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Abstract 

Reducing the total cost of owning and operating equipment is an important goal for both 

the U.S. military and private industry . Key goals for logistics support equipment are 

increasing fuel efficiency and reducing maintenance costs.  This research addresses 

techniques to classify terrain in order to better predict maintenance schedules, reduce 

subsystem damage and improve fuel efficiency in ground vehicles.   

The United States Army Material Systems Analysis Activity (AMSAA) has developed a  

measurement and processing approach algorithm for Terrain Regime Identification and 

"ÓÈÚÚÐÍÐÊÈÛÐÖÕɯȹ31("ȺɯÛÏÈÛɯÊÓÈÚÚÐÍÐÌÚɯÛÏÌɯÏÈÙÚÏÕÌÚÚɯÖÍɯÛÏÌɯÝÌÏÐÊÓÌɀÚɯÖ×ÌÙÈÛÐÕÎɯÊÖÕËÐÛÐÖÕÚɯ

based on the roughness (z-axis motion), bumpiness (magnitudes of vehicle pitch an d roll), 

steepness of the terrain, ÈÕËɯÛÏÌɯÝÌÏÐÊÓÌɀÚɯÚ×ÌÌËȭɯ3ÏÌɯÛÌÙÙÈÐÕɯÊÓÈÚÚÐÍÐÊÈÛÐÖÕɯÊÈÕɯÊÖÕÛÙÐÉÜÛÌɯ

to maintenance prediction algorithms, as rates of damage to the various sub-systems of 

the vehicle should be correlated to the harshness of terrain traversed. The algorithm uses 

inputs from sensors measuring vehicle pitch and roll mounted on the vehicle body, 

vertical acceleration from a sensor mounted on the axle, vehicle speed, and position (via 

GPS). Spectra from a z-axis accelerometer mounted in the body of the vehicle have been 

compared to spectra from a z-axis accelerometer mounted on the axle of the vehicle to see 

if the same information regarding the roughness can be extracted in both cases, or if a 
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translation model can be developed to produc e comparable results, and potentially 

reduce instrumentation costs.   

The TRIC algorithm has been reproduced in MATLAB to see what additional information 

and uses can be obtained. The classifications from TRIC were compared to vehicle 

operating mode classifications previously developed by the Applied Research Laboratory 

(ARL) at Penn State based on vehicle operating data such as engine speed, vehicle speed 

and accelerator position.  Color-coded classifications overlaid on maps of the test courses 

show operaÛÐÕÎɯÔÖËÌÚɯÈÚɯÈɯÍÜÕÊÛÐÖÕɯÖÍɯÛÏÌɯÝÌÏÐÊÓÌɀÚɯ×ÈÛÏȭɯɯ3ÏÐÚɯÖÝÌÙÓÈàɯÛÌÊÏÕÐØÜÌɯÐÚɯÈÓÚÖɯ

useful for comparing vehicle mode classification to terrain classification.  
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Chapter 1 - Introduction   

1.1  Motivation  

Reducing the total cost of owning and operating equipment is important  for both the U.S. 

military and private industry. K ey components of this cost for logistics support equipment 

are maintenance and fuel . There are a number of different approaches to reducing 

maintenance costs. One area is failure prediction. Different methods have been developed 

to predict failure in certain vehicle mechanisms to determine where maintenance should 

be focused [1]. Recently, terrain classification has been proposed as a method for 

predicting future component failures as part of  condition based maintenance (CBM) in 

addition to the methods that are already in place. Terrain classification could be an 

important  component in diagnostic and prognostic algorithms, as the time that a vehicle 

spends on various terrains can be directly correlated to damage accumulated in the sub-

systems of the vehicle [2]. This research is focused on the classification of  the harshness of 

ÛÌÙÙÈÐÕɯÛÙÈÝÌÙÚÌËɯÉÈÚÌËɯÖÕɯÛÏÌɯÝÌÏÐÊÓÌɀÚɯÙÌÚ×ÖÕÚÌɯÛÖɯÛÏÌɯÛÌÙÙÈÐÕ, rather than performing a 

terrain profile . It will look at a current method of terrain classification and on ways of 

improving this method  and reducing the cost of sensors and cabling needed to collect the 

required data. In the future, this will help to identify  causes of different health 

degradation in  vehicles of the same type or vehicles conducting the same missions. Once 

enough data is collected, vehicles driven at test centers and in the field can be compared 
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and analysts will be able to correlate sub-system damage accumulation to terrain 

traversed. This will help in improving  and refining maintenance schedules.   

