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Abstract

Reducing the total cost of owning and operating equipment is an important goal for both
the U.S. military and private industry . Key goals for logistics support equipment are
increasing fuel efficiency and reducing maintenance costs. This research addresses
techniques to classify terrain in order to better predict maintenance schedules, reduce

subsystem damage and improve fuel efficiency in ground vehicles.

The United States Army Material Systems Analysis Activity (AMSAA) has developed a

measurement and processing approach algorithm for Terrain Regime Identification and
"OEUUPI PEEUPOOwWw®31(" AwlUi EOWEOGEUUPI Pl UwUT 1T wl EU
based on the roughness (zaxis motion), bumpiness (magnitudes of vehicle pitch an d roll),
steepness of the terrain EOE wUT T wYT I PEOI zUwUx1 1 Edw31T 1 wUl UUED
to maintenance prediction algorithms, as rates of damage to the various sub-systems of

the vehicle should be correlated to the harshness of terrain traversed. The algorithm uses

inputs from sensors measuring vehicle pitch and roll mounted on the vehicle body,

vertical acceleration from a sensor mounted on the axle, vehicle speed, and position (via
GPS).Spectrafrom a z-axis accelerometer mounted in the body of the vehicle have been

compared to spectra from a z-axis accelerometer mounted on the axle of the vehicle to see

if the same information regarding the roughness can be extracted in both cases, or if a



translation model can be developed to produce comparable results, and potentially

reduce instrumentation costs.

The TRIC algorithm has been reproduced in MATLAB to see what additional information

and uses can be obtained. The classifications from TRIC were compared to vehicle

operating mode classifications previously developed by the Applied Research Laboratory

(ARL) at Penn State based on vehicle operating data such as engine speed, vehicle speed

and accelerator position. Color-coded classifications overlaid on maps of the test courses

show operaU D O1 wOOET UwWEUWEwWlI UOGEUDPOOWO! wOT T wYT T PEOI z U

useful for comparing vehicle mode classification to terrain classification.
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Chapter 1 - Introduction

1.1 Motivation

Reducing the total cost of owning and operating equipment is important for both the U.S.
military and private industry. K ey components of this cost for logistics support equipment

are maintenance and fuel. There are a number of dfferent approaches to reducing
maintenance costs. One area is failure prediction. Different methods have been developed
to predict failure in certain vehicle mechanisms to determine where maintenance should
be focused [1]. Recently, terrain classification has been proposed as a method for
predicting future component failures as part of condition based maintenance (CBM) in

addition to the methods that are already in place. Terrain classification could be an
important component in diagnostic and prognostic algorithms, as the time that a vehicle

spends on various terrains can be directly correlated to damage accumulated in the sub

systems of the vehicle[2]. This researchis focused onthe classification of the harshness of

Ul UUEDPOWUOUEYI UUI EwEEUI E w0 O wU fathen thanlpdfédimgaU wU 1 U x C

terrain profile . It will look at a current method of terrain classification and on ways of

improving this method and reducing the cost of sensors and cabling needed to collect the
required data. In the future, this will help to identify causes of different health
degradation in vehicles of the same typeor vehicles conducting the same missions Once

enough data is collected, vehicles driven at test centers and inthe field can be compared



and analysts will be able to correlate sub-system damage accumulation to terrain

traversed. This will help in improving and refining maintenance schedules.

The Army Materiel Systems Analysis Activity (AMSAA) has developed aTerrain Regime

and Identification Classification (TRIC) [3]E OT OUPUT OwUOWEOEUUDPI awYIl T PE
terrain. One motivation of this research is to refine and improve the TRIC algorithm . The

research aims toreduce the cost of implementing the algorithm by reducing the number

of sensors needed to collect the data required for the algorithm.

