i

, we can also draw the sample {b1i , . . . , bMi } directly from the posterior

distribution fb
i

|W
i

,V
i

,�
i

by applying Metroplis-Hasting algorithm to the unnormal-

ized posterior density

h(bi) = fV
i

,�
i

|b
i

· fW
i

|b
i

· fb
i

.

Thus the posterior expectations of g(bi) is approximated by

E(g(bi)) =

R

g(bi)h(bi)dbi
R

h(bi)dbi
⇡ 1

M

M
X

l=1

g(bli). (2.40)

Since MCMC sampling is an updating procedure, a good choice of initial values

contributes to a shorter “burn in” period, and reduces computational time. Since

the complete log likelihood l(bi) = log(h(bi)) is quadratic in bi as Ni increases, the

mode of l(bi), which can be obtained by Newton-Raphson algorithm, serves as a

good initial value for the Metroplis-Hasting sampling scheme.

The idea of using MCMC to approximate the posterior expectations of g(bi) is

straightforward and easy to implement in R with the package MHadaptive. The

computing procedure is quite stable and can yield accurate estimates provided

that the posterior samples are generated properly. However, even with good initial
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values, this approach still needs at least hundreds of sampling points, thus leading

to much longer computational time compared with other methods where a few

points are su�cient for the low-dimensional cases. Most of the time is spent

in generating the posterior samples sequentially by MCMC schemes rather than

calculating g(·) at each sample point.

2.3.3 Fully exponential Laplace

Recall that Laplace approximation is a mathematical technique to approximate

integrals of the form

Z

eaf(x)dx,

where a is a large number, and f(x) is a twice-di↵erentiable function. If f(x) has

a unique global maximum at x0, then by Taylor expansion, for x close to x0 we

have

f(x) = f(x0) + f 0(x0)(x� x0) +
1

2
f 00(x0)(x� x0)

2 +O((x� x0)
3)

⇡ f(x0)� 1

2
|f 00(x0)|(x� x0)

2, (2.41)

because f 0(x0) = 0 and the second derivative is negative at the global maximum

f(x0). This enables the approximation to the original integral:

Z

eaf(x)dx ⇡ eaf(x0)

Z

e�a|f 00(x0)|(x�x0)2/2dx.

This approximated quantity has a Gaussian integral form with mean x0 and

variance 1
a|f 00(x0)| , and can thus be approximated by

Z

eaf(x)dx ⇡
s

2⇡

a|f 00(x0)|e
af(x0) as a ! 1. (2.42)

This expansion is accurate to the order O(1/a), and thus a large a is usually

required to produce satisfactory results. In practice, a is related to the sample size

of the data.
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Rizopoulos et al. (2009) applied the idea of Laplace approximation to joint

modeling. To see the link between Laplace approximation and joint modeling

framework, consider again the posterior expectation in (2.40):

E(g(bi)) =

R

g(bi)h(bi)dbi
R

h(bi)dbi
=

R

g(bi)eNi

l(b
i

)dbi
R

eNi

l(b
i

)dbi
, (2.43)

where l(bi) =
1
N

i

log(h(bi)), and
R

eNi

l(b
i

)dbi can be approximated using expression

(2.42) at the mode b̂i of l(bi) in both the numerator and denominator. This

technique is referred to as “standard Laplace approximation” (Tierney et al., 1989)

and the approximated posterior expectation is of the form

E(g(bi)) = g(b̂i) +O(n�1
i ).

This approximation is not optimal in the context of longitudinal data since the

observation number Ni can be quite small for many subjects and thus leads to the

inaccurate estimates. To avoid this problem, instead of using “standard Laplace ap-

proximation”, Rizopoulos et al. (2009) proposed to use “fully exponential Laplace

approximation” (Tierney and Kadane, 1986) , which is to apply the standard

Laplace methods in both the numerator and the denominator of (2.40), respec-

tively. That is

E(g(bi)) =

R

g(bi)h(bi)dbi
R

h(bi)dbi
=

R

eNi

l⇤(b
i

)dbi
R

eNi

l(b
i

)dbi
, (2.44)

where l(bi) is defined the same as in (2.43), and l⇤(bi) = 1
N

i

{log g(bi)+log(h(bi))}.
The “fully exponential Laplace approximation” di↵erentiates from the “standard

Laplace approximation” in that it evaluates the numerator and denominator sep-

arately at b̂⇤i and b̂i, which are the two modes of l⇤(bi) and l(bi), respectively. In

addition, it also requires g(·) to be positive. Tierney et al. (1989) proved that

if the sequence of g(b̂i) is bounded away from 0, then b̂

⇤
i � b̂i = O(N�1

i ). This

results in the cancellation of O(N�1
i ) terms in the standard version of Laplace

approximation, and the approximation accuracy is improved to order O(N�2
i ).

To extend g(·) to general forms, the approximation is applied to the cumulant-

generating function log(Eec
T g(b

i

)). Then the required expectations can be calcu-
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lated by E(g(bi)) = @ log(Eec
T g(b

i

))/@cT |c=0. See Theorem 2 in Tierney et al.

(1989) for the specified terms of O(N�2
i ) in the approximations.

This idea was successfully adapted by Rizopoulos et al. (2009) to the joint

modeling framework to estimate the posterior expectations in EM algorithms, and

yield good estimating results for the subjects with even a few longitudinal obser-

vations. To obtain the estimates, they first calculate the global maximum, i.e., the

posterior model b̂i of h(bi) by Newton-Raphson algorithm. And the approximation

at the mode is

E(g(bi)) = g(b̂i)� 1

2
tr(�) +O(1/N2

i ), (2.45)

V ar(g(bi)) = g0(b̂i)TD�1
i g0(b̂i)

� 1

2
tr

✓

���T +D�1
i

@2

@cTc
D

(c)
i |(c,b)=(0,b̂

i

)

◆

+O(1/N3
i ) (2.46)

where � = D�1
i {@D(c)

i /@cT}|(c,b)=(0,b̂
i

), D
(c)
i = �@2[log(h(bi))+cT g(bi)]/@bTi bi is the

negative second derivative, and Di = D
(c)
i |(c,b)=(0,b̂

i

). For more details, please see

Rizopoulos et al. (2009).

Compared with the Gaussian quadrature and the MCMC method, fully expo-

nential

Laplace approximation is much faster in computing time because there is no need

to generate either the interpolation or the sampling points. Since h(bi) is quadratic

and unimodal with large ni in the joint modeling framework, the approximation

using only one point, the posterior mode, performs well in estimating accuracy

and numerical robustness. Thus, the fully exponential Laplace approximation has

the potential to be applied to the large-dimensional cases of joint modeling. The

main drawbacks of this technique, however, are multifold. First, unlike the nu-

merical integration techniques and Monte Carlo related methods, the estimating

accuracy of Laplace approximation does not rely on the evaluating points. Instead,

it depends on the sample size of the data, which cannot be controlled. Hence the

estimating errors are di�cult to reduce and the approximating accuracy cannot be

obtained at an arbitrary level as for the other methods introduced above. Second,

the computation of � is very complicated because both {@D(c)
i /@cT}|(c,b)=(0,b̂

i

) and
@2

@cT cD
(c)
i |(c,b)=(0,b̂

i

) involve the calculation of large-dimensional tensors. This may
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cause trouble when the dimension of bi increases. In addition, Laplace approxi-

mation works well only for the unimodal symmetric functions. Although h(bi) is

quadratic with large Ni, this may not be the case when Ni is small, and the distri-

bution is not necessarily symmetric. Therefore more general methods are needed

to handle the expensive posterior densities.

2.4 Design of experiments-based interpolation tech-

nique

As stated in the previous section, computation of posterior expectations is a funda-

mental problem in the application of the EM algorithm in joint modeling, and this

task becomes more challenging as the dimension of the random e↵ects bi increases.

By comparing and summarizing the computing techniques used for joint modeling

in Section 2.3, we find that most of the previously introduced approaches includ-

ing the Gaussian Quadrature method, the MCMC approach and fully exponential

Laplace approximation, are inadequate for large-dimensional and more complex

joint modeling settings, for example, the nonparametric joint models. Hence a

more e�cient and stable computing method is needed if we want to extend joint

modeling into a more flexible and sophisticated framework. In this section, we

introduce a new computing approach into joint modeling. Originally proposed for

Bayesian computation, this method is demonstrated via our simulation study to

be not only capable of solving the computational problems of joint models, but

also easy to implement in practice.

Recently, Joseph (2012) proposed a relatively new method to approximate the

“expensive conditional densities” in Bayesian computation. It is named as de-

sign of experiments-based interpolation techniques, or DoIt. In his study, Joseph

(2012) demonstrated the appealing features of DoIt by comparing its performance

with other popular algorithms, and proved this technique works well in estimating

posterior densities for complex hierarchical models where large-dimensional pa-

rameters are involved. Before introducing DoIt into joint modeling context, we

first explain the approximation idea behind it.

The DoIt method borrows and extends the idea of Laplace approximation which
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approximates the posterior densities of interest via normal distributions. As men-

tioned previously, in Laplace approximation the posterior density fb
i

|W
i

,T
i

,�
i

(bi) is

approximated by the normal density �(bi; b̂i,D
�1
i ), where b̂i is the mode of the

density and Di is the Fisher information matrix evaluated at the mode as de-

fined in (2.46). Instead of using a single normal distribution for approximation,

DoIt approximates the posterior densities of random e↵ects bi given the observed

{Wi(t), Ti,�i} by the weighted sum of a sequence of normal densities with the

means at a set of pre-specified evaluation points (⌫1, . . . ,⌫M) of size M :

fb
i

|W
i

,T
i

,�
i

(bi) ⇡ 1
PM

l=1 cl

M
X

l=1

cl�l(bi), (2.47)

where �l(bi) = �(bi;⌫l,D
�1
i ) denote the normal density of bi with mean ⌫l and

variance D

�1
i . cl is the weight associated with �l(·) and can be calculated by

solving the linear equations

Qc = h,

where h(bi) / f(Wi, Ti,�i|bi)f(bi) is the unnormalized posterior densities of bi,

and h = (h(⌫1), . . . , h(⌫M)) is a vector of h(·) taking values at the evaluation points

(⌫1, . . . ,⌫M). Q is an M ⇥M matrix with ijth element being the unnormalized

normal density

q(⌫i;⌫j,D
�1
i ) = exp{�1

2
(⌫i � ⌫j)TDi(⌫i � ⌫j)}.

Joseph (2012) pointed out that since q(⌫;u,D�1
i ) is a positive definite function,

Q

�1 exists, provided ⌫i 6= ⌫j for all i and j. Thus a unique solution of ĉ = Q

�1
h

is guaranteed.

The locations of (⌫1, . . . ,⌫M) are determined by the pre-specified space-filling

design points transformed to the parameter space of posterior distribution via b̂i

and D

�1
i . The desired level of accuracy can be obtained by increasing the size of

M . Refer to Joseph (2012) for more details.

With the capability of approximating expensive posterior densities, DoIt can

also be used to approximate the conditional expectations of real value functions of
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bi, g(bi)

E{g(bi)} ⇡ 1
PM

l=1 cl

M
X

l=1

clEl{g(bi)}, (2.48)

where El{g(bi)} is the expectation of g(bi) with respect to the normal distribution

N(⌫l,D
�1
i ).

Therefore, the DoIt approach well satisfies the need of the EM algorithm in joint

modeling to calculate conditional expectations of g(bi) specified in (2.36) in the

E-step. By introducing the idea of DoIt into the computation of joint modeling, we

find it produces good parameter estimates, and thus can be taken as an alternative

to the existing computing techniques for joint models.

In addition, compared with the Gaussian Quadrature method, although the

DoIt approximation of (2.48) also requires pointwise evaluation at M determin-

istic points, it does not su↵er from “curse of dimensionality” like the Gaussian

quadrature method because the number of M does not grow as fast as that for the

Gaussian quadrature when the dimension increases. A common rule of thumb in

the computer experiments’ literature is to use M = 10⇥ dim(bi) (Loeppky et al.,

2009). Joseph (2012) suggests M = 50⇥dim(bi) for higher accuracy. However, we

find with our simulation study that for the distributions with good shape, estimat-

ing accuracy can be achieved by small number of deterministic points. Compared

with the MCMC approach, DoIt is much faster in computation in that the number

of evaluation points is smaller, and the same set of basic design points is generated

only once for all the subjects and then transformed according to each individual

posterior distribution. In contrast, for MCMC, di↵erent sets of random samples

have to be generated for di↵erent subjects and for each subject, the sample points

are updated iteratively. This costs huge amount of computational time.

Considering all these facts, DoIt is a promising candidate for approximating the

posterior expectations E{g(bi)} in large dimensional cases. It is more flexible than

the fully exponential Laplace method because it does not require the unimodal and

symmetric assumption of the posterior distributions. Moreover, the computation

is straightforward since no tensor calculation is involved as in the fully exponential

Laplace.

Similar to other methods that depend on evaluation points, DoIt has the nice

feature of being able to reduce the estimation error arbitrarily small by adding
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more points, i.e., increasing M (see Theorem 1 of Joseph (2012) for details). On

the other hand, the implementation of DoIt requires specifying the deterministic

points (⌫1, . . . ,⌫M) by appropriate experimental designs. Di↵erent designs lead

to di↵erent rates of convergence. Joseph (2012) proposed to use a space-filling

design scheme such as minimax Latin Hypercube Design (MmLHD), followed by

a sequential design to correctly locate the high-probability areas of the sampling

space. Fang and Wang (1994) focused on number-theoretic-related design method

(NTM) and provided theoretical and numerical comparisons among various space

filling designs in terms of convergence rates. They pointed out that the convergence

rate of LHD is O(M�1/2), which is the same order as the application of simple

random sample technique, and the only improvement is the variance of limiting

distribution. Therefore from the viewpoint of numerical integration, LHD and its

improvement versions still belong to the variance reduction technique of Monte

Carlo method. By comparison, the convergence rate for the quadrature formula

generated by some NTM, such as good lattice points set, is O(M�1 logs M), where

s is the number of dimension, if the integrand is a function with bounded total

variation. Thus, NTM, when properly adjusted, might be more e�cient than LHD

in estimating the posterior distributions in joint modeling, especially when the

integration dimension s is not so large. In this dissertation, we apply MmLHD as

the design scheme for DoIt implementation since there is an existing R package

lhs, which can be conveniently used to generate MmLHD samples.

2.5 Varying-coe�cient models

In this section we review varying-coe�cient models and the related model estima-

tion procedures as a preparation for extending the parametric joint model to the

nonparametric setting.

Varying-coe�cient models were proposed by Hastie and Tibshirani (1993) as a

form of nonparametric regression models and a generalization of additive models.

They are defined as follows

Y = �0(U) + �1(U)X1 + · · ·+ �p(U)Xp + ✏, (2.49)
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where ✏ is the random error satisfying E(✏) = 0 and V ar(✏) = �2. Compared with

conventional linear regression models, the coe�cients of the above models are

replaced by smoothing nonparametric functions of other factors. This allows the

predictors’ e↵ects to vary with other factors such as time. The varying-coe�cient

models cover a lot of special cases. For example, when �(U) is a linear function in

U , i.e., �(U) = �0 + �1U , (2.49) reduces to linear regression with the interaction

terms �1UX.

Various methods have been proposed to estimate the varying-coe�cient models.

Hastie and Tibshirani (1993) proposed to estimate �j(u) via smoothing splines and

the penalized least squares approach, assuming that all the coe�cient functions

have the same degrees of smoothness. Fan and Zhang (1999) relaxed this assump-

tion by allowing the coe�cient functions to have di↵erent degrees of smoothness

and proposed a two-step estimating approach to achieve the optimal convergence

rate. Cai et al. (2000) extended the modeling framework of (2.49) to the general-

ized varying-coe�cient models, accounting for categorical and count responses:

E{y(t)|x(t)} = µ{�0(t) + �1(t)x1(t) + · · ·+ �d(t)xd(t)}.

The authors estimated the coe�cient functions using local polynomial techniques.

The asymptotic properties are established and a goodness-of-fit test is derived

from a nonparametric maximum likelihood ratio type of test to detect whether the

coe�cient functions for certain covariates are constant over time and statistically

significant in the model.

Varying-coe�cient models have been extensively studied due to their flexible

frameworks, easy interpretations, and most of all, the wide applications to various

data such as longitudinal data (Hoover et al., 1998), ecological data (Cai et al.,

2000) and nonlinear time series (Chen and Tsay, 1993; Cai et al., 2000). In this

section we focus on their applications in longitudinal data analysis.

2.5.1 Time-varying e↵ect models in longitudinal data

Longitudinal data have been an active research topic for decades. Before the intro-

duction of varying-coe�cient models (Hastie and Tibshirani, 1993; Faraway, 1997;

Hoover et al., 1998; Wu et al., 1998), the parametric regression model, hierarchical
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linear models (HLM), have long been used, and is still in use, to analyze longitudi-

nal data (Raudenbush, 2002; Diggle et al., 2002; Bollen and Curran, 2006; Hedeker

and Gibbons, 2006). These models are designed for clustered data to account for

both within- and between-subject correlations. Longitudinal data have the cluster

structure since the observations are nested in the subjects. Usually the samples

collected within a subject are correlated and samples between subjects are inde-

pendent. Before diving into the time-varying e↵ect models, we briefly review HLM,

which are parametric and parsimonious in most cases. Usually HLM involves two

levels of regression. The first level is of the typical regression form

Yij = �0i + �1iXij + eij,

where the subscript ij refers to the jth observation of the ith individual, and this

level of regression accounts for the within-subject variation. The second level of

regression is on the coe�cients �’s and accounts for the between-subject variation:

�0i = �00 + �01Zi + u0i; �1i = �10 + u1i.

In the above equations, �00 refers to the overall intercept, representing the grand

mean of the response variable across all the individuals when all the predictors

are equal to 0. Zi is the subject-specific predictor, and �01 is the corresponding

regression coe�cient. u0i refers to the random error component for the deviation

of the intercept of the ith subject from the overall intercept. �10 is the overall

regression coe�cient between the response and the first level predictor Xij, and

u1i is the random error component for this slope representing the deviation of the

ith subject. Usually ei and ui = (u0i,u1i) are assumed to be normally distributed

and independent of each other. Based on these assumptions, the conditional distri-

bution f(Yi|Xi,�i), f(�i|Zi,ui) and the prior distribution f(ui) can be specified.

The joint likelihood also involves the integral over the subject-level random com-

ponents ui’s. Multiple software packages, such as PROC MIXED in SAS and lme

in R, have been developed to solve the problem in practice, and the models have

been extended to incorporate the generalized linear models with binary or count

response.

The varying-coe�cient models were introduced into longitudinal data as the
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time-varying e↵ect model of the form (Hoover et al., 1998)

Y (t) = �0(t) + �1(t)X1(t) + · · ·+ �p(t)Xp(t) + ✏(t), (2.50)

where Y (t) is the longitudinal response, and {Xk(t) : k = 1, . . . , p} are the longitu-

dinal covariates. Terms �1(t), . . . , �p(t) are e↵ects allowed to vary with time, and

✏(t) is a zero mean stochastic process whose variance may change over time, while

the correlation structure is invariant over time. Time-varying e↵ect models are flex-

ible in that they represent e↵ects changing over time smoothly without assuming a

specific functional relationship, such as linear or quadratic, between the e↵ects and

time. Note that the main di↵erence between (2.49) and (2.50) is that the response,

covariates and the error terms all change with time in (2.50), accounting for the

dynamic process of the longitudinal data. Hoover et al. (1998) proposed to esti-

mate �(t) using two nonparametric smoothing techniques: smoothing splines and

locally weighted polynomials. They further derived the asymptotic properties for

the established kernel estimators as a special case of local polynomials, and applied

the model to the empirical HIV data. Wu et al. (1998) carefully studied the asymp-

totic distributions of the kernel estimates and constructed a class of approximate

pointwise and simultaneous confidence sets. Huang et al. (2002, 2004) proposed

to use regression splines to estimate the parameters of a varying-coe�cient model

with repeated measurements. They established the asymptotic consistency for

these estimators and further derived the bootstrap confidence regions to draw in-

ference. Eubank et al. (2004) developed “Bayesian” confidence intervals for the

estimated coe�cient curves based on smoothing spline techniques.

One extension of model (2.50) is the generalized varying-coe�cient mixed-

e↵ects model considered by Zhang (2004). It is based on the nonparametric mixed-

e↵ects model (Rice and Wu, 2001; Wu and Zhang, 2002), and has the form

g{E(Y (t)|X(t),Z, bi)} = �0(t) + �1(t)X(t) +Z

T
bi,

where g(·) is a known monotone and di↵erentiable link function, �0(t) and �1(t) are

the time-varying fixed e↵ects and bi are the random e↵ects. Zhang (2004) leveraged

the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999) to

solve the intractable integration involved in evaluating the quasi-likelihood function
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to estimated the coe�cient functions. He also developed a scaled chi-squared

test for hypothesis testing whether an underlying varying coe�cient function is a

polynomial of a certain degree.

Fan et al. (2007) extended the varying-coe�cient model (2.50) to a more gen-

eralized form of semi-varying e↵ect partially linear model

Y (t) = �1(t)X1(t) + . . . �p(t)Xp(t) + ↵1Z1(t) + · · ·+ ↵qZq(t) + ✏(t),

where Y (t), X(t)’s and �(t)’s are the same as in (2.50). Z(t)’s are another set of

time covariates with unknown constant coe�cients ↵’s. This is a unified model that

covers most of the existing regression models in the literature of longitudinal data

including the nonparametric regression models (Lin and Carroll, 2001a,b; Wang,

2003; Rice and Wu, 2001; Wu and Zhang, 2002) and the partial linear model (Fan

and Li, 2004). Fan et al. (2007) established kernel estimators for the nonparametric

variance function, and proposed to estimate the parameters in correlation structure

by either a quasi-likelihood approach or a minimum generalized variance method.

They further developed a profile weighted least squares approach to estimate the

regression coe�cients and derived their corresponding asymptotic properties.

Parallel to the aforementioned literature of regression models with continuous

response, another branch of studies focuses on regression models with discrete

response, where generalized estimating equations (GEE) are usually used for pa-

rameter estimation. The GEE method was first proposed by Zeger and Liang

(1986), and extended by researchers to various circumstances (Lin and Carroll,

2000; Qu et al., 2000; Wang, 2003). Starting with the parametric regression mod-

els, GEE only depends on the conditional mean µij = E(yij|xij) and variance

�2
ij = Var(yij|xij) = �V (µij) which may contain a complex covariance structure

with both between- and within-subject correlations. Under the framework of gen-

eralized linear models, assume that the mean µij depends on xij through a known

canonical link µ(·),
µij = µ{✓(xij)},

where ✓(·) is an unknown smooth function. In the conventional GEE (Zeger and
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Liang, 1986), ✓(x) is a linear function of x

✓(x) = �0 + �1x
�
= g(x)T�,

where � = (�0, �1)T , and g(x) = (1, x)T . � are estimated by solving the equations:

n
X

i=1

G

T
i �iV

�1
i (yi � µi) = 0,

whereGi = (g(xi1), . . . , g(xin
i

))T , �i = diag{µ0{gT (xij)�}}. µ0(·) is the first order
derivative of µ(·). Vi = A

�1/2
i RA

�1/2
i is the covariance matrix with Ai being a

ni ⇥ ni diagonal matrix with the jth diagonal element V (µij) and a given working

correlation R. GEE strategy has been extended to the nonparametric regression

by Lin and Carroll (2000). See Fan and Li (2006) and Dziak et al. (2008) for the

detailed review on GEE and the related techniques.

Qu et al. (2000) introduced the quadratic inference function (QIF) as an im-

provement of GEE. This approach uses data-driven weights that assign less weight

to the estimating equations with larger variances. This study shows that if the

working correlation is correctly specified then the QIF estimators have the asymp-

totic variances as low as GEE. If the working structure is incorrect, the QIF estima-

tors are still optimal among the same linear class of estimating equations, whereas

the GEE estimators with the same working correlation is not. This approach has

also been applied to the nonparametric longitudinal data (Qu and Li, 2006; Dziak

et al., 2008).

Based on the fundamental work of QIF, Qu and Li (2006) studied time-varying

e↵ect models under the generalized linear model framework and developed an ef-

ficient estimation procedure via penalized quadratic inference functions. The esti-

mators inherit the advantage of QIF over conventional GEE estimators in terms of

estimation e�ciency. The authors further proposed a unified and e�cient nonpara-

metric hypothesis testing procedure and demonstrated the resulting test statistics

have an asymptotic chi-squared distribution.
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2.5.2 Cox model with time-varying e↵ects

The Cox proportional hazard model (Cox, 1972) has been widely used to explore

the relationship between the event time and the time-invariant covariates. In the

conventional form of the Cox model, the coe�cients are assumed to be constant,

thus guaranteeing the hazard is proportional across time. However, this constant

assumption may fail to capture the real cases when the covariates e↵ects change

over time. Zucker and Karr (1990) proposed the Cox model with time-varying

covariate e↵ects

�(t|x) = �0(t) exp{�(t)Tx}, (2.51)

where the time-varying coe�cients �(t) are assumed to be smooth functions of time

and need to be estimated nonparametrically. Zucker and Karr (1990) proposed to

estimate �(t) using penalized partial likelihood, and derived the weak uniform

consistency and pointwise asymptotic normality of the estimators under certain

regularity conditions. As an extension of this work, Hastie and Tibshirani (1993)

developed a specialized algorithm based on natural spline basis to maximize the

penalized partial likelihood. Murphy and Sen (1991) leveraged sieve estimation

procedure for the model (2.51) and further established the sampling properties of

the estimators. Gray (1992) considered using smoothing splines to estimate �(t)

and proposed corresponding test statistics.

In recent studies, (2.51) is more frequently estimated by local partial likeli-

hood. Cai and Sun (2003) carefully studied the pointwise asymptotic properties

of the kernel estimators, and used the procedure as a diagnostic tool to uncover

time-dependency or departure from the proportional hazard models. Tian et al.

(2005) constructed simultaneous confidence bands for the kernel estimators us-

ing the “strong approximation techniques” combined with a novel perturbation

method, and compared them with the pointwise confidence bands obtained by Cai

and Sun (2003). Sun et al. (2009) developed empirical likelihood pointwise and

simultaneous confidence bands for the time varying coe�cients via local partial

likelihood smoothing, and proved they perform better than the pointwise and si-

multaneous confidence bands in the previous studies (Cai and Sun, 2003; Tian

et al., 2005). Fan et al. (2006) proposed a one-step local partial likelihood estima-

tor which is used to facilitate the computation of the procedure and demonstrated
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to be as e�cient as the fully iterated local partial likelihood estimator. They fur-

ther introduced the penalized local likelihood estimator to select the important

covariates into the model.

With the availability of longitudinal measurements, it is natural to extend

(2.51) to incorporate the longitudinal covariates. A simplified version of this is

�(t|xH(t)) = �0(t) exp{�(t)Tx(t)}. (2.52)

As we introduce in the first section of this chapter, problems occur when the lon-

gitudinal covariates are used to predict survival time because the survival models

need the entire history of longitudinal processes, whereas the covariate processes

themselves are often unobservable, and are intermittently measured at some time

points and subject to measurement errors. Therefore, this problem goes back to

the framework of joint modeling, and needs to be solved by the analytical ap-

proaches reviewed in section 2.2, combined with the smoothing techniques for the

nonparametric coe�cient functions �(t). So far there are few studies considering

such a survival model with both time-varying covariates and time-varying e↵ects.

This is the main focus of the second half of this project.

2.5.3 Joint models with time-varying e↵ects

Most of the existing approaches of joint modeling are developed for the models with

parametric e↵ects in both longitudinal and survival processes. However, the real

cases may be more complex. Since the longitudinal covariates themselves vary with

time, it is natural that the relationships between the di↵erent longitudinal processes

and their e↵ects on survival time would also change with time. Correspondingly,

a more general form of the longitudinal process specified in (2.5) can be written in

the form

Wi(t) = Xi(t) + ei(t), (2.53)

where Xi(t) is assumed to be a smooth function of time without any parametric

structure. Analogously, the general form of survival process with time-varying

e↵ects is

�(t;Zi,X
H
i (t)) = �0(t) exp(Z

T
i �Z(t) +Xi(t)

T
�X(t)), (2.54)
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with �X(t) and �Z(t) being the time-varying e↵ects of baseline covariates Zi and

time-varying coe�cients Xi(t), respectively.

To the best of our knowledge, there is no literature considering the joint models

with time-varying coe�cients in both longitudinal and survival models as in equa-

tion (2.53) and (2.54). The most relevant study is Song and Wang (2008) which

deals with the Cox model with longitudinal covariates and time-varying coe�cients

in (2.52). In that study, the authors proposed two estimation methods for the re-

gression coe�cient function �(t). The first is the corrected score approach based

on Wang (2006), and the second is the conditional score approach developed by

Tsiatis and Davidian (2001). Both of the methods were first developed to estimate

the coe�cients in parametric joint models. Song and Wang (2008) extended them

to the nonparametric setting by constructing the local estimating equations similar

to the local partial likelihood score functions in Cai and Sun (2003)

l0(�) =
n
X

k=1

Z ⌧

0

Kh(u� t)

⇢

X̃k(u, u� t)� G0(u,�)
G(u,�)

�

dNk(u),

where X̃k(u, u�t) = Xk(u)⌦(1, u�t) with⌦ being Kronecker product. Gk(u,�) =

exp{X̃k(u, u� t)T�} and G(u,�) =
Pn

k=1 I(Vk � u)Gk(u,�).

The corrected score approach substitutes the true covariate processXk(t) in the

function by the corrected least squares estimators; the conditional score approach

replaces Xk(t) with a su�cient statistic of the random e↵ects, and thus does

not need the distribution specification of the random e↵ects. Song and Wang

(2008) proved that the two sets of estimators are asymptotically equivalent and

further derived the large sample properties. They demonstrated via simulation that

the corrected score method performs better than the conditional score method in

practice.

Although Song and Wang (2008) extended the joint modeling framework to

cover the varying-coe�cient Cox models, they did not put much emphasis on the

smooth function of Xi(t) in the longitudinal part. On the other hand, there are

joint modeling studies that only focus on the nonparametric form of Xi(t) and

leave �’s to be constant in Cox models (Brown et al., 2005; Ding and Wang, 2008).

Ding and Wang (2008) proposed to model Xi(t) using a single random e↵ect bi
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and a nonparametric underlying function µ(t) extended by the B-spline basis.

Xi(t) = biµ(t),

with E(bi) = 1, and

µ(t) = E{Xi(t)} ⇡
L
X

l=1

�lBl(t).