The Army Materiel Systems Analysis Activity  (AMSAA) has developed a Terrain Regime 

and Identification Classification (TRIC)  [3] ÈÓÎÖÙÐÛÏÔɯÛÖɯÊÓÈÚÚÐÍàɯÝÌÏÐÊÓÌÚɀɯÙÌÚ×ÖÕÚÌɯÛÖɯÛÏÌɯ

terrain. One motivation of this research is to refine and improve the TRIC algorithm . The 

research aims to reduce the cost of implementing the algorithm by reducing the number 

of sensors needed to collect the data required for the algorithm.   

Previous work  has also classified the operating modes of a vehicle defined by engine 

speed, vehicle speed and the accelerometer position. Vehicle operational mode 

information has been correlated to logistics variables such as fuel use, and is being 

examined for correlation with vehicle failure modes. The advantage of vehicle operational 

mode classification is that the required data already exists on the vehicle J1939 bus and 

does not require the addition of any new sensors.  It has been proposed to use vehicle 

operating mode classification to in place of Terrain Classification to predict future 

maintenance and repair demands. A second motivation of the research is to compare this 

method of classification to the TRIC classifications to determine if there are any 

correlations between the two. The purpose of this  comparison is to identify if terrain 

affects how a driver operates a vehicle and how the terrain affects ÛÏÌɯËÙÐÝÌÙɀÚɯÍÈÛÐÎÜÌɯ

levels. If it can be shown that operational modes provide the same information about 

vehicle wear and tear as information about the terrain over which the vehicles are 
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operated, then the Army can save money by not having to install the  additional sensors, 

cabling, and data acquisition electronics required to implement the TRIC algorithm.  

1.2  Background  ɬ Terrain Profiling Methods  

A common  method to measure the profile of a terrain or test course is using a profilometer  

like the one shown in Figure 1ȭɯ3ÏÌɯ×ÙÖÍÐÓÖÔÌÛÌÙɯÔÌÈÚÜÙÌÚɯɁÙÖÜÎÏÕÌÚÚɂɯÉà directly  

measuring the terrain profile  from  the surface using ultrasonic sensors, lasers and/or 

gyroscopes [2, 4]. The measurements are made spatially, at normal distance increments, 

rather than temporally, at normal time increments, as is  commonly  done in many data 

collection experiments [4]. A Fourier transform is performed  on the data, and a power like 

spectrum called the wave number spectrum (WNS) is produced, which is  analogous to 

the power-spectrum density (PSD) in the time domain.  Some authors interchange the use 

of WNS and PSD. When used in this thesis, they are interchangeable when referring to 

data collected and analyzed as a function of distance. By doing an inverse Fourier 

transform, a test course with the same root-mean-square (RMS) value as the real course 

could be digitally synthesized for use in computer terrain modelling [4].  
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Figure 1: Profilometer being towed by vehicle Source: Hatton, K. (2011, March 2). Terrain Regime 

Identification and Classification (TRIC)  

  

The WNS can also be used to analyze the condition of the road by comparing ÛÏÌɯÛÌÙÙÈÐÕɀÚɯ

RMS to a known classified course with the same RMS. The problem with this  method, as 

shown by Steinwolf and Connon, is that two courses that have the same RMS value can 

vary greatly in their terrain features  and can produce different WNS  [2], [4]. Figure 2 

shows the WNS of two different courses that have the same RMS value, but different 

terrain features. The blue curve represents one course, the green course represents the 

other, and where they overlap is shown in purple.  