Previous work has also classified the operating modes of a vehicle defined by engine
speed, vehicle speed and the accelerometer position Vehicle operational mode
information has been correlated to logistics variables such as fuel use, and is being
examined for correlation with vehicle failure modes. The advantage of vehicle operational
mode classification is that the required data already exists on the vehicle J1939 bus and
does not require the addition of any new sensors. It has been proposed to use vehicle
operating mode classification to in place of Terrain Classification to predict future
maintenance and repair demands. A second motivation of the research is to compare this
method of classification to the TRIC classifications to determine if there are any
correlations between the two. The purpose of this comparison is to identify if terrain
affects how a driver operates a vehicle and how the terrain affects UT | wWEUDYI Uz Uwli E
levels. If it can be shown that operational modes provide the same information about

vehicle wear and tear as information about the terrain over which the vehicles are



operated, then the Army can save money by not having to install the additional sensors,

cabling, and data acquisition electronics required to implement the TRIC algorithm.

1.2 Background ¢ Terrain Profiling Methods

A common method to measurethe profile of a terrain or test courseis using a profilometer
like the one shown in Figure 18 w3 T 1 wx UOI DOOOT Ul Uw OldiEeotly Ul Uw ? U«
measuring the terrain profile from the surface using ultrasonic sensors lasers and/or
gyroscopes|[2, 4]. The measurements are made spatially, at normal distance increments,
rather than temporally, at normal time increments, as is commonly done in many data
collection experiments [4]. A Fourier transform is performed on the data, and a power like
spectrum called the wave number spectrum (WNS) is produced, which is analogous to
the power-spectrum density (PSD) in the time domain. Some authors interchange the use
of WNS and PSD. When used in this thesis, they are interchangeablewhen referring to
data collected and analyzed as a function of distance By doing an inverse Fourier
transform, a test course with the same root-mean-square (RMS) value as the real course

could be digitally synthesized for use in computer terrain modelling [4].



Figure 1: Profilometer being towed by vehicle Source: Hatton, K. (2011, March 2). Terrain Regime
Identification and Classification (TRIC)

The WNS can also be used to analyze the condition of the road by comparing0T I wUl UUED Oz
RMS to a known classified course with the same RMS. The problem with this method, as

shown by Steinwolf and Connon, is that two courses that havethe same RMS value can

vary greatly in their terrain features and can produce different WNS [2], [4]. Figure 2

shows the WNS of two different courses that have the same RMS value, but different

terrain features. The blue curve represents one course, the green course represents the

other, and where they overlap is shown in purple.
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Figure 2: The WNS of two courses with identical RMS values, but very different  terrain features
(AMSAA) Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification
(TRIC)

The two curves have completely different shapes, indicating different spatial distributions
of the terrain effects on the vehicle. This could mean that one terrain has several small
bumps and the other has only a few larger bumps. The greencurve is even missing a large
sedion of the long wavelength data becausethis method often filters out some of that
data, OUWE O1 U0z Uwl Yitl(dhoeBhe Bpddthdrlsipiott@d with the logarithm of
the wavenumber, the missing long wavelength data is most likely the result of a difference
in the wavenumber resolution of the respective Fourier transforms) . Loss of this data
results in a loss of information about damage to some subsystems|[2]. Different types of

terrain can have different effects on the vehicle when it comes to damage accumulation.



For example, a vehicle that spends a lot of time on steep but smooth terrain may acquire
more damage to the engine and transmission and have worse fuel economy than a vehicle
that spends a lot of time on bumpy, flat terrain, which may accumulate more damage to
the suspension and steering. The two terrains could have identical RMS values. Another
problem is that the profilometer is large, expensive, andmust be towed, making it difficult

for in-operation vehicles to collect the necessary datd[3].

A popular method for classifying terrain roughness is the roughness index from t he
International Organization f or Standardization (ISO) [5]. The index uses the WNS or the
PSD, to classify the terrain on an A-H scale where A is excellent condition and H is very

poor condition. The index can be seen in Figure 3.