The authors viewed longitudinal data as scattered realizations of functional data,

and argued from the perspective of functional principal components that the single

random e↵ect bi corresponds to the first eigenfunction, which explains more than

70% variation of the data, and thus the one random e↵ect is su�cient to capture

the subject e↵ects on longitudinal covariates. This single random e↵ect leads to

only one dimension of integration and the computational di�culties are avoided.

Brown et al. (2005) proposed a more flexible nonparametric multivariate setting

for joint modeling, with all the covariate processes expanded by B-spline basis

associated with random e↵ects plus a fixed baseline predictor

Xi(tij) =
q
X

k=1

�ikBk(tij) + xT
i ↵,

where �ik ⇠ N(b0k, V0k), and ↵ is a vector of parameters linking the vector of

baseline covariates xi to the longitudinal outcome. To handle the complex com-

putation associated with such setting, the authors adopted the Bayesian approach

and Gibbs sampler and adaptive rejection sampling to obtain samples from all the

full conditional distributions to estimate the parameters. The number of knots

is selected via Deviance Information Criterion (DIC) and Conditional Predictive

Ordinate (CPO), which are the model selection criteria that can be easily applied

to MCMC samples.



Chapter 3
Joint Likelihood Estimation for Joint

Modeling Survival and Multiple

Longitudinal Processes:

Methodology and Application

3.1 Introduction

In the past two decades, driven by the need to explore the relationship between

longitudinal covariate process and time-to-event in biomedical and public health

research, statisticians have developed and modified a joint modeling approach to

simultaneously analyze the two types of processes via their shared information

(Wulfsohn and Tsiatis, 1997; Song et al., 2002b; Hsieh et al., 2006; Faucett and

Thomas, 1996; Faucett et al., 1998; Henderson et al., 2000; Tsiatis and Davidian,

2001). Longitudinal and survival data are originally specified by mixed-e↵ects

models and hazard models, respectively. However, such naive separate estimation

has been proved to yield great bias in regression coe�cients due to the ignorance of

measurement errors and missing observation at event time (Prentice, 1982; Tsiatis

et al., 1995). To address such issue, the earliest joint modeling approach was

developed to examining whether CD4 counts serve as a good biomarker for survival

time of HIV patients (Tsiatis et al., 1995), and the later improvement in modeling
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techniques has been applied to more medical and public health studies (Wang and

Taylor, 2001; Yu et al., 2004; Liu, 2009; Yu and Ghosh, 2010).

While most joint modeling literature focuses on the setting with a single lon-

gitudinal predictor in the survival model, fewer authors consider the model with

multiple longitudinal predictors, which is a more flexible and useful model setting

(Xu and Zeger, 2001a; Song et al., 2002a; Huang et al., 2001; Ibrahim et al., 2004;

Brown et al., 2005; Chi and Ibrahim, 2006; Albert and Shih, 2010; Hatfield et al.,

2011). The challenges for joint modeling with multiple longitudinal predictors are

twofold. First, the number of random e↵ects grows as the number of longitudinal

predictors increases. This would lead to a higher dimension of the multiple inte-

gral in the joint likelihood function, which is already di�cult to maximize even in

the single-covariate case. Second, the correlations among the multiple longitudi-

nal processes over time have to be considered in the model. This complicates the

theoretical development.

Most of the related studies (Xu and Zeger, 2001a; Ibrahim et al., 2004; Brown

et al., 2005; Chi and Ibrahim, 2006; Hatfield et al., 2011) resort to a Bayesian ap-

proach to handle the complex computation issue. Song et al. (2002a) and Albert

and Shih (2010) avoided it by not considering the likelihood-based approaches, and

instead applied conditional score and modified regression calibration techniques,

respectively, to solve the problem. Huang et al. (2001) is the only literature we

found that adopted the likelihood-based approach, and used the EM algorithm to

maximize the complicated joint likelihood equation. However, the model setting

considered in that study was specifically designed for the data of interest, and was

quite di↵erent from the general joint modeling framework. For example, it em-

ployed discrete latent variables in the model and thus avoids the high-dimensional

integral problems. Most of this literature focuses on the application of the method-

ology rather than theory establishment. Among them, Song et al. (2002a) is the

only study that considered asymptotic properties by extending the related theories

of the conditional score estimators from the single-covariate setting (Tsiatis and

Davidian, 2001) to the multiple longitudinal-covariate setting.

Motivated by an empirical analysis of smoking cessation data, we proposed a

joint model setting with multiple longitudinal covariate processes.We developed an

estimation procedure for the proposed joint model based on the joint likelihood ap-
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proach, and established the consistency and asymptotic normality of the resulting

maximum likelihood estimates (MLE). This model setting is similar to Zeng and

Cai (2005), in which the authors established the sampling property of maximum

likelihood estimate for joint model with a single longitudinal covariate process.

However, the theoretical establishment is more challenging due to the covariance

structure among the multiple longitudinal covariates.

The estimation procedure was implemented using a new computing algorithm,

the EM-DoIt algorithm, which combines the design of experiments-based inter-

polation technique (DoIt, Joseph 2012) with the EM algorithm to optimize the

objective function with integrals. Since it is challenging to estimate standard er-

rors of the resulting estimate in joint modeling, we propose an estimation method

for the standard error by bootstrap method. We conduct Monte Carlo simulations

to examine the proposed estimation approach and the computing algorithm. The

numerical results show that the proposed method performs very well in terms of

numerical and statistical estimation accuracy.

We further applied the proposed estimation method to a smoking cessation

study (Piper et al., 2009) to assess the relationship between time to lapse and

multiple longitudinal measurements of withdrawal symptoms. We find that the

results of joint models with multiple longitudinal covariates o↵er deeper insights

into the applied study than the model with a single longitudinal covariate.

The rest of this chapter is organized as follows. We describe the model set-

ting, introduce the estimation approach, and explain the computing techniques in

Section 3.2. Two simulation examples and a real data example are presented in

Section 3.3. Conclusion and discussion are given in Section 3.4. Technical proofs

of the asymptotic theories can be found in the next chapter.

3.2 Joint likelihood approach

In this section, we first present our model settings, and then propose the maximum

likelihood approach to estimating the model parameters. A new numerical inte-

gration technique is introduced to deal with computational issues in maximizing

the joint likelihood with integrals, and the asymptotic properties of the resulting

estimates are established.
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3.2.1 Model settings

Suppose that a random sample consists of observations of survival time to an

event of interest, multiple longitudinal processes, and time-invariant covariates

from n subjects. The multiple longitudinal processes of ith subject are observed

at ti1, . . . , tiN
i

. The data that we are interested in modeling would be

(Ti,Zi,Xi), i = 1, 2, . . . , n, (3.1)

where Ti is the time to the event, and Zi = (Zi1, · · · , Ziq)T is a vector consisting

of q-dimensional time-independent covariates. Denote by

Xi(t) = (Xi1(t), . . . , Xip(t))T the p-dimensional longitudinal covariates recorded at

time t, and Xi = (Xi(ti1)T , . . . ,Xi(ti,N
i

)T )T is a Ni ⇥ p matrix representing the

longitudinal covariates for the ith subject at all the observational time points.

The major goal of joint modeling is to elucidate the relationship between the

survival time Ti and the covariates {Zi,Xi}. In practice, Ti and Xi may not be

observable due to censoring and measurement error, respectively. In survival data,

let Ci be the censoring time for the ith subject. Denote Vi = min(Ti, Ci) and

�i = I(Ti  Ci), the censoring indicator. Under the right-censoring scheme, the

observed survival data for the ith subject is (Vi,�i) instead of Ti. In longitudinal

data, instead of the true longitudinal process Xi, what can be observed are the

realizations of the error-contaminated processes at times ti1, . . . , tiN
i

, which are

denoted by Wi as follows

Wi = (WT
i (ti1), . . . ,W

T
i (tiNi

))T , (3.2)

where Wi(t) = (Wi1(t), . . . ,Wip(t))T .

As a result, the observed data from the i-subject becomes

Do = (Vi,�i,Zi,Wi, ti), (3.3)

where ti = (tij : 1  j  Ni and tij  Vi) is the observed time points for the ith

individual. Since the longitudinal process is observed until the event or censoring

happens, the observed covariate process is also truncated at Vi, i.e., {Wi(tij) :

tij  Vi}.
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To take into account the measurement error or biological variation, we specify

the observed longitudinal covariate Wik(t) by the linear mixed-e↵ects model

Wik(t) = Xik(t) + eik(t),

Xik(t) = ⇢̃k(t)
T
µk + ⇢k(t)

Tbik, k = 1, . . . , p,
(3.4)

where eik(t) is a random error with mean zero, and Xik(t) is a combination of fixed

e↵ect µk and random e↵ect bik. ⇢k(t) and ⇢̃k(t) are the basis functions of time t,

including polynomial functions as a special case. For example, ⇢(t) = (1, t)T yields

the simplest linear function of time. The form of the function is flexible and can

vary across the p longitudinal covariates, and their corresponding dimension (i.e.,

dim(⇢k(t)) = dk and dim( ⇢̃k(t)) = d̃k) would vary accordingly. bik is a dk ⇥ 1

vector of random e↵ects accounting for the within-subject variation.

In practice, it is typical to assume that the observed longitudinal covariates

Wi are independent for di↵erent individuals, but are correlated across time and

across di↵erent covariates at the same time for the same person. In order to take

into account these independence and correlation structures, we assume bik are

independent across i and k, ei(t) = (ei1(t), . . . , eip(t))T are independent across i,

and bik and eik are independent for all i and k. Thus the correlations of Wik(t)

over time are modeled via the variance of bik, and the within-subject correlations

across the p covariates are modeled via the variance covariance structure of ei.(t).

We further assume that bik ⇠ Nd
k

(0,⌃bk), and ei(t) ⇠ Np(0,⌃e).

If we write equation (3.4) in matrix form, it becomes

Wi(t) = ⇢̃(t)
T
µ+ ⇢(t)Tbi + ei(t), (3.5)

where ⇢(t) and ⇢̃(t) are d ⇥ p- and d̃ ⇥ p-dimensional matrix containing p basis

functions of time, respectively, i.e.,

⇢(t) =

0

B

B

@

⇢1(t)
T

. . .

⇢p(t)
T

1

C

C

A

T

, ⇢̃(t) =

0

B

B

@

⇢̃1(t)
T

. . .

⇢̃p(t)
T

1

C

C

A

T

.

Note that d =
Pp

k=1 dk and d̃ =
Pp

k=1 d̃k. Thus, µ = (µT
1 , . . . ,µ

T
p )

T is the d̃-
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dimensional vector consisting of the p fixed e↵ect vectors, and bi = (bT
i1, . . . ,b

T
ip)

T

is a d-dimensional vector consisting of the p random e↵ect vectors. Assume that

bi ⇠ Nd(0,⌃b), where ⌃b = diag(⌃b1, . . . ,⌃b2).

For the survival data, conditional on ti(t) = {tij : tij  t}, ei..(t) = {eik(tij) :
tij  t, k = 1, . . . , p}, Ti � t, and other covariates, the relationship between the

time-to-event Ti and the covariates is assumed to follow a Cox model with the

hazard function at t being

hi(t) = lim
h!0

h�1P{t  Ti < t+ h|Ti � u, Ci,Zi,bi, ti(t), ei..(t)}
= �(t) exp{�T (⇢(t)Tbi) + ⌘

TZi}, (3.6)

where � 2 Rp and ⌘ 2 Rq are the regression coe�cients of the longitudinal pro-

cesses and time-independent covariates, respectively, and �(t) is an unspecified

baseline hazard function. Note that model (3.6) implies that censoring time Ci,

observation time point tij and the error ei.. are non-informative in predicting the

time-to-event Ti. This is a basic assumption for our survival submodel.

Let ⌦ = (⇤(t),✓) be the parameters in joint models of (3.5) and (3.6), where

✓ is the set of parameters in the parametric part. Specifically

✓ = (µ1, . . . ,µp,Vec(⌃e),Vec(⌃b),�,⌘),

where Vec(⌃) is the vector consisting of all the elements in the upper triangular

part of ⌃. ⇤(t) is the cumulative baseline hazard defined by ⇤(t) =
R t

0 �(u)du.

3.2.2 Joint Likelihood Method and EM algorithm

We use the maximum joint likelihood approach to estimate ⌦ for the joint mod-

els with multiple longitudinal covariates. Based on models (3.5) and (3.6) and

their associated assumptions, we can write out the density of bi, as well as the
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conditional densities of {Vi,�i|bi} and {Wi|bi} in the form

f(Vi,�i|bi) =
n

�0(Vi)e
�

T

(⇢
.

(V
i

)Tb
i

)+⌘TZ
i

o�
i

⇥ exp

⇢

�
Z V

i

0

�0(u)e
�

T

(⇢
.

(u)Tb
i

)+⌘TZ
idu

�

,

f(Wi|bi) ={(2⇡)p|⌃e|}�
N

i

2

⇥ exp

(

�1

2

N
i

X

j=1

(Wij � ⇢̃T
ijµ� ⇢T

ijbi)
T⌃�1

e (Wij � ⇢̃T
ijµ� ⇢T

ijbi)

)

,

f(bi) =(2⇡)�d/2|⌃b|�1/2 exp{�1

2
bT
i ⌃

�1
b bi},

(3.7)

where Wij, ⇢̃ij and ⇢ij are the vector of Wi(t) = (Wi1(t), . . . ,Wip(t))T and the

matrices of ⇢̃(t) and ⇢(t) taking values at time tij, respectively.

Assume that the observed longitudinal processes Wi are independent of the

observed survival process {Vi,�i} given the random e↵ects bi. By (3.7) the joint

likelihood of the observed data Do can be written as

L(⌦) =
n
Y

i=1

Li(⌦) =
n
Y

i=1

Z

f(Vi,�i|bi) · f(Wi|bi) · f(bi)dbi. (3.8)

In order to obtain the maximum likelihood estimates (MLE) of ⇤, we let �(t)

take mass only at each event time Ti for which �i = 1. Thus the dimension of �(t)

reduces from infinity to a finite value
Pn

i=1�i. The MLE of ✓ and �(t) at each

event time point are obtained by maximizing a modified version of joint likelihood

(3.8), where f(Wi|bi) and f(bi) stay the same and f(Vi,�i|bi) becomes

f(Vi,�i|bi) =
n

�0(Vi)e
�

T

(⇢
.

(V
i

)Tb
i

)+⌘TZ
i

o�
i

⇥ exp

(

�
n
X

j=1

�0(Vj)e
�

T

(⇢
.

(V
j

)Tb
i

)+⌘TZ
iI(Vi � Vj,�j = 1)

)

.

(3.9)

Maximizing the joint likelihood function (3.8) is challenging. Wulfsohn and Tsi-

atis (1997) proposed to use the expectation-maximization (EM) algorithm (Demp-

ster et al., 1977) to maximize the joint likelihood (3.8) with p = 1. In the EM

algorithm, the unobserved random e↵ects are treated as missing data, and the
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parameter estimates are updated iteratively between the expectation and maxi-

mization steps until the algorithm converges. This method has been extensively

applied and its feasibility and robustness has been demonstrated in the later re-

lated studies (Henderson et al., 2000; Tsiatis and Davidian, 2001; Song et al.,

2002b; Hsieh et al., 2006), but only for a single longitudinal process setting. Here

we extend the EM method for joint likelihood with multiple longitudinal processes

(i.e., p > 1).

Denote the logarithm of the joint likelihood contributed by the ith subject to

be

li(⌦) = log(Li(⌦)) = log

Z

f(Vi,�i|bi) · f(Wi|bi) · f(bi)dbi = log{f(Vi,�i,Wi)}.

Let ✓ denote a generic element in ⌦. Take derivative of li(⌦) with respect to ✓ and

assume the derivative and integral are interchangeable under certain conditions

and after some algebra, we obtain

Si(✓) =
@li(⌦)

@✓
=

@

@✓
{E(l1i(bi)) + E(l2i(bi)) + E(l3i(bi))} , (3.10)

where

l1i(bi.) = log{f(Vi,�i|bi.)},

l2i(bi.) = log{f(Wi..|bi.)},

l3i(bi.) = log{f(bi.)},

and E(·) is conditional expectations of bi given observed data Do defined in (3.3)

and the updated parameter estimates ⌦̂ in the EM algorithm. By definitions of

lki, k = 1, 2, and 3, their conditional expectations in (3.10) are

E{li1(bi)} =�i log{�0(Vi)}+�i�
TE
�

⇢.(Vi)
Tbi

 

+ ⌘TZi

�
n
X

j=1

�0(Vj)E
n

e�
T

(⇢
.

(V
j

)Tb
i

)+⌘TZ
iI(Vi � Vj,�j = 1)

o

, (3.11)

E{li2(bi)} =� pNi

2
log(2⇡)� Ni

2
log(|⌃e|)
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� 1

2

N
i

X

j=1

E(Wij � ⇢̃T
ijµ� ⇢T

ijbi)
T⌃�1

e (Wij � ⇢̃T
ijµ� ⇢T

ijbi), (3.12)

E{li3(bi)} =� p

2
log(2⇡)� 1

2
log(|⌃b|) + E(bT

i ⌃
�1
b bi). (3.13)

In order to obtain the MLE by setting
Pn

i=1 Si(✓) equal to 0 and solving the

equations, the EM algorithm first calculates the conditional expectations of the

functions of bi in (3.11), (3.12) and (3.13) in the E-step. Then in the M-step, the

log likelihood is maximized by setting partial derivative of E{li1(bi)}, E{li2(bi)},
and E{li3(bi)} with respect to their corresponding parameters in ⌦ to be 0. It

can be easily derived that all the parameters except � and ⌘ have the closed-form

maximum likelihood estimates:

µ̂ = (
n
X

i=1

⇢̃

T
i. ⇢̃i.)

�1{
n
X

i=1

⇢̃

T
i.E(Wi. � ⇢Ti.bi)}, (3.14)

⌃̂b =
1

n

n
X

i=1

Ebib
T
i , (3.15)

⌃̂e =
1

Pn
i=1Ni

n
X

i=1

N
i

X

j=1

E(Wij � ⇢̃Tijµ̂� ⇢Tijbi)(Wij � ⇢̃Tijµ̂� ⇢Tijbi)
T
, (3.16)

�̂(u) =

Pn
i=1�iI(Vi = u)

Pn
j=1Ee

�̂

T

(⇢(u)Tb
j

)+⌘̂
T

Z
j

I(Vj � u)

, (3.17)

where u only takes value at the event time points. For other time points, �̂(u) = 0.

The MLE of the regression coe�cients � and ⌘ in the Cox model are obtained

by applying the Newton-Raphson algorithm to the profile likelihood of li1(bi) after

plugging in �̂(u) in (3.17):

�̂

(k)
= �̂

(k�1)
+ I�1

� (�̂
(k�1)

)S�(�̂
(k�1)

), (3.18)

⌘̂

(k) = ⌘̂(k�1) + I�1
⌘ (⌘̂(k�1))S⌘(⌘̂

(k�1)), (3.19)

where S�(�̂
(k�1)

), S⌘(⌘̂
(k�1)) and I�(�̂

(k�1)
), I⌘(⌘̂

(k�1)) are the score functions and

information matrices of � and ⌘, respectively, taking values at the (k�1)th updated

estimates. The score and the information matrices of the lth element of � and ⌘

are given by the following equations
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S�
l

(�) =
n
X

i=1

@E{li1(bi.)}
@�l

=
n
X

i=1

�i

8

<

:

E(bT
il⇢l(Vi))�

Pn
j=1 E(bT

jl⇢l(Vi))e�
T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

Pn
j=1 Ee�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

9

=

;

,

(3.20)

I�
l

(�) =� @S(�)

@�l

=
n
X

i=1

�i

8

<

:

Pn
j=1 E(bT

jl⇢l(Vi))2e�
T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

Pn
j=1 Ee�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

�
2

4

Pn
j=1 E(bT

jl⇢l(Vi))e�
T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

Pn
j=1 Ee�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

3

5

29

=

;

, (3.21)

S⌘
l

(⌘) =
n
X

i=1

@E(li1(bi.))

@⌘l

=
n
X

i=1

�i

8

<

:

Zil �
Pn

j=1 ZilEe�
T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

Pn
j=1 Ee�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

9

=

;

, (3.22)

I⌘
l

(⌘) =� @S(⌘)

@⌘l

=
n
X

i=1

�i

8

<

:

Pn
j=1 Z

2
ilEe�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

Pn
j=1 Ee�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

�
2

4

Pn
j=1 ZilEe�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

Pn
j=1 Ee�

T

(bT

j.

⇢

.

(V
i

))+⌘TZ
jI(Vj � Vi)

3

5

29

=

;

. (3.23)

In an EM algorithm, the E-step and M-step are calculated iteratively until

the algorithm converges. By (3.14) through (3.23), in each iteration, conditional

expectations need to be evaluated for the following six functions of the random
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e↵ects for the ith subject, i = 1, . . . , n:

g1(bi) = bi,

g2(bi) = bib
T
i ,

g3(bi) = bT
i ⇢(Vi),

g4(bj) = e�
T

(⇢(V
i

)Tb
j

), for j = 1, . . . , n, and Vj � Vi,

g5(bj) = {⇢(Vi)
Tbj}e�

T

(⇢(V
i

)Tb
j

), for j = 1, . . . , n, and Vj � Vi,

g6(bj) = {⇢(Vi)
Tbj}2e�

T

(⇢
.

(V
i

)Tb
j

), for j = 1, . . . , n, and Vj � Vi.

(3.24)

Since multi-dimensional integrals are involved in the conditional expectations

E{gk(bi)} in the E-step, numerical integration techniques such as Gaussian-Hermite

Quadrature (Wulfsohn and Tsiatis, 1997), Markov Chain Monte Carlo (Hender-

son et al., 2000; Tseng et al., 2005; Ding and Wang, 2008) and fully exponential

Laplace approaches (Rizopoulos et al., 2009) have been applied to approximate

the target expectations. Since most of these techniques are shown insu�cient in

estimating the joint models with large dimension of random e↵ects, we propose

to approximate the conditional expectations using design of experiments-based in-

terpolation techniques (DoIt; Joseph 2012), which is further introduced in section

3.23.

Another challenge of joint modeling is to obtain standard errors (SE’s) for the

MLE. Louis (1982) suggested that the accurate variance estimation in the EM

algorithm would require the calculation of the observed Fisher information matrix

for the entire parameter set. However, this approach is impractical for our case

considering the high dimensionality of ⌦ mainly caused by �0(t). On the other

hand, if we use the second derivative of the profile likelihood pl(✓)(i.e., substituting

the estimate of �0(t) into l(⌦)) to calculate the SE’s for ✓, the resulting estimates

have been shown to be biased and over-optimistic for statical inference. (Hsieh

et al., 2006). Due to these limitations, in this study, we propose to estimate the

SE’s using bootstrap technique, the procedure of which will be explained in detail

in simulation studies in Section 3.
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3.2.3 Implementation

It has always been a challenge to approximate the large-dimensional integral nu-

merically. In order to approximate the conditional expectations of E{g(bi)} in

(3.14) through (3.23), several techniques have been proposed. The Gaussian-

Hermite quadrature method evaluates the function values at M di↵erent quadra-

ture points and approximates the expectations using the weighted sums. This

method is usually accurate for low dimensional integrals but the number of quadra-

ture points increases exponentially with the dimension. The Markov Chain Monte

Carlo method treats the posterior densities f(bi|Do, ⌦̂) as transition probabilities

of a Markov Chain from which the samples are drawn and updated. By the Law

of Large Number, the sample means of g(bi) converge to the expectations with a

the rate of O(M�1/2) in probability, where M is the number of random samples.

Fully exponential Laplace (Tierney and Kadane, 1986; Tierney et al., 1989) does

not rely on evaluation or sample points. Instead, it approximates the posterior dis-

tributions of bik by normal distributions with the posterior modes of f(bi|Do, ⌦̂)

as the means and the inverse Fisher information matrices as the variances. The

approximation accuracy depends only on the sample size of each individual and

was proved to be of the order O(n�2
i ). All of these methods, however, become

either time-consuming or di�cult to implement as the dimension of the random

e↵ects bi increases. In order to extend joint models to more flexible settings, a

more e�cient and stable computing technique is needed to better implement the

EM algorithm.

The design of experiments-based interpolation techniques (DoIt) was recently

proposed by Joseph (2012) as a method to approximate the “expensive conditional

densities” in Bayesian computation. The DoIt method borrows and extends the

idea of Laplace approximation which approximates the posterior densities of in-

terest via normal distributions. But instead of using a single normal distribution,

DoIt also incorporates the idea of quadrature-based methods and approximates

f(bi|Do, ⌦̂) using the weighted sum of a sequence of normal densities with the

means at M pre-specified evaluation points (⌫1, . . . ,⌫M), i.e.,

fb
i

|D
o

,
ˆ⌦(bi) ⇡ 1

PM
l=1 cl

M
X

l=1

cl�l(bi), (3.25)
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where �l(bi) = �(bi;⌫ l,D
�1
i ) denote the normal density of bi with mean ⌫ l and

variance D�1
i , the Fisher information matrix of f(bi|Do, ⌦̂) evaluated at the mode.

The cl’s are the weights associated with �l(·) and can be calculated by solving the

linear equations

Qc = h,

where h(bi) / f(Wi, Vi,�i|bi)f(bi) is the unnormalized posterior densities of bi,

and h = (h(⌫1), . . . , h(⌫M)) is a vector of h(·) taking values at the M evaluation

points. Q is an M ⇥M matrix with ijth element being the unnormalized normal

density

q(⌫i;⌫j,D
�1
i ) = exp{�1

2
(⌫i � ⌫j)

TDi(⌫i � ⌫j)}.

Since q(⌫;u,D�1
i ) is a positive definite function, Q�1 exists, provided ⌫i 6= ⌫j for

all i and j. Thus a unique solution of ĉ = Q�1h is guaranteed.

With the capability to approximate the expensive posterior densities, DoIt can

also be used to approximate the conditional expectations of real value functions of

bi in the E-step of the EM algorithm for joint modeling. Let g(bi) be any real value

function of bi. Then its conditional expectation given Do and ⌦̂ is approximated

by

E{g(bi)} ⇡ 1
PM

l=1 cl

M
X

l=1

clEl{g(bi)}, (3.26)

where El{g(bi)} on the right-hand side is the expectation of g(bi) with respect

to the normal distribution N(⌫ l,D
�1
i ). By introducing the idea of DoIt into the

computation of joint modeling, we find it produces good parameter estimates, and

thus can be taken as an alternative to the existing computing techniques for joint

models.

The locations of (⌫1, . . . ,⌫M) are determined by the pre-specified space-filling

design points transformed to the parameter space of posterior distribution via b̂i

and D�1
i . Similar to other methods that depend on evaluation points, DoIt has the

nice feature of achieving desired level of accuracy by adding more points, i.e., in-

creasing M (Joseph, 2012). However, the DoIt method does not su↵er from “curse

of dimensionality” like the Gaussian quadrature method because the number of

M grows much slower to achieve the same level of accuracy when the dimension

increases. A common rule of thumb in the literature of computer experiments is
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to use M = 10⇥ db (Loeppky et al., 2009), where db is the dimension of the inte-

gral. With good space-filling design points, the order of the convergence rate can

reach O(M�1 logdb M) if the integrand is a function with bounded total variation

(Fang and Wang, 1994). Although di↵erent space-filling designs can be considered

to specify the locations of the deterministic points (⌫1, . . . ,⌫M), in this study we

apply minimax Latin Hypercube Design (MmLHD; Joseph 2012) as the design

scheme for DoIt implementation with the existing R package LHS which automat-

ically generates MmLHD samples.

3.3 Numerical studies

In this section we conduct a simulation study and real data analysis to examine

the estimation performance of the proposed approach.

3.3.1 Simulation studies

We consider joint models with both single and multiple longitudinal covariates.

Under the framework of the joint likelihood approach with an EM algorithm, we

compare di↵erent integral approximation techniques, using the existing R package

JM (Rizopoulos, 2010) as benchmark. Below are the implementation details of

each method.

(i) JM package (JM): we use the option “method = Cox-PH-GH” in the JM()

function, in which an adaptive Gaussian-Hermite quadrature method with

35 quadrature points on each dimension of bik is used to calculate the con-

ditional expectations in the E-step of the EM algorithm.

(ii) Gaussian-Hermite quadrature method (GHQ): we take 5 quadrature points

on each dimension of bik, and the total number of evaluation points are

M = 5db .

(iii) MCMC method: we use the R package MHadaptive to generate random sam-

ples from the unnormalized posterior density of bik. For each individual 1000

MCMC samples are generated, with 100 of them as “burn-in” samples (i.e.,

M=900). Since the computing process is extremely slow with this method, a
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more relaxed EM stopping is used (i.e., |✏| < 10�2 for MCMC; |✏| < 10�4 for

other methods, where ✏ = k✓̂(k)� ✓̂(k+1)k1 is the maximum dimension of the

di↵erence between the parameter estimates in the current and the previous

iterations).

(iv) Fully exponential Laplace method (FEL): we adopt the technique described

in Rizopoulos et al. (2009).

(v) DoIt method: the R package lhs is used to generate design points from

MmLHD. The suggested number of design points M = 10⇥ db is used.

All the results are based on N = 100 replicates with n = 100 subjects in each

data set.

Example 3.1. We consider a simple joint model with a single longitudinal

covariate

Wi(tij) = Xi(tij) + ei(tij) = b0i + b1itij + ei(tij),

�i(t) = �0(t) exp{�Xi(t) + ⌘Zi},

with the assumption

bi =

 

b0i

b1i

!

i.i.d⇠ N2(µ,⌃), ei(tij)
i.i.d⇠ N(0, �2),

and bi are independent of ei(tij). This is a low-dimensional setting with dim(bi) =

2, and ⇢(t) = (1, t)T . The true values of the parameters are based on Hsieh et al.

(2006). For the longitudinal process, we set µ = (�4.9078, 0.500)T , (�11, �12, �22) =

(0.5,�0.001, 0.04), �2 = 0.1, where (�11, �12, �22) are the upper diagonal elements

of ⌃. The observational time ti is generated first by ti = seq(0, 12, 38) in R (i.e., 38

equally spaced time points between 0 and 12), and then truncated by the survival

time of di↵erent individuals. For the event process, we assume the baseline hazard

function is constant over time, i.e., �0(t) = 1. The true regression coe�cients

are � = 1 and ⌘ = �1. The censoring time for each subject is generated from

an exponential distribution with mean 25, resulting in about 30% censoring. The

survival time Ti is generated from the inverse survival function derived from the
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cumulative hazard ⇤i(t) with the constant baseline hazard �0:

⇤i(t) =

Z t

0

�0(u) exp{�Xi(u) + ⌘Zi}

= e⌘Zi�0

Z t

0

e�(b0i+b1iu)du

= �0
1

�b1i
e�b0i+⌘Zi

�

e�b1it � 1
�

.