5 

 

 

Figure 2: The WNS of two courses with identical RMS values, but very different terrain features 

(AMSAA)  Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC)  

 

The two curves have completely different shapes, indicating different spatial distributions 

of the terrain effects on the vehicle. This could mean that one terrain has several small 

bumps and the other has only a few larger bumps. The green curve is even missing a large 

section of the long wavelength data because this method often filters out some of that 

data, ÖÙɯËÖÌÚÕɀÛɯÌÝÌÕɯÈÊÊÖÜÕÛɯÍÖÙɯit  (since the spectrum is plotted with the logarithm of 

the wavenumber, the missing long wavelength data is most likely the result of a difference 

in the wavenumber resolution of the respective Fourier transforms) . Loss of this data 

results in a loss of information about damage to some subsystems [2]. Different types of 

terrain can have different effects on the vehicle when it comes to damage accumulation. 
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For example, a vehicle that spends a lot of time on steep but smooth terrain may acquire 

more damage to the engine and transmission and have worse fuel economy than a vehicle 

that spends a lot of time on bumpy, flat terrain, which may accumulate more damage to 

the suspension and steering. The two terrains could have identical RMS values. Another 

problem is  that the profilometer  is large, expensive, and must be towed, making it difficult 

for  in-operation vehicles to collect the necessary data [3].  

A popular method for classifying terrain roughness is the roughness index from t he 

International Organization f or Standardization (ISO) [5]. The index uses the WNS, or the 

PSD1, to classify the terrain on an A-H scale where A is excellent condition and H is very 

poor condition. The index can be seen in Figure 3.  

                                                      

 

1 For constant velocity the WNS and the PSD of the time series data are the same with a simple 

scaling of the frequency axis. 
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Figure 3ȯɯ1ÖÈËɯ1ÖÜÎÏÕÌÚÚɯÊÓÈÚÚÐÍÐÊÈÛÐÖÕɯÐÕËÌßɯÍÙÖÔɯÛÏÌɯ(2.ȮɯÞÏÌÙÌɯ͙ɯÐÚɯÛÏÌɯÞÈÝÌÕÜÔÉÌÙȮɯÈÓÚÖɯ

ÒÕÖÞÕɯÈÚɯÛÏÌɯÚ×ÈÛÐÈÓɯÍÙÌØÜÌÕÊàɯ2ÖÜÙÊÌȯɯ&ÖÕáâÓÌáȮɯ ȭȮɯ.ɀ!ÙÐÌÕȮɯ$ȭȮɯ+ÐȮɯ8ȭɯÈÕËɯ"ÈÚÏÌÓÓȮɯ*ȭɯȹƖƔƔƜȮɯ

June). The use of vehicle acceleration measurements to estimate road roughne ss. Vehicle System 

Dynamics.   

 

 A recent method in terrain profiling suggested by Gonzalez involves using the 

accelerometers already installed on many luxury vehicles [5]. The PSD from the unsprung 

accelerometers is obtained from exciting a vehicle with a theoretical known profile  and 

with a known PSD . A transfer function  between the road and the unsprung 

accelerometers is then obtained using Equation (1.1).  

                   Ὄ                                                           (1.1) 

where the numerator is the PSD of the unsprung  accelerometers and the denominator is 

the theoretical PSD of the road. 
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The transfer function can then be applied to a PSD obtained from the accelerometers of 

that vehicle to determine the PSD of any road the vehicle is driven on. From the road PSD, 

the road can be given a roughness classification according to the ISO standards [5]. 

However, a terrain profile cannot be obtained from this method because when a PSD is 

generated, phase information is lost.  To reconstruct a time series from a spatial frequency 

series, the phase information is needed because it contains the temporal content. Thus, the 

terrain elevation information cannot be backed out from the PSD of the road.   

Another method  of terrain profiling makes us e of force measurements in addition to 

motion measurements used by other methods. This method was developed by the 

Nevada Automotive Test Center (NATC) for  use on a test vehicle they developed called 

the Dynamic Force Measurement Vehicle (DFMV)  [6]. A triaxial load cell is placed at the 

end of each axle of the DFMV. This load cell makes sure that the forces on one side are 

equal and opposite of the forces on the other side of the axle. The case shown in Figure 4 

has F1 = F2, where F1 is the sum of all the forces on the left side of the axle (forces from 

the sprung mass, which is the vehicle body and vehicle load, and the suspension, 

represented by the sprung dashpot) and F2 is the sum of all the forces on the right side of 

the axle (the tire). This will make sure that vibrations from the suspension or the body of 

the vehicle are isolated from the accelerometer located on the tire side of the load cell. The 

accelerometer is then only measuring the vertical displacements from the tÐÙÌɀÚɯÐÕÛÌÙÈÊÛÐÖÕɯ

with the ground. The accelerometer data can be integrated twice to obtain vertical 

displacement (elevation), and then the elevation can be plotted against distance travelled 
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[6]. The accelerometer measurements are taken at all four tires and samples are taken at 

equal intervals of distance, not time, just like the other methods of profiling. Then, like 

other methods, a WNS (or PSD) can be taken from the accelerometer data which can be 

used for comparison to other courses or to digitally synthesize a course.  