1 For constant velocity the WNS and the PSD of the time series data are the same with a simple
scaling of the frequency axis.
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June). The use of vehicle acceleration measurements to estimate road roughne ss.Vehicle System

Dynamics.

A recent method in terrain profiling suggested by Gonzalez involves using the
accelerometers already installed on many luxury vehicles [5]. The PSDfrom the unsprung
accelerometers is obtained from exciting a vehicle with a theoretical known profile and
with a known PSD. A transfer function between the road and the unsprung

accelerometersis then obtained using Equation (1.1).

0 S (1.1)

where the numerator is the PSD of the unsprung accelerometers and the denominator is

the theoretical PSD of the road.



The transfer function can then be applied to a PSD obtained from the accelerometers of
that vehicle to determine the PSD of any road the vehicle is driven on. From the road PSD,
the road can be given a roughness classification according to the 1ISO standards[5].

However, a terrain profile cannot be obtained from this method because when a PSD is
generated, phase information is lost. To reconstruct a time series from a spatial frequency
series, the phase information is needed because it contains the temporal content. Thus,he

terrain elevation information cannot be backed out from the PSD of the road.

Another method of terrain profiling makes us e of force measurements in addition to
motion measurements used by other methods. This method was developed by the
Nevada Automotive Test Center (NATC) for use on a test vehicle theydeveloped called
the Dynamic Force Measurement Vehicle (DFMV) [6]. A triaxial load cell is placed at the
end of each axleof the DFMV. This load cell makes sure that the forces on one side are
equal and opposite of the forces on the other sideof the axle. The caseshown in Figure 4
has F1 = F2 where Flis the sum of all the forces on the left side of the axle (forces from
the sprung mass, which is the vehicle body and vehicle load, and the suspension,
represented by the sprung dashpot) and F2is the sum of all the forces on the right side of
the axle (the tire). This will make sure that vibrations from the suspension or the body of
the vehicle are isolated from the accelerometer located on the tire side of the load cell. The
accelerometer is then only measuringthe vertical displacements fromthe tb Ul z Uwb OU1T UE E (
with the ground. The accelerometer data can be integrated twice to obtain vertical

displacement (elevation), and then the elevation can be plotted against distance travelled



[6]. The accelerometer measurements are taken at all four tires and samples are taken at
equal intervals of distance, not time, just like the other methods of profiling. Then, like
other methods, a WNS (or PSD) can be taken from the accelerometer data which an be

used for comparison to other courses or to digitally synthesize a course.

M
Sprung Mass

Lsr /E
S/Axlc

J—

/ F,
Triaxial Load Cell

//\\\/ AN

Vertical Accelerometer

Figure 4. Quarter car model for the DFMV showing the locations of the load cell and the
accelerometers, as well as showing the locations of the forces that are balanced out Source:
Ashmore, S. and Hodges, H. (1990, October 28).Dynamic Force Measurement Vehicle (OFMV) and
Its Application to Measuring and Monitoring Road Roughness.

Currently, there is no standard that is widely used to classify terrain harshness. In
addition to the ISO classification discussed above pne system used by the Army classifies
terrain using a profilometer, like the one described above The terrain is classified as
primary, secondary and off -road. The classifications are based on the elevation profile of
the terrain. The problem with the classification system is that the amplitudes that define
each regime heavily overlap with the others [3]. The current methods are most concerned

with improving road conditions or synthesizing courses digitally to use for testing . They
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are also concerned with how vehicles perform on certain terrain profile s. However, they
are usually not concerned with how and where on the vehicle the terrain causes wearor
on how the terrain affects overall fuel economy. Current methods do not address
classifying terrain across abroad spectrum of wavelengths (types of terrain) in real time
or in identifying what kinds of terrain vehicles are operating on. Another concern with
profiling methods is that the data is always post -processed and cannot be done in real

time in the field.