Since the survival probability at time t is Si(t) = 1�Fi(t) = exp{�⇤i(t)}, Si(t) can

be generated using the Monte Carlo samples Ui ⇠ U(0, 1), the uniform distribution,

and exp{�⇤i(t)} = Ui. Thus,

Ti =
1

�Xb1i
log{1� �Xb1i logUi

�0 exp(�Xb0i + �ZZi)
}. (3.27)

Note that since the logarithm is involved in (3.27), we need to monitor the sign of

the expression inside log. Since Ui is between 0 and 1, logUi is always negative.

Thus we need b1i > 0 to guarantee the positivity of ��Xb1i logUi. In practice,

most of the random samples of b1i is positive with the setting of µ2 = 0.500 and

⌃22 = 0.04. However, negative expression can occur with some specific random

combinations of b1i and Ui, for which the above equation to generate Ti is not

well-defined. Such cases are treated as censoring in the simulation. However, these

cases are very rare (usually less that 2%) with our parameter setting, and they

hardly a↵ect the distribution assumptions of the simulation.

After truncated by the observed event time Vi, the average number of longitu-

dinal observations is n̄. = 20.
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Table 3.1: Simulation results for Example 3.1 with n̄· = 20

JM GHQ MCMC FEL DoIt (M=10)

Time(s) Median 14.60 4.67 584.10 9.97 9.41

� = 1.0000

Bias -0.0330 0.0022 -0.0012 -0.0195 -0.0043

SD 0.1270 0.1288 0.1276 0.1187 0.1278

RMSE 0.1312 0.1288 0.1276 0.1203 0.1279

⌘ = �1.0000

Bias 0.0310 0.0106 0.0616 0.0345 0.0157

SD 0.3198 0.3187 0.2677 0.3106 0.3167

RMSE 0.3213 0.3189 0.2747 0.3125 0.3171

µ1 = �4.9078

Bias 0.0063 -0.0034 -0.0034 -0.0006 -0.0004

SD 0.1990 0.0749 0.0604 0.0729 0.0730

RMSE 0.1991 0.0750 0.0605 0.0729 0.0730

µ2 = 0.5000

Bias -0.0027 0.0028 0.0031 0.0000 -0.0001

SD 0.0395 0.0231 0.0201 0.0224 0.0229

RMSE 0.0400 0.0233 0.0203 0.0224 0.0229

�11 = 0.5000

Bias 0.0967 0.0066 -0.0441 -0.0100 -0.0112

SD 0.0965 0.0725 0.0732 0.0721 0.0719

RMSE 0.1366 0.0728 0.0855 0.0728 0.0728

�12 = �0.0010

Bias -0.0134 -0.0069 0.0070 -0.0007 -0.0008

SD 0.0208 0.0159 0.0145 0.0155 0.0156

RMSE 0.0247 0.0173 0.0161 0.0170 0.0156

�22 = 0.0400

Bias 0.0009 0.0048 -0.0033 -0.0008 -0.0009

SD 0.0073 0.0067 0.0064 0.0061 0.0062

RMSE 0.0074 0.0082 0.0072 0.0062 0.0063

�

2 = 0.1000

Bias 0.2731 0.0092 0.0166 -0.0049 -0.0006

SD 0.0096 0.0037 0.0099 0.0032 0.0033

RMSE 0.2733 0.0099 0.0193 0.0059 0.0034

In Table 3.1, GHQ with 25 evaluation points takes the shortest computing time,

showing its superiority over other methods when the dimension of random e↵ects

is small. DoIt with 10 evaluation points is the second fastest technique, followed

by FEL, both faster than the standard JM package. MCMC is extremely slow,
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mostly because it requires a large number of random samples to be drawn for each

individual in each iteration.

All the methods yield comparable estimates in terms of accuracy (i.e., bias) and

e�ciency (i.e., RMSE) in Table 3.1. The only exception is the JM estimates of �2,

which has great bias compared with other methods. The reason for this is that

JM package only focuses on estimating regression coe�cients � and ⌘ in survival

models using the joint information of the two processes. As for the parameters in

the longitudinal model, it directly uses the linear mixed-e↵ects models’ estimates

from the R function lme(), which does not consider the joint information from

the survival part, and thus may lead to bias and ine�ciency. For all the other

methods, the estimates from lme() functions are only taken as initial values for the

EM algorithm. The DoIt method with M = 10 evaluation points provides good

estimating results in the table, and such good performance is consistent for all the

parameters.

In our simulation studies, we use bootstrap technique to obtain the standard

errors (SE’s) of the maximum likelihood estimates. For each dataset replication,

we randomly sample n1 subjects with replacement from the uncensored group of

individuals, and randomly sample n2 subjects with replacement from the censored

group. n2 = n�n1 is the number of censoring in the original replicate dataset. The

sampling with replacement is conducted within each cluster so as to remain the

same censoring rate as the original data. The two groups of random samples are

then combined into a complete dataset and the parameter estimates are obtained

using the maximum joint likelihood (MJL) method. Such estimating procedure is

repeated B = 100 times for each replicate, and the standard deviations of these

B = 100 parameter estimates are recorded as the bootstrap SE’s of the replicate

dataset.

Table 3.2 shows the performance of the bootstrap SE’s of the N = 100 repli-

cates for MJL with the DoIt algorithm. The second column, Mean Est, is the mean

of the MLEs of the 100 replicates; the third column, SDEst, is the standard devia-

tions of the MLEs of the 100 replicates; the fourth column, SEBoot, is the average

of the bootstrap SE’s across the 100 replicates; and the last column, SDSE.Boot, is

the standard deviations of the bootstrap SE’s across the 100 replicates. The results

suggest that the average bootstrap SE’s are very similar to the SD’s for all the
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parameters. More specifically, all the SD’s fall in the range of SEBoot±2SDSE.Boot.

This indicates that the bootstrap SE’s are reliable.

Table 3.2: Performance of Bootstrap Standard Errors of Example 3.1

True Mean Est SDEst SEBoot SDSE.Boot

� 1.0000 0.9957 0.1278 0.1343 0.0238

⌘ -1.0000 -0.9843 0.3167 0.2894 0.0295

µ1 -4.9078 -4.9082 0.0730 0.0697 0.0073

µ2 0.5000 0.4999 0.0229 0.0202 0.0021

�11 0.5000 0.4888 0.0719 0.0692 0.0147

�12 -0.0010 -0.0018 0.0156 0.0149 0.0023

�22 0.0400 0.0391 0.0062 0.0058 0.0010

�

2 0.1000 0.0994 0.0033 0.0031 0.0003

Example 3.2. In this example we consider a joint model with two longitudinal

covariates

Wi1(tij) = Xi1(tij) + ei1(tij) = b10i + b11itij + ei1(tij),

Wi2(tij) = Xi2(tij) + ei2(tij) = b20i + b21itij + ei2(tij),

�i(t) = �0(t) exp{�1X1i(t) + �2X2i(t) + ⌘Zi},

with the assumption

bik =

 

bk0i

bk1i

!

i.i.d⇠ N2(µk,⌃bk), eik(tij)
i.i.d⇠ N(0, �2

k),

where the random e↵ects bik are independent of the measurement errors eik(tij),

and the two longitudinal processes are independent of each other. The true values

of the parameters are µ1 = (�5, 0.5)T , µ2 = (�2, 1)T , V ec(⌃1) = (1,�0.001, 0.04),

V ec(⌃2) = (0.5,�0.001, 0.09), �2
1 = �2

2 = 1, �1 = 1, �2 = 2, ⌘1 = �1. They are

specified in details in the output tables.

In this example, the dimension of the random e↵ects becomes dim(bi.) = 4. In

the event process, we take �0(t) = 1. The average censoring rate is around 15%.
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Using similar techniques as in example 1, we generate survival times as follows:

T =
1

(�1b11i + �2b21i)
log

⇢

1� (�1b11i + �2b21i) logUi

�0 exp(�1b10i + �2b20i + ⌘Zi)

�

.

Since JM package is not available with multiple longitudinal covariates and

MCMC falls out of scope due to its extremely long computing time, we consider

only GHQ, FEL and DoIt for this example.

In Table 3.3, GHQ becomes much slower than the other two methods because

the number of evaluation points increases dramatically to M = 54 = 625. DoIt

withM = 10⇥4 = 40 uses the shortest computing time. The estimates of the three

methods are of similar bias levels, indicating they are similar in terms of estimating

accuracy. However, the estimates from the GHQ method, especially those of the

longitudinal process, have much larger SD and RMSE than the corresponding

estimates from FEL and DoIt. This suggests FEL and DoIt are more stable in

estimation and provide more e�cient estimates. Although FEL is comparable

with DoIt in computing time and estimating performance, it involves the complex

tensor computation (Rizopoulos et al., 2009). This makes it less appealing than

DoIt for larger-dimensional problems.

Similar to Table 3.2, the results of Table 3.4 shows that the bootstrap SE’s

closely resemble the standard deviations in the second column, and thus can be

regarded as valid standard error estimates of the MLE.
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Table 3.3: Simulation results for Example 3.2 with n̄· = 20
GHQ FEL DoIt (M = 10d)

Time(s) Median 440.8 122.6 118.5

�1 = 1.0000

Bias (SD) -0.0161(0.1769) -0.0120 (0.1466) 0.0032 (0.1302)

RMSE 0.1776 0.1471 0.1303

�2 = 2.0000

Bias (SD) 0.0121(0.3119) 0.0304 (0.2461) -0.0119 (0.1972)

RMSE 0.3121 0.2480 0.1975

⌘ = �1.0000

Bias (SD) 0.0176 (0.2979) 0.0161 (0.3076) -0.0032 (0.2715)

RMSE 0.2984 0.3080 0.2715

µ11 = �5.0000

Bias (SD) 0.0309 (0.5114) -0.0174 (0.0951) -0.0091 (0.1031)

MSE 0.5123 0.0967 0.1035

µ12 = 0.5000

Bias (SD) -0.0025 (0.0537) 0.0002 (0.0185) -0.0010 (0.0201)

RMSE 0.0538 0.0185 0.0201

µ21 = �2.0000

Bias (SD) 0.0173 (0.2136) 0.0008 (0.0699) 0.0132 (0.0665)

RMSE 0.2143 0.0699 0.0678

µ22 = 1.0000

Bias (SD) -0.0109 (0.1050) -0.0062 (0.0306) -0.0006 (0.0276)

RMSE 0.1056 0.0312 0.0277

�111 = 1.0000

Bias (SD) -0.0057 (0.1809) -0.0164 (0.1480) -0.0323 (0.1297)

RMSE 0.1810 0.1489 0.1337

�112 = �0.0010

Bias (SD) -0.0067 (0.0210) 0.0013 (0.0216) -0.0012 (0.0189)

RMSE 0.0220 0.0216 0.0189

�122 = 0.0400

Bias (SD) 0.0055 (0.0082) -0.0007 (0.0066) -0.0004 (0.0064)

RMSE 0.0099 0.0067 0.0064

�211 = 0.5000

Bias (SD) -0.0022 (0.0814) -0.0153 (0.0616) -0.0109 (0.0661)

RMSE 0.0814 0.0635 0.0670

�212 = �0.0010

Bias (SD) -0.0088 (0.0208) -0.0004 (0.0215) -0.0020 (0.0220)

RMSE 0.0226 0.0215 0.0220

�222 = 0.0900

Bias (SD) 0.0070 (0.0177) -0.0007 (0.0141) -0.0010 (0.0143)

RMSE 0.0190 0.0141 0.0144

�

2
1 = 0.1000

Bias (SD) 0.0088 (0.0115) -0.0054 (0.0029) 0.0001 (0.0029)

RMSE 0.0145 0.0062 0.0030

�

2
2 = 0.1000

Bias (SD) 0.0087 (0.0115) -0.0043 (0.0032) 0.0003 (0.0027)

RMSE 0.0144 0.0054 0.0027
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Table 3.4: Performance of Bootstrap Standard Errors of Example 3.2

True Mean Est SDEst SEBoot SDSE.Boot

�1 1.0000 1.0032 0.1302 0.1372 0.0309

�2 2.0000 1.9881 0.1972 0.1980 0.0431

⌘ -1.0000 -1.0032 0.2715 0.2734 0.0501

µ11 -5.0000 -5.0091 0.1031 0.0988 0.0171

µ12 0.5000 0.4990 0.0201 0.0211 0.0039

µ21 -2.0000 -1.9868 0.0665 0.0696 0.0114

µ22 1.0000 0.9994 0.0276 0.0306 0.0053

�111 1.0000 0.9677 0.1297 0.1359 0.0366

�112 -0.0010 -0.0022 0.0189 0.0211 0.0039

�122 0.0400 0.0396 0.0064 0.0065 0.0016

�211 0.5000 0.4891 0.0661 0.0704 0.0159

�212 -0.0010 -0.0030 0.0220 0.0222 0.0044

�222 0.0900 0.0890 0.0143 0.0131 0.0034

�

2
1 0.1000 0.1001 0.0029 0.0032 0.0005

�

2
2 0.1000 0.1003 0.0027 0.0032 0.0006

3.3.2 A real data example

In this section, we illustrate the proposed model and estimation procedure by an

empirical analysis of the data collected from a smoking cession study. Specifi-

cally, this data set was collected from a randomized, placebo-controlled clinical

trial (N=1504) of five active smoking-cessation pharmacotherapies, in which daily

smokers who were highly motivated to quit were recruited (Piper et al., 2009).

The focus of this example is to examine the e↵ects of multiple smoking withdrawal

symptoms on the time to lapse (T L, the first day of smoking following at least

1 day of abstinence) and time to relapse (T RL, the first of 7 consecutive days

of smoking following at least 1 day of abstinence) in a two-week post-quit study

period (i.e. t 2 (0, 14)). The withdrawal symptoms of interest include craving

for smoking (Crav), negative a↵ect (NA) and smoking cessation fatigue (feeling

tired of quitting; Fatig). All of these symptoms are supposed to exhaust the self-

control resources that prevent the participants from smoking when they are trying
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to quit. All the items are self-reported by the participants four times a day (i.e.,

morning, night and 2 random times). The five treatments are divided into three

types: placebo, monotherapy and combined pharmacotherapy, and are treated as

time-independent covariates in the joint model. We build two working data sets for

analysis: one with T L as the response of interest (i.e., Lapse Data), and the other

with T RL as the response of interest (i.e., Relapse Data). After data cleaning,

N=794 subjects were used for the analysis with T L as the response, and N=811

subjects were used for then analysis with T RL as the response.

Participants without a record for the longitudinal covariates after the actual

quit date or with the survival response equal to 0 were removed from the study.

In addition, we only used the records between 0 and min(T L, 14) for Lapse Data

and between 0 and min(T RL, 14) for Relapse Data. As a result, there are 794

subjects left in Lapse Data (83 placebo, 412 monotherapy and 299 combined phar-

macotherapy) and the censor rate is 59.69%; 811 subjects are left in Relapse Data

(86 placebo, 422 monotherapy and 303 combined pharmacotherapy) and the censor

rate is 91.24%.

In the previous study (Liu et al., 2013) we modeled the three longitudinal

processes nonparametrically and found all of them decrease linearly with time

(see Figure 3.1). Thus in joint modeling framework we specify them using linear

mixed-e↵ects model of the following forms:

WCravi(tij) = XCravi(tij) + eic(tij) = bc0i + bc1itij + eic(tij),

WNAi(tij) = XNAi(tij) + ein(tij) = bn0i + bn1itij + ein(tij),

WFatigi(tij) = XFatigi(tij) + eif (tij) = bf0i + bf1itij + eif (tij),

where

bci = (bc0i, bc1i)
T ⇠ N2(µc,⌃bc),

bni = (bn0i, bn1i)
T ⇠ N2(µn,⌃bn),

bfi = (bf0i, bf1i)
T ⇠ N2(µf ,⌃bf ),

and

ecravi(tij) ⇠ N(0, �2
c ),
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ecravi(tij) ⇠ N(0, �2
n),

ecravi(tij) ⇠ N(0, �2
f ),

and all these random terms are assumed independent.

In this analysis we model the survival response using Cox’s models with both

single covariate process and multiple covariates processes. The single-covariate

models are of the form:

�i(t) = �0(t) exp{�cXCravi(tij) + ⌘Zi},

�i(t) = �0(t) exp{�nXNAi(tij) + ⌘Zi},

�i(t) = �0(t) exp{�fXFatigi(tij) + ⌘Zi},

and the multiple-covariates model is of the form

�i(t) = �0(t) exp{�cXCravi(tij) + �nXNAi(tij) + �fXFatigi(tij) + ⌘Zi},

where Zi is the treatment variable with three levels (i.e., 2 dummy variables in

practice).

The goals of the analysis are: (a) to compare maximum joint likelihood method

(with the DoIt algorithm) with the naive separate estimation, and (b) to compare

the single-covariate-process model with the multiple-covariates-process model. The

standard errors of maximum joint likelihood approach are calculated using the

bootstrap techniques as discussed in simulation studies. The estimating results

are presented in the following table.
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Figure 3.1. Nonparametric estimations of the three covariate processes
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Table 3.5: Estimation for Lapse Data with Single Covariate Process
Craving Negative A↵ect Fatigue

Separate Estimation Joint Likelihood Separate Estimation Joint Likelihood Separate Estimation Joint Likelihood

Est SE Est SE Est SE Est SE Est SE Est SE

⌘1 -0.08 0.12 -0.22 0.16 -0.08 0.12 -0.22 0.16 -0.05 0.12 -0.20 0.17
⌘2 -0.08 0.12 -0.45* 0.16 -0.10 0.12 -0.48* 0.16 -0.08 0.13 -0.48* 0.18
� 0.06* 0.01 0.13* 0.02 0.10* 0.02 0.15* 0.04 0.03* 0.01 0.03 0.02

µ1 4.63* 0.11 4.64* 0.10 1.83* 0.05 1.84* 0.05 2.72* 0.11 2.72* 0.29
µ2 -0.17* 0.01 -0.16* 0.01 -0.06* 0.005 -0.06* 0.005 -0.006 0.01 -0.005 0.01
⌃11 7.86 - 7.89 0.33 2.00 - 2.00 0.14 8.96 - 8.95 1.05
⌃12 -0.24 - -0.23 0.03 -0.08 - -0.08 0.01 -0.18 - -0.18 0.07
⌃22 0.04 - 0.04 0.005 0.01 - 0.01 0.001 0.10 - 0.10 0.02
�

2 2.04 - 4.16 0.19 0.95 - 0.91 0.04 1.52 - 2.30 0.25

Table 3.5 represents the estimation results for the single-process models with

days to lapse as the survival response and craving, negative a↵ect, and fatigue

as the single predictors in the three models, respectively. The estimation results

indicate that the separation estimation and maximum joint likelihood method

yield quit similar estimates for all the parameters in longitudinal models except

�2, the variance of the random error. However, the parameter estimates for the

survival models are quit di↵erent among the two models. Separate estimation

suggests neither of the two active treatments are e↵ective compared with placebo,

whereas the MJL method suggests the combined pharmacotherapy has significant

e↵ect in reducing the risk of lapse. This is consistent with the knowledge that the

estimates of separate estimation tends to bias towards the null (Prentice, 1982).

The separate estimation also shows that all the three longitudinal covariates are

significantly positively associated with the risk of lapse, whereas according to the

MJL method, only Craving and Negative A↵ect are significant. Note that the

absolute values of the coe�cient estimates of the significant �’s from MJL is much

more larger than those from separate estimation.

1represents statistically significant at 0.05 level.
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Table 3.6: Estimation for Lapse Data with Multiple Covariate Processes

Separate Estimation Joint Likelihood

Estimate SE Estimate Bootstrap SE

⌘1 -0.07 0.12 -0.22 0.17

⌘2 -0.07 0.13 -0.45* 0.19

�crav 0.05* 0.01 0.13* 0.02

�na 0.05* 0.025 -0.004 0.05

�fatig 0.008 0.01 -0.001 0.02

Crav

µ1 4.63* 0.10 4.64* 0.09

µ2 -0.17* 0.01 -0.16* 0.01

⌃11 7.86 - 7.89 0.36

⌃12 -0.24 - -0.23 0.04

⌃22 0.04 - 0.04 0.01

�

2 2.04 - 4.16 0.16

NA

µ1 1.83* 0.05 1.83* 0.05

µ2 -0.06* 0.004 -0.06* 0.005

⌃11 2.00 - 2.00 0.14

⌃12 -0.08 - -0.08 0.01

⌃22 0.01 - 0.01 0.001

�

2 0.95 - 0.91 0.04

Fatig

µ1 2.72* 0.11 2.72* 0.11

µ2 -0.005 0.01 -0.006 0.01

⌃11 8.96 - 8.98 0.55

⌃12 -0.18 - -0.18 0.06

⌃22 0.10 - 0.10 0.02

�

2 1.52 - 2.19 0.12

Table 3.6 summarizes the results of joint models with three longitudinal co-

variates modeled simultaneously. Similar to the single-covariate models, the esti-

mating results are close across the two methods for longitudinal parameters but

show substantial di↵erence for survival coe�cients. The two active treatments are

again estimated to be non-significant by the separate estimation, whereas the MJL

method implies the combined therapy has significant e↵ect in reducing the risk of

lapse. Separate estimation shows both Craving and Negative A↵ect have signif-

icant positive e↵ects on lapse, whereas MJL indicates that Craving is the only
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significant longitudinal factor associated with lapse when the three longitudinal

covariates are modeled together.

Compared with the results in Table 3.5, we found that the process of Negative

A↵ect is identified to be a significant covariate for lapse in the single-covariate

model, but becomes nonsignificant in the multiple-covariates model. The latter

inference is consistent with the conjecture of the smoking cessation study that

Negative A↵ect exerts influence on patients mainly through the feeling of Craving

for smoking and research that showed that Craving, not Negative A↵ect, was the

key mediator of treatment e↵ects in this sample (Bolt et al., 2012). Thus, using

multiple-covariates model instead of single-covariate models does provide more

reasonable insight into the analysis in this case.

Table 3.7: Estimation for Relapse Data with Single Covariate Process
Craving Negative A↵ect Fatigue

Separate Estimation Joint Likelihood Separate Estimation Joint Likelihood Separate Estimation Joint Likelihood

Est SE Est SE Est SE Est SE Est SE Est SE

⌘1 -0.04 0.12 -0.57 0.32 -0.03 0.12 -0.56 0.30 -0.02 0.12 -0.57 0.32

⌘2 -0.05 0.12 -0.66* 0.33 -0.04 0.11 -0.63 0.32 -0.04 0.12 -0.70* 0.33

� 0.04* 0.01 0.19* 0.04 0.08* 0.02 0.41* 0.07 0.002 0.01 0.06* 0.03

µ1 4.63* 0.10 4.64* 0.11 1.82* 0.05 1.82* 0.05 2.74* 0.10 2.74* 0.12

µ2 -0.15* 0.01 -0.15* 0.01 -0.05* 0.004 -0.05* 0.005 -0.003 0.01 -0.002 0.01

⌃11 7.81 - 7.84 0.29 1.94 - 1.95 0.14 7.82 - 8.91 0.50

⌃12 -0.22 - -0.22 0.03 -0.08 - -0.08 0.01 -0.22 - -0.15 0.04

⌃22 0.04 - 0.04 0.004 0.01 - 0.01 0.001 0.04 - 0.07 0.01

�

2 2.11 - 4.45 0.15 0.98 - 0.97 0.04 2.10 - 2.40 0.13
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Table 3.8: Estimation for Relapse Data with Multiple Covariate Processes

Separate Estimation Joint Likelihood

Estimate SE Estimate Bootstrap SE

⌘1 -0.03 0.12 -0.55 0.33

⌘2 -0.03 0.12 -0.61 0.35

�crav 0.02* 0.01 0.11* 0.05

�na 0.05 0.03 0.31* 0.10

�fatig 0.01 0.01 -0.01 0.04

Crav

µ1 4.64* 0.11 4.64* 0.10

µ2 -0.15* 0.01 -0.15* 0.01

⌃11 7.82 - 7.82 0.37

⌃12 -0.22 - -0.22 0.03

⌃22 0.04 - 0.04 0.004

�

2 2.11 - 4.16 0.17

NA

µ1 1.82* 0.05 1.83* 0.05

µ2 -0.05* 0.004 -0.06* 0.005

⌃11 1.94 - 1.94 0.14

⌃12 -0.08 - -0.08 0.01

⌃22 0.01 - 0.01 0.001

�

2 0.98 - 0.97 0.04

Fatig

µ1 2.74* 0.11 2.74* 0.12

µ2 -0.003 0.01 -0.003 0.01

⌃11 8.92 - 8.93 0.50

⌃12 -0.15 - -0.16 0.04

⌃22 0.07 - 0.07 0.01

�

2 1.55 - 2.30 0.11

Table 3.7 and Table 3.8 present the estimation results for the models with time

to relapse as the survival response. The results of the single-covariate models are

summarized in Table 3.7, where all the three covariate processes are identified

to be significantly positively associated with relapse by the MJL method. The

combined pharmacotherapy is shown to have significant e↵ect on reducing the risk

of relapse by the MJL method when modeled with Craving or Fatigue. The two

active treatments are still nonsignificant in separate estimation.

In Table 3.8 both the combined pharmacotherapy and the cessation fatigue are
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no longer significant by the MJL method, even though the absolute values of the

coe�cient estimates increase dramatically compared with those of the separate

estimation. Note that in the Relapse Data we have an extremely high censoring

rate (91.24%), which means the information might be insu�cient to make accurate

inference on the survival coe�cients. However, the fact that the estimation results

are di↵erent between the single-covariate models and the multiple-covariate model

still indicates the necessity of applying them separately to di↵erent questions ac-

cording to specific needs.

3.4 Discussion

We propose a likelihood-based method to estimate the joint models with multiple

longitudinal covariates for the time-to-event response. Measurement errors and

the covariance structure among the multiple longitudinal covariates are considered

in the model. We established the asymptotic properties of the resulting MLE in

Chapter 4. To circumvent the computational complexity involved in evaluating

the large-dimensional integral in the likelihood function, we introduce the DoIt

algorithm, which is implemented in R and combined with an EM algorithm to

speed up the convergence. In real data analysis, we find that the models with

multiple biomarkers (i.e., longitudinal covariates) generated di↵erent results from

the models with single biomarker, and the former o↵ered a more comprehensive

interpretation of the data. Although in this data example we only demonstrate

the feasibility of the proposed approach with three biomarkers, the algorithm can

accommodate the data with a larger number of longitudinal predictors of interest.

The computing feasibility makes it possible to consider more complex joint model

settings in future work. For example, one may consider nonparametric mixed-

e↵ects model for the longitudinal processes, or generalized mixed-e↵ects model

for the non-continuous longitudinal processes. However, a limitation to our and

the similar approach is that there was no explicit form of the standard errors for

the estimators, the numerical solution was di�cult, and we had to bootstrap the

standard errors at the cost of additional computing time.



Chapter 4
Joint Likelihood Estimation for Joint

Modeling Survival and Multiple

Longitudinal Processes: Theory

In this chapter, we establish the asymptotic theorems from the MLE’s obtained

by the maximum joint likelihood approach proposed in Chapter 3. The technical

conditions and the theorems are stated in section 4.1, and the technical proofs are

given in section 4.2.

4.1 Sampling properties

Let (✓̂, ⇤̂) be the maximum likelihood estimators maximizing the likelihood equa-

tion given in (3.8). Zeng and Cai (2005) established the consistency and asymptotic

normality of the joint maximum likelihood estimate for joint model with single co-

variate process. In this section, we adopt their statistical formulation. It is worth

pointing out that since we have multivariate response in the longitudinal model,

the covariance structure for the measurement errors in ✓ is specified by the co-

variance matrix ⌃e instead of the scalar �2
e for the single longitudinal response

in Zeng and Cai (2005). This makes the theoretical proof much more challenging

than that for single covariate process. For completeness, we state the technical

conditions and theorems below and provide the proof details of Theorem 1 and
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2 that follow and extend the work of Zeng and Cai (2005). The assumptions are

made for any given subject in the study. The notations, if not respecified, follow

the ones defined in section 2.

(A.1) Denote ⌧ to be the end of the study time, T to be the longitudinal observation

time, and Z to be the baseline covariates. In the interval [0, ⌧ ] and given the

random e↵ects b, T and Z are conditionally independent of all the random

variables in joint model (3.5) and (3.6).

(A.2) With probability one, every dimension of the functional vector ⇢(t) and ⇢̃(t)

is continuously di↵erentiable in [0, ⌧ ], and

max
t2[0,⌧ ]

k⇢0(t)k < 1, max
t2[0,⌧ ]

k⇢̃0(t)k < 1.

In addition, the baseline covariates Z are bounded with probability one.

(A.3) Conditional on T and Z, the censoring time C is non-informative for the

joint model (i.e., given T and Z, C is independent of T , W and b).

(A.4) Let N be the number of longitudinal observations. There exists an integer

n0 such that P (N  n0) = 1. In addition, with probability one,

P (N > 2d|T ,Z, T ) > 0, P (N > d̃|T ,Z, T ) > 0,

where d is the total dimension of the random e↵ects b, and d̃ is the total

dimension of the (⇢̃1, . . . , ⇢̃p) for µ.

(A.5) The maximal right-censoring time is equal to ⌧ .

(A.6) At time tj, j = 1, . . . , N , denote the value of ⇢(tj) and ⇢̃(tj) by ⇢j and ⇢̃j,

respectively. Remember that ⇢j is a d⇥ p matrix, and ⇢̃j is a d̃⇥ p matrix,

where d � p and d̃ � p. Both P (⇢j is full rank) > 0 and P (⇢̃j is full rank) >

0 for all j = 1, . . . , N . In addition, define the d⇥pN matrixR = (⇢1, . . . ,⇢N),

then P (RRT is full rank) > 0.

(A.7) There exist constant vectors �c and ⌘c ( of the same dimension as � and ⌘, re-

spectively) such that, with positive probability, �T
c (⇢(t)

T1) = �c1(⇢1(t)
T1)+
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· · · + �cp(⇢p(t)
T1) = g(t) and ⌘T

c Z = 0 for a deterministic function g(t) for

all t 2 [0, ⌧ ], then �c = 0, ⌘c = 0 and g(t) = 0.

(A.8) Let ⇥ ✓ Rd
✓ be the domain of ✓, where d✓ is the dimension of ✓. For any

✓ 2 ⇥, assume k✓k  M0, minkek=1 eT⌃ee > M�1
0 ,minkek=1 eT⌃be > M�1

0

for a known positive constant M0.