 

Figure 4: Quarter car model for the DFMV showing the locations of the load cell and the 

accelerometers, as well as showing the locations of the forces that are balanced out Source: 

Ashmore, S. and Hodges, H. (1990, October 28). Dynamic Force Measurement Vehicle (DFMV) and 

Its Application to Measuring and Monitoring Road Roughness.   

 

Currently, there is no standard  that is widely used  to classify terrain harshness. In 

addition to  the ISO classification discussed above, one system used by the Army classifies 

terrain using a profilometer , like the one described above. The terrain is classified as 

primary, secondary and off -road. The classifications are based on the elevation profile of 

the terrain. The problem with the classification system is that the amplitudes that define 

each regime heavily overlap with the others [3]. The current methods are most concerned 

with improving road conditions or synthesizing courses digitally to use for testing . They 
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are also concerned with how vehicles perform on certain terrain profile s. However, they 

are usually  not concerned with how  and where on the vehicle the terrain causes wear or 

on how the terrain affects overall fuel economy . Current methods do not address 

classifying terrain  across a broad spectrum of wavelengths  (types of terrain)  in real time  

or in identifying what kinds of terrain vehicles are operating on. Another concern with 

profiling methods is that the data is always post -processed and cannot be done in real-

time in the field.  

To help solve these problems, AMSAA developed the TRIC algorithm. The goal of TRIC 

is to provide a terrain harshness classification system in real time  that includes medium 

and long terrain wavelengths as well as short wavelengths  for vehicles deployed in the 

field . Because the TRIC classification ÐÚɯÉÈÚÌËɯÖÕɯÛÏÌɯÝÌÏÐÊÓÌÚɀɯÙÌÚ×ÖÕÚÌɯÛÖɯÛÏÌɯÛÌÙÙÈÐÕȮ it 

creates a classification system that is more focused on vehicle wear and in determining 

the amount of time spent on a particular terrain.  This gives more information than a 

system that just profiles the  terrain or that just classifies the short wavelengths ɬ the 

ɁÙÖÜÎÏÕÌÚÚ.ɂ It is designed to be used in the field by in-operation vehicles as well as on 

test courses.   

1.3 Thesis Outline  

Chapter Two of this thesis gives a detailed explanation of the TRIC algorithm  and 

examines the methods used to reproduce the TRIC algorithm based on data provided by 

AMSAA from runs done on test courses by two different vehicles. The results of the 

reproduction are discussed.  
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Chapter Three discusses the possibility of using an accelerometer placed above the 

suspension inside the body of the vehicle rather than below the suspension on the axis. 

This would allow for a less expensive setup when gathering data required to classify 

terrain harshness. Data for this analysis was obtained from vehicles with accelerometers 

placed on the axle and above the suspension in the body of the vehicle and which  were 

driven over test courses in Nevada. Chapter Four discusses a method for classifying 

vehicle operational modes using a k-means clustering algorithm . Results of the algorithm 

applied to data from  test runs done on courses in Nevada and from vehicle runs done in 

State College, Pennsylvania are presented. Chapter Five presents a method for correlating 

the TRIC classifications to the operational mode classifications. Results from the 

correlations done on the same data used in Chapter Four are presented. Finally, Chapter 

Six summarizes the research and results of the analysis. Suggestions for future work and 

continuation of this research are also presented. 
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Chapter 2 - Reproduction of the TRIC Algorithm  

2.1 AMSAA Terrain Regime Identification and Classification 

(TRIC)  

 

The TRIC algorithm divides the terrain into short wavelength s, medium wavelengths, and 

long wavelengths. Each of these wavelength bands are classified into low amplitude, 

medium amplitude, and high amplitude. This gives 27 different classifications of terrain 

harshness, as shown in the cube in Figure 5.  