To help solve these problems, AMSAA developed the TRIC algorithm. The goal of TRIC
is to provide a terrain harshness classification systemin real time that includes medium

and long terrain wavelengths as well as short wavelengths for vehicles deployed in the
field . Because the TRIC classificatonD UWEE Ul EwOOwUT 1 wYI | PEGH
creates a classification system that is morefocused on vehicle wear and in determining

the amount of time spent on a particular terrain. This gives more information than a
system that just profiles the terrain or that just classifies the short wavelengths ¢ the
2UO0U0UT I»@Is badigned to be used in the field by in-operation vehicles as well ason

test courses.

1.3 Thesis Outline

Chapter Two of this thesis gives a detailed explanation of the TRIC algorithm and
examines the methods used to reproduce the TRIC algorithm based on data provided by
AMSAA from runs done on test courses by two different vehicles. The results of the

reproduction are discussed.

UzwUI U
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Chapter Three discusses the possbility of using an accelerometer placed above the
suspension inside the body of the vehicle rather than below the suspension on the axis.
This would allow for a less expensive setup when gathering data required to classify
terrain harshness. Data for this analysis was obtained from vehicles with accelerometers
placed on the axle and above the suspension in the body of the vehicle and which were
driven over test courses in Nevada. Chapter Four discussesa method for classifying
vehicle operational modes using a k-means clustering algorithm . Results of the algorithm
applied to data from test runs done on courses in Nevadaand from vehicle runs done in
State College, Pennsylvaniaare presented. Chapter Fivepresents a method for correlating
the TRIC classifications to the operational mode classifications. Results from the
correlations done on the same data used in Chapter Fourare presented. Finally, Chapter
Six summarizes the research and results of the analysis. Sggestions for future work and

continuation of this research are alsopresented.
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Chapter 2 - Reproduction of the TRIC Algorithm

2.1 AMSAA Terrain Regime Identification and Classification

(TRIC)

The TRIC algorithm divides the terrain into short wavelength s, medium wavelengths, and
long wavelengths. Each of these wavelength bands are classified into low amplitude,
medium amplitude, and high amplitude. This gives 27 different classifications of terrain

harshness, as shown in the cube in Figure5.

The short wavelength terrain can be thought of as repetitive small bumps in the terrain

that causesvertical displacement and vibration in the vehicle. Short wave length terrain

measurements are made from a zaxis accelerometer which measures the accelerationof
the up and down motions of the vehicle . It ranges from smooth terrain, such as a paved
road, to rough terrain, such as a rocky road or a Belgium block style of road, like the roads
shown in Figure 6. The definition of smooth and bumpy depends on the type of v ehicle
and is discussed more in Section 2.3. On the vehicle, it can affect the condition of the

fastened joints, the electronicsand human comfort and safety.
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’

Long wavelengths

Figure 5: Cube showing the 27 different levels of harshness that the TRIC algorithm classifies
Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification (TRIC)

Figure 6: Example of short wavelength terrain with  smooth terrain on the left and rough terrain
on the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification
(TRIC)

The TRIC algorithm places the accelerometer on the axis of tle vehicle so that it is below
the suspension. The data is collected at a sampling frequency of 60 Hzt 100 Hz (or is
decimated down to that frequency) and a low -pass filter of 25-30 Hz is applied. Then, the

RMS values of the acceleration data aredetermined for 20 second blocks of time as well
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as the average speed over the same 20 second blocks of time. These values are plotted
against each otherand speed and vehicle-specific thresholds are applied to classify each
point of averaged data as low, medium or high amplitude. Low amplitudes are assigned

a value of 1, medium amplitudes are assigned a value of 2 and high amplitudes are

assigned a value of 3.Figure 7 shows the flow diagram of the short wavelength portion of

the algorithm.

