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Abstract 

Reducing the total cost of owning and operating equipment is an important goal for both 

the U.S. military and private industry. Key goals for logistics support equipment are 

increasing fuel efficiency and reducing maintenance costs.  This research addresses 

techniques to classify terrain in order to better predict maintenance schedules, reduce 

subsystem damage and improve fuel efficiency in ground vehicles.   

The United States Army Material Systems Analysis Activity (AMSAA) has developed a 

measurement and processing approach algorithm for Terrain Regime Identification and 

Classification (TRIC) that classifies the harshness of the vehicle’s operating conditions 

based on the roughness (z-axis motion), bumpiness (magnitudes of vehicle pitch and roll), 

steepness of the terrain, and the vehicle’s speed. The terrain classification can contribute 

to maintenance prediction algorithms, as rates of damage to the various sub-systems of 

the vehicle should be correlated to the harshness of terrain traversed. The algorithm uses 

inputs from sensors measuring vehicle pitch and roll mounted on the vehicle body, 

vertical acceleration from a sensor mounted on the axle, vehicle speed, and position (via 

GPS). Spectra from a z-axis accelerometer mounted in the body of the vehicle have been 

compared to spectra from a z-axis accelerometer mounted on the axle of the vehicle to see 

if the same information regarding the roughness can be extracted in both cases, or if a 
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translation model can be developed to produce comparable results, and potentially 

reduce instrumentation costs.   

The TRIC algorithm has been reproduced in MATLAB to see what additional information 

and uses can be obtained. The classifications from TRIC were compared to vehicle 

operating mode classifications previously developed by the Applied Research Laboratory 

(ARL) at Penn State based on vehicle operating data such as engine speed, vehicle speed 

and accelerator position.  Color-coded classifications overlaid on maps of the test courses 

show operating modes as a function of the vehicle’s path.  This overlay technique is also 

useful for comparing vehicle mode classification to terrain classification. 
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Chapter 1 - Introduction  

1.1  Motivation 

Reducing the total cost of owning and operating equipment is important for both the U.S. 

military and private industry. Key components of this cost for logistics support equipment 

are maintenance and fuel. There are a number of different approaches to reducing 

maintenance costs. One area is failure prediction. Different methods have been developed 

to predict failure in certain vehicle mechanisms to determine where maintenance should 

be focused [1]. Recently, terrain classification has been proposed as a method for 

predicting future component failures as part of condition based maintenance (CBM) in 

addition to the methods that are already in place. Terrain classification could be an 

important component in diagnostic and prognostic algorithms, as the time that a vehicle 

spends on various terrains can be directly correlated to damage accumulated in the sub-

systems of the vehicle [2]. This research is focused on the classification of the harshness of 

terrain traversed based on the vehicle’s response to the terrain, rather than performing a 

terrain profile. It will look at a current method of terrain classification and on ways of 

improving this method and reducing the cost of sensors and cabling needed to collect the 

required data. In the future, this will help to identify causes of different health 

degradation in vehicles of the same type or vehicles conducting the same missions. Once 

enough data is collected, vehicles driven at test centers and in the field can be compared 
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and analysts will be able to correlate sub-system damage accumulation to terrain 

traversed. This will help in improving and refining maintenance schedules.   

The Army Materiel Systems Analysis Activity (AMSAA) has developed a Terrain Regime 

and Identification Classification (TRIC) [3] algorithm to classify vehicles’ response to the 

terrain. One motivation of this research is to refine and improve the TRIC algorithm. The 

research aims to reduce the cost of implementing the algorithm by reducing the number 

of sensors needed to collect the data required for the algorithm.   

Previous work has also classified the operating modes of a vehicle defined by engine 

speed, vehicle speed and the accelerometer position. Vehicle operational mode 

information has been correlated to logistics variables such as fuel use, and is being 

examined for correlation with vehicle failure modes. The advantage of vehicle operational 

mode classification is that the required data already exists on the vehicle J1939 bus and 

does not require the addition of any new sensors.  It has been proposed to use vehicle 

operating mode classification to in place of Terrain Classification to predict future 

maintenance and repair demands. A second motivation of the research is to compare this 

method of classification to the TRIC classifications to determine if there are any 

correlations between the two. The purpose of this comparison is to identify if terrain 

affects how a driver operates a vehicle and how the terrain affects the driver’s fatigue 

levels. If it can be shown that operational modes provide the same information about 

vehicle wear and tear as information about the terrain over which the vehicles are 
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operated, then the Army can save money by not having to install the additional sensors, 

cabling, and data acquisition electronics required to implement the TRIC algorithm. 