The short wavelength terrain can be thought of as repetitive small bumps in the terrain 

that causes vertical displacement and vibra tion in the vehicle. Short wave length terrain 

measurements are made from a z-axis accelerometer, which measures the acceleration of 

the up and down motions of the vehicle . It ranges from smooth terrain, such as a paved 

road, to rough terrain, such as a rocky road or a Belgium block style of road, like the roads 

shown in Figure 6. The definition of smooth and bumpy depends on the type of v ehicle 

and is discussed more in Section 2.3.  On the vehicle, it can affect the condition of the 

fastened joints, the electronics and human comfort and safety.  
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Figure 5: Cube showing the 27 different levels of harshness that the TRIC algorithm classifies 

Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification (TRIC)  

 

 

Figure 6: Example of short wavelength terrain with smooth terrain on the left and rough terrain 

on the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC) 

 

 The TRIC algorithm places the accelerometer on the axis of the vehicle so that it is below 

the suspension. The data is collected at a sampling frequency of 60 Hz ɬ 100 Hz (or is 

decimated down to that frequency) and a low -pass filter of 25-30 Hz is applied. Then, the 

RMS values of the acceleration data are determined for 20 second blocks of time as well 
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as the average speed over the same 20 second blocks of time. These values are plotted 

against each other and speed and vehicle-specific thresholds are applied to classify each 

point of averaged data as low, medium or high amplitude. Low amplitudes are assigned 

a value of 1, medium amplitudes are assigned a value of 2 and high amplitudes are 

assigned a value of 3. Figure 7 shows the flow diagram of the short wavelength portion of 

the algorithm.  

 

Figure 7: Flow diagram of the short wavelength portion of the TRIC algorithm, the thresholds 

HighSlope, HighIntercept, LowSlope and LowIntercept are specific to each vehicle  

 

Next, the medium wavelength terrain can be thought of as larger repetitive bump s than 

the short wavelength data, and may impart a noticeable rocking motion instead of simple 
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vertical acceleration. The measurements are made from a gyroscope, but only the pitch 

and roll measurements are needed for the algorithm; yaw is not used. The definitions of 

pitch, roll and yaw are shown in Figure 8.  

 

Figure 8: Pitch is defined as rotation around the axis running from the left to the right of the 

vehicle, roll is defined as rotation around the axis running from the front  to the back of the 

vehicle and yaw is defined as rotation around the axis running from the top to the bottom of the 

vehicle Source: http://wmfclipart.com/images/Army/10 -ton-truck.WMF.html, obtained, arrows 

added by author  

 

Terrain ranges from flat terrain such as a paved road (the same as the short wavelength 

data) to bumpy terrain such as a path containing large boulders as shown in Figure 9. The 

definition of what is flat and what is bumpy is determined by the specific veh icle being 

tested. The suspension and steering of the vehicle can be worn by this type of terrain and 

it also affects the stability of the vehicle as well as human comfort. 
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Figure 9: Example of medium wavelength terrain with flat  terrain on the left and bumpy terrain 

on the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC) 

 

The pitch and roll data is taken from the gyroscope, and the difference between each 

sample is taken giving ͅ/Ðtch and ͅ1ÖÓÓ values. Then a pitch and roll vector magnitude is 

computed, which represents the rate of angular change, using a standard vector 

magnitude formula as shown in Equation ( 2.1). 

ȿὖὙȿ  ЎὖὭὸὧὬ ЎὙέὰὰ (2.1) 

where ȿὖὙȿ is the pitch and roll vector magnitude.  It is assumed that the faster the angular 

rate of change, the bumpier the terrain [3].  