Unsprung
Accelerometer

threshold met?
Acceleration
(Z-axis)

Mean Speed
and RMS
Acceleration

Minimum speed

Sample: 60- 100 Hz
Mean: 20 second

window

Low Pass Filter:
25—-30 Hz

Multiply: 2

RMS: 20 second
window

Multiply: 1
Short

Wavelength

H = Mean Speed*HighSlope + HighIntercept Component
L = Mean Speed*LowSlope + LowlIntercept (0,1,2,3)

Figure 7: Flow diagram of the short wavelength portion of the TRIC algorithm, the thresholds
HighSlope, Highlntercept, LowSlope and LowlIntercept are specific to each vehicle

Next, the medium wavelength terrain can be thought of as larger repetitive bump s than

the short wavelength data, and may impart a noticeable rocking motion instead of simple
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vertical acceleration. The measurements are made from a gyroscope, but only the pitch
and roll measurements are needed for the algorithm; yaw is not used. The definitions of

pitch, roll and yaw are shown in Figure 8.

Yaw

Figure 8: Pitch is defined as rotation around the axis running from the left to the right of the
vehicle, roll is defined as rotation around the axis running from the front to the back of the
vehicle and yaw is defined as rotation around the axis running from the top to the bottom of the
vehicle Source: http://wmfclipart.com/images/Army/10 -ton-truck. WMF.html, obtained, arrows
added by author

Terrain ranges from flat terrain such as a paved road (the same as the short wavelength
data) to bumpy terrain such as a path containing large boulders as shown in Figure 9. The
definition of what is flat and what is bumpy is determined by the specific veh icle being
tested. The suspension and steering of the vehicle can be worn by this type of terrain and

it also affects the stability of the vehicle as well as human comfort.
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Figure 9: Example of medium wavelength terrain with flat  terrain on the left and bumpy terrain
on the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification
(TRIC)

The pitch and roll data is taken from the gyroscope, and the difference between each
sample is taken giving . /téhand, 1 Ov@ldes. Then a pitch and roll vector magnitude is
computed, which represents the rate of angular change, using a standard vector

magnitude formula as shown in Equation ( 2.1).

¥ YWOTOOYYEad (2.1)
where 9 "%is the pitch and roll vector magnitude. It is assumed that the faster the angular

rate of change, thebumpier the terrain [3].

Once the vector magnitude is calculated, the mean is calculatedover 20 second periods
and vehicle specific thresholds are applied to determine low, medium and high
amplitude. The thresholds are note speed dependent.Low amplitudes are assigned a
value of 10, medium amplitudes are assigned a value of 20, and high amplitudes are
assigned a value of 30.Figure 10 shows the flow diagram for the medium wavelength

classifications.
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Gyroscope Sensor
< Pitch/Roll Vector
Minimum Speed B
Pitch Angle Roll Angle threshold met? Magnitude Mean
(PVRM)

A Pitch = Sample-to A Roll = Sample-to Multiply: 30
sample difference sample difference

Pitch and Roll Vector Multiply: 20
Magnitude

\APitch? + ARoll?

Mean: 20 second
window

H = Higher Threshold :
L = Lower Threshold Medium Wavelength
Component

(0, 10, 20, 30)

Figure 10: Flow diagram of the medium wavelength portion of the TRIC algorithm, the higher
and lower thresholds are specific to each vehicle

Finally, the long wavelength terrain is defined as the hilliness of the terrain. The data is
taken from the speed and altitude measurements from a GPS device mounted on the
vehicle. The terrain is classified from flat to hilly, as seen in Figure 11. Terrain is
considered flat whenever the percent grade is less than 2% and is considered hilly or steep
when the percent grade is greater than 8%. These classifications arexdependent of vehicle
type. Large, steep elevation changes in theterrain can affect the life of the engine,

transmission and brakes of the vehicle. It can also negatively affect the fuel economy.
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Figure 11: Example of long wavelength terrain with flat terrain on the left and hilly terrain on
the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification
(TRIC)