(A.9) The true baseline hazard function, denoted by �0(t), is bounded and positive

in [0, ⌧ ].

Remark Assumption (A.4) implies that for all the subjects, the number of lon-

gitudinal observations is bounded from above by n0, and for at least some subjects

the number of longitudinal observations is bounded from below by the 2d. Assump-

tion (A.8) indicates that ⇥ is a compact set. (A.8) and (A.9) together indicate the

true hazard function is bounded and positive in [0, ⌧ ]. Combined with assumption

(A.2), this implies that P (T > ⌧ |T ,Z) > c0 for some positive constant c0. Since

(A.5) assumes that all the subjects surviving after ⌧ censor at ⌧ (i.e., C = ⌧), this

implies that P (C � ⌧ |T ,Z) = P (C = ⌧ |T ,Z) > c0.

Recall that ✓ = (µT ,Vec(⌃e),Vec(⌃b),�
T ,⌘T )T is the constant parameter set

and ⇤(t) =
R t

0 �(s)ds is the functional parameter of the likelihood. The observed

likelihood function of (✓,⇤) is

L(✓,⇤) =
n
Y

i=1

Z

b

⇢

(2⇡)�pN
i

/2|⌃e|�N
i

/2

⇥ exp{�1

2

N
i

X

j=1

(Wij � ⇢̃T
ijµ� ⇢T

ijb)
T⌃�1

e (Wij � ⇢̃T
ijµ� ⇢T

ijb)}

⇥ �(Vi)
�

i exp



�i{�T (⇢i(Vi)
Tb) + ⌘TZi}�

Z V
i

0

e�
T

(⇢
i

(s)Tb)+⌘TZ
id⇤(s)

�

⇥(2⇡)�d/2|⌃b|�1/2 exp{�1

2
bT⌃�1

b b}
�

db.

(4.1)

In order to obtain the maximum likelihood estimator (✓̂, ⇤̂), we let �(t) take

mass only at the event times Vi for which �i = 1. Thus ⇤(t) becomes an increasing

and right-continuous step function with jumps only at Vi, and the baseline hazard
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�(t) in (4.1) is replaced by ⇤{Vi}, the jump size of ⇤(·) at Vi. The domain of ⇤(t)

is denoted by Vn, which consists of all the right-continuous step functions with

jumps at Vi for which �i = 1. The domain depends on n because the number of

the jumps of ⇤(t) is of order n. Denote the logarithm of the modified likelihood

function by ln(✓,⇤).

Based on the above assumptions, the asymptotic properties of the maximum

likelihood estimates are as follows:

Theorem 1 Under Assumptions (A.1) to (A.9), the maximum likelihood esti-

mator (✓̂, ⇤̂) is strongly consistent under the product metric of the Euclidean norm

and the supremum norm on [0, ⌧ ]; that is,

k✓̂ � ✓0k+ sup
t2[0,⌧ ]

|⇤̂(t)� ⇤0(t)| ! 0 a.s.

Theorem 2 Under Assumptions (A.1) to (A.9),
p
n(✓̂�✓0, ⇤̂�⇤0) weakly con-

verges to a Gaussian random element in Rd
✓ ⇥ l1[0, ⌧ ], where d✓ is the dimension of

✓ and l1[0, ⌧ ] is the metric space of all bounded functions in [0, ⌧ ]. Furthermore,p
n(✓̂�✓0) weakly converges to a multivariate normal distribution with mean zero

and its asymptotic variance attains the semiparametric e�ciency bound for ✓0.

Theorem 3 Under Assumptions (A.1) to (A.9), 2{pln(✓̂) � pln(✓0)} weakly

converges to a chi-square distribution with d✓ degrees of freedom and, moreover,

�pln(✓̂ + hne)� 2pln(✓̂) + pln(✓̂ � hne)

nh2
n

p! eTIe,

where pln(✓) = max⇤2V
n

ln(✓,⇤) is the profile likelihood function of ✓. hn =

Op(n�1/2), e is any vector in Rd
✓ with unit norm, and I is the e�cient information

matrix for ✓0.
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4.2 Technical Proofs

Below are the proofs of Theorem 1 and 2 based on the above conditions. We elim-

inate the proof of Theorem 3 as it follows the same arguments as in Zeng and Cai

(2005).

Proof of Theorem 1

The proof of Theorem 1 is completed by verifying the following statements (i)

to (iv).

(i) The maximizer of ln(✓,⇤), (✓̂, ⇤̂) exists for each n.

(ii) ⇤̂(⌧) is bounded when n goes to infinity.

(iii) There exist a constant vector ✓⇤ and a right-continuous monotone function

⇤⇤(t) such that ✓̂ ! ✓

⇤ and ⇤̂(t) weakly converges to ⇤⇤(t) for t 2 [0, ⌧ ].

(iv) ✓⇤ = ✓0 and ⇤⇤ = ⇤0.

Note that all the above statements are made and hold for a fixed ! in the

probability space, except for some null sets.

PROOF OF (i). Recall that by replacing �(Vi) with ⇤{Vi} in (4.1), the objec-

tive function becomes

ln(✓,⇤)

=
n
X

i=1

log

Z

b

⇢

(2⇡)�pN
i

/2|⌃e|�N
i

/2 ⇥ ⇤{Vi}�i

⇥ exp{�1

2

N
i

X

j=1

(Wij � ⇢̃T
ijµ� ⇢T

ijb)
T⌃�1

e (Wij � ⇢̃T
ijµ� ⇢T

ijb)}

⇥ exp

"

�i{�T (⇢i(Vi)
Tb) + ⌘TZi}�

n
X

j=1

I(Vj  Vi)⇤{Vj}e�
T

(⇢
i

(V
j

)Tb)+⌘TZ
i

#

⇥(2⇡)�d/2|⌃b|�1/2 exp{�1

2
bT⌃�1

b b}
�

db,
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and (✓̂, ⇤̂) maximizes ln(✓,⇤) over the set {(✓,⇤) : ✓ 2 ⇥,⇤ 2 Vn}. Since it is

easy to verify that ln(✓,⇤) is concave, the existence of ✓̂ holds because its domain

⇥ is compact. Thus we only need to verify the existence of ⇤̂, which is satisfied

when Vn is compact. Hence it su�ces to prove that the jump size of ⇤ at Vi for

which �i = 1 is finite.

Since for any x > 0, ex � 1 + x, and e�x  (1 + x)�1, for each i we have

exp

"

�
n
X

j=1

I(Vj  Vi)⇤{Vj}e�
T

(⇢
i

(V
j

)Tb)+⌘TZ
i

#


"

1 +
n
X

j=1

I(Vj  Vi)⇤{Vj}e�
T

(⇢
i

(V
j

)Tb)+⌘TZ
i

#�1


"

n
X

j=1

I(Vj  Vi)⇤{Vj}e�
T

(⇢
i

(V
j

)Tb)+⌘TZ
i

#�1

⇤{V (i)
j0 }�1e�{�T

(⇢
i

(V
(i)
j0 )Tb)+⌘TZ

i

},

where V (i)
j0 is any observed event time in the set {Vj : Vj  Vi,�j = 1, j = 1, . . . , n}.

Hence, for any i such that �i = 1, take V
(i)
j0 = Vi, the survival part of the

likelihood (4.2) satisfies

⇤{Vi}�i exp

2

4�i{�T (⇢i(Vi)
T
b) + ⌘TZi}�

n
X

j=1

I(Vj  Vi)⇤{Vj}e�
T

(⇢
i

(V
j

)Tb)+⌘TZ
i

3

5

⇤{Vi} exp
⇥{�T (⇢i(Vi)

T
b) + ⌘TZi}

⇤⇥ ⇤{Vi}�1 exp
⇥�{�T (⇢i(Vi)

T
b) + ⌘TZi}

⇤

= 1.

For those i with �i = 0, take any V
(i)
j0 2 {Vj : Vj  Vi,�j = 1, j = 1, . . . , n},

the second line of the likelihood (4.2) satisfies

⇤{Vi}�i exp

2

4�i{�T (⇢i(Vi)
T
b) + ⌘TZi}�

n
X

j=1

I(Vj  Vi)⇤{Vj}e�
T

(⇢
i

(V
j

)Tb)+⌘TZ
i

3

5

⇤{V (i)
j0 }�1 exp

h

�{�T (⇢i(V
(i)
j0 )Tb) + ⌘TZi}

i

.
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Accordingly, the likelihood (4.2) satisfies

ln(✓,⇤) 
n
X

i=1

I(�i = 1) log

Z

b

⇢

(2⇡)�pN
i

/2|⌃e|�N
i

/2

⇥ exp{�
N

i

X

j=1

(Wij � ⇢̃T
ijµ� ⇢T

ijb)
T⌃�1

e (Wij � ⇢̃T
ijµ� ⇢T

ijb)}

⇥(2⇡)�d/2|⌃b|�1/2 exp{�1

2
bT⌃�1

b b}
�

db.

+
n
X

i=1

I(�i = 0) log

Z

b

⇢

(2⇡)�pN
i

/2|⌃e|�N
i

/2

⇥ exp{�
N

i

X

j=1

(Wij � ⇢̃T
ijµ� ⇢T

ijb)
T⌃�1

e (Wij � ⇢̃T
ijµ� ⇢T

ijb)}

⇥ ⇤{V (i)
j0 }��

i exp
n

�(�T (⇢i(V
(i)
j0 )Tb) + ⌘TZi)

o

⇥(2⇡)�d/2|⌃b|�1/2 exp{�1

2
bT⌃�1

b b}
�

db.

Thus if ⇤{V (i)
j0 } ! 1 for some i and j0, it follows that ln(✓,⇤) ! �1. We

conclude the jump size of ⇤ is finite. Therefore, the maximum likelihood estimate

(✓̂, ⇤̂) exists. ⇤

PROOF OF (ii). Define ⇠̂ = log ⇤̂(⌧) and ⇤̃ = ⇤̂/e⇠̂. Thus ⇤̃(⌧) = 1. Note

that after rescaling, ⇤̃(t) = ⇤̂(t)/⇤̂(⌧) is the ratio of jump size at time t to that

at time ⌧ , and the range of ⇤̃ is [0, 1]. To prove (ii), it is su�cient to show that

⇠̂ is bounded when n goes to infinity. By applying some algebra to (4.1), for any

⇤ 2 Vn, the average of the likelihood at ✓̂ over the n subjects is given by

1

n
ln(✓̂,⇤) (4.2)

=�
Pn

i=1 Ni

n
log{(2⇡)�p/2|⌃̂e|�1/2}� log{(2⇡)�d/2|⌃̂b|�1/2}

+
1

n

n
X

i=1

"

�i(log⇤{Vi}+ ⌘̂TZi)�
N

i

X

j=1

1

2
(Wij � ⇢̃T

ijµ̂)
T⌃�1

e (Wij � ⇢̃T
ijµ̂)

#

+
1

n

n
X

i=1

log

Z

b
exp

⇢

�1

2
bT

G

�1
i b+ h

T
i b�

Z V
i

0

eQ1i(t,b,✓̂)d⇤(t)

�

db, (4.3)
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where

G

�1
i = ⌃̂

�1

b +
N

i

X

j=1

⇢ij⌃̂
�1

e ⇢
T
ij,

h

T
i = �i

n

�̂⇢i(Vi)
T
o

+
N

i

X

j=1

(Wij � ⇢̃T
ijµ̂)

T ⌃̂
�1

e ⇢
T
ij,

Q1i(t, b, ✓̂) = �̂
�

⇢i(Vi)
Tb
 

+ ⌘̂TZi.

Let b̃ = G

�1/2
i (b �Gihi), thus the third part of the right-hand side of equation

(4.2) becomes

1

n

n
X

i=1

⇢

1

2
log |Gi|+ 1

2
h

T
i Gihi + log

Z

˜b
exp{�1

2
b̃
T
b̃�

Z V
i

0

eQ̃1i(t,b̃,✓̂)d⇤(t)}db̃
�

,

where

Q̃1i(t, b̃, ✓̂) = {�⇢i(t)
T}G1/2

i b̃+ {�⇢i(t)
T}Gihi + ⌘

TZi.

Since ⇠̂ maximizes the log-likelihood ln(✓̂, e⇠⇤̃), we have ln(✓̂, e⇠̂⇤̃) � ln(✓̂, e0⇤̃).

It follows that

0 n�1ln(✓̂, e
⇠̂⇤̃)� n�1ln(✓̂, ⇤̃)

=
1

n

n
X

i=1

"

�i⇠̂ + log

Z

˜b
exp

(

� b̃
T
b̃

2
� e⇠̂

Z V
i

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃

� log

Z

˜b
exp

(

� b̃
T
b̃

2
�
Z V

i

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃

#

.

(4.4)

Note that according to assumptions (A.2), (A.4) and the boundedness of ✓, there

exist some positive constants C1, C2, and C3 such that

|Q̃i1(t, b̃, ✓̂)|  C1kb̃k+ C2

N
i

X

j=1

kWijk+ C3  C1kb̃k+ C2n0kWijk+ C3. (4.5)

Since b̃ is of a standard multivariate normal distribution, applying the above in-
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equality (4.5), we obtain

� log

Z

˜b
exp

(

� b̃
T
b̃

2
�
Z V

i

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃

= (2⇡)d/2 logEb̃ exp

⇢

�
Z V

i

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

�

� (2⇡)d/2 logEb̃ exp

⇢

�eC1k ˜bk+C2n0kW
ij

k+C3

�

.

(4.6)

Using Jensen’s inequality, the above expression satisfies

(2⇡)d/2 logEb̃ exp

⇢

�eC1k ˜bk+C2n0kW
ij

k+C3

�

�(2⇡)d/2Eb̃

⇢

�eC1k ˜bk+C2n0kW
ij

k+C3

�

=� eC2n0kW
ij

k+C4

(4.7)

for some constant C4. Since Wij is normally distributed, by the strong law of large

numbers, there exist some positive constant C5 such that

1

n

n
X

i=1

eC2n0kW
ij

k+C4 ! EeC2n0kW1jk+C4 = C5 a.s.

Thus

� 1

n

n
X

i=1

log

Z

˜b
exp

(

� b̃
T
b̃

2
�
Z V

i

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃
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is bounded by C5 from above when n goes to infinity. Then (4.4) becomes

0  1

n

n
X

i=1

�i⇠̂ +
1

n

n
X

i=1

log

Z

˜b
exp

(

� b̃
T
b̃

2
� e⇠̂

Z V
i

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃+ C5

 1

n

n
X

i=1

�i⇠̂ +
1

n

n
X

i=1

I(Vi = ⌧) log

Z

˜b
exp

(

� b̃
T
b̃

2
� e⇠̂

Z ⌧

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃

+
1

n

n
X

i=1

I(Vi 6= ⌧) log

Z

˜b
exp

(

� b̃
T
b̃

2

)

db̃+ C5

 1

n

n
X

i=1

�i⇠̂ +
1

n

n
X

i=1

I(Vi = ⌧) log

Z

˜b
exp

(

� b̃
T
b̃

2
� e⇠̂

Z ⌧

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃

+ C6,

(4.8)

for some constant C6. The last inequality follows by the integral of the unnor-

malized standard normal density of b̃. Since for any � � 0, x � 0, we have

ex/� � (1 + x/�), it follows that e�x  (1 + x/�)��. Using the similar arguments

as in (4.6) and (4.7), the following inequality holds:

Z

˜b
exp

(

� b̃
T
b̃

2
� e⇠̂

Z ⌧

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)

db̃


Z

˜b
exp

(

� b̃
T
b̃

2

)(

1 +
e⇠̂

�

Z ⌧

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

)��

db̃


✓

�

e⇠̂

◆� Z

˜b
exp

(

� b̃
T
b̃

2

)

⇢

Z ⌧

0

eQ̃1i(t,b̃,✓̂)d⇤̃(t)

���

db̃


✓

�

e⇠̂

◆� Z

˜b
exp

(

� b̃
T
b̃

2

)

⇢

e�C1k ˜bk�C2n0kW
ij

k�C3

���

db̃

=

✓

�

e⇠̂

◆�

(2⇡)d/2Eb̃

⇢

e�C1k ˜bk+�C2n0kW
ij

k+�C3

�

=

✓

�

e⇠̂

◆�

e�C2n0kW
ij

k+C7(�),

where C7(�) is a deterministic function of �. Applying the above conclusion to
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(4.8), we obtain

0  1

n

n
X

i=1

�i⇠̂ +
1

n

n
X

i=1

I(Vi = ⌧)�
⇣

log�� ⇠̂ + C2n0kWijk+ C7(�)
⌘

+ C6

 1

n

n
X

i=1

�i⇠̂ � �

n

n
X

i=1

I(Vi = ⌧)⇠̂ + C2n0
�

n

n
X

i=1

kWijk+ C8(�)

(4.9)

where C8(�) is a deterministic function of �. By the strong law of large numbers,

C2n0
�

n

n
X

i=1

kWijk+ C8(�) ! C9(�), a.s.,

where C9(�) is also a deterministic function of �. Thus for some su�ciently large

n, it follows that

0  1

n

n
X

i=1

�i⇠̂ � �

n

n
X

i=1

I(Vi = ⌧)⇠̂ + C9(�).

Take � large enough such that 1
n

Pn
i=1�i  �

2n

Pn
i=1 I(Vi = ⌧), then by as-

sumption (A.5) and the strong law of large numbers,

0  C9(�)� �

2n

n
X

i=1

I(Vi = ⌧)⇠̂

⇠̂  2C9(�)/
�

n

n
X

i=1

I(Vi = ⌧) ! 2C9(�)/�P (V = ⌧) = B0 a.s.

(4.10)

Thus ⇠̂ is bounded by some constant B0. Since the above statement holds for

every ! in the sample space except the null set, we conclude that with probability

1, ⇤̂(⌧) is bounded for any n. ⇤

PROOF OF (iii). By the assumption (A.8) that ⇥ 2 Rd
✓ is a compact set, there

exists a subsequence of ✓̂n and a constant vector ✓⇤ 2 ⇥ such that the subsequence

converges to ✓⇤. If we can show in (iv) that ✓⇤ = ✓0, the unique true parameter,

let ✓̂n
m

be a subsequence of ✓̂n that does not converge to ✓⇤. Thus, 9 �0 > 0 and

some large M s.t. k✓̂n
m

� ✓⇤k > �0 for all the m > M . However, since ✓̂m
n

2 ⇥
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and the limit ✓⇤ is unique, there exists a sub-subsequence ✓̂m
n

k

s.t. ✓̂m
n

k

! ✓

⇤ as

k ! 1. This contradict with the previous statement of the non-convergence of

✓̂m
n

. Thus all the subsequence of ✓̂n coverage to ✓⇤. We conclude that ✓̂n ! ✓

⇤

as n ! 1.

Now consider ⇤̂. By Helly’s Selection Theorem, there exists a subsequence of

⇤̂n(t) that weakly converges to some right-continuous monotone function ⇤⇤(t) for

each t 2 [0, ⌧ ]. Using the similar argument as for ✓̂, if we can show in (iv) that

⇤⇤ = ⇤0, the unique true functional parameter, then ⇤̂n itself converges to ⇤⇤ as

n goes to infinity. Note that since the convergence holds for every ! in the sample

space except the null sets, ✓̂n ! ✓

⇤ and ⇤̂n ! ⇤⇤ with probability 1. Thus the

only thing left to prove is ✓⇤ = ✓0 and ⇤⇤ = ⇤0. ⇤

PROOF OF (iv). For a given subject, let O = {Wj,⇢(s), ⇢̃j, V,�,Z, j =

1, . . . , N, 0  s  t} be the observed data. Denote

G(b,O;✓,⇤)

=(2⇡)�pN/2|⌃e|�N/2(2⇡)d/2|⌃b|�1/2

⇥ exp

⇢

� 1

2

N
X

j=1

(Wj � ⇢̃T
j µ� ⇢T

j b)
T⌃�1

e (Wj � ⇢̃T
j µ� ⇢T

j b)�
bT⌃�1

b b

2

+ �{�T (⇢(V )Tb) + ⌘TZ}�
Z V

0

e�
T

(⇢(s)Tb)+⌘TZd⇤(s)

�

.

In addition, define

Q(V,O;✓,⇤) =

R

bG(b,O;✓,⇤) exp{�T (⇢(V )Tb) + ⌘TZ}db
R

bG(b,O;✓,⇤)db

to be the posterior expectation of exp{�T (⇢(V )Tb)+⌘TZ} with respect to b given

(O;✓,⇤). For any measurable function f(O), we use operator notation to define

Pnf =
1

n

n
X

i=1

f(Oi), and

Pf =

Z

fdP = E[f(O)].
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Thus
p
n(Pn�P) is the associated empirical process based on O. Define the class

F = {Q(V,O;✓,⇤) : V 2 [0, ⌧ ],✓ 2 ⇥,⇤ 2 V ,⇤(0) = 0,⇤(⌧)  B0}, where B0 is

the upper bound of ⇤(⌧) given in the proof of (ii), and V contains all the right-

continuous monotone functions in [0, ⌧ ]. Using the same techniques as in Appendix

A.1 of Zeng and Cai (2005), it is easy to verify that F is P-Donsker.

Di↵erentiating ln(✓,⇤) in (4.2) with respect to ⇤{Vk} and setting the equation

to zero, we obtain

⇤̂{Vk} =
�k

nPn{I(V � v)Q(v,O; ✓̂, ⇤̂)}|v=V
k

. (4.11)

Using the same structure, define

⇤̄{Vk} =
�k

nPn{I(V � v)Q(v,O;✓0,⇤0)}|v=V
k

. (4.12)

Thus

⇤̄(t) =
n
X

k=1

I(Vk  t)⇤̄{Vk} =
1

n

n
X

k=1

I(Vk  t)�k

Pn{I(V � v)Q(v,O;✓0,⇤0)}|v=V
k

.

Since (✓0,⇤0) maximizes E[ln(✓,⇤)], by taking the derivative of E[ln(✓,⇤)] with

respect to ⇤ and setting the equation to 0, it can be verified that

⇤0(t) = E



I(Vk  t)�k

P{I(V � v)Q(v,O;✓0,⇤0)}|v=V
k

�

.

sup
t2[0,⌧ ]

|⇤̄(t)� ⇤0(t)|

 sup
t2[0,⌧ ]

�����
1

n

nX

k=1

I(V
k

 t)�
k


1

P
n

{I(V � v)Q(v,O;✓0,⇤0)}
� 1

P{I(V � v)Q(v,O;✓0,⇤0)}
�����

v=Vk

�����

+ sup
t2[0,⌧ ]

�����(Pn

�P)

"
I(V

k

 t)�
k

P{I(V � v)Q(v,O;✓0,⇤0)}|
v=Vk

#�����

 sup
v2[0,⌧ ]

����
1

P
n

{I(V � v)Q(v,O;✓0,⇤0)}
� 1

P{I(V � v)Q(v,O;✓0,⇤0)}

����

+ sup
t2[0,⌧ ]

�����(Pn

�P)

"
I(V

k

 t)�
k

P{I(V � v)Q(v,O;✓0,⇤0)}|
v=Vk

#�����

(4.13)
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By Zeng and Cai (2005),

Pn{I(V � v)Q(v,O;✓0,⇤0)}

and

P{I(V � v)Q(v,O;✓0,⇤0)}

are bounded from below. Thus the first part of the above inequality (4.13) satisfies

sup
v2[0,⌧ ]

�

�

�

�

1

Pn{I(V � v)Q(v,O;✓0,⇤0)} � 1

P{I(V � v)Q(v,O;✓0,⇤0)}
�

�

�

�

= sup
v2[0,⌧ ]

�

�

�

�

Pn{I(V � v)Q(v,O;✓0,⇤0)}�P{I(V � v)Q(v,O;✓0,⇤0)}
Pn{I(V � v)Q(v,O;✓0,⇤0)}P{I(V � v)Q(v,O;✓0,⇤0)}

�

�

�

�

C10 sup
v2[0,⌧ ]

|Pn{I(V � v)Q(v,O;✓0,⇤0)}�P{I(V � v)Q(v,O;✓0,⇤0)}| .
(4.14)

for some constant C10.

Using the same argument as in Appendix A.1 of Zeng and Cai (2005), it can

be verified that {Q(v,O;✓0,⇤0) : v 2 [0, ⌧ ]} is a bounded Glivenko-Cantelli class.

Since {I(V � v) : v 2 [0, ⌧ ]} is also a Glivenko-Cantelli class, and the functional

(f, g) 7! fg for any two bounded functions f and g is Lipschitz continuous, {I(V �
v)Q(v,O;✓0,⇤0) : v 2 [0, ⌧ ]} is a bounded Glivenko-Cantelli class. Thus when n

goes to infinity

sup
v2[0,⌧ ]

|Pn{I(V � v)Q(v,O;✓0,⇤0)}�P{I(V � v)Q(v,O;✓0,⇤0)}| �! 0. (4.15)

Hence the right-hand side of the above inequality (4.14) converge to 0 as n goes

to infinity, and the first part of (4.13) disappears.

Similarly, since the class {I(V  t)/P{I(V � v)Q(v,O;✓0,⇤0)}|v=V : t 2
[0, ⌧ ]} is also a Glivenko-Cantelli class, the second part of the above inequality

also converges to zero as n goes to infinity. Therefore by inequality (4.13) we

conclude that

sup
t2[0,⌧ ]

k⇤̄(t)� ⇤0(t)k ! 0,

that is, ⇤̄ uniformly converges to ⇤0 in [0, ⌧ ].
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Using the expressions of ⇤̂ and ⇤̄ in (4.11) and (4.12), we have

⇤̂{v}
⇤̄{v} =

Pn{I(V � v)Q(v,O;✓0,⇤0)}
Pn{I(V � v)Q(v,O; ✓̂, ⇤̂)} ,

and accordingly,

⇤̂(t) =

Z t

0

Pn{I(V � v)Q(v,O;✓0,⇤0)}
Pn{I(V � v)Q(v,O; ✓̂, ⇤̂)} d⇤̄(v). (4.16)

This implies that ⇤̂(t) is absolutely continuous with respect to ⇤̄(t).

Since {I(V � v) : v 2 [0, ⌧ ]} and F are both Glivenko-Cantelli classes, {I(V �
v)Q(v,O;✓,⇤) : v 2 [0, ⌧ ],✓ 2 ⇥,⇤ 2 V ,⇤0(0) = 0,⇤(⌧)  B0} is also a Glivenko-

Cantelli class. Thus,

sup
v2[0,⌧ ]

|(Pn �P){I(V � v)Q(v,O; ✓̂, ⇤̂)}| ! 0 a.s. (4.17)

Since ✓̂ converges to ✓⇤ and ⇤̂ weakly converges to ⇤⇤, by bounded convergence

theorem, for each v 2 [0, ⌧ ], when n goes to infinity,

P{I(V � v)Q(v,O; ✓̂, ⇤̂)} ! P{I(V � v)Q(v,O;✓⇤,⇤⇤)}. (4.18)

Using assumption (A.2), it is easy to check that the derivative of P{I(V �
v)Q(v,O;✓⇤,⇤⇤)} with respect to v is uniformly bounded in [0, ⌧ ]. Thus P{I(V �
v)Q(v,O;✓⇤,⇤⇤)} is equi-continuous. By the Arzela-Ascoli theorem which states

that a bounded and equi-continuous functional sequence has uniformly convergent

subsequence, we strengthen the conclusion in (4.18) to uniform convergence:

sup
v2[0,⌧ ]

|P{I(V � v)Q(v,O; ✓̂, ⇤̂)}�P{I(V � v)Q(v,O;✓⇤,⇤⇤)}| ! 0, n ! 1.
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This conclusion, together with (4.17), implies that

sup
v2[0,⌧ ]

|Pn{I(V � v)Q(v,O; ✓̂, ⇤̂)}�P{I(V � v)Q(v,O;✓⇤,⇤⇤)}| ! 0. (4.19)

By the conclusion of (4.19) and (4.15), it follows that

⇤̂{v}
⇤̄{v} =

Pn{I(V � v)Q(v,O;✓0,⇤0)}
Pn{I(V � v)Q(v,O; ✓̂, ⇤̂)} ! P{I(V � v)Q(v,O;✓0,⇤0)}

P{I(V � v)Q(v,O;✓⇤,⇤⇤)} , (4.20)

uniformly in [0, ⌧ ].

Taking the limit with respect to n on both sides of (4.16), and applying the

conclusion of (4.20), we obtain

⇤⇤(t) =
Z t

0

P{I(V � v)Q(v,O;✓0,⇤0)}
P{I(V � v)Q(v,O;✓⇤,⇤⇤)}d⇤0(v). (4.21)

The above equation (4.21) indicates that both ⇤0(t) and ⇤⇤(t) are di↵erentiable

with respect to the Lebesgue measure. Denote �⇤(t) to be the derivative of ⇤⇤(t),

and �0(t) to be the derivative of ⇤0(t). It follows from (4.21) that

�⇤(v)
�0(v)

=
P{I(V � v)Q(v,O;✓0,⇤0)}
P{I(V � v)Q(v,O;✓⇤,⇤⇤)} .

Thus (4.20) implies that
⇤̂{V }
⇤̄{V } ! �⇤(V )

�0(V )
(4.22)

uniformly in [0, ⌧ ]. Integrating the denominator and numerator over V in [0, v] on

both sides in (4.22), we obtain that ⇤̂(v)/⇤̄(v) uniformly converges to ⇤⇤(v)/⇤0(v)

in [0, ⌧ ]. Since by (4.17) we already know that ⇤̄(v) uniformly converges to ⇤0(v)

in [0, ⌧ ] for the denominators in (4.5), we conclude that ⇤̂(v) uniformly converges

to ⇤⇤(v) in [0, ⌧ ].
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Since (✓̂, ⇤̂) maximizes ln(✓,⇤), it follows that

0  1

n
ln(✓̂, ⇤̂)� 1

n
ln(✓0, ⇤̄) = Pn

"

� log
⇤̂{V }
⇤̄{V }

#

+Pn

"

log

R

bG(b,O; ✓̂, ⇤̂)db
R

bG(b,O;✓0, ⇤̄)db

#

.

(4.23)

Similar as Zeng and Cai (2005), it is easy to verify that � log[⇤̂{V }/⇤̄{V }] and
log[
R

bG(b,O; ✓̂, ⇤̂)db/
R

bG(b,O;✓0, ⇤̄)db] are both Glivenko-Cantelli classes.

Thus

sup
V 2[0,⌧ ]

�

�

�

�

�

(Pn �P)

"

� log
⇤̂{V }
⇤̄{V }

#

�

�

�

�

�

! 0,

sup
V 2[0,⌧ ]

�

�

�

�

�

(Pn �P)

"

log

R

bG(b,O; ✓̂, ⇤̂)db
R

bG(b,O;✓0, ⇤̄)db

#

�

�

�

�

�

! 0.