Once the vector magnitude is calculated, the mean is calculated over 20 second periods 

and vehicle specific thresholds are applied to determine low, medium and high 

amplitude.  The thresholds are note speed dependent. Low amplitudes are assigned a 

value of 10, medium amplitudes are assigned a value of 20, and high amplitudes are 

assigned a value of 30. Figure 10 shows the flow diagram  for the medium wavelength 

classifications.  
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Figure 10: Flow diagram of the medium wavelength portion of the TRIC algorithm, the higher 

and lower thresholds are specific to each vehicle  

 

Finally, the long wavelength terrain  is defined as the hilliness of the terrain. The data is 

taken from the speed and altitude measurements from  a GPS device mounted on the 

vehicle. The terrain is classified from flat to hilly, as seen in Figure 11. Terrain is 

considered flat whenever the percent grade is less than 2% and is considered hilly or steep 

when the percent grade is greater than 8%. These classifications are independent  of vehicle 

type. Large, steep elevation changes in the terrain can affect the life of the engine, 

transmission and brakes of the vehicle. It can also negatively affect the fuel economy.  
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Figure 11: Example of long wavelength terrain with flat terrain on the left and hilly terrain on 

the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC) 

 

The vehicle speed data is taken from the GPS and numerically  integrated to obtain the 

distance traveled. Change in distance over 20 second periods are calculated. The altitude 

data is also taken from the GPS and the 20 second change in altitude values are calculated. 

The change in altitude divided by the run gives the percent grade. The run is not the same 

as the distance traveled but can be calculated with simple geometry shown in Figure 12 

and Equation (2.2). The thresholds are applied to obtain low, medium and high amplitude 

harshness values. The low amplitudes are assigned a value of 100, the medium amplitudes 

are assigned a value of 200 and the high amplitudes are assigned a value of 300. The flow 

diagram for the lo ng wavelength classifications can be seen in Figure 13.  
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Figure 12: Simple geometry diagram to relate distance travelled, the run, and the altitude  

 

ὋὶὥὨὩ 
ὃὰὸὭὸόὨὩ

ЍὈὭίὸὥὲὧὩ ὝὶὥὺὩὰὰὩὨὃὰὸὭὸόὨὩ
 (2.2) 

 

 

Figure 13: Flow diagram of the long wavelength portion of the TRIC algorithm  
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Once the harshness values for each classification of wavelength are determined, they are 

added together to obtain the overall  harshness of the terrain. The final portion of the TRIC 

algorithm flow diagram is shown in Figure 14. 

 

Figure 14: Final portion of the flow diagram for the TRIC classifications  

 

Once the values are added together, there are 27 different combinations of short, medium 

and long wavelength classifications. It is also important to mention that there is a 

minimum speed threshold of 5 mph. Any time that the average speed over a 20 second 

period is below 5 mph, a value of ƔɯÖÙɯÈɯÊÓÈÚÚÐÍÐÊÈÛÐÖÕɯÖÍɯɁÐËÓÌɂɯÐÚɯÎÐÝÌÕȮɯÞÏÐÊÏɯÎÐÝÌÚɯƖƜɯ

different possible harshness values. The values can be color-coded and overlaid on a map 

of the course in order to give a visual representation of the harshness of the terrain. 

Examples of such maps are shown later in Section 2.3. In order to not bog down the map 

ÞÐÛÏɯƖƜɯËÐÍÍÌÙÌÕÛɯÊÖÓÖÙÚȮɯɁËÌÎÌÕÌÙÈÛÌɂɯ31("ɯÊÓÈÚÚÐÍÐÊÈÛÐÖÕÚɯÈÙÌɯÜÚÌËȮɯas shown in the cube 

in Figure 5, to reduce the total number of colors down to seven. An eighth color of black 

is used to represent the idle classification.  
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As a note, the thresholds for the each vehicle were obtained by AMSAA using test courses 

with known features. Vehicle responses were recorded for certain sections on various 

courses at the Aberdeen Proving Ground and Yuma Proving Ground. These sections have 

been classified as primary, secondary, and off-road for the roughness (corresponding to 

low, medium and high amplitudes in the TRIC algorithm ). A similar approa ch was used 

for the bumpiness where certain sections had features that caused different degrees of 

pitch and roll on the vehicle. The thresholds were set to match the classifications on the 

courses. Such a system was not needed for hilliness, or long -wavelength. For all vehicles, 

less than a 2% grade is considered flat or low steepness, a 2% to 8% grade is considered 

medium steepness, and anything greater than an 8% grade is considered high steepness 

[3].  