The vehicle speed data is taken from the GPS andnumerically integrated to obtain the
distance traveled. Change in distance over 20 second periods are calculated. The altitude
data is also taken from the GPS and the 2Gecond change in altitude values are calculated.
The change in altitude divided by the run gives the percent grade. The run is not the same
as the distance traveled but can be calculated with simple geometry shown in Figure 12
and Equation (2.2). The thresholds are applied to obtain low, medium and high amplitude
harshness values. The low amplitudes are assigned a value of 100, the medium amplitudes
are assigned a value of 200 and the high amplitudes are assigned a value of 300Che flow

diagram for the lo ng wavelength classifications can be seen in Figurel3.
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~— Altitude

Run

Figure 12: Simple geometry diagram to relate distance travelled, the run, and the altitude

0 Q0 60Q0Q
- = (2.2)

GPS Receiver

= Minimum Speed
Altitude threshold met?

Grade > .08 Multiply: 300

Integrate to get A Altitude: 20 second

distance: 20 second window
window

AAltitude .08 > Grade > .02 ma Multiply: 200

Grade s e e e
VDistance Travelled?—Altitude?

ma Multiply: 100

Long Wavelength Component
(0, 100, 200, 300)

Figure 13: Flow diagram of the long wavelength portion of the TRIC algorithm
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Once the harshness values for each classification of wavelength ae determined, they are
added together to obtain the overall harshness of the terrain. The final portion of the TRIC

algorithm flow diagram is shown in Figure 14.

Short
Wavelength
Component

(0,1,2,3)

Medium Wavelength Long Wavelength Component
Component (0, 100, 200, 300)
(0, 10, 20, 30)

TRIC

27 possible combinations of short wavelength,
medium wavelength and long wavelength

Figure 14: Final portion of the flow diagram for the TRIC classifications

Once the values are added togetherthere are 27 different combinations of short, medium

and long wavelength classifications. It is also important to mention that there is a

minimum speed threshold of 5 mph. Any time that the average speed over a 20 second

period is below 5 mph, a value of Y uOUWEWEOEUUDPI PEEUPOOwWOI w? PEOI
different possible harshness values. The values can be coloicoded and overlaid on a map

of the course in order to give a visual representation of the harshness of the terrain.

Examples of such mapsare shown later in Section 2.3.In order to not bog down the map

PPDUT wl WWEDI 11T Ul ODWEOOOUUOwW?EIT T bsBhowrentiezunes 1 ( " WE O
in Figure 5, to reduce the total number of colors down to seven. An eighth color of black

is used torepresent the idle classification.
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As a note, the thresholds for the each vehicle were obtained by AMSAA using test courses
with known features. Vehicle responses were recorded for certain sections on various
courses at the Aberdeen Proving Ground and Yuma Proving Ground. These sectionshave
been classified as primary, secondary, and offroad for the roughness (corresponding to
low, medium and high amplitudes in the TRIC algorithm ). A similar approa ch was used
for the bumpiness where certain sections had features that caused different degrees of
pitch and roll on the vehicle. The thresholds were set to match the classifications on the
courses. Sucha system was not needed forhilliness, or long -wavelength. For all vehicles,
less than a 2% grade is considered flat or low steepness, a 2% to 8% grade is considered
medium steepness, and anything greater than an 8% grade is considered high steepness

3].

Because the thresholds are based on vehicle resporesto the terrain, they are different for
each vehicle, because each velgie has a different response toterrain. The exception is the
long wavelength classifications, being because independent of vehicle size or type, the
steepness of the terrain will not change. For the short wavelength, the weight of the
vehicle and the type and size of the tires are two variables that will affect the
measurements at the accelerometers. For the medium wavelengh, the size of the vehicle,
specifically the wheelbase, will affect the thresholds. A larger vehicle with a larger
wheelbase will not have the same pitch and roll magnitude (angular rate of change) as a
smaller vehicle with a smaller wheelbase. A method being developed could convert a PSD

in the time domain to a WNS in the spatial domain. The WNS for vehicles of different
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sizes could then be compared and thresholds could be determined from the comparisons
rather than relying on running different size vehicles over test courses with known
profiles multiple times. The WNS could also potentially be used to define the division
between medium and long wavelengths for each vehicle. This method is briefly discussed

in Appendix A .