(4.24)

Consider the first part on the right-hand side of equation (4.23). By (4.22) we

know that ⇤̂{V }/⇤̄{V } uniformly converges to �⇤(V )/�0(V ), thus by applying the

bounded convergence theorem, we obtain

P

"

� log
⇤̂{V }
⇤̄{V }

#

! P



� log
�⇤(V )

�0(V )

�

. (4.25)

Similarly, for the second part on the right-hand side of (4.23), since ✓̂ ! ✓

⇤, ⇤̂

uniformly converges to ⇤⇤ and ⇤̄ uniformly converges to ⇤0, applying the bounded

convergence theorem again, we obtain

P

"

log

R

bG(b,O; ✓̂, ⇤̂)db
R

bG(b,O;✓0, ⇤̄)db

#

! P



log

R

bG(b,O;✓⇤,⇤⇤)db
R

bG(b,O;✓0,⇤0)db

�

. (4.26)

Combining the conclusions of (4.24), (4.25) and (4.26), and taking the limit

with respect to n on both sides of (4.23), we obtain

P



log

⇢

�⇤(V )�
R

bG(b,O;✓⇤,⇤⇤)db
�0(V )�

R

bG(b,O; ✓0,⇤0)db

��

� 0.

Since the measure P is with respect to the distribution with true parameter

(✓0,⇤0), the left-hand side of the above inequality is the negative Kullback-Leibler
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information. Then it follows that, with probability one,

�⇤(V )�
Z

b
G(b,O;✓⇤,⇤⇤)db = �0(V )�

Z

b
G(b,O;✓0,⇤0)db. (4.27)

According to assumption (A.8) and (A.9), P (V  ⌧,� = 1|T ,Z) > 0 with

probability one. Thus equation (4.27) holds for the set {(V,�) : V 2 [0, ⌧ ],� = 1}.
By assumption (A.5), P (V = ⌧,� = 0|T ,Z) = P (C = ⌧,� = 0|T ,Z) > 0 with

probability one. Thus equation (4.27) also holds for the set {V = ⌧,� = 0}.
However, since assumption (A.5), (A.8) and (A.9) imply that P (C � ⌧ |T ,Z) > c0

with probability one for some positive constant c0, P (V < ⌧,� = 0|T ,Z) =

P (C < ⌧,� = 0|T ,Z) < P (C < ⌧ |T ,Z) < 1 � c0 with probability one. Thus

the set {(V,�) : V 2 [0, ⌧),� = 0} might be a null set for which equation (4.27)

may not hold. Zeng and Cai (2005) proved that equation (4.27) also holds for

{(V,�) : V 2 [0, ⌧),� = 0}.

Let � = 0 and V = 0 in equation (4.27). Since the expressions inside the

integrals on both sides of (4.27) are quadratic functions of b, after integrating over

b, we obtain that the following equation holds with probability one:
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|⌃⇤
e|�N/2|⌃⇤

b |�1/2|⌃⇤�1
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X

j=1
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X
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N
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⇥

⇢j⌃
⇤�1
e (Wj � ⇢̃Tj µ⇤)

⇤

9

=

;

=|⌃0e|�N/2|⌃0b|�1/2|⌃�1
0b +

N
X

j=1

⇢j⌃
�1
0e ⇢j |�1/2

⇥ exp

8

<

:

�1

2

N
X

j=1

(Wj � ⇢̃Tj µ0)
T
⌃

�1
0e (Wj � ⇢̃Tj µ0)

+
1

2

N
X

j=1

⇥

(Wj � ⇢̃Tj µ)T⌃�1
0e ⇢

T
j

⇤

(⌃�1
0b +

N
X

j=1

⇢

T
j ⌃

�1
0e ⇢j)

�1
N
X

j=1

⇥

⇢j⌃
�1
0e (Wj � ⇢̃Tj µ0)

⇤

9

=

;

(4.28)

Let D = (⌃�1
b +

PN
j=1 ⇢

T
j ⌃

�1
e ⇢j)

�1. The quadratic and linear terms of Wj in

the exponential part yield

N
X

j=1

WT
j ⌃

⇤�1
e Wj �

"

N
X

j=1

WT
j ⌃

⇤�1
e ⇢

T
j

#

D⇤
"

N
X

j=1

⇢j⌃
⇤�1
e Wj

#

=
N
X

j=1

WT
j ⌃

�1
0e Wj �

"

N
X

j=1

WT
j ⌃

�1
0e ⇢

T
j

#

D0

"

N
X

j=1

⇢j⌃
�1
0e Wj

#

,

(4.29)

and

N
X

j=1

(⇢̃T
j µ

⇤)T⌃⇤�1
e Wj �

"

N
X

j=1

(⇢̃T
j µ

⇤)T⌃⇤�1
e ⇢

T
j

#

D⇤
"

N
X

j=1

⇢j⌃
⇤�1
e Wj

#

=
N
X

j=1

(⇢̃T
j µ0)

T⌃�1
0e Wj �

"

N
X

j=1

(⇢̃T
j µ0)

T⌃�1
0e ⇢

T
j

#

D0

"

N
X

j=1

⇢j⌃
�1
0e Wj

#

(4.30)

Letting W1 6= 0 and Wj = 0 for all j = 2, . . . , N , (4.29) and (4.30) become

WT
1 (⌃

⇤�1
e �⌃⇤�1

e ⇢

T
1D

⇤
⇢1⌃

⇤�1
e )W1 = WT

1 (⌃
�1
0e �⌃�1

0e ⇢
T
1D0⇢1⌃

�1
0e )W1 (4.31)



96

(⇢̃T
1µ

⇤)T (⌃⇤�1
e �⌃⇤�1

e ⇢

T
1D

⇤
⇢1⌃

⇤�1
e )W1 = (⇢̃T

1µ0)
T (⌃�1

0e �⌃�1
0e ⇢

T
1D0⇢1⌃

�1
0e )W1

(4.32)

Since W1 is arbitrary, (4.31) yields

⌃⇤�1
e �⌃⇤�1

e ⇢

T
1D

⇤
⇢1⌃

⇤�1
e = ⌃�1

0e �⌃�1
0e ⇢

T
1D0⇢1⌃

�1
0e . (4.33)

Combining this with (4.32), and using full rank assumption of ⇢̃j in (A.6), we

obtain that µ⇤ = µ0.

In order to prove ⌃⇤
e = ⌃0e and ⌃⇤

b = ⌃0b, we reexamine equality (4.29). Let

W = (WT
1 ,W

T
2 , . . . ,W

T
N)

T , ⌃⇤�1
E = IN ⌦⌃⇤�1

e and ⌃�1
0E = IN ⌦⌃�1

0e . Follow the

assumption (A.4) and let R = (⇢1, . . . ,⇢p). Thus equality (4.29) can be rewritten

as

WT⌃⇤�1
E W �WT⌃⇤�1

E RTD⇤R⌃⇤�1
E W = WT⌃�1

0EW �WT⌃�1
0ER

TD0R⌃�1
0EW.

Since both sides of the equality are quadratic forms of W and W is arbitrary in

the space RpN , the equality can be reduced to the linear form

⌃⇤�1
E W �⌃⇤�1

E RTD⇤R⌃⇤�1
E W = ⌃�1

0EW �⌃�1
0ER

TD0R⌃�1
0EW. (4.34)

Define two subspaces

Ker⇤ = {W 2 RpN : R⌃⇤�1
E W = 0},

Ker0 = {W 2 RpN : R⌃�1
0EW = 0},

and the associated degrees of freedom are dim(Ker⇤) = dim(Ker0) = pN � d.

According to assumption (A.4) that N > 2d, since p � 1, we have pN > 2d, thus

by the inequality

dim(Ker⇤) + dim(Ker0)� dim(Ker⇤ \Ker0) = dim(Ker⇤ +Ker0)  pN,

we obtain that

dim(Ker⇤ \Ker0) � 2(pN � d)� pN = pN � 2d.
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For any W 2 Ker⇤ \Ker0, equation (4.34) reduces to

(⌃⇤�1
E �⌃�1

0E)W = 0.

Let A = ⌃⇤�1
E �⌃�1

0E and A0 = ⌃⇤�1
e �⌃�1

0e . Our goal is to prove that A0 = 0.

Denote the kernel of operator A as

Ker(A) = {W 2 RpN : AW = 0}.

Since Ker⇤ \Ker0 ⇢ Ker(A), we have

dim(Ker(A)) � dim(Ker⇤ \Ker0) � pN � 2d. (4.35)

Denote the ranges of the operator A and A0 as

Ran(A) = {AW : W 2 RpN}, and

Ran(A0) = {A0W0 : W0 2 Rp},

respectively. Since A = IN ⌦A0, it is easy to verify that

dim(Ran(A)) = Ndim(Ran(A0)). (4.36)

In addition, since for operator A we have dim(Ker(A)) + dim(Ran(A)) = pN , it

follows from (4.35) and (4.36) that

Ndim(Ran(A0)) = dim(Ran(A))  pN � (pN � 2d) = 2d.

According to assumption (A.4) that N > 2d, we conclude that dim(Ran(A0)) = 0.

Therefore, A0 = 0, i.e., ⌃⇤
e = ⌃0e. Moreover, according to assumption (A.6) that

RRT is full rank, it is easy to verify that D⇤ = D0, which directly yields ⌃⇤
b = ⌃0b.

Next, let � = 0 in equation (4.27), since all the density parts related to Wi

cancel out by the above conclusions, we obtain
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Eb
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,

where b ⇠ Nd(µ̃b, ⌃̃b) with
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PN
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0e Wj as pa-
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PN
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exp
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�
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�

= exp
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Equivalently,

�⇤(t)e�
⇤T

(⇢(t)Tb)+⌘⇤TZ = �0(t)e
�

T

0 (⇢(t)Tb)+⌘T

0 Z.

Taking the logarithm on both sides of the equation and rearrange the terms, we

obtain that there exits some function of time g̃(t) such that

g̃(t) = log �⇤(t)� log �0(t) = (�0 � �⇤)T (⇢(t)Tb) + (⌘0 � ⌘⇤)TZ,

for any b. According to assumption (A.7) and (A.11) we conclude that �⇤ = �0,

⌘

⇤ = ⌘0 and ⇤⇤ = ⇤0. ⇤

Proof of Theorem 2

Let  = (✓,⇤) 2  = {(✓,⇤) : k✓ � ✓0k + supt2[0,⌧ ] |⇤(t) � ⇤0(t)|  �} for a
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fixed small �. Note that  is a convex set. Define a set

H = {(h1, h2) : kh1k  1, kh2kV  1},

where kh2kV is the total variation of h2 in [0, ⌧ ] defined as

sup
0=t0t1···t

N

=⌧

N
X

j=1

|h2(tj)� h2(tj�1)|.

Recall that l(O;✓,⇤) is the log likelihood of a single subject. The associated

Fréchet derivative is given by

f ,h = l✓(✓,⇤)
Th1 + l⇤(✓,⇤)[h2], (✓,⇤) 2  , (h1, h2) 2 H, (4.37)

where l✓(✓,⇤) = @l(O;✓,⇤)/@✓, and l⇤(✓,⇤) is the derivative of l(O;✓,⇤✏) with

respect to ✏ at ✏ = 0, where ⇤✏(t) =
R t

0 (1 + ✏h2(s))d⇤0(s). Define empirical

processes

Sn( )(h1, h2) = Pnf ,h,

S( )(h1, h2) = Pf ,h.

By the definition of f ,h, Sn and S are both maps from  to l1(H) (i.e., the

collection of all bounded functions from H to R).
The asymptotic normality of  ̂ = (✓̂, ⇤̂) is established by checking the four

conditions of the following theorem (Van Der Vaart and Wellner (1996), Theorem

3.3.1):

Theorem Let  be a subset of a Banach space that contains the true parameter

 0. Let S be a fixed map and Sn be a series of random maps, both of which map

from  to a Banach space such that

(a)
p
n(Sn � S)( ̂n)�

p
n(Sn � S)( 0) = o⇤p(1 +

p
nk ̂n � 0k);

(b) The sequence
p
n(Sn � S)( 0) converges in distribution to a tight random

element Z0;

(c) The function  ! S( ) is Fréchet di↵erentiable at  0 with a continuously
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invertible derivative rS 0 on its range;

(d) S( 0) = 0.  ̂n satisfies Sn( ̂n) = o⇤p(n
�1/2) and  ̂n converges in outer

probability to  0.

Then,
p
n( ̂n � 0) ) �rS�1

 0

Z0.

We first check condition (a). According to Van Der Vaart and Wellner (1996),

when the observations are independent and identical (iid), the theorem can be

applied with Sn( )h = Pnf ,h and S( )h = Pf ,h, where f ,h is a measurable

function indexed by  and H. In this case, for given  2  ,
p
n(Sn � S)( )h =

p
n(Pn �P)f ,h

�
= {Gnf ,h : h = (h1, h2) 2 H}

is an empirical process indexed by the class {f ,h : h 2 H}. Thus, for the iid case,

condition (a) in the above theorem becomes

kGn(f ̂
n

,h � f 0,h)k = o⇤p(1 +
p
nk ̂n � 0k). (4.38)

Therefore, using the measurable function f ,h defined in (4.37), we only need to

verify (4.38) instead of condition (a).

Lemma 3.3.5 in Van Der Vaart and Wellner (1996) provides su�cient conditions

for (4.38). It claims that (4.38) holds if  ̂n converges in outer probability to  0,

and the following tow conditions are satisfied

(a.1) {f ,h � f 0,h :  2  ,h 2 H} is P-Donsker,

(a.2) suph2H P (f ̂
n

,h � f 0,h)
2 ! 0 as  ̂ !  0.

Since the convergence of  ̂n to  0 is justified by Theorem 1, and both (a.1) and

(a.2) are verified in the Appendix A.2 of Zeng and Cai (2005), equation (4.38)

holds accordingly. Thus condition (a) is satisfied.

For condition (b), since it is easy to verify that the class {f 0,h : h 2 H} is P-

Donsker (see (Zeng and Cai, 2005), Appendix A.2, for more details), there exists

a tight Gaussian process Z0 2 l1(H) such that the empirical process
p
n(Sn �

S)( 0) =
p
n(Pn �P)f 0,h converges to Z0 in distribution.
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For condition (d), S( 0) = 0 and S( ̂n) = 0 because (✓0,⇤0) maximizes

Pl(O;✓,⇤), and (✓̂, ⇤̂) maximizes Pn(O;✓,⇤). Thus with the consistency result

of theorem 1, condition (d) is also satisfied.

It remains to verify condition (c). By the definition of Fréchet di↵erentiablility,

S( ) is Fréchet di↵erentiable at  0 if there exists a linear operator A
 0

:  7!
l1(H) such that

S( )(h1, h2)� S( 0)(h1, h2)

= A
 0

( � 0)(h1, h2) + o(k✓ � ✓0k+ sup
t2[0,⌧ ]

|⇤(t)� ⇤0(t)|)(kh1k+ kh2kV )
(4.39)

for any (h1, h2) 2 H. The existence of A
 0

is proved below.

Let (he
1,h

b
1,h

µ
1 ,h

�
1 ,h

⌘
1) be the components of h1 corresponding to each of the

parameters (⌃e,⌃b,µ,�,⌘). Thus f ,h = l✓(✓,⇤)Th1+ l⇤(✓,⇤)[h2] can be written

out explicitly in the expression

g1(O;✓,⇤)Th1�
Z V

0

g2(t,O;✓,⇤)Th1d⇤(t)+�h2(V )�
Z V

0

g3(t,O;✓,⇤)h2(t)d⇤(t),

(4.40)
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where
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=

⇢

Z

b
G(b,O;✓,⇤)db

��1

⇥
Z

b
G(b,O;✓,⇤)⇥

h

{h�T1 (⇢(t)Tb) + h⌘T1 Z}e�
T

(⇢(t)Tb)+⌘TZ
i

db,

g3(t,O;✓,⇤)

=

⇢

Z

b
G(b,O;✓,⇤)db

��1 Z

b
G(b,O;✓,⇤)⇥ e�

T

(⇢(t)Tb)+⌘TZdb.

Here, Db andDe are symmetric matrices such that Vec(Db) = hb
1 and Vec(De) = he

1,

respectively.

For j = 1, 2, 3, we denote r✓gj to be the derivative of gj with respect to ✓,

and denote r⇤gj[�⇤] to be the derivative of gj with respect to ⇤ along the path

⇤+✏�⇤. It is easy to check that for j = 1, 2, 3, the derivative of gj with respect to ⇤

along the path ⇤ + ✏�⇤ can be expressed as r⇤gj[�⇤] =
R t

0 gj+3(s,O;✓,⇤)d�⇤(s)

for some gk(s,O;✓,⇤), k = 4, 5, 6. Thus, by the mean value theorem, for any

(✓,⇤,h1, h2) in  ⇥H,



103

l✓(✓,⇤)
Th1 + l⇤(✓,⇤)[h2]� l✓(✓0,⇤0)

Th1 � l⇤(✓0,⇤0)[h2]

=(✓ � ✓0)T
⇢

r✓g1(O; ✓̃, ⇤̃)�
Z V

0

r✓g2(t,O; ✓̃, ⇤̃)d⇤0(t)

�

h1

+ hT
1

Z ⌧

0

I(t  V )
n

g4(t,O; ✓̃, ⇤̃)� g2(t,O; ✓̃, ⇤̃)

� g5(t,O; ✓̃, ⇤̃)

Z V

t

d⇤0(s)

�

d(⇤� ⇤0)(t)

� (✓ � ✓0)T
Z ⌧

0

I(t  V )r✓g3(t,O; ✓̃, ⇤̃)h2(t)d⇤0(t)

�
Z ⌧

0

⇢

I(t  V )g6(t,O; ✓̃, ⇤̃)

Z V

t

h2(s)d⇤0(s)

+ I(t  V )g3(t,O; ✓̃, ⇤̃)h2(t)
o

d(⇤� ⇤0)(t),

where (✓̃, ⇤̃) = ⇠⇤(✓,⇤)+(1�⇠⇤)(✓0,⇤0) for some ⇠⇤ 2 [0, 1]. Thus by the definition

of S( )(h1, h2), it follows that

S( )(h1, h2)� S( 0)(h1, h2)

=(✓ � ✓0)TP
⇢

r✓g1(O; ✓̃, ⇤̃)�
Z V

0

r✓g2(t,O; ✓̃, ⇤̃)d⇤0(t)

�

h1

+ hT
1

Z ⌧

0

P
h

I(t  V )
n

g4(t,O; ✓̃, ⇤̃)� g2(t,O; ✓̃, ⇤̃)

� g5(t,O; ✓̃, ⇤̃)

Z V

t

d⇤0(s)

��

d(⇤� ⇤0)(t)

� (✓ � ✓0)T
Z ⌧

0

PI(t  V )r✓g3(t,O; ✓̃, ⇤̃)h2(t)d⇤0(t)

�
Z ⌧

0

P

⇢

I(t  V )g6(t,O; ✓̃, ⇤̃)

Z V

t

h2(s)d⇤0(s)

+ I(t  V )g3(t,O; ✓̃, ⇤̃)h2(t)
o

d(⇤� ⇤0)(t).
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Following the above equation, define A
 0

( � 0) by the expression

A
 0

( � 0)(h1, h2)

=(✓ � ✓0)TP
⇢

r✓g1(O;✓0,⇤0)�
Z V

0

r✓g2(t,O;✓0,⇤0)d⇤0(t)

�

h1

+ hT
1

Z ⌧

0

P [I(t  V ) {g4(t,O;✓0,⇤0)� g2(t,O;✓0,⇤0)

� g5(t,O;✓0,⇤0)

Z V

t

d⇤0(s)

��

d(⇤� ⇤0)(t)

� (✓ � ✓0)T
Z ⌧

0

PI(t  V )r✓g3(t,O;✓0,⇤0)h2(t)d⇤0(t)

�
Z ⌧

0

P

⇢

I(t  V )g6(t,O;✓0,⇤0)

Z V

t

h2(s)d⇤0(s)

+ I(t  V )g3(t,O;✓0,⇤0)h2(t)} d(⇤� ⇤0)(t).

(4.41)

According to the appendix A.3 of Zeng and Cai (2005), for j = 1, . . . , 6, the

following inequalities hold for some constant r1 and r2:

sup
t2[0,⌧ ]

kgj(t,O; ✓̃, ⇤̃)� gj(t,O;✓0,⇤0)k

 er1+r2
P

N

j=1 kWj

k
(

k✓ � ✓0k+ sup
t2[0,⌧ ]

|⇤(t)� ⇤0(t)|
)

.

Using this inequality, it is convenient to check that equation (4.39) holds for

A
 0

( �  0)(h1, h2) defined in (4.41). Therefore, S( 0) is Fréchet di↵erentiable

at  0, and we can denote

rS 0( � 0)(h1, h2) = A
 0

( � 0)(h1, h2)

to be the derivative of S( 0) at  0. Note that similar to S( ), rS 0 is a function

mapping from  to l1(H). It remains to show that rS 0 is continuously invertible

on its range in l1(H).

From the definition of A
 0

( � 0)(h1, h2) in (4.41), it is clear that rS 0 can
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be rewritten into

rS 0(✓1 � ✓2,⇤1 � ⇤2)(h1, h2)

= (✓1 � ✓2)T⌦1[h1, h2] +

Z ⌧

0

⌦2[h1, h2]d(⇤1 � ⇤2)(t),
(4.42)

where

⌦1[h1, h2] =hT
1P

⇢

r✓g1(O;✓0,⇤0)�
Z V

0

r✓g2(t,O;✓0,⇤0)d⇤0(t)

�

�
Z ⌧

0

PI(t  V )r✓g3(t,O;✓0,⇤0)h2(t)d⇤0(t),

⌦2[h1, h2] =hT
1

Z ⌧

0

P [I(t  V ) {g4(t,O;✓0,⇤0)� g2(t,O;✓0,⇤0)

� g5(t,O;✓0,⇤0)

Z V

t

d⇤0(s)

��

�
Z ⌧

0

P

⇢

I(t  V )g6(t,O;✓0,⇤0)

Z V

t

h2(s)d⇤0(s)

�

�P{I(t  V )g3(t,O;✓0,⇤0)}h2(t).

From the above definitions, the operator ⌦ = (⌦1,⌦2) can be taken as a linear

operator that maps from H ⇢ Rd ⇥ BV [0, ⌧ ] to itself, where BV [0, ⌧ ] contains all

the functions with finite total variation in [0, ⌧ ].

From equation (4.42), the operator (✓1 � ✓2,⇤1 � ⇤2) can be treated as a

functional element in l1(H) via the definition

(✓1 � ✓2,⇤1 � ⇤2)(h1, h2) = (✓1 � ✓2)Th1 +

Z ⌧

0

h2(t)d(⇤1 � ⇤2)(t)

for any (h1, h2) 2 Rd⇥BV [0, ⌧ ]. Thus by (4.42), the functionrS 0 can be regarded

as a linear operator from l1(H) to itself, and for any (�✓, �⇤) 2 l1(H) the norm

of rS 0 is given by
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krS 0(�✓, �⇤)kl1(H) = sup
(h1,h2)2H

|rS 0(�✓, �⇤)(h1, h2)|

= sup
(h1,h2)2H

�

�

�

�

�✓T⌦1[h1, h2] +

Z ⌧

0

⌦2[h1, h2]d�⇤(t)

�

�

�

�

= sup
⌦([h1,h2])2⌦(H)

|(�✓, �⇤)⌦[h1, h2]|

= k(�✓, �⇤)kl1(⌦(H)).

Thus if we can find some positive constant " such that "H ⇢ ⌦(H), it follows that

k(�✓, �⇤)kl1(⌦(H)) � "k(�✓, �⇤)kl1(H),

and rS 0 is hence continuously invertible.

According to Zeng and Cai (2005), in order to show that "H ⇢ ⌦(H) for some

" (i.e., ⌦ is invertible), it is su�cient to verify that ⌦ is one-to-one. Since ⌦ is

linear, it is left to prove that if ⌦[h1, h2] = 0, then h1 = 0 and h2 = 0.

If ⌦[h1, h2] = 0, by choosing ✓1 � ✓2 = "̃h1 and ⇤1 � ⇤2 = "̃
R

h2d⇤0 in

(4.42) for a small constant "̃, we obtain that rS 0(h1,
R

h2d⇤0)[h1, h2] = 0. Note

that the left-hand side is the negative information matrix in the submodel with

parameter (✓0 + "̃h1,⇤0 + "̃
R

h2d⇤0). The corresponding score equation should

also equal 0. That is, l✓(✓0,⇤0)Th1 + l⇤(✓0,⇤0)[h2] = 0. Thus, using the notation

(he
1,h

b
1,h

µ
1 ,h

�
1 ,h

⌘
1),Db,De defined above, together with the expression of (4.2), the

following equation holds with probability one:
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0 =

Z

b
G(b,O;✓0,⇤0)

⇥


1

2
bT⌃�1

0b Db⌃
�1
0b b� 1

2
tr(⌃�1

0b Db)� N

2
tr(⌃�1

0e De)

+
1

2

N
X

j=1

(Wj � ⇢̃T
j µ0 � ⇢T

j b)
T⌃�1

0e De⌃
�1
0e (Wj � ⇢̃T

j µ0 � ⇢T
j b)

+
N
X

j=1

(Wj � ⇢̃T
j µ0 � ⇢T

j b)
T⌃�1

0e ⇢̃
T
j h

µ
1 +�{(⇢(V )Tb)Th�1 + ZTh⌘1}

�
Z V

0

{(⇢(t)Tb)Th�1 + ZTh⌘1}e�
T

0 (⇢(t)Tb)+⌘T

0 Zd⇤0(t)

�

db

+

Z

b
G(b,O;✓0,⇤0)



�h2(V )�
Z V

0

h2(t)e
�

T

0 (⇢(t)Tb)+⌘T

0 Zd⇤0

�

db.

(4.43)

Using the same argument as for equation (4.31) in the proof for consistency,

we obtain that (4.43) holds for all {(V,�) : � = 0, V 2 [0, ⌧ ]}. Let � = 0 and

V = 0, then (4.43) becomes

0 =

Z

b
G0(b,O;✓0,⇤0)

⇥
⇢

1

2
bT⌃�1

0b Db⌃
�1
0b b� 1

2
tr(⌃�1

0b Db)� N

2
tr(⌃�1

0e De)

+
1

2

N
X

j=1

(Wj � ⇢̃T
j µ0 � ⇢T

j b)
T⌃�1

0e De⌃
�1
0e (Wj � ⇢̃T

j µ0 � ⇢T
j b)

+
N
X

j=1

(Wj � ⇢̃T
j µ0 � ⇢T

j b)
T⌃�1

0e ⇢̃
T
j h

µ
1 +�{(⇢(V )Tb)Th�1 + ZTh⌘1}

)

db,

(4.44)
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where

G0(b,O;✓0,⇤0)

=(2⇡)(pN+d)/2|⌃0e|�N/2|⌃0b|�1/2

⇥ exp

(

�1

2
bT (⌃�1

0b +
N
X

j=1

⇢j⌃
�1
0e ⇢j)b+

N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e ⇢

T
j b

)

⇥ exp

(

�1

2

N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e (Wj � ⇢̃T

j µ0)

)

.

(4.45)

Thus, using the same technique as in the proof of consistency, b can be treated

as a random vector from the normal distribution Nd(⌫,�), where � = (⌃�1
0b +

PN
j=1 ⇢

T
j ⌃

�1
0e ⇢j)

�1 and ⌫ = �
h

PN
j=1 ⇢j⌃

�1
0e (Wj � ⇢̃T

j µ0)
i

. Hence equation (4.44)

can be treated as the expectation of a quadratic function of b, thus having the

explicit form

0 =(2⇡)�pN/2|D|1/2|⌃0e|N/2|⌃0b|�1/2

⇥ exp

8

<

:

1

2

2

4

N
X

j=1

(Wj � ⇢̃Tj µ0)
T
⌃

�1
0e ⇢

T
j

3

5

�

2

4

N
X

j=1

⇢j⌃
�1
0e (Wj � ⇢̃jµ0)

T

3

5

� 1

2

N
X

j=1

(Wj � ⇢̃Tj µ0)
T
⌃

�1
0e (Wj � ⇢̃Tj µ0)

9

=

;

⇥
8

<

:

1

2
tr

2

4(⌃�1
0b Db⌃

�1
0b +

N
X

j=1

⇢j⌃
�1
0e De⌃

�1
0e ⇢

T
j )�

3

5� 1

2
tr(⌃�1

0b Db)� N

2
tr(⌃�1

0e De)

+
1

2

N
X

j=1

(Wj � ⇢̃Tj µ0)
T
⌃

�1
0e De⌃

�1
0e (Wj � ⇢̃Tj µ0) + ⌫

T
⌃0bDb⌃0b⌫

+
1

2
⌫

T

2

4

N
X

j=1

⇢j⌃
�1
0e De⌃

�1
0e ⇢

T
j

3

5

⌫ �
N
X

j=1

(Wj � ⇢̃Tj µ0)
T
⌃

�1
0e De⌃

�1
0e ⇢

T
j ⌫

+
N
X

j=1

(Wj � ⇢̃Tj µ0)
T
⌃

�1
0e ⇢̃

T
j h

µ
1 � ⌫T

2

4

N
X

j=1

⇢j⌃
�1
0e ⇢̃

T
j

3

5

h

µ
1

9

=

;

Rearranging the above equation and canceling the non-negative multipliers, we



109

obtain

0 =tr(⌃�1
0b Db⌃

�1
0b �) + tr(

N
X

j=1

⇢j⌃
�1
0e De⌃

�1
0e ⇢

T
j �)� tr(⌃�1

0b Db)�Ntr(⌃�1
0e De)

+
N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e De⌃

�1
0e (Wj � ⇢̃T

j µ0) + ⌫
T⌃0bDb⌃0b⌫

+ ⌫T

"

N
X

j=1

⇢j⌃
�1
0e De⌃

�1
0e ⇢

T
j

#

⌫ � 2
N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e De⌃

�1
0e ⇢

T
j ⌫

+ 2
N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e ⇢̃

T
j h

µ
1 � 2⌫T

"

N
X

j=1

⇢j⌃
�1
0e ⇢̃

T
j

#

hµ
1

(4.46)

Since the right-hand side of (4.46) is a second-order polynomial of (Wj�⇢̃T
j µ0)

and Wj is arbitrary for all j = 1, . . . , N , the first and second order terms are zero,

respectively. Let xj = Wj � ⇢̃T
j µ0.