Because the thresholds are based on vehicle response to the terrain, they are different for 

each vehicle, because each vehicle has a different response to terrain. The exception is the 

long wavelength classifications , being because independent of vehicle size or type, the 

steepness of the terrain will not change. For the short wavelength, the weight of the 

vehicle and the type and size of the tires are two variables that will affect the 

measurements at the accelerometers. For the medium wavelength, the size of the vehicle, 

specifically the wheelbase, will affect the thresholds. A larger vehicle with a larger 

wheelbase will not have the same pitch and roll magnitude  (angular rate of change) as a 

smaller vehicle with a smaller wheelbase. A method being developed could convert a PSD 

in the time domain to a WNS in the spatial domain. The WNS for vehicles of different 
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sizes could then be compared and thresholds could be determined from the comparisons 

rather than relying on running different  size vehicles over test courses with known 

profiles multiple times.  The WNS could also potentially be used to define the division 

between medium and long wavelengths for each vehicle. This method is briefly discussed 

in Appendix A . 

(Ô×ÖÙÛÈÕÛɯÍÈÊÛÖÙÚɯÛÏÈÛɯÈÍÍÌÊÛɯÛÏÌɯÝÌÏÐÊÓÌɀÚɯÙÌÚ×ÖÕÚÌɯÛÖɯÛÏÌɯÛÌÙÙÈÐÕɯÈÙÌ tire pressure and the 

weight  of the load. AMSAA performed  several tests using vehicles with different tire 

pressures and different load weights. Difference in the data from the sensors used for 

TRIC were compared, and thresholds were determined  that resulted in the lowest error s 

across all the tests [3]. New thresholds could be determined for different weight loads and 

tire pressures, but with so many variations and combinations possible, a huge database 

would need to be produced for  the algorithm to be implemented in the field.   

2.2 Methods  

Data supplied to ARL  by AMSAA  included the information from several military vehicle 

runs on various test courses. Four data sets were used involving four different courses. 

The two Army vehicles used in the tests were the Oshkosh Heavy Expanded Mobility 

Tactical Truck (HEMTT ) and the Oshkosh Family of Medium Tactical Vehicles (FMTV).  

The HEMTT , an eight-wheeled vehicle, diesel-powered, with  off-road capabilities, is 

primarily used to transport heavy cargoes [7]. The FMTV, a six-wheeled all-terrain 

vehicle, is also primarily used for a variety of combat missions including troop transport, 

resupply, and hauling [8].  The two vehicles are shown in Figure 15. The tests took place 
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on the Churchville, Perryman and Belgian Block courses at the Aberdeen Proving Ground  

in Maryland  and on the road between the Churchville course and the Perryman course. 

The data included raw data from an unsprung accelerometer, the pitch and roll data from 

a gyroscope, and the speed and altitude data from a GPS. The data also included the 

filtered, 20-second RMS unsprung accelerometer data, the 20 second average of the pitch 

and roll vector magnitude and the 20 -seond grade of the slope.    

 

Figure 15: Above: the Oshkosh HEMTT Below: the Oshkosh FM TV Source: 

oshkoshdefense.com, May 2014 

 

The first task of this research was to reproduce the TRIC algorithm in MATLAB . The raw 

data from AMSAA was used as the basis for reproducing the algorithm. The raw data was 
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passed into the algorithm written in MATLA B to obtain the 20 second values. If the time 

length of a data set was not evenly divided into 20 second periods (meaning there would 

be a remainder), the average of the remainder  was taken for the final data point.  These 

values were then compared to the AMSAA 20 -second averages with the expectation that 

they should be the same. The MATLAB code for the algorithm can be found in Appendix 

C. 

An immediate challenge encountered when reproducing the algorithm was whether to 

do a sliding average of 20 second periods with no overlapping, or to do some percentage 

of overlapping in the average. Examination of the AMSAA averages showed that an 

average with no overlapping was done. This was determined by the number of points in 

the data after averaging. With this info rmation, the AMSAA algorithm could be 

reproduced. A more accurate picture of the terrain harshness could be obtained by 

averaging with an overlap between the 20 second periods. A future version of the 

algorithm may include averaging done with overlapping t o better represent the terrain. 

After it was determined that no overlapping was used in the averaging, the number of 

data points in the reproduced averages did not always match the number of points in  the 

AMSAA averages, sometimes they were off by one point . When the number of data points 

was off after averaging, it was always that the AMSAA averages had one more data point.  

It was unclear why this was the case.  