(OxOUUEOUwWI EE0UOUUWUT EVWET I 1 EU wbré presstre anBtBedl z UwUI
weight of the load. AMSAA performed several tests using vehicles with different tire
pressures and different load weights. Difference in the data from the sensors used for
TRIC were compared, and thresholds were determined that resulted in the lowest error s
across all the tests [3]. New thresholds could be determined for different weight loads and

tire pressures, but with so many variations and combinations possible, a huge database

would need to be produced for the algorithm to be implemented in the field.

2.2 Methods

Data supplied to ARL by AMSAA included the information from several military vehicle

runs on various test courses.Four data sets were used involving four different courses.
The two Army vehicles used in the tests were the Oshkosh Heavy Expanded Mobility
Tactical Truck (HEMTT ) and the Oshkosh Family of Medium Tactical Vehicles (FMTV).
The HEMTT, an eight-wheeled vehicle, diesel-powered, with off-road capabilities, is
primarily used to transport heavy cargoes [7]. The FMTV, a six-wheeled all-terrain
vehicle, is also primarily used for a variety of combat missions including troop transport,

resupply, and hauling [8]. The two vehicles are shown in Figure 15. The tests took place
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on the Churchville, Perryman and Belgian Block courses at the Aberdesn Proving Ground
in Maryland and on the road between the Churchville course and the Perryman course.
The data included raw data from an unsprung accelerometer, the pitch and roll data from

a gyroscope, and the speed and altitude data from a GPS. The dataalso included the
filtered, 20-second RMS unsprung accelerometer data, the 20 second average of the pitch

and roll vector magnitude and the 20-seond grade of the slope.

Figure 15 Above: the Oshkosh HEMTT Below: the Oshkosh FM TV Source:
oshkoshdefense.com, May 2014

The first task of this research was to reproduce the TRIC algorithm in MATLAB . The raw

data from AMSAA was used as the basis for reproducing the algorithm. The raw data was
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passed into the algorithm written in MATLA B to obtain the 20 second values. If the time
length of a data set was notevenly divided into 20 second periods (meaning there would
be a remainder), the average of theremainder was taken for the final data point. These
values were then compared to the AMSAA 20 -second averages with theexpectation that
they should be the same The MATLAB code for the algorithm can be found in Appendix

C.

An immediate challenge encountered when reproducing the algorithm was whether to
do a sliding average of 20 second perods with no overlapping, or to do some percentage
of overlapping in the average. Examination of the AMSAA averages showed that an
average with no overlapping was done. This was determined by the number of points in
the data after averaging. With this info rmation, the AMSAA algorithm could be
reproduced. A more accurate picture of the terrain harshness could be obtained by
averaging with an overlap between the 20 second periods. A future version of the

algorithm may include averaging done with overlapping t o better represent the terrain.

After it was determined that no overlapping was used in the averaging, the number of
data points in the reproduced averages did not always match the number of points in the
AMSAA averages sometimes they were off by onepoint. When the number of data points
was off after averaging, it was always that the AMSAA averages had one more data point.

It was unclear why this was the case.

Another problem was that the data averagesfrom the reproduced algorithm were not the

same as the corresponding values from the AMSAA averages The reason for the
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difference is not known. Because of this, the TRIC classifications did not match between

those produced by the reproduced algorithm and th ose supplied by AMSAA. Table 1

shows the error percentage between the two sets of clasifications for the four tests.