We first check the first-order terms xj. Let Ẽ =
PN

j=1 ⇢j⌃
�1
0e ⇢̃

T
j , we obtain

0 =
N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e ⇢̃

T
j h

µ
1 �

N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e ⇢

T
j Ẽh

µ
1

=
N
X

j=1

(Wj � ⇢̃T
j µ0)

T⌃�1
0e (⇢̃j � Ẽ⇢j)

Thµ
1

(4.47)

Since (Wj � ⇢̃T
j µ0) is arbitrary in Rp, it follows that

⌃�1
0e (⇢̃

T
j � ⇢T

j Ẽ)h
µ
1 = 0, for j = 1, . . . , N.

Defining the pN ⇥ pN matrix A = ⌃�1
0e ⌦ IN , and the pN ⇥ d̃ matrix B =

(⇢̃T
1 � ⇢T

1 Ẽ, . . . , ⇢̃
T
N � ⇢T

N Ẽ)
T , the above equation can be rewritten as

ABhµ
1 = 0.

Multipling both sides of the above equation by A�1, we obtain

Bhµ
1 = 0.
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Then multipling both sides of the above equation by BT , we obtain

BTBhµ
1 = 0.

By assumption (A.4), since N > d̃ and p � 1, it follows that pN > d̃. Then the

d̃⇥ d̃ matrix BTB is of full rank. Thus we conclude that hµ
1 = 0.

Next, checking the second-order terms of xj in (4.46), we obtain that

0 =

 

N
X

j=1

xT
j ⌃

�1
0e ⇢

T
j

!

�⌃�1
0b Db⌃

�1
0b �

 

N
X

j=1

⇢j⌃
�1
0e xj

!

+
N
X

j=1

xT
j ⌃

�1
0e De⌃

�1
0e xj

+

 

N
X

j=1

xT
j ⌃

�1
0e ⇢

T
j

!

�

 

N
X

j=1

⇢j⌃
�1
0e De⌃

�1
0e ⇢

T
j

!

�

 

N
X

j=1

⇢j⌃
�1
0e xj

!

� 2

 

N
X

j=1

xT
j ⌃

�1
0e De⌃

�1
0e ⇢

T
j

!

�

 

N
X

j=1

⇢j⌃
�1
0e xj

!

.

(4.48)

Let S =
PN

j=1 ⇢j⌃
�1
0e xj and E = ⌃�1

0e De⌃
�1
0e . The above equation becomes

0 = S

T
�⌃

�1
0b Db⌃

�1
0b �S+

N
X

j=1

x

T
j Exj + S

T
�

0

@

N
X

j=1

⇢jE⇢
T
j

1

A

�S� 2

0

@

N
X

j=1

x

T
j E⇢

T
j

1

A

�S

= S

T
�⌃

�1
0b Db⌃

�1
0b �S+

N
X

j=1

�

x

T
j Exj + S

T
�⇢jE⇢

T
j �S� 2xT

j E⇢
T
j �S

�

= S

T
�⌃

�1
0b Db⌃

�1
0b �S+

N
X

j=1

�

xj � ⇢Tj �S
�T

E

�

xj � ⇢Tj �S
�

.

(4.49)

By the definition of S, in the above equation, S is an arbitrary vector in Rd

because xj is arbitrary in Rp and ⇢j is full rank by assumption (A.6). Thus,

the right-hand side of (4.49) is the sum of N + 1 quadratic terms. Since both E

and �⌃�1
0b Db⌃

�1
0b � are symmetric and non-negative definite, it follows that E =

⌃�1
0e De⌃

�1
0e = 0 and �⌃�1

0b Db⌃
�1
0b � = 0 Since � is invertible, we conclude that
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De = 0 and Db = 0.

Next, let � = 0 in (4.43). Based on the above conclusions that hµ
1 = 0, De = 0

and Db = 0, we obtain that

Eb



exp

⇢

�
Z V

0

e�
T

0 (⇢(t)Tb)+⌘T

0 Zd⇤0(t)

�

⇥
Z V

0

e�
T

0 (⇢(t)Tb)+⌘T

0 Z{(⇢(t)Tb)Th�1 + ZTh⌘1 + h2(t)}d⇤0(t)

�

= 0,

(4.50)

where b is from Nd(⌫,�) as in (4.44), with

� = (⌃�1
0b +

N
X

j=1

⇢

T
j ⌃

�1
0e ⇢j)

�1,

and

⌫ = �

"

N
X

j=1

⇢j⌃
�1
0e (Wj � ⇢̃T

j µ0)

#

.

Since b is a complete and su�cient statistic for ⌫, it follows that

Z V

0

e�
T

0 (⇢(t)Tb)+⌘T

0 Z{(⇢(t)Tb)Th�1 + ZTh⌘1 + h2(t)}d⇤0(t) = 0,

which yields

(⇢(t)Tb)Th�1 + ZTh⌘1 + h2(t) = 0,

with an arbitrary b. Thus by assumption (A.7), we conclude that h�1 = 0, h⌘1 = 0

and h2(t) ⌘ 0.

Now that we have verified that conditions (a) to (d) of the theorem are satisfied,p
n(✓̂ � ✓0, ⇤̂� ⇤0) weakly converges to a tight random element in l1(H). Using

the same argument as in Zeng and Cai (2005), we conclude that
p
n(✓̂�✓0, ⇤̂�⇤0)

weakly converges to a Gaussian process in l1(H), and ✓̂ is an e�cient estimator

for ✓0. ⇤



Chapter 5
Nonparametric Joint Modeling of

Survival and Longitudinal Process:

A Maximum Likelihood Approach

5.1 Introduction

In biomedical and public health study it is often of interest to explore the relation-

ship between the time-to-event and the longitudinal covariates which are observed

intermittently over a study period and usually contaminated by measurement er-

rors. Several parametric joint modeling schemes have been developed in the liter-

ature to meet the practical need (Wulfsohn and Tsiatis, 1997; Song et al., 2002b;

Hsieh et al., 2006; Faucett and Thomas, 1996; Faucett et al., 1998; Henderson

et al., 2000; Tsiatis and Davidian, 2001). In these studies, the longitudinal process

is often assumed to follow a simple linear mixed-e↵ects model, and the survival

process is specified by Cox model with varying covariates. The two submodels are

usually linked by a small number of random e↵ects shared by them. Various model

fitting methods, including regression calibration (Tsiatis et al., 1995), maximum

joint likelihood method (Wulfsohn and Tsiatis, 1997; Zeng and Cai, 2005; Hsieh

et al., 2006), Bayesian approach (Faucett and Thomas, 1996; Xu and Zeger, 2001b;

Wang and Taylor, 2001; Brown and Ibrahim, 2003) and conditional score method

(Tsiatis and Davidian, 2001; Song et al., 2002a), have been proposed to estimate
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the model parameters.

Although these joint modeling frameworks and methodologies have been proved

successful in many practical applications, they could be insu�cient for more com-

plex and versatile scenarios. For example, the mean trajectory of the longitudinal

process can be irregular over time and thus di�cult to be captured by linear

models. Moreover, the shape of the longitudinal trajectory can vary greatly from

person to person, and the variation may evolve over time. All these features would

require more random e↵ects in the model. In addition, the e↵ects of the longitudi-

nal and baseline covariates on the survival response might be time-varying instead

of constant. In fact, a few studies have already shown that the misspecification

of the longitudinal models would introduce extra bias into the survival regression

coe�cients (Brown et al., 2005; Ding and Wang, 2008), and the traditional propor-

tional hazards model would be insu�cient in delineating the dynamic association

between the covariates and the survival response (Song and Wang, 2008).

Due to these limitations, the nonparametric model setting becomes an appeal-

ing alternative. Despite the abundant research in parametric joint modeling, the

literature in nonparametric joint modeling is quite limited. Ding and Wang (2008)

proposed a joint model with nonparametric multiplicative random e↵ects submodel

for the longitudinal process, where the mean longitudinal trajectory is specified by

a fixed nonparametric function, and the variance across individuals is imposed by

a single random variable multiplied to the mean trajectory. Brown et al. (2005)

adopted a nonparametric mixed-e↵ects model for the longitudinal process, which

is a more flexible setting and allows more variation across individuals. Both of the

two papers used polynomial splines to estimate the nonparametric curves for lon-

gitudinal processes, and they both assumed constant regression coe�cients in the

Cox models. Song and Wang (2008), on the other hand, focused on the nonpara-

metric survival submodel, and allowed the regression coe�cients in the Cox model

to vary with time. They used both local smoothing techniques (Song and Wang,

2008) and polynomial splines (Song and Wang, unpublished manuscript) to fit the

nonparametric curves, and argued that the latter is more computationally e�cient

than the former and nicely incorporate the cases with constant coe�cients. How-

ever, the submodel for the longitudinal data in this literature is still considered to

be parametric.
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One of the main obstacles for the development of nonparametric joint mod-

els is the computational challenge. For the joint-likelihood-based methods, the

numerical evaluation of multidimensional integrals is already challenging for the

parametric models. And as the integral dimension grows dramatically in the non-

parametric joint model settings, the computation becomes a great di�culty. To

our best knowledge, there is no existing joint modeling study on nonparametric

submodels for both the longitudinal and survival data.

In this chapter, we propose a nonparametric joint model, in which the longi-

tudinal trajectory is delineated by a nonparametric mixed-e↵ects model similar to

Brown et al. (2005), and the survival process is specified by a varying-coe�cient

Cox model as in Song and Wang (2008). The nonparametric curves in both the

submodels are estimated by the combinations of B-spline basis with either the fixed

or the random coe�cients. We propose to fit the model using the maximum joint

likelihood approach, and the aforementioned computational challenge is tackled by

a newly introduced algorithm, design of experiments-based interpolation technique

(DoIt), which is e�cient in approximating the multidimensional integrals with a

number of deterministic accessing points that grows linearly with the dimension.

Section 5.2 describes the model setting, and introduces the estimation and

model selection approach. Two simulation examples and a real data analysis are

conducted in Section 5.3 to demonstrate the performance of the proposed modeling

framework and estimation method. Conclusion and discussion are given in Section

5.4.

5.2 Model and Estimation

5.2.1 Model settings

For simplicity and without loss of generality we consider a single longitudinal

process W and a vector of baseline covariates Z for a group of n individuals. We

assume the survival process is subject to right censoring, and for the ith individual

with event time Ti, the censoring time is Ci, and the observed event time is Vi =

min{Ti, Ci}. Denote by �i = I(Ti  Vi) the censoring indicator. The longitudinal

process is observed at Ni scattered time points ti = {ti1, . . . , tiN
i

, tiN
i

 Vi}, which
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gives Wi = {Wi1, . . . ,WiN
i

}. Thus the observed data for the ith individual is

denoted by

Doi = {ti,Wi,Zi, Vi,�i}.

The observed longitudinal process is assumed to follow a nonparametric mixed-

e↵ects model given by

Wij = µ(tij) + fi(tij) + eij, i = 1, . . . , n; j = 1, . . . , Ni, (5.1)

where µ(tij) = E{Wij} is the population mean function of W observed at time

tij. fi(tij) is a random function with zero mean representing the ith individual’s

deviation from the mean at time tij. eij are the independent and identically dis-

tributed random errors with mean zero and variance �2
e , and are independent of

the function fi(·). Note that µ(t)+fi(t) represents the unobservable true underling

longitudinal process of the ith individual.

The Cox model with time-varying coe�cients is adopted for the survival compo-

nents of the joint model, with the conditional hazard function for the ith individual

given by

�i(t|Zi, {fi(s), 0  s  t}) = �0(t) exp{�(t)fi(t) + ⌘(t)TZi}, (5.2)

where �0(t) is the baseline hazard, and �(t) and ⌘(t) are the time-varying regression

coe�cients for the longitudinal and baseline covariates, respectively. Note that if

we take µ(t)+fi(t) from (5.1) as the longitudinal covariates in the Cox’s model, the

first part �(t)µ(t) is non-identifiable across individuals, and thus can be absorbed

into the baseline hazard �0(t).

We propose to estimate the functional coe�cients in the joint model by the
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linear combinations of B-spline basis functions as follows

µ(t) ⇡
d
µ

X

l=1

µlB
(µ)
l (t) = µ

TB(µ)(t),

fi(t) ⇡
d
b

X

k=1

bkB
(b)
k (t) = bTB(b)(t),

�(t) ⇡
d
�

X

p=1

�pB
(�)
p (t) = �TB(�)(t),

⌘k(t) ⇡
d
⌘

k

X

q=1

⌘kqB
(⌘)
kq (t) = ⌘

T
kB

(⌘)
k (t),

(5.3)

where B(·)(t) = (B(·)
1 (t), . . . , B(·)

d (t)) are the B-spline basis functions that may vary

across di↵erent parameter functions. The dimension d can also be di↵erent so as to

specify di↵erent levels of smoothness for di↵erent parameter functions. The larger

the d’s are, the better the models fit, but at the cost of larger variance of the

estimated curves, or known as over-fitting. In practice the optimal value of d’s can

be chosen by the model selection criteria such as AIC and BIC. The model selection

procedure is explained in more details in Section 5.3. In the above equations,

µ = (µ1, . . . , µd
µ

)T , � = (�1, . . . , �d
�

)T and ⌘ = (⌘1, . . . , ⌘d
⌘

)T are the coe�cients

for the fixed functional coe�cients µ(t), �(t) and ⌘(t), respectively. Once they

are estimated, the parameter functions can be estimated by µ̂(t) = µ̂

TB(µ)(t),

�̂(t) = �̂

T
B(�)(t), ⌘̂k(t) = ⌘̂

T
kB

(⌘)(t) accordingly. The random function fi(t) has

the same form of spline approximation as the other functions, but with the random

coe�cient b = (b1, . . . , bd
b

), which is assumed to follow a multivariate normal

distribution with mean zero and covariance matrix ⌃b. Note that although we

assume normal distribution for the random e↵ects bi, previous studies have shown

that maximum joint likelihood procedure is quite robust for the violation of normal

assumption (Song et al., 2002b; Hsieh et al., 2006). With the given approximations,

the parameter set of interest becomes

⌦ = {µ,�,⌘,⌃b, �
2
e ,�0(t)}. (5.4)

Note that except �0(t), all the other parameters are parametric and can be esti-
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mated using the same method as that of parametric joint modeling.

5.2.2 The joint likelihood approach

Similar to the estimation for parametric joint modeling, we propose to use the

maximum joint likelihood approach to estimate all the parameters. With the

specified model setting and assumptions, we obtained the following joint likelihood

function composed of three density functions

L =
n
Y

i=1

Li =
n
Y

i=1

Z

f
V
i

,�
i

|b
i

· f
W

i

|b
i

· fb
i

dbi, (5.5)

where,

fb
i

=
1

2⇡
|⌃b|�1/2 exp

⇢

�1

2
bT
i ⌃

�1
b bi

�

, (5.6)

f
W

i

|b
i

=(
1

p

2⇡�2
e

)Ni exp

"

� 1

2�2
e

N
i

X

j=1

{Wij � µ(tij)� fi(tij)}2
#

, (5.7)

f
V
i

,�
i

|b
i

=
⇥

�0(Vi) exp
�

�(Vi)fi(Vi) + ⌘
T (Vi)Zi

 ⇤�
i

exp

⇢

�
Z V

i

0

�0(t) exp{�(t)fi(t) + ⌘T (t)Zi}dt
�

. (5.8)

We assume the baseline hazard �0(t) takes mass only at the event time points

at which � = 1. Thus, the density function of (5.8) can be rewritten as

f
V
i

,�
i

|b
i

=
⇥

�0(Vi) exp
�

�(Vi)fi(Vi) + ⌘(Vi)
TZi

 ⇤�
i

⇥ exp

(

�
N
X

j=1

�0(Vj) exp{�(Vj)fi(Vj) + ⌘
T (Vj)Zi}I(Vi � Vj)

)

.
(5.9)

Since the functional parameters µ(t), fi(t), �(t) and ⌘(t) in the joint likelihood

equation are all substituted by their spline approximations in (5.3), the goal is

to maximize the likelihood (5.4) with respect to the high-dimensional parametric

parameter set

⌦̃ = {µ,�,⌘,⌃b, �
2
e ,�0(V1), . . . ,�0(VN)}.

Optimizing (5.5) is challenging due to multidimensional integral of the unob-
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servable random e↵ects bi. As in the previous studies (Wulfsohn and Tsiatis, 1997;

Ding and Wang, 2008), we adopt the EM algorithm, in which the estimation is

conducted between the E-step and the M-step iteratively until the algorithm con-

verges. Although the EM algorithm works well for the parametric joint models

with a small dimension of bi, the convergence becomes extremely slow and quite

unstable when the dimension of random e↵ects increases (Ding and Wang, 2008).

The greatest obstacle is the calculation of conditional expectations in the E-step

that requires numerical approximation of multidimensional integral. In this pa-

per, we use the DoIt method, which has been shown to be a e�cient and robust

numerical approach in the EM algorithm for joint models with a larger number of

random e↵ects. We explain the steps of the EM-DoIt algorithm in the following

paragraphs.

Step 0 (initialization): Since an EM algorithm may be quite sensitive to the

starting point, we adopt a revised “two-stage” method (Tsiatis et al., 1995) to set

good initial values. In the first stage, the nonparametric mixed-e↵ects model is

fitted for the longitudinal process using B-spline approximation, which provides

the initial estimates of µ̂

(0), ⌃̂
(0)

b , �̂2(0)
e , together with the best linear unbiased

prediction (BLUP) of the random e↵ects b̂i. With these outcomes we could recover

the nonparametric curves µ̂(t)(0) and f̂i(t)(0). In the second stage, we take f̂i(t)(0)

into the varying-covariate Cox model, and estimate �̂
(0)
, ⌘̂(0) and �̂0(Vj)(0). The

initial values obtained from the “two-stage” method are quite close to the final

EM outcomes, and thus makes the convergence faster.

Step 1 (E-step): The main task of this step is to evaluate a series of conditional

expectations with the form of E{g(bi)|Doi, ⌦̃
(k)} for all the individuals, where

g(bi) is a given function of the random e↵ects bi, Doi is the observed data for

the ith individual, and ⌦̃
(k)

is the updated estimation of ⌦̃ from the kth (i.e., the

previous) iteration. Since the conditional distribution of bi given Doi and ⌦̃
(k)

does not have explicit expression, various numerical integration approaches have

been investigated to estimate the integrals involved. They include the Gaussian-

Hermite Quadrature method (Wulfsohn and Tsiatis, 1997; Hsieh et al., 2006; Song

et al., 2002b), the Markov Chain Monte Carlo method (Henderson et al., 2000;

Tseng et al., 2005; Ding andWang, 2008), Fully exponential Laplace approximation

(Rizopoulos et al., 2009), and so forth. Most of these methods, though e�cient for



119

low-dimensional cases, encounter di�culties when the integral dimension increases

and may lead to the crash of the EM algorithm.

We propose to use a relatively new method, design of experiments-based inter-

polation techniques (DoIt, (Joseph, 2012)), to circumvent this di�culty. The main

idea of DoIt is to estimate conditional distributions using the weighted means of

a group of normal distributions with the modes at the pre-specified design points

scattered in the evaluation subspace. Accordingly, the conditional distribution can

be estimated as follows

E{g(bi)|Doi, ⌦̃
(k)} ⇡ 1

PM
l=1 cl

M
X

l=1

clEl{g(bi)}, (5.10)

where El{g(bi)} is the expectation of g(bi) with respect to the normal distribution

N(⌫l,D
�1
i ), with (⌫1, . . . ,⌫M) being the pre-specified evaluation points, and Di

being the Fisher information matrix evaluated at the mode of the unnormalized

distribution of bi given Doi and ⌦̃
(k)
. This new numerical method has been shown

to be much faster and more robust than the other approaches when the dimension

of the random e↵ects grows relatively large.

Step 2 (M-step): Take derivatives of the log likelihood with respect to each of

the parameters in ⌦̃, and set the equations to zero, with some algebra applied (see

Chapter 2 for details), it is easy to derive the longitudinal parameter estimations

have the explicit forms

µ̂ =
1

n

n
X

i=1

h

B(µ)T
i B(µ)

i

i�1

E
n

B(µ)T
i (Wi � bT

i B
(b)
i )
o

,

�̂2
e =

1
PN

i

j=1

n
X

i=1

N
i

X

j=1

E

⇢

h

W (tij)� µ̂

TB(µ)(tij)� bT
i B

(b)(tij)
i2
�

,

⌃̂b =
1

n

n
X

i=1

E{bib
T
i },

(5.11)

where the notation E{·} stands for the conditional expectation of a function of

bi given Doi and ⌦̃
(k)
. In the first equation of µ̂, Wi = (Wi1, . . . ,WiN

i

)T is a ni

dimensional vector, B(µ)
i = (B(µ)(t1)T , . . . ,B

(µ)(tN
i

)T )T is a Ni ⇥ dµ matrix, and

B(b)
i = (B(b)(t1)T , . . . ,B

(b)(tN
i

)T )T is a Ni ⇥ db matrix.
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Similarly, given the estimation of �̂ and ⌘̂ from the last iteration the baseline

hazard function at the jth event time point also has the explicit expression

�̂0(Vj) =

PN
i=1�iI(Vi = Vj)

PN
i=1 Ei

n

exp[�̂(Vj)b
T
i B

(b)(Vj) + ⌘̂(Vj)Zi]I(Vi � Vj)
o , (5.12)

where �̂(Vj) = �̂

T
B(�)(Vj) and ⌘̂(Vj) = ⌘̂

TB(⌘)(Vj). According to the model as-

sumption, �̂0(t) = 0 at t 6= Vj, j = 1, . . . , N . Therefore, the parameter estimation

of (µ, �2
e ,⌃b,�0(V1), . . . ,�0(VN)) can be updated by directly plugging in the esti-

mated E{g(bi)|Doi, ⌦̃} from the E-step into the equations given above.

The estimation of � and ⌘, however, is less straightforward than in the con-

ventional Cox model, and Newton-Raphson (NR) algorithm is needed to locate

the maximizer using the iterative scheme: �̂
(k+1)

= �̂

(k)
+ I�1(�̂

(k)
)S(�̂

(k)
), and

⌘̂

(k+1) = ⌘̂

(k) + I�1(⌘(k))S(⌘(k)). We provide the score functions and information

matrices for � and ⌘ in the following equations

S(�) =

N
X

i=1

"

B

(�)(Vi)

(

�iE{bT
i B

(b)(Vi)}�
PN

j=1Ejg2i(bj)I(Vj � Vi)
PN

j=1Ejg1i(bj)I(Vj � Vi)

)#

,

I(�) = �
N
X

i=1

h

B

(�)(Vi)B
(�)(Vi)

T
i

⇥
2

4

PN
j=1Ejg3i(bj)I(Vj � Vi)

PN
j=1Ejg1i(bj)I(Vj � Vi)

�
(

PN
j=1Ejg2i(bj)I(Vj � Vi)

PN
j=1Ejg1i(bj)I(Vj � Vi)

)2
3

5

,

S(⌘) =
N
X

i=1

"

B

(⌘)(Vi)

(

�iZi �
PN

j=1 ZjEjg1i(bj)I(Vj � Vi)
PN

j=1Ejg1i(bj)I(Vj � Vi)

)#

,

I(⌘) = �
N
X

i=1

h

B

(⌘)(Vi)B
(⌘)(Vi)

T
i

⇥
2

4

PN
j=1 Z

2
jEjg1i(bj)I(Vj � Vi)
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5

.

(5.13)

In the above equations, Ej(·) stands for conditional expectations with respect
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to bj, and for any Vi  Vj, g1i(bj), g2i(bj) and g3i(bj) are given by

g1i(bj) = exp{�TB(�)(Vi)b
T
j B

(b)(Vi) + ⌘
TB(⌘)(Vi)Zj},

g2i(bj) = bT
j B

(b)(Vi)g1i(bj),

g3i(bj) =
n

bT
j B

(b)(Vi)
o2

g1i(bj).

(5.14)

Since the Newton-Raphson algorithm in our case is imbedded in the EM algo-

rithm, which is already an iterative procedure, we adopt one-step NR that does

not require full convergence. In practice we found this technique faster and more

stable than the fully iterative version of the NR algorithm.

Variance estimation is another great challenge for joint modeling problems due

to the nature of the EM algorithm and the profile likelihood estimation involved

for � and ⌘. Hsieh et al. (2006) pointed out that due to the profile estimation of

the survival parameters, the variance estimation based on the Fisher information

matrix given in (5.13) is inaccurate and would lead to over-optimistic statistical

inference. Louis (1982) suggested that the accurate variance estimation in the

EM algorithm would require the calculation of the observed Fisher information

matrix for the entire parameter set. However, this approach is infeasible for our

case considering the high dimensionality of ⌦̃. Therefore, we adopt the bootstrap

technique as suggested by Hsieh et al. (2006) and Ding and Wang (2008) to obtain

the valid variance estimation.

5.3 Numerical studies

5.3.1 Simulation studies

We conducted two simulation studies in this section. The major goal is to demon-

strate the flexibility of the proposed nonparametric joint model settings and exam-

ine the performance of the proposed estimation approach and computing algorithm.

The first simulation example is relatively simple and considers only the non-

parametric longitudinal submodel, where we show that misspecification of the

irregular longitudinal process would cause bias for the survival regression coef-

ficients. The second example is more complex, and takes into account both the
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nonparametric longitudinal submodel and the nonparametric survival submodel.

In both examples we use the EM-DoIt approach to handle the moderate- to large-

dimensional random e↵ects introduced by spline approximation of random curves.

In each example, we compare estimation performance among three models with

di↵erent number of inner knots to represent widely varying degrees of smoothness.

We also calculate standard errors of the estimated parameters using Bootstrap

technique and compare them with the standard deviations obtained from data

replicates.

Example 5.1. JM with nonparametric longitudinal part

In this example we consider joint modeling with only the longitudinal response

modeled nonparametrically; the survival coe�cients are constant. The models are

of the form:

Wi(t) = µ(t) + fi(t) + ✏i(t),

�i(t) = �0(t) exp{�fi(t) + ⌘Zi},

where µ(t) is the average trajectory of Wi(t) across all the individuals, fi(t) is

the subject-specific random deviations from mean process µ(t), and ✏i(t) is the

measurement error assumed to be independent and identically from N(0, �2).

In data generation, we assume that the longitudinal response is measured from

day 0 to day 12 (i.e., t 2 [0, 12]), and each subject is assigned to either the treatment

group (i.e., Z=1) or the placebo group (i.e., Z=0) with the same probability. For

the constant parameters, we assume �2 = 1, �0 = 0.2, � = 1 and ⌘ = �1.

The fixed nonparametric function µ(t) in the longitudinal model is given by

µ(t) = 4 + 5 sin(⇡t/4),

and the random nonparametric function fi(t) is given by

fi(t) = dT
i g(t),
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where

g(t) =

 

e0.03t sin(⇡t/20)

e0.03t cos(⇡t/20)

!

, and di
i.i.d⇠ N2(0,⌃d), with ⌃d =

 

1 0.1

0.1 1

!

.

The underlying function g(t) and the random factor di are designed in such a way

that the variance of fi(t) increases with time, the correlation between fi(t) and

fi(s) decreases as the two time points t and s fall apart, and the random deviation

process fi(t) is independent across di↵erent individuals.

In joint modeling simulation with complex longitudinal process, it is always a

challenge to generate the survival time Ti. Following the techniques introduced in

Brown et al. (2005), we first randomly generate the survival probability S(t) from

the uniform distribution because S(T ) = 1�F (T ) ⇠ U(0, 1). The survival time Ti

is then obtained numerically from S(t) = exp{� R t

0 �(u)du} via the combination

of R functions uniroot() and integrates(). The censoring time is generated from a

uniform distribution U(6, 24), and the average censoring rate is around 30%.

In model estimation, using the spline smoothing approach, the nonparametric

functions µ(t) and fi(t) are approximated by the linear combination of B-spline

basis as follows:

µ(t) ⇡
d
µ

X

p=1

µpB
(µ)
p (t),

and

fi(t) ⇡
d
X

k=1

bkiB
(b)
k (t),

where B(µ)(t) = (B(µ)
1 (t), . . . , B(µ)

d
µ

(t))T and B(b)(t) = (B(b)
1 (t), . . . , B(b)

d (t))T are the

di↵erent sets of B-spline basis for the two functions, respectively. µ = (µ1, . . . , µd
µ

)T

are the fixed coe�cients and bki’s are the random coe�cients with the assumption

bi = (b1i, . . . , bdi)T ⇠ Nd(0,⌃b). The numbers of the basis dµ and d are adjusted

in the simulation study to achieve di↵erent degrees of smoothness in fitting. With

the cubic B-spline, the number of the inner knots is (dµ � 4) for µ(t) and (d� 4)

for fi(t). In our study, these inner knots are located with equal space on the time

span [0, 12]. We summarize the simulation results based on n = 100 and n = 200

subjects with N = 100 replicates in the following paragraphs.
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Table 5.1 shows the means and standard deviations of the computing time and

the number of iterations that the EM algorithm takes to converge under three

combinations of dµ and d (i.e., (dµ = 6, d = 4), (dµ = 7, d = 5), (dµ = 8, d = 6)).

The results show that the mean computing time increases as the number of basis

functions (dµ, d) or the sample size n increases. However, the comparison between

the two sample sizes indicates the dataset with more subjects (i.e., large n) takes

fewer EM iterations to converge due to richer information. We also notice that

among the three combinations, the case of (dµ = 7, d = 5) takes the fewest EM

iterations to converge in both n = 100 and n = 200 scenarios.

Table 5.1: Computing time and number of EM iterations
(6, 4) (7, 5) (8, 6)

n mean SD mean SD mean SD

100
Computing time (s) 287.90 127.20 348.20 88.56 914.40 294.28

EM iterations 39.03 16.05 30.04 7.80 32.79 8.92

200
Computing time (s) 628.90 182.37 841.40 164.50 1218.00 354.68

EM iterations 35.17 7.36 28.83 4.69 31.67 5.33

For a coe�cient function f(·), the performance of estimator f̂(·) is assessed via

the square root of average squared errors (RASE, Cai et al. 2000),

RASE2 = n�1
grid

ngrid
X

k=1

{f̂(uk)� f(uk)}2, (5.15)

where {uk, k = 1, . . . , ngrid} are the grid points matching with the observation time

points of all the individuals.

Table 5.2 presents the estimation results of µ(t) and �2
f (t) = V ar{fi(t)} via

median and median absolute deviations (MAD) of RASE of N = 100 replicates.

The results are also presented for two sample sizes and three combinations of

(dµ, d). It can be seen from the table that the case of (dµ, d) = (7, 5) have the

smallest median and MAD RASE scores for both n = 100 and n = 200 scenarios.