Another problem was that the data averages from the reproduced algorithm  were not the 

same as the corresponding values from the AMSAA averages. The reason for the 
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difference is not known. Because of this, the TRIC classifications did not match between 

those produced by the reproduced algorithm and th ose supplied by AMSAA. Table 1 

shows the error percentage between the two sets of classifications for the four tests. 

Table 1: Percentage of classification points that matched between the reproduced TRIC 

algorithm and the classifications supplied by AMSAA. Each of the four courses are listed with 

the vehicle used to collect the data.  

Perryman, FMTV (Loaded) Perryman to Churchville, HEMTT 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

100 89.7 99.5 96.7 86.81 85.71 

Churchville, HEMTT (Unloaded) Belgian Block, HEMTT 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

62.84 88.51 33.1 74.22 73.19 79.38 

 

The long wavelength classifications for the Churchville HEMTT  test were different  from 

the AMSAA classifications. This is because the AMSAA classifications did not use the 

absolute value of the slope. This means that any negative slope would be classified as low 

amplitude. If we assume that negative slopes will cause as much wear on the vehicle as 

corresponding positive slopes, the absolute value of the slope should be used when 

calculating the long wavelength classifications. There were some points in this test that 

were classified by AMSAA as having slopes with a percent grade above 30%, which are 

not present on the Churchville course [9]. The other three tests did not show as much error 

in the long wavelength classifications because they are flatter courses and so using the 

negative slopes did not have as much of an effect.  
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A representative from AMSAA was contacted to address the differences of the 

reproduced classifications and the AMSAA classifications. The received response was to 

not trust the provided classifications, to process the data through the reproduced 

algorithm,  and use those classifications [10]. Based on the response, it was decided to 

continue analysis with the reproduced algorithm and not pursue causes for difference any 

further.   

In the following s ection, the process of the TRIC algorithm is shown, as an example, using 

raw data from the Churchville test put through the reproduced algorithm.  

2.3 Algorithm Reproduction Analys is Using AMSAA Data Sets  

2.3.1 Churchville Course with HEMTT  vehicle  

The Churchville Test Area is located at the Aberdeen Proving Grounds in Maryland. The 

course used for this test can be seen in Figure 16. The course consists of dirt roads with 

steep inclines and tight turns. It is designed to stress a variety of the vehicle subsystems 

including the engine, drivetrain and suspension [10]. This type of terrain was selected to 

give a full spectrum of harshness classifications for all three wavelength types in the TRIC 

algorithm.  
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Figure 16: Left: Churchville Test area where the black line represents the path taken fo r this test 

Right: Sample Image of terrain and road of the course 

 

Figure 17 shows the map overlaid with the path of the vehicle, color code d with the TRIC 

classifications, and shows the overall harshness. Dark  green shows the sections of the 

course that are smooth, flat and level. Red shows the harshest sections of the course, which  

are rough, bumpy and steep. On this course, the other colors show that there is every 

classification of terrain in between the two extremes. 

The maps can be broken down further to show the amplitudes of just the short 

wavelengths, the medium wavelengths, or the long wavelengths. These maps can be 

useful if one is just looking for the harshness of a certain type of terrain. Figures 18 through 

20 show these maps for the short, medium and long wavelengths respectively.  
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Figure 17: Map of the Churchville course overlaid with the terrain classifications obtained from 

a HEMTT  vehicle  

 

The maps can be broken down further to show the amplitudes of just the short 

wavelength s, the medium wavelength s, or the long wavelengths. These maps can be 

useful if one is just looking for the harshness of a certain type of terrain . Figures 18 through 

20 show these maps for the short, medium and long wavelengths respectively.  

Figure 18, the short wavelength map, shows that the course is mainly smooth. The eastern 

(right) section of the course is a little rougher with a small section near the middle that is 

very rough. Figure 19, the medium wa velength map, shows that the course has a medium 

level of bumpiness throughout, with only small sections that are flat or very bumpy. And 

finally, Figure 20, the long wavelength map, shows that the course is not very level. 

Several sections had a percent grade between 2% and 8% while several other sections had 

a percent grade above 8%. 



29 

 

 

Figure 18: Short wavelength classifications for the Churchville course driven by a HEMTT  

 

 

Figure 19: Medium wavelength classifications for the Churchville course driven by a HEMTT  
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