Table 1: Percentage of classification points that matched between the reproduced TRIC

algorithm and the classifications supplied by AMSAA. Each of the four
the vehicle used to collect the data.

courses are listed with

Perryman, FMTV (Loaded) Perryman to ChurchvilleHEMTT
SWL Match | MWL Match LWL Match | SWL Match| MWL Match | LWL Match
(%) (%) (%) (%) (%) (%)
100 89.7 99.5 96.7 86.81 85.71
Churchville HEMTT(Unloaded) Belgian BlockHEMTT
SWL Match | MWL Match LWL Match | SWL Match| MWL Match | LWL Match
(%) (%) (%) (%) (%) (%)
62.84 88.51 33.1 74.22 73.19 79.38

The long wavelength classifications for the Churchville HEMTT test were different from

the AMSAA classifications. This is because the AMSAA classifications did not use the

absolute value of the slope. This means that any negative slope would be classified as low
amplitude. If we assume that negative slopes will cause as much wear on the vehicle as
corresponding positive slopes, the absolute value of the slope should be used when
calculating the long wavelength classifications. There were some points in this test that
were classified by AMSAA as having slopes with a percent grade above 30%, which are
not present on the Churchville course [9]. The other three tests did not show as much error
in the long wavelength classifications because they are flatter courses and so using the

negative slopes did not have as much of an effect.
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A representative from AMSAA was contacted to address the differences of the
reproduced classifications and the AMSAA classifications. The received response was to
not trust the provided classifications, to process the data through the reproduced
algorithm, and use those classifications [L0]. Based on the response, itwas decided to
continue analysis with the reproduced algorithm and not pursue causes for difference any

further.

In the following s ection, the process of the TRIC algorithm is shown, as an eample, using

raw data from the Churchville test put through the reproduced algorithm.

2.3 Algorithm Reproduction Analys is Using AMSAA Data Sets

2.3.1 Churchville Course with  HEMTT vehicle

The Churchville Test Area is located at the Aberdeen Proving Grounds in Maryland. The

course used for this test can be seen in Figurel6. The course consists of dirt roads with
steep inclines and tight turns. It is designed to stress a variety of the vehicle subsystems
including the engine, drivetrain and suspension [10]. This type of terrain was selected to
give a full spectrum of harshness classifications for all three wavelength types in the TRIC

algorithm.
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Figure 16: Left: Churchville Test area where the black line represents the path taken fo r this test
Right: Sample Image of terrain and road of the course

Figure 17 shows the map overlaid with the path of the vehicle, color code d with the TRIC
classifications, and shows the overall harshness. Dark green shows the sections of the
course that are smooth, flat and level. Red shows the harshest sectionsof the course, which
are rough, bumpy and steep. On this course, the other colors show that there is every

classification of terrain in between the two extremes.

The maps can be broken down further to show the amplitudes of just the short
wavelengths, the medium wavelengths, or the long wavelengths. These maps can be
useful if one is just looking for the harshness of a certain type of terrain. Figures 18 through

20 show these maps for the short, medium and long wavelengths respectively.
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Figure 17: Map of the Churchville course overlaid with the terrain classifications obtained from
aHEMTT vehicle

The maps can be broken down further to show the amplitudes of just the short
wavelengths, the medium wavelength s, or the long wavelengths. These maps can be
useful if one is just looking for the harshness of a catain type of terrain . Figures 18through

20 show these maps for the short, medium and long wavelengths respectively.

Figure 18, the short wavelength map, shows that the course is mainly smooth. The eastern
(right) section of the course is a little rougher with a small section near the middle that is
very rough. Figure 19, the medium wavelength map, shows that the course has a medium
level of bumpiness throughout, with only small sections that are flat or very bumpy. And
finally, Figure 20, the long wavelength map, shows that the course is not very level.
Several sections had a percent gade between 2% and 8% while several other sections had

a percent grade above 8%.
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Figure 18: Short wavelength classifications for the Churchville course driven by a

Figure 19: Medium wavelength classifications for the Churchville course driven by a

HEMTT
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