Hence it is the optimal choice for the number of basis functions used to approximate

the nonparametric curves among the three combinations.
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Table 5.2: RASE of estimated nonparametric functions
(6, 4) (7, 5) (8, 6)

n parameter median MAD median MAD median MAD

100
µ(t) 0.7674 0.0267 0.0444 0.0188 0.0454 0.0193
�

2
f (t) 0.1405 0.1011 0.0538 0.1059 0.1093 0.0487

200
µ(t) 0.7468 0.0193 0.0281 0.0102 0.0283 0.0102
�

2
f (t) 0.0841 0.0507 0.0444 0.0248 0.0464 0.0212

Figures 5.1 through 5.4 present the four estimated curves of µ(t), V ar{fi(t)},
Cov{fi(t), fi(6)} and Cov{fi(t), fi(12)}, respectively. All of them are from the

case of (dµ = 7, d = 5) with n = 100. We choose to present the results of this case

because it performs the best in Table 5.1 and Table 5.2 among all the three cases.

The scenario of n = 200 yields similar figures and is not presented here. In Figure

5.1 through 5.4, the left panel presents the estimated curves from a typical sample

data set (i.e., the data set with median RASE of the N = 100 replicates), and the

right panel shows the mean estimated curves of the N = 100 replicates.

The estimated curves for µ(t) are shown in Figure 5.1, where they closely

resemble the true curve in both panels by overlapping with the true curve in most

parts and departing only at the peak and bottom points. In the right panel, the

pointwise confidence intervals at time t is calculated using the expression

µ̂

TB(µ)(t)± 1.96⇥
q

B(µ)(t)TCov(µ̂)B(µ)(t),

where µ̂ is the mean estimated value of µ from the N data replicates, and Cov(µ̂)

is estimated by the sample covariance of µ̂ from the N data replicates. The true

curve is completely covered by the confidence bands. All these patterns indicate

that our estimation approach with B-spline smoothing performs well for µ(t) in

this case.

For the random functions fi(t), since it is di�cult to present the estimated

curves for all the subjects in one figure, we instead display the fixed curves of

V ar{fi(t)}, Cov{fi(t), fi(6)} and Cov{fi(t), fi(12)} in Figure 5.2 through 5.4 to

demonstrate estimation performance. Although the estimation performance is not

as good as that for µ(t) due to the randomness (i.e., less overlap between the

estimated curves and the true curves), the estimated curves still recover the main
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trend of the true curves in all the figures. Compared with the estimated curves

from the typical samples (i.e., the left panel), the mean estimated curves performs

better as expected.

0 2 4 6 8 10 12

-2
0

2
4

6
8

10

time

m
u(
t)

0 2 4 6 8 10 12

-2
0

2
4

6
8

10

time
m
u(
t)

Figure 5.1. Estimated curves of µ(t). The solid curves in both figures are the true
curves. The dashed curve in the left figure is the estimated curves from the data with
median RASE. The dashed curve in the right figure is the estimated mean curves from
the 100 datasets, and the dotted curves are the pointwise confidence intervals.
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Figure 5.2. Estimated curves of V ar{fi(t)}. The solid curves in both figures are the
true curves. The dashed curve in the left figure is the estimated curves from the data
with median RASE. The dashed curve in the right figure is the estimated mean curves
from the 100 datasets.
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Figure 5.3. Estimated curves of Cov{fi(t), fi(6)}. The solid curves in both figures
are the true curves. The dashed curve in the left figure is the estimated curves from the
data with median RASE. The dashed curve in the right figure is the estimated mean
curves from the 100 datasets.
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Figure 5.4. Estimated curves of Cov{fi(t), fi(12)}. The solid curves in both figures
are the true curves. The dashed curve in the left figure is the estimated curves from the
data with median RASE. The dashed curve in the right figure is the estimated mean
curves from the 100 datasets.
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For the constant parameters, bias and RMSE are presented as a measure of

estimation accuracy. Table 5.3 summarizes the simulation results for the constant

parameters of the case (dµ = 7, d = 5) for the two sample sizes, and compared

the results from the proposed nonparametric joint models with the results from a

parametric joint model, where the longitudinal covariate is misspecified by a linear

mixed-e↵ects model. The results show that the estimation performs well for the

nonparametric joint modeling in terms of both bias and RMSE for the constant

variance �2 of the random error and the survival regression coe�cients � and ⌘.

Compared with the nonparametric joint models, the simple parametric model not

only fails to capture the actual trend of the longitudinal covariate (i.e., see the

large bias of �2), but also introduces great bias for the survival coe�cients � and

⌘. This comparison example is consistent with the results of Brown et al. (2005)

and Ding and Wang (2008), and explicitly shows that the misspecification of the

longitudinal trajectories can be problematic in joint modeling problems and the

nonparametric model setting is necessary in many real cases.

Table 5.3: Estimation results for constant parameters
n = 100 n = 200

Nonparametric Parametric Nonparametric Parametric
parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

� -0.0118 0.1250 -0.7519 0.8091 -0.0136 0.1196 -0.7691 0.7978
⌘ 0.0094 0.2491 0.2509 0.3633 -0.0016 0.1768 0.2905 0.3478
�

2 0.0005 0.0309 8.9979 9.0134 0.0062 0.0200 8.9432 8.9507

Table 5.4: Standard errors of the estimators
n = 100 n = 200

parameter SD SEmean SEstd SD SEmean SEstd

µ(t)
t = 3 0.1148 0.1135 0.0214 0.0849 0.0893 0.0078
t = 6 0.1463 0.1478 0.0318 0.0983 0.1148 0.0126
t = 9 0.1995 0.2091 0.0415 0.1342 0.1569 0.0207

� 0.1244 0.1328 0.0340 0.1188 0.0917 0.0250
⌘ 0.2489 0.2499 0.0235 0.1768 0.1744 0.0172

Table 5.4 compares the parameter standard errors calculated using Bootstrap

technique with the standard deviations of the N = 100 replicates with (dµ =

7, d = 5). We sample with replacement from each replicate for Boot.N = 100
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times, and the Bootstrap standard errors of the given replicate are obtained by

calculating the standard deviations of the parameter estimates of the 100 Bootstrap

datasets. For the estimated nonparametric function µ̂(t) the standard errors are

evaluated at 3 time points equally spaced on [0, 12]. The standard deviations based

on the N = 100 estimation of the parameters are displayed as SD in table 5.4.

The average and the standard deviation of the 100 estimated standard errors are

denoted as SEmean and SEstd in the table, respectively.

It can be seen from the Table 5.4 that all the values of SD can be covered by

SEmean ± 1.96SEstd. This indicates that the standard errors calculated by Boot-

strap technique performs well in this case.

Example 5.2. JM with nonparametric longitudinal and survival parts

In this example we consider joint modeling with both nonparametric longitudi-

nal processes and time-varying survival coe�cients. The model setting is the same

to those specified at the beginning. Recall that the model is of the form

Wi(t) = µ(t) + fi(t) + ✏i(t),

�i(t) = �0(t) exp{�(t)fi(t) + ⌘(t)Zi},

where the nonparametric mixed-e↵ects submodel for the longitudinal response is

the same as that of Example 5.1, but the regression coe�cients in the survival

submodel are allowed to vary with time.

Similar to Example 5.1, the random process fi(t) is generated by

fi(t) = dT
i g(t),

and we set

g(t) =

 

e

0.03t sin(⇡t/20) + 0.2

e

0.03t cos(⇡t/20) + 0.1

!

, and di
i.i.d⇠ N2(0,⌃d), with ⌃d =

 

1 0.1

0.1 1

!

,

thus inheriting the main features of the nonparametric random curves in Example

5.1.
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The true function of µ(t) is the same as in Example 5.1, i.e.,

µ(t) = 4 + 5 sin(⇡t/4),

and the new nonparametric functions �(t) and ⌘(t) are set as the following two

continuous polynomials:

�(t) =
1

200
(t� 7)3 + 1.5 +

1

20
(t� 8)2I(t > 8),

⌘(t) =
1

8
(t+ 2)� 3.5 +

1

400
(t� 5)3I(t > 5).

Following the conclusions of Example 5.1 that (dµ = 7, d = 5) performs the

best of the three cases, in this example we directly adopt (dµ = 7, d = 5) for

the approximation of longitudinal process, and mainly focus on the estimation of

�(t) and ⌘(t). We hold the values of (dµ, d) at (7, 5), and compare the di↵erent

degrees of smoothness of �(t) and ⌘(t) via three combinations of basis functions:

(d� = 4, d⌘ = 4), (d� = 5, d⌘ = 4), (d� = 5, d⌘ = 5). The estimation procedure is

applied to N = 100 data replicates with n = 200, 400 sample size, respectively.

Table 5.5 presents the computing time and the number of iterations that the

EM algorithm takes to converge. It can be seen that the first combination (i.e.,

d� = d⌘ = 4) uses least computing time and number of EM iterations among the

three.

Table 5.5: Computing time and number of EM iterations
(4, 4) (5, 4) (5, 5)

n parameter mean SD mean SD mean SD

200
Computing time (min) 13.29 5.94 14.45 6.52 15.97 7.03

EM iterations 27.44 10.35 29.59 11.58 31.80 11.90

400
Computing time (min) 27.47 9.38 31.02 10.63 35.93 12.41

EM iterations 21.15 7.25 27.63 8.21 29.88 9.42

Table 5.6 presents the median and median absolute deviations (MAD) of RASE

of the estimated nonparametric functions. Focusing on �(t) and ⌘(t), we notice

that the first combination (i.e., d� = d⌘ = 4) has better overall estimation than

the other two cases in terms of median RASE. This suggests that the model with

the fewest number of knots for �(t) and ⌘(t) outperforms the other two models for
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this case.

Table 5.6: RASE of estimated nonparametric functions
(4, 4) (5, 4) (5, 5)

n parameter Median MAD Median MAD Median MAD

200

µ(t) 0.0507 0.0214 0.0482 0.0199 0.0481 0.0204
�(t) 0.0782 0.0445 0.0975 0.0561 0.1293 0.0689
⌘(t) 0.4567 0.2751 0.4443 0.2548 0.6100 0.3123
�

2
f (t) 0.0964 0.0500 0.1038 0.0581 0.0959 0.0575

400

µ(t) 0.0486 0.0175 0.0487 0.0168 0.0467 0.0168
�(t) 0.0395 0.0244 0.0528 0.0231 0.0566 0.0248
⌘(t) 0.2178 0.1395 0.2321 0.1413 0.3704 0.1991
�

2
f (t) 0.0514 0.0344 0.0549 0.0382 0.0519 0.0353

The estimated curves of µ(t), �(t), ⌘(t), V ar{fi(t)}, Cov{fi(t), fi(6)} and

Cov{fi(t), fi(12)} were shown in Figures 5.5 through 5.10. The left panel of the

figures present the estimated curves of a typical sample data set (i.e., the sample

with the median RASE of the 100 replicates), and the right panel of the figures

present the mean estimated curves of the 100 replicates. All the estimated curves

are obtained from the combination of (dµ, d, d�, d⌘) = (7, 5, 4, 4), which performs

the best of the three models, with the sample size of n = 400. The other two cases

and sample size of n = 200 have very similar estimated curves and are thus not

presented here.
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Figure 5.5. Estimated curves of µ(t). The solid curves in both figures are the true
curves. The dashed curve in the left figure is the estimated curves from the data with
median RASE. The dashed curve in the right figure is the estimated mean curves from
the 100 datasets, and the dotted curves are the pointwise confidence intervals.
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Figure 5.6. Estimated curves of �(t). The solid curves in both figures are the true
curves. The dashed curve in the left figure is the estimated curves from the data with
median RASE. The dashed curve in the right figure is the estimated mean curves from
the 100 datasets, and the dotted curves are the pointwise confidence intervals.
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Figure 5.7. Estimated curves of ⌘(t). The solid curves in both figures are the true
curves. The dashed curve in the left figure is the estimated curves from the data with
median RASE. The dashed curve in the right figure is the estimated mean curves from
the 100 datasets, and the dotted curves are the pointwise confidence intervals.
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Figure 5.8. Estimated curves of V ar{fi(t)}. The solid curves in both figures are the
true curves. The dashed curve in the left figure is the estimated curves from the data
with median RASE. The dashed curve in the right figure is the estimated mean curves
from the 100 datasets.
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Figure 5.9. Estimated curves of Cov{fi(t), fi(6)}. The solid curves in both figures
are the true curves. The dashed curve in the left figure is the estimated curves from the
data with median RASE. The dashed curve in the right figure is the estimated mean
curves from the 100 datasets.
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Figure 5.10. Estimated curves of Cov{fi(t), fi(12)}. The solid curves in both figures
are the true curves. The dashed curve in the left figure is the estimated curves from the
data with median RASE. The dashed curve in the right figure is the estimated mean
curves from the 100 datasets.
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Figure 5.5 is the estimated curves of µ(t). Similar to Example 5.1, the estimated

curves in this example also closely resemble the true curves in both the left and

right panels of the plot. Figure 5.6 and 5.7 present the estimated curves of �(t)

and ⌘(t), respectively. In the right panel, the estimated curves almost overlap

with the true curves, which are all covered by the confidence bands across time.

This indicates the good performance of our estimation procedure with B-spline

smoothing. Note that the mean estimated curve (right panel) performs better than

the median RASE estimated curves (left panel) as expected. The performance of

the estimated random curves fi(t) are demonstrated in Figure 5.8 through 5.10 via

its time-varying variance and covariance curves. It can be seen from the plots that

although the estimated curves deviate from the true curves, the biases are small

and the main trends of the curves are captured.

Table 5.7 presents the estimation performance of the constant parameter (only

�2 in this case) in terms of bias and RMSE. In the table the performance of the

three combinations of d� and d⌘ is very similar.

Table 5.7: Estimation results for constant parameter
(4, 4) (5, 4) (5, 5)

n parameter Bias RMSE Bias RMSE Bias RMSE

200 �

2 -0.003 0.0228 -0.0015 0.023 -0.0014 0.0232

400 �

2 0.0067 0.0162 0.0063 0.0161 0.0063 0.0161

Table 5.8 presents the standard errors of the estimated curves at three equally

spaced time points in [0, 12] for the model with (dµ = 7, d = 5, d� = 4, d⌘ = 4). The

standard errors are calculated using Bootstrap technique described in Example 1.

The mean and the standard deviations of theN = 100 standard errors are displayed

in the columns of SDmean and SDstd, respectively, and compared with the standard

deviations calculated from the N = 100 replicates shown in the column of SD.
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Table 5.8: Standard errors of the estimators
µ(t) �(t) ⌘(t)

n time SD SEmean SEstd SD SEmean SEstd SD SEmean SEstd

200
t = 3 0.0975 0.0976 0.0324 0.1560 0.1548 0.0550 0.4203 0.3950 0.1402
t = 6 0.1338 0.1222 0.0410 0.2286 0.2120 0.0796 0.6064 0.5341 0.2023
t = 9 0.1610 0.1498 0.0518 0.3235 0.2775 0.1028 0.8693 0.7285 0.2924

400
t = 3 0.0715 0.0721 0.0068 0.1118 0.1210 0.0236 0.3024 0.3155 0.0598
t = 6 0.0885 0.0875 0.0116 0.1707 0.1760 0.0459 0.4846 0.4699 0.1659
t = 9 0.1121 0.1089 0.0165 0.2250 0.2283 0.0486 0.6978 0.6439 0.2312

5.3.2 A real data example

In this section, we illustrate the proposed model and estimation procedure by an

empirical analysis of the data collected from a smoking cessation study. Specif-

ically, this data set was collected from a randomized, placebo-controlled clinical

trial (N=1504) of five active smoking-cessation pharmacotherapies, in which daily

smokers who were highly motivated to quit were recruited (Piper et al., 2009).

The focus of this example is to examine the e↵ects of the longitudinal withdrawal

symptom on the time to lapse (T L, first smoking after quit) in a two-week post-

quit study period (i.e. t 2 (0, 14)). Accordingly, we treat time to lapse (T L) as

the survival response, and choose negative a↵ect (NA) as the time-varying longi-

tudinal covariate of interest. It is commonly believed that withdrawal symptom

such as negative a↵ect would exhaust the self-control resources that prevent the

participants from smoking when they attempt to quit, and thus leads to the cessa-

tion failure. After data cleaning, N=794 subjects are used for the analysis in this

study.

Figure 5.11 presents the mean curve of negative a↵ect (NA) among the 794

subjects over time, which is estimated nonparametrically using penalized splines.

The curvature shape in the figure indicates that a nonparametric submodel might

be better option to capture the longitudinal trend than a parametric submodel.

In addition, Figure 5.12 shows that the trajectories of NA vary greatly across

individuals over time, indicating a high level of randomness. In order to take these

factors into consideration, in this section, we use a nonparametric mixed e↵ects

model to fit NA, allowing for both nonparametric fixed and random curves.
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Figure 5.11. Nonparametric curve of Negative A↵ect. The solid curve is the

mean trend, and the dashed curves are the pointwise confidence intervals
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Figure 5.12. NA trajectories of 4 random individuals in the study

We consider the joint model

WNAi(t) = µ(t) + fi(t) + ei(t),

�i(t) = �0(t) exp{�(t)fi(t) + ⌘1(t)Z1i + ⌘2(t)Z2i},

where µ(t) is the smooth curve of average NA across population over time, and

fi(t) is the ith individual’s random deviation from the mean curve µ(t). ei(t)

is the measurement error assumed to follow normal distribution N(0, �2). It is

assumed that fi(t) and ei(t) are independent. In the survival submodel, fi(t)

presents the ith individual’s level of Negative A↵ect, Z1 and Z2 are the two dummy

variables corresponding to the monotherapy and the combined pharmacotherapy,

respectively. �(t), ⌘1(t) and ⌘2(t) are the three time-varying coe�cients for NA

and two active treatments, respectively.

As mentioned in the previous section, we use the linear combination of cubic
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B-spline basis functions to approximate all the nonparametric functions in the

model, i.e.,

µ(t) ⇡
d
µ

X

p=1

µpB
(µ)
p (t),

fi(t) ⇡
d
X

k=1

bikB
(b)
k (t),

�(t) ⇡
d
�

X

l=1

�lB
(�)
l (t),

⌘k(t) ⇡
d
⌘

k

X

j=1

⌘kjB
(⌘)
j (t), k = 1, 2.

where µ = (µ1, . . . , µd
µ

)T ,� = (�1, . . . , �d
�

)T ,⌘k = (⌘1, . . . , ⌘d
⌘

k

), k = 1, 2 are the

fixed coe�cients of the corresponding spline basis, and bi = (bi1, . . . , bik)T are the

random coe�cients following the normal distribution, bi ⇠ Nk(0,⌃b). dµ, d, d�, d⌘
k

are the number of basis functions for µ(t), f(t), �(t) and ⌘k(t), respectively. They

are related to the number of inner knots (i.e., # basis function = # inner knots +

4), which are located with equal space in the study period. The number of basis

functions can be selected via model selection criteria such as AIC and BIC.

In our analysis, we conduct both the naive separate estimation method and

joint modeling method to estimate the parameters (µ, �2,⌃b,�,⌘1,⌘2). Model

selection criteria AIC, corrected AIC (AICc) and BIC are employed to identify the

optimal number of basis functions for µ(t) and fi(t), and the estimating results are

compared between the two methods for the optimal model.

Model selection

Model selection in this section is conducted using AIC, AICc and BIC criteria

with the definitions:
AIC = �2 logL+ 2K,

AICc = AIC +
2K(K + 1)

n�K � 1
,

BIC = �2 logL+K log(n),

where L is the joint likelihood,K is the number of unknown parameters and n is the
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sample size. We compare these criteria among the models with di↵erent numbers

of knots for the approximation functions, and the model with the smallest criteria

scores is preferred. The main challenge here is to evaluate the log likelihood logL,
which involves the multiple integral of the random e↵ects. We propose to estimate

the log likelihood via the Monte Carlo method as follows.

With all the estimated parameters, the log likelihood of the model becomes

n
X

i=1

log

Z

b
fi(Wi|b; µ̂(t), �̂2)fi(Vi,�i|b; �̂0(t), �̂, ⌘̂1, ⌘̂2)f(b|⌃̂b)db,

where fi(Wi|b; µ̂(t), �̂2) is the conditional density of the longitudinal response Wi

given b, fi(Vi,�i|b; �̂0(t), �̂, ⌘̂1, ⌘̂2) is the conditional density of the survival re-

sponse (Vi,�1) given b, and f(b|⌃̂b) is the normal density of b with the estimated

covariant matrix ⌃̂b. We treat first two density functions in the integral as a

function of b, denoted by gi(b), with the definition

gi(b) = fi(Wi|b; µ̂(t), �̂2)fi(Vi,�i|b; �̂0(t), �̂, ⌘̂1, ⌘̂2).

Hence the log likelihood can be estimated by generating M Monte Carlo samples

of b from Nk(0, ⌃̂b), and calculating sample mean of
Pn

i=1 log gi(b), i.e.,

log L̂ =
1

M

M
X

m=1

n
X

i=1

log gi(bm).

In this data example, we use M = 100000 random samples to estimate the log

likelihood.

Since there are five nonparametric functions to approximate in the model, we

have to select the optimal number of knots for these functions one by one. In order

to save the computing time, before evaluating di↵erent models, it is better to get

a rough idea of how these curves would look like and what would be a reasonable

range for the number of knots, especially for the fixed curves of µ(t), �(t) and

⌘k(t).

As is shown in Figure 5.12, the trajectory of average NA, or µ(t), is quite smooth

and does not vibrate greatly over time. This suggests that a small number of B-

spline basis functions might be su�cient in approximating the curve µ(t). Thus
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we consider three reasonable scenarios for dµ, i.e., dµ = 4, 5, 6, which correspond

to 0, 1, and 2 inner knots, respectively.

For �(t) and ⌘k(t) in the survival model, we use a “quick and dirty” way to

obtain the preliminary estimation of �(t) and ⌘(t) via the varying-coe�cient Cox

model. This corresponds to the separate estimation method which can provide

immediate but biased results. We use 4 B-spline basis functions for all the three

curves tentatively (d� = d⌘1 = d⌘2 = 4, corresponding to 0 inner knots). Despite

the baiseness, we obtain the following figures (Figure 5.13), which, though not

accurate, indicate that �(t) might be constant over time, and the shapes of ⌘1(t)

and ⌘2(t) are simple and can be estimated by simple models. Thus we consider

constant and linear curves for these coe�cient functions.
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Figure 5.13. Estimated curves of �(t), ⌘1(t) and ⌘2(t) from varying-coe�cient Cox

model

When it comes to the random curves fi(t), it is challenging in finding a reason-

able range for the number of knots because we have little idea of how the curve

would look like for each individual. Although Ding and Wang (2008) suggests that

a small dimension of random e↵ects (i.e., 1 or 2 random e↵ects) is su�cient to

capture the randomness of the longitudinal response, the snapshot of Figure 5.12

indicates that this may not be the case, and the level of randomness may vary

over time. For example, in Figure 5.12, the variation of the four random curves is

greater at the beginning than at the end of the study. Since our proposed algo-
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rithm, the EM-DoIt algorithm, is capable of estimating the joint models with large

dimension of random e↵ects, we consider the cases of d = 5, 6, 7 to incorporate a

higher level of randomness in this case.

We conduct the model selection in two steps for the survival and the longi-

tudinal part separately. In the first step, we hold the longitudinal submodel at

dµ = 6, d = 7 – the largest number of basis functions considered, and choose the

number of basis functions for �(t) and ⌘(t)0s in the survival submodel. In the

second step, we hold the survival submodel at the number of basis functions se-

lected in step 1, and select the number of basis functions for µ(t) and fi(t) in the

longitudinal submodel. The model selection results of the two steps are presented

in Table 5.9 and Table 5.10, respectively.

Table 5.9: Model Selection Results for Survival Model (Step 1)
d� = 1 d� = 2

(d⌘1 , d⌘2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

log L̂ -28690 -28690 -28706 -28701 -28693 -28704 -28702 -28700
AIC 57456 57468 57489 57482 57464 57487 57485 57482
AICc 57460 57472 57493 57486 57469 57491 57489 57487
BIC 57631 57648 57669 57667 57645 57672 57669 57671

In Table 5.9, in the first two rows, d = 1 corresponds to a constant function

and the d = 2 corresponds to a linear function. The results show that the log

likelihood increases, and all the other criteria decrease as the number of d�, d⌘1
and d⌘2 increase. This pattern suggests that the constant functions are su�cient,

and the regression coe�cients are constant over time. Therefore, we hold �(t),

⌘1(t) and ⌘2(t) at constant, and obtain the following model selection results for

µ(t) and fi(t) in Table 5.10.

Table 5.10: Model Selection Results for Longitudinal Model (Step 2)
d = 5 d = 6 d = 7

dµ = 4 dµ = 5 dµ = 6 dµ = 4 dµ = 5 dµ = 6 dµ = 7 dµ = 4 dµ = 5 dµ = 6

log L̂ -26485 -26485 -26483 -26471 -26471 -26467 -26483 -26463 -26463 -26459
AIC 53016 53018 53015 53000 53002 52995 53029 52999 53000 52995
AICc 53018 53020 53017 53003 53005 52998 53032 53002 53004 52999
BIC 53123 53129 53131 53134 53141 53139 53177 53165 53171 53170

In Table 5.10, the model with d = 6, dµ = 6 was selected by AIC and AICc
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as the optimal model, and the simplest model with d = 5, dµ = 4 was selected by

BIC. We decide to follow the criteria of AIC and AICc, and take d = 6, dµ = 6 as

the number of bases functions for fi(t) and µ(t), respectively, in the final model.

Estimation Results

Based on the model selection results, dµ = 6, d = 6, d� = 1, d⌘1 = 1, d⌘2 = 1 is

selected for the final model. In this subsection, we compare the estimation results

between the separate estimation method and the maximum joint likelihood ap-

proach for the chosen model. The standard errors of the maximum joint likelihood

(MJL) method are calculated via bootstrap by evaluating standard deviations of

the estimates from the B = 100 iid datasets sampled with replacement form the

original Lapse data.

The estimating results in Table 5.11 show that there is little di↵erence of the

longitudinal parameter estimates (i.e., µ,⌃b, �
2) between separate estimation and

MJL. However, the estimated survival parameters (i.e., � and ⌘’s) are quite dif-

ferent between the two methods. Similar to what we have discovered for the

parametric joint model settings, separate estimation yields coe�cient estimates

that are biased towards the null, and thus tend to be nonsignificiant, whereas

the MJL method produces more reliable estimates. In this case, neither of the

two active treatments is identified as e↵ective by separate estimation, whereas the

MJL result indicates that the combined pharmacotherapy has significant e↵ect in

reducing the risk of Lapse. Both the two methods find the longitudinal covariate

NA significantly positively associated with Lapse. The estimated curves of µ(t)

and var{fi(t)} from the selected joint model are shown in Figure 5.14 and 5.15,

respectively. The pointwise confidence intervals are obtained from the standard

deviations of bootstrap estimates at each time point. The estimated curves from

separate estimation method are very similar and thus not presented here.
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Table 5.11: Parameter Estimation for Lapse Data
Separate Estimation Maximum Joint Likelihood

Estimate SE Estimate Bootstrap SE

⌘1 -0.0760 0.1204 -0.2251 0.1739
⌘2 -0.0966 0.1243 -0.4837* 0.2013
� 0.1039* 0.0230 0.1455* 0.0432

µ1 1.8768* 0.0790 1.8681* 0.0777
µ2 -0.0194 0.1173 0.0012 0.1275
µ3 -0.5699* 0.0742 -0.5669* 0.0810
µ4 -0.3264* 0.1181 -0.2992* 0.1265
µ5 -0.8214* 0.0992 -0.8437* 0.1055
µ6 -0.6205* 0.1101 -0.6327* 0.1054
⌃11 2.4248 - 3.0036* 0.3183
⌃22 3.3232 - 4.5763* 0.7801
⌃33 1.8867 - 2.2230* 0.2789
⌃44 3.2772 - 4.3666* 0.8018
⌃55 1.9466 - 2.7018* 0.4460
⌃66 1.6896 - 2.2069* 0.3702
�

2 0.9144 - 0.8313* 0.0423

0 2 4 6 8 10 12 14

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

Days from actual quit day

N
e

g
_

A
ff
e

ct
 I

n
te

n
si

ty

Figure 5.14. Estimated curves of µ(t) from MJL. The solid curve is the esti-

mated mean trajectory of NA. The dashed curves are the pointwise confidence intervals

estimated using bootstrap.

1represents statistically significant at 0.05 level.
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Figure 5.15. Estimated curves of var{fi(t)} from MJL. The solid curve is the esti-

mated mean trajectory of NA. The dashed curves are the pointwise confidence intervals

estimated using bootstrap.

5.4 Discussions

In this chapter, we have presented a nonparametric joint modeling framework

which is flexible and robust in fitting complex longitudinal processes and time-

to-event simultaneously. Such model is capable of capturing the irregular shape

of longitudinal trajectories, and at the same time allows survival coe�cients in

the Cox’s model to vary with time. Cubic B-splines are employed to approximate

the parameter functions in the model. An advantage of using spline smoothing

technique is that it flexibly incorporates the constant functions as a special case,

and the nonparametric functions can be easily reduced to constant parameters as

shown in the real data analysis.

We propose to estimate the parameters using the classical maximum joint like-

lihood approach implemented via an EM algorithm. Thanks to the new numerical

integration technique of DoIt, we are able to handle the multidimensional inte-

grals in the likelihood successfully and estimate the high-dimensional parameters

which were unobtainable by the conventional EM algorithm in the previous studies.

Other estimation methods such as the Bayesian approach can also be investigated
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for the current model setting. Although we considers only a single longitudinal

process as an illustration in this paper, more longitudinal covariates or biomarkers

can be added to the nonparametric model as the computational capability further

improves.



Chapter 6
Extension and Future Work

6.1 Extension: joint modeling with discrete lon-

gitudinal covariates

The joint models studied in Chapter 3 and Chapter 5 consider only the contin-

uous longitudinal processes as the predictors for the survival outcome. A useful

extension of such model setting is to include the discrete longitudinal covariates

such as binary or count measurements. In the smoking cessation study discussed

in the previous chapters, the candidate discrete longitudinal covariates include the

binary variable of whether a stress event has happened since the last prompt, and

the count variable such as the number of cigarettes smoked since the last prompt.

All these covariates are potential predictors for the risk of relapse or the abstinence

failure. Although a naive approach is to use observed measurements Wi(t) directly

as the predictor in the Cox model, as discussed in Chapter 1, these observations

are not available at all the event time points. Thus joint modeling approaches can

be considered for such cases in order to obtain accurate estimations and reliable

inferences.

The literature of joint modeling discrete longitudinal processes and survival

time is quite limited. Most of the studies design ad-hoc models for the specific

data of interest, and few of them consider a generic model and methodology as in

the case of the joint models with continuous longitudinal processes. Faucett et al.

(1998) proposed a Markov model for binary longitudinal covariates, which is used
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as a predictor in the proportional hazards model for the survival outcome. Xu and

Zeger (2001b) considered a latent model, where the latent process is assumed to

follow a Gaussian stochastic process, and links with the longitudinal measurement

and the survival outcome via generalized linear model (GLM) and proportional

hazards model, respectively. Huang et al. (2002) developed a survival model for

bivariate event times, which is jointly modeled with the binary longitudinal mea-

surements through some discrete latent variables and logistic regression models.

Cowling et al. (2006) explored the relationship between the survival time and the

recurrent events such as epileptic seizures which is measured by count variable in

the cohort study. The author assumes the count measurement follows a Poisson

distribution and the survival time follows the Pareto distribution, and the event

rates of two processes are linked by the same set of random e↵ects and baseline

covariates. Rizopoulos et al. (2008) used a mixed-e↵ects logistic regression model

for the binary longitudinal covariates with excess zeros and a mixed-e↵ects accel-

erated failure time model for the survival time, and the two models share the same

random e↵ects.

6.1.1 Model Setting

In this chapter we propose a generalized joint model that accommodates both

binary and count longitudinal covariates, which is estimated by the maximum

joint likelihood approach with the EM-DoIt algorithm. All the notations are the

same as in Chapter 2, with the only exception of Wij, which is now the discrete

longitudinal covariate of the ith individual observed at time tij. We assume that

for each individual, the observed longitudinal observations are linked with a linear

predictor Xi(t) via the generalized linear models given by

g[E{Wi(t)|Xi(t)}] = Xi(t), (6.1)

where g(·) is the link function that varies for di↵erent types of observations. Xi(t)

can be thought as an underlying latent process that captures the heterogeneity

across subjects, and can be modeled by time and other covariates. To be consistent

with the previous model settings, here we consider a nonparametric model with
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time as the only predictor,

Xi(t) = µ(t) + fi(t), (6.2)

where µ(t) is the fixed mean trajectory of all the individuals, and fi(t) is the

random curve representing the ith individual’s deviation from the mean process.

Note that in the simplest scenario, (6.2) reduces to the linear mixed-e↵ects model

of the form

Xi(t) = bT
i ⇢(t), (6.3)

where ⇢(t) is a vector function of t, and bi is the random e↵ects of the same dimen-

sion of ⇢(t) and assumed to follow the multivariate normal distribution N(µb,⌃b).

Given the underlying process Xi(t) and the baseline covariates Zi, the condi-

tional hazard is assumed to follow a varying-coe�cient Cox model given by

�i(t|Xi(t), Zi, t  Ti) = �0(t) exp{�(t)Xi(t) + ⌘(t)Zi}. (6.4)

Note that the fixed part µ(t) in Xi(t) is non-identifiable across individuals and can

thus be combined with the baseline hazard �0(t). Hence the model becomes

�i(t|fi(t), Zi, t  Ti) = �0(t) exp{�(t)fi(t) + ⌘(t)Zi}, (6.5)

which is exactly the same as the survival submodel used in Chapter 5. Note that

for the simple cases, the time-varying coe�cients �(t) and ⌘(t) can be reduced to

constant form of � and ⌘.

Similar to the nonparametric joint modeling approach proposed in Chapter 5,

the nonparametric functions in the current model setting can be approximated

by linear combinations of B-splines. For example, the random function fi(t) is

approximated by the B-spline basis functions with random coe�cient vectors bi.

The associated joint likelihood function is of the form

L =
n
Y

i=1

Li =
n
Y

i=1

Z

f
V
i

,�
i

|b
i

· f
W

i

|b
i

· fb
i

dbi, (6.6)

where the density function of the random e↵ects and the conditions density func-
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tion of the survival outcome given the random e↵ects are the same as we specified

in Chapter 5, given by

fb
i

=
1

2⇡
|⌃b|�1/2 exp

⇢

�1

2
bT
i ⌃

�1
b bi

�

,

f
V
i

,�
i

|b
i

= [�0(Vi) exp {�(Vi)fi(Vi) + ⌘(Vi)Zi}]�i

⇥ exp

⇢

�
Z V

i

0

�0(t) exp{�(t)fi(t) + ⌘(t)Zi}dt
�

,

(6.7)

whereas the conditional density function of the discrete longitudinal covariates

f
W

i

|b
i

is no longer the normal density. It is determined by di↵erent types of Wi

and its associated link functions. The specific forms of f
W

i

|b
i

for various scenarios

are provided in the simulation examples.

The logarithm of (6.6) can be maximized using the same EM-DoIt algorithm as

for the previous continuous cases. Since the discrete longitudinal covariates contain

less information than the continuous covariates, the EM algorithm requires longer

time to converge, and the computation becomes more intensive.

In this chapter, we apply the EM-DoIt algorithm to the parametric generalized

model settings, where the longitudinal processes are assumed to follow submodel

(6.1) and (6.3), and the survival outcome is modeled by (6.5) with constant re-

gression coe�cients. The future work would include the simulation and real data

analysis for the nonparametric joint model setting. In addition, to the best of our

knowledge, none of the existing literature has studied the asymptotic properties of

the estimators of the generalized joint models. Thus, the theoretical establishment

of the MLE proposed in this chapter would be another challenging task for the

future work.

6.1.2 Simulation results

In this section we consider the joint models with discrete longitudinal processes,

where the longitudinal covariates are modeled by the generalized mixed-e↵ects

models. We discuss three simulation examples, including three types of discrete

longitudinal covariates: binary, count, and zero-inflated count observations. All

the simulations are conducted using the EM-DoIt algorithm proposed in Chapter 3.
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Example 6.1. In this example, we consider a 2-dimensional joint model with

binary longitudinal process. In this setting, Wi(t) is a longitudinal process taking

binary values with mean E(Wi(tij)) = ⇡ij. The longitudinal and event processes

satisfy the model

logit(⇡ij) = Xi(tij) = b0i + b1itij,

�i(t) = �0(t) exp{�XXi(t) + �ZZi}

with the assumption

bi =

 

b0i

b1i

!

i.i.d⇠ N2(µ,⌃).

This is a low-dimensional setting with dim(bi) = 2, and ⇢(t) = (1, t)T . Since the

longitudinal process Wi(t) is binary, it is characterized by a generalized mixed-

e↵ects model with the logit link function. Xi(t) is the underlying log-odds of Wi(t)

and is used in the Cox model as the time-varying covariate. The survival time is

generated via the equation

Ti =
1

�Xb1i
log{1� �Xb1i logUi

�0 exp(�Xb0i + �ZZi)
}. (6.8)

with �0 = 1. The average censoring rate is around 8%. All the parameters are

specified in the table. In this scenario the estimating results are based on N = 100

data sets with n = 500 subjects in each data set.

Since the longitudinal covariates Wi(t) is no longer a Gaussian process, the

joint likelihood changes. Although the density functions of (6.7) remain the same,

the logarithm of f
W

i

|b
i

in (6.6) changes to the form

l2(bi) = log(fW
i

|b
i

) =
N

i

X

j=1

(wij⇢(tij)
T
bi)� log{1 + exp(⇢(tij)

T
bi)},

and this makes the joint likelihood more complicated, and thus the integration

techniques such as the Gaussian-Hermite Quadrature method and fully exponen-

tial Laplace method fail. However, DoIt is much easier in computation for such

cases, and the algorithm for the continuous joint modeling can be extended di-
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rectly into the nonlinear cases. In the following table, we show the simulation

results obtained from the EM-DoIt algorithm which is also used in both Chapter

3 and Chapter 5.

Table 6.1: Simulation results for Example 6.1 by DoIt with M=10

n̄· = 10 n̄· = 20

Bias SD RMSE Bias SD RMSE

�X = 1.0000 -0.1330 0.0693 0.1420 -0.0290 0.0615 0.0678

�Z = �1.0000 0.0643 0.0923 0.1125 0.0490 0.0953 0.1072

✓1 = �2.0000 0.0465 0.0940 0.1049 0.0274 0.0574 0.0636

✓2 = 1.0000 -0.0133 0.0641 0.0655 -0.0095 0.0393 0.0404

�11 = 1.0000 0.2261 0.2247 0.3188 0.0799 0.0983 0.1266

�12 = �0.0100 -0.1059 0.0933 0.1411 -0.0471 0.0417 0.0629

�22 = 0.5000 0.0501 0.0514 0.0718 0.0069 0.0217 0.0227

Median time(s) 2860 1373

In Table 6.1 we notice that the DoIt method takes much longer time than it does

in Example 3.1 for the continuous case even though this is also a low-dimensional

setting. The increase of time is caused by two facts. First, as we mentioned

above, the likelihood becomes more complicated than the previous one for the

continuous Gaussian process. Thus it takes longer time to numerically locate

the mode b̂i and evaluate the Fisher information Di at the mode. Second, the

binary covariate provides much less information for calculation than the continuous

covariate. Therefore, although we increase the subject number from n = 100 to

n = 500, the EM algorithm still takes much more iterations to coverage than in

the previous scenarios.

As for the estimating performance, the EM-DoIt algorithm yields good es-

timates for all the parameters when there are more personal observations (i.e.,

n̄· = 20) in terms of bias, SD, and RMSE. However, when there are fewer personal

observations (i.e., n̄· = 10) the estimating performance deteriorates due to the lack

of information.

Example 6.2. In this example, we consider a 2-dimensional joint model with



153

count longitudinal process. In this scenario, Wi(t) is a longitudinal process taking

count values with the mean E(Wi(tij)) = ⌧ij. The longitudinal processes satisfy

the Poisson mixed-e↵ects model

log(⌧ij) = Xi(tij) = b0i + b1itij.

The event process and the assumptions are the same as that in Example 6.1. This

setting is almost the same as that of Example 6.1 except that we assume the lon-

gitudinal covariate is from a Poisson process so that the generalized mixed-e↵ects

model has a Poisson link function. Xi(t) is the underlying log mean of Wi(t) and

represent the strength of the observed longitudinal covariate. The corresponding

logrithm of f
W

i

|b
i

in (6.6) becomes

l2(bi) = log(fW
i

|b
i

) =
n
i

X

j=1

wij⇢(tij)
T
bi � exp{⇢(tij)Tbi}� logwij.

Similar to Example 6.1, since this complex likelihood causes great di�culty for

approximation using GHQ and FEL, in this scenario we still only consider the

DoIt method. The survival time is generated from (6.8) with �0 = 0.5. The

average censoring rate is around 18%. All the parameters are specified in Table

6.2. The estimating results are based on N = 100 data sets with n = 100 subjects

in each of them.

Table 6.2: Simulation results for Example 6.2 by DoIt with M=10

n̄· = 5 n̄· = 20

Bias SD RMSE Bias SD RMSE

�X = 1.0000 -0.0014 0.2400 0.2400 0.0289 0.1650 0.1675

�Z = �1.0000 -0.0615 0.2811 0.2877 -0.0181 0.2630 0.2636

✓1 = �1.0000 0.0469 0.1179 0.1268 0.0067 0.0923 0.0925

✓2 = 1.0000 -0.0122 0.0711 0.0721 0.0011 0.0448 0.0448

�11 = 0.5000 0.0607 0.1814 0.1913 0.0114 0.1224 0.1229

�12 = �0.0010 -0.0462 0.0702 0.0840 -0.0077 0.0468 0.0474

�22 = 0.5000 0.0233 0.0408 0.0469 0.0031 0.0228 0.0230

Median time(s) 74.19 36.23
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Note that the computation in this example is much faster in this scenario than

in Example 6.1. This is mainly because the count covariate process resembles con-

tinuous process much more than the binary covariates. Thus a moderate number

of subjects n = 100 provide su�cient information for calculation and the EM al-

gorithm takes fewer iterations to converge. Again, the algorithm consumes less

time for the data set with more individual observations (i.e., n̄·) compared with

the data set with fewer individual observations (i.e., n̄· = 5) due to the richness

of the information. In both cases the EM-DoIt algorithm yields good parameter

estimates in terms of bias, SD and RMSE.

Example 6.3. For the last simulation scenario, we consider a 2-dimensional joint

models with zero-inflated count longitudinal process. In this scenario, Wi(t) is a

longitudinal process taking value 0 (i.e. defect) with probability ⇡, where ⇡ is a

known constant. The other values are the count values from the Poisson distribu-

tion with mean E(Wi(tij)) = ⌧ij. Thus the longitudinal process Wi(t) satisfies the

distribution:

P (Wi(tij) = 0) = ⇡ + (1� ⇡)e�⌧ij ,

P (Wi(tij) = k) = (1� ⇡)
⌧ kije

�⌧
ij

k!
, k = 1, 2, . . . .

The parameter ⌧ij is specified by the Poisson mixed-e↵ects model as in Example

6.2, and the event process and the model assumptions also follow those of Example

6.1 and 6.2. Since the distribution of Wi(t) is a combination of binary and Poisson

distributions, the corresponding logarithm of f
W

i

|b
i

in (6.6) becomes even more

complex

l2(bi) = log(fW
i

|b
i

)

=�
n
i

X

j=1

log(1 + e⇢(tij)
T b

i) +
X

w
ij

=0

log{e⇢(tij)T b
i + exp(�e⇢(tij)

T b
i)}

+
X

w
ij

>0

⇢(tij)
T
bi � exp{⇢(tij)Tbi}.



155

We consider only DoIt in this scenario. The survival time is generated via (6.8)

with �0 = 0.5. The average censoring rate is around 18%. All the parameters are

specified in Table 6.3 and the results are based on N = 100 data sets with n = 300

subjects in each of them.

Table 6.3: Simulation results for Example 6.3 by DoIt with M=10, n̄· = 20

⇡ = 0.1 ⇡ = 0.3

Bias SD RMSE Bias SD RMSE

�X = 1.0000 0.0029 0.1164 0.1164 -0.0357 0.1222 0.1273

�Z = �1.0000 -0.0073 0.1532 0.1534 0.0347 0.1375 0.1418

✓1 = �1.0000 0.0152 0.0585 0.0604 0.0059 0.0577 0.0580

✓2 = 1.0000 -0.1020 0.0319 0.1069 -0.3004 0.0319 0.3021

�11 = 0.5000 0.0287 0.0617 0.0680 0.0615 0.0802 0.1011

�12 = �0.0010 -0.0218 0.0220 0.0310 -0.0324 0.0293 0.0437

�22 = 0.5000 0.0099 0.0107 0.0148 0.0072 0.0124 0.0143

Median time(s) 178.6 212.5

As expected, in the zero-inflated Poisson setting, the EM-DoIt algorithm method

takes more computation time than the Poisson scenario but not as much as the

binary setting. And as we increase ⇡ from 0.1 to 0.3, more observations of 0 occurs

for Wi(t), thus less information can be used in estimation and longer time is taken.

In both cases, the proposed method yields good estimates in terms of bias, SD and

RMSE. It tends to produce more accurate and e�cient estimates when the defect

rate ⇡ is smaller.

In all the simulation examples we discussed above, the proposed maximum joint

likelihood method produces reasonably good estimating results. In particular, the

EM-DoIt algorithm is capable of calculating the MLE when the joint likelihood

functions become more complex in the cases of discrete longitudinal processes,

and the computing time is reasonable. Such computational capability makes it

possible for us to extend to current simulation setting to the more complicated

nonparametric generalized joint model setting in the future work.
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6.2 Future work

6.2.1 Asymptotic theories for nonparametric joint model-

ing

We proposed nonparametric joint model settings in Chapter 5, and conducted

numerical studies and real data analysis. However, the asymptotic theories for the

associated MLE have not been established yet. Similar to the theories developed

for the parametric joint modeling in Chapter 4, the theories of nonparametric joint

modeling can be built using the tool of empirical process. In this section, we state

the desired conclusion of the consistency property and provide proof outline. The

complete proof and the asymptotic normality will be established in future work.

To prepare for the theory development, we restate the model setting here. For

the longitudinal part, let Wi(t) denote the observed covariate process which is

modeled by the nonparametric mixed e↵ects model

Wi(t) = Xi(t) + ✏i(t), i = 1, . . . , n, (6.9)

where Xi(t) is the true covariate process and ✏i(t) is the zero-mean measurement

error with variance �2. Xi(t) is composed of two parts

Xi(t) = µ(t) + fi(t), (6.10)

where µ(t) = E{Xi(t)} is the fixed process representing the average coe�cient

level across all the subject over time, and fi(t) is the random part representing the

subject-specific trajectory deviations from the mean. Both µ(t) and fi(t) can be

approximated by a linear combination of spline basis

µ(t) ⇡
p
n

X

p=1

µpB
(µ)
p (t) = µ

TB(µ)(t), pn ! 1, n ! 1, (6.11)

fi(t) =
d
X

k=1

bikB
(b)
k (t) = bT

i B
(b)(t), (6.12)

whereB(µ)(t) andB(b)(t) are two sets of spline basis. µ is a pn dimensional constant
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coe�cient vector and bi is a d dimensional random coe�cient vector assumed to

be normally distributed with mean µb and covariance ⌃b. Note that we allow the

dimension pn to diverge with n while d be finite.

The survival data (Vi,�i) is modeled by the varying-coe�cient Cox model of

the form

�i(t) = �0(t) exp{�(t)Xi(t) + ⌘(t)
TZi}, i = 1, . . . , n, (6.13)

where �(t) and ⌘(t) are the coe�cient functions for the longitudinal process Xi(t)

and the K dimensional baseline covariates Zi. The coe�cient functions can also

be approximated by linear combination of spline basis

�(t) ⇡
q
n

X

q=1

�qB
(�)
q (t) = �TB(�)

q (t), (6.14)

⌘k(t) ⇡
r
k

X

r=1

⌘krB
(⌘

k

)
r (t) = ⌘T

kB
(⌘

k

)
r (t), k = 1, . . . , K, (6.15)

where � is a qn dimensional constant coe�cient vector and ⌘k is a rk dimensional

constant coe�cient vector. We assume both qn and kn = max1kK rk diverge

with n.

With the above model setting, the parameter set of interest is

⌦ = (✓,⇤(t), µ(t), �(t),⌘(t)T ),

where the constant parameter ✓ = (�2, vec(⌃b)) 2 ⇥ ⇢ Rdim(✓), with vec(⌃b)

being the distinct elements of ⌃b. ⇤(t) =
R t

0 �(u)du is the cumulative hazard

function belongs to the class V which contains all the non-decreasing functions on

[0, ⌧ ], where ⌧ is the end of study time. µ(t), �(t) and each column of ⌘(t) =

(⌘1(t)T , . . . , ⌘K(t)T )T are the coe�cient functions belonging to the class Cr[0, ⌧ ]

that consists of all the rth order (r � 1) continuous di↵erentiable functions on

[0, ⌧ ]. The parameter set ⌦ is defined on the product space of ⇥⇥V⇥Cr[0, ⌧ ](K+2).

Based on the specified models, the observed joint likelihood can be written out
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in the form

ln(⌦) =
n
X

i=1

log

Z

b



(2⇡�2
e)

�N
i

/2

⇥ exp

⇢

� 1

2�2
e

(Wi � µ�B

(b)T
b)T (Wi � µ�B

(b)T
b)

�

⇥ ⇤{Vi}�i exp

⇢

�i

�

�(Vi)Xi(Vi) + ⌘(Vi)
T
Zi

��
Z V

i

0
e

�(t)X
i

(t)+⌘(t)TZ
i

d⇤(t)

�

⇥ (
p
2⇡)�d|⌃b|�1/2 exp{�1

2
b

T
⌃

�1
b b}

�

db,

(6.16)

where Wi = (Wi(t1), . . . ,Wi(tN
i

))T is the Ni ⇥ 1 vector of observed longitudinal

responses for subject i. µ = (µ(t1), . . . , µ(tN
i

))T is the functional parameter µ(t)

taking value at the Ni observational time points. B(b) = (B(b)(t1), . . . ,B
(b)(tN

i

))

is the d ⇥ Ni matrix of the B-spline basis used to express fi(t) at all the Ni time

points.

The maximum likelihood estimator, denoted by ⌦̂ = (✓̂, ⇤̂(t), µ̂(t), �̂(t), ⌘̂(t)T ),

maximizes the observed joint likelihood over the space ⇥⇥Vn⇥Cn[0, ⌧ ](k+1), where

Vn consists of all the right-continuous step functions with positive jumps only at Vi

for which �i = 1, and Cn[0, ⌧ ] is the spline space that contains all the continuous

functions on [0, ⌧ ] that can be expressed as a linear combination of B-spline basis,

and the dimensional of the space is related to n.

Note that the likelihood function (6.16) is almost the same as the one derived

in Chapter 4 for the parametric joint modeling except the functional parameters

(µ(t), �(t),⌘(t)). Thus we will establish a similar set of asymptotic properties, but

including the functional parameters. It is important to establish the consistency

property. Ideally, we would expect that under some regularity conditions, the

maximum likelihood estimator ⌦̂ converges to the true parameter ⌦0, where the

convergence of ⇤(t) will be achieved under the superior norm, and other parameter

functions under L2 norm. That is,

k✓̂�✓0k+ sup
t2[0,⌧ ]

|⇤̂(t)�⇤0(t)|+kµ̂(t)�µ(t)k+k�̂(t)��(t)k+
K
X

k=1

k⌘̂k(t)�⌘k(t)k ! 0 a.s.

And we would expect the rate of convergence for each terms with L2 norm as

follows

k✓̂ � ✓0k = Op(
p

1/n),
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kµ̂(t)� µ(t)k = Op(
p

pn/n),

k�̂(t)� �(t)k = Op(
p

qn/n),

k⌘̂k(t)� ⌘k(t)k = Op(
p

kn/n).

The preliminary thoughts on the proof outline of the above consistency property

are presented in the following paragraphs. Following the proof of Chapter 4, the

above consistency theory can be proved by verifying the following steps:

(i) For each n, the maximum likelihood estimator (✓̂, ⇤̂, µ̂, �̂, ⌘̂) exists.

(ii) When n goes to infinity, ⇤̂(⌧) is bounded with probability one.

(iii) When n goes to infinity, µ̂(t), �̂(t), ⌘̂k(t) are uniformly bounded and equicon-

tinuous on [0, ⌧ ] with probability one.

(iv) With the assumption that⇥ is compact, there is a convergent subsequence of

✓̂, denoted to be ✓⇤. Similarly, since the functional space of ⇤̂(t) is compact

by (ii), by Helly’s selection theorem, there is a weakly convergent subse-

quence, and we denote the limit function as ⇤⇤(t) 2 V . Since the functional

space of µ̂(t), �̂(t), ⌘̂k(t) is also compact by (iii), according to Arzela-Ascoli

theorem, there exist uniformly convergent subsequences, and we denote the

limit functions as µ⇤(t), �⇤(t), ⌘⇤k(t), all belong to Cr[0, ⌧ ].

We claim that ✓⇤ = ✓0, ⇤⇤(t) = ⇤0(t), µ⇤(t) = µ0(t), �⇤(t) = �0(t) and

⌘⇤k(t) = ⌘0(t), k = 1, . . . , K.

Due to the involvement of the functional parameters, the proof of this consis-

tency theory is more di�cult than that of the parametric joint models in Chapter

4. The challenges are twofold. First, we need step (iii) to establish the uniform

convergence of the three functional parameters. However, it is not easy to verify

the uniform boundedness and equicontinuity of µ̂(t), �̂(t), ⌘̂k(t) as n goes to infinity.

Second, similar to the proof in Chapter 4, we need to verify that the class

F = {Q(s,O;✓,⇤, µ, �,⌘) : s 2 [0, ⌧ ],⇤(t) 2 A, µ(t), �(t), ⌘k(t) 2 Cr[0, 2]}
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is P-Donsker. To achieve this, the main task is to prove the likelihood function is

Lipchitz continuous with respect to µ(t), �(t), ⌘k(t). This can also be challenging

due to the complexity form of the likelihood. All of these challenges remain to be

solved in the future work.

6.2.2 Completion and extension of joint modeling with cat-

egorical longitudinal covariates

In section 6.1, we proposed the joint modeling with categorical longitudinal co-

variates. Although the model settings were specified and a few simple numerical

studies were conducted to test the feasibility of the proposed EM-DoIt algorithm,

this project is far from completion. In the future work, we plan to refine the cur-

rent study both theoretically and numerically. We will conduct more complicated

simulation examples and carry out real data analysis. In the smoking cessation

study we discussed in the previous chapters, the researchers are also interested in

whether some specific discrete longitudinal covariates are associated with the risk

of relapse. For example, the number of cigarets smoked since the last prompt,

or whether there is any stressful event happened since the last prompt. We can

apply our proposed methodology to address such research questions. In addition,

it would be ideal to establish the asymptotic theories for the maximum likelihood

estimators obtained from the estimation.

The model framework in section 6.1 can be further extended in two directions.

First, one may consider building the a joint model with multiple discrete longitu-

dinal covariates. This is similar to the case of continuous longitudinal covariates

in Chapter 4. Moreover, the joint model with both the continuous and the dis-

crete longitudinal covariates can also be considered, but the correlations among

the di↵erent types of the longitudinal covariates need to be carefully specified. Sec-

ond, following the idea of Chapter 5, one may think of extending the parametric

joint model setting in section 6.1 to a nonparameteric joint model with discrete

longitudinal covariates, where the mean processes of the longitudinal covariates

are allowed to have irregular shapes, and the survival coe�cients are allowed to

vary with time. Such models, thought sophisticated, would be more computational

challenging.



Bibliography

Albert, P. S. and J. H. Shih (2010). An approach for jointly modeling multivari-
ate longitudinal measurements and discrete time-to-event data. The Annals of
Applied Statistics 4 (3), 1517.

Bollen, K. A. and P. J. Curran (2006). Latent curve models: A structural equation
perspective, Volume 467. Wiley. com.

Bolt, D. M., M. E. Piper, W. E. Theobald, and T. B. Baker (2012). Why two
smoking cessation agents work better than one: role of craving suppression.
Journal of consulting and clinical psychology 80 (1), 54.

Brown, E. and J. Ibrahim (2003). A bayesian semiparametric joint hierarchical
model for longitudinal and survival data. Biometrics 59 (2), 221–228.

Brown, E. R., J. G. Ibrahim, and V. DeGruttola (2005). A flexible b-spline model
for multiple longitudinal biomarkers and survival. Biometrics 61 (1), 64–73.

Bycott, P. and J. Taylor (1998). A comparison of smoothing techniques for cd4
data measured with error in a time-dependent cox proportional hazards model.
Statistics in Medicine 17 (18), 2061–2077.

Cai, Z., J. Fan, and R. Li (2000). E�cient estimation and inferences for varying-
coe�cient models. Journal of the American Statistical Association 95 (451),
888–902.

Cai, Z., J. Fan, and Q. Yao (2000). Functional-coe�cient regression models for
nonlinear time series. Journal of the American Statistical Association 95 (451),
941–956.

Cai, Z. and Y. Sun (2003). Local linear estimation for time-dependent coe�cients
in cox regression models. Scandinavian Journal of Statistics 30 (1), 93–111.

Chen, R. and R. S. Tsay (1993). Functional-coe�cient autoregressive models.
Journal of the American Statistical Association 88 (421), 298–308.



162

Chi, Y.-Y. and J. G. Ibrahim (2006). Joint models for multivariate longitudinal
and multivariate survival data. Biometrics 62 (2), 432–445.

Cowling, B., J. Hutton, and J. Shaw (2006). Joint modeling of event counts
and survival times. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 55 (1), 31–39.

Cox, D. D. R. and D. Oakes (1984). Analysis of Survival Data, Volume 21. CRC
Press.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statis-
tical Society. Series B (Methodological) 34 (2), 187–220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62 (2), 269–276.

Dafni, U. G. and A. A. Tsiatis (1998). Evaluating surrogate markers of clinical
outcome when measured with error. Biometrics 54 (4), 1445–1462.

De Gruttola, V. and X. M. Tu (1994). Modelling progression of cd4-lymphocyte
count and its relationship to survival time. Biometrics 50 (4), 1003–1014.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society.
Series B (Methodological) 39 (1), 1–38.

Diggle, P., P. Heagerty, K.-Y. Liang, and S. Zeger (2002). Analysis of longitudinal
data. Oxford University Press.

Ding, J. and J.-L. Wang (2008). Modeling longitudinal data with nonparametric
multiplicative random e↵ects jointly with survival data. Biometrics 64 (2), 546–
556.

Dziak, J. J., R. Li, and A. Qu (2008). An overview on quadratic inference func-
tion approaches for longitudinal data. In X. L. J. Fan and J. Liu (Eds.), New
Developments in Biostatistics and Bioinformatics, pp. 49–72. World Scientific
Publishing Co. Singapore and Higher Education Press, Beijing China.

Eubank, R., C. Huang, Y. M. Maldonado, N. Wang, S. Wang, and R. Buchanan
(2004). Smoothing spline estimation in varying-coe�cient models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 66 (3), 653–667.

Fan, J., T. Huang, and R. Li (2007). Analysis of longitudinal data with semipara-
metric estimation of covariance function. Journal of the American Statistical
Association 102 (478), 632–641.



163

Fan, J. and R. Li (2004). New estimation and model selection procedures for
semiparametric modeling in longitudinal data analysis. Journal of the American
Statistical Association 99 (467), 710–723.

Fan, J. and R. Li (2006). An overview on nonparametric and semi parametric
techniques for longitudinal data. In J. Fan and H. Koul (Eds.), Frontiers of
Statistics, pp. 277–304. London: Imperial College Press.

Fan, J., H. Lin, and Y. Zhou (2006). Local partial-likelihood estimation for lifetime
data. The Annals of Statistics 34 (1), 290–325.

Fan, J. and W. Zhang (1999). Statistical estimation in varying coe�cient models.
The Annals of Statistics 27 (5), 1491–1518.

Fang, K.-T. and Y. Wang (1994). Number theoretic methods in statistics, Vol-
ume 51. CRC Press.

Faraway, J. J. (1997). Regression analysis for a functional response. Technomet-
rics 39 (3), 254–261.

Faucett, C. L., N. Schenker, and R. M. Elasho↵ (1998). Analysis of censored
survival data with intermittently observed time-dependent binary covariates.
Journal of the American Statistical Association 93 (442), 427–437.

Faucett, C. L. and D. C. Thomas (1996). Simultaneously modelling censored
survival data and repeatedly measured covariates: a gibbs sampling approach.
Statistics in Medicine 15 (15), 1663–1685.
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