1.2  Background – Terrain Profiling Methods 

A common method to measure the profile of a terrain or test course is using a profilometer 

like the one shown in Figure 1. The profilometer measures “roughness” by directly 

measuring the terrain profile from the surface using ultrasonic sensors, lasers and/or 

gyroscopes [2, 4]. The measurements are made spatially, at normal distance increments, 

rather than temporally, at normal time increments, as is commonly done in many data 

collection experiments [4]. A Fourier transform is performed on the data, and a power like 

spectrum called the wave number spectrum (WNS) is produced, which is analogous to 

the power-spectrum density (PSD) in the time domain. Some authors interchange the use 

of WNS and PSD. When used in this thesis, they are interchangeable when referring to 

data collected and analyzed as a function of distance. By doing an inverse Fourier 

transform, a test course with the same root-mean-square (RMS) value as the real course 

could be digitally synthesized for use in computer terrain modelling [4].  
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Figure 1: Profilometer being towed by vehicle Source: Hatton, K. (2011, March 2). Terrain Regime 

Identification and Classification (TRIC) 

  

The WNS can also be used to analyze the condition of the road by comparing the terrain’s 

RMS to a known classified course with the same RMS. The problem with this method, as 

shown by Steinwolf and Connon, is that two courses that have the same RMS value can 

vary greatly in their terrain features and can produce different WNS [2], [4]. Figure 2 

shows the WNS of two different courses that have the same RMS value, but different 

terrain features. The blue curve represents one course, the green course represents the 

other, and where they overlap is shown in purple.  



5 

 

 

Figure 2: The WNS of two courses with identical RMS values, but very different terrain features 

(AMSAA) Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC)  

 

The two curves have completely different shapes, indicating different spatial distributions 

of the terrain effects on the vehicle. This could mean that one terrain has several small 

bumps and the other has only a few larger bumps. The green curve is even missing a large 

section of the long wavelength data because this method often filters out some of that 

data, or doesn’t even account for it (since the spectrum is plotted with the logarithm of 

the wavenumber, the missing long wavelength data is most likely the result of a difference 

in the wavenumber resolution of the respective Fourier transforms). Loss of this data 

results in a loss of information about damage to some subsystems [2]. Different types of 

terrain can have different effects on the vehicle when it comes to damage accumulation. 
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For example, a vehicle that spends a lot of time on steep but smooth terrain may acquire 

more damage to the engine and transmission and have worse fuel economy than a vehicle 

that spends a lot of time on bumpy, flat terrain, which may accumulate more damage to 

the suspension and steering. The two terrains could have identical RMS values. Another 

problem is that the profilometer is large, expensive, and must be towed, making it difficult 

for in-operation vehicles to collect the necessary data [3].  

A popular method for classifying terrain roughness is the roughness index from the 

International Organization for Standardization (ISO) [5]. The index uses the WNS, or the 

PSD1, to classify the terrain on an A-H scale where A is excellent condition and H is very 

poor condition. The index can be seen in Figure 3.  

                                                      

 

1 For constant velocity the WNS and the PSD of the time series data are the same with a simple 

scaling of the frequency axis. 
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Figure 3: Road Roughness classification index from the ISO, where Ω is the wavenumber, also 

known as the spatial frequency Source: González, A., O’Brien, E., Li, Y. and Cashell, K. (2008, 

June). The use of vehicle acceleration measurements to estimate road roughness. Vehicle System 

Dynamics.  

 

 A recent method in terrain profiling suggested by Gonzalez involves using the 

accelerometers already installed on many luxury vehicles [5]. The PSD from the unsprung 

accelerometers is obtained from exciting a vehicle with a theoretical known profile and 

with a known PSD. A transfer function between the road and the unsprung 

accelerometers is then obtained using Equation (1.1).  

                   𝐻(𝛺) =  
PSD𝑎𝑐𝑐(𝛺)

PSD𝑟𝑜𝑎𝑑(𝛺)
                                                        (1.1) 

where the numerator is the PSD of the unsprung accelerometers and the denominator is 

the theoretical PSD of the road. 
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The transfer function can then be applied to a PSD obtained from the accelerometers of 

that vehicle to determine the PSD of any road the vehicle is driven on. From the road PSD, 

the road can be given a roughness classification according to the ISO standards [5]. 

However, a terrain profile cannot be obtained from this method because when a PSD is 

generated, phase information is lost. To reconstruct a time series from a spatial frequency 

series, the phase information is needed because it contains the temporal content. Thus, the 

terrain elevation information cannot be backed out from the PSD of the road.  

Another method of terrain profiling makes use of force measurements in addition to 

motion measurements used by other methods. This method was developed by the 

Nevada Automotive Test Center (NATC) for use on a test vehicle they developed called 

the Dynamic Force Measurement Vehicle (DFMV) [6]. A triaxial load cell is placed at the 

end of each axle of the DFMV. This load cell makes sure that the forces on one side are 

equal and opposite of the forces on the other side of the axle. The case shown in Figure 4 

has F1 = F2, where F1 is the sum of all the forces on the left side of the axle (forces from 

the sprung mass, which is the vehicle body and vehicle load, and the suspension, 

represented by the sprung dashpot) and F2 is the sum of all the forces on the right side of 

the axle (the tire). This will make sure that vibrations from the suspension or the body of 

the vehicle are isolated from the accelerometer located on the tire side of the load cell. The 

accelerometer is then only measuring the vertical displacements from the tire’s interaction 

with the ground. The accelerometer data can be integrated twice to obtain vertical 

displacement (elevation), and then the elevation can be plotted against distance travelled 
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[6]. The accelerometer measurements are taken at all four tires and samples are taken at 

equal intervals of distance, not time, just like the other methods of profiling. Then, like 

other methods, a WNS (or PSD) can be taken from the accelerometer data which can be 

used for comparison to other courses or to digitally synthesize a course.  

 

Figure 4: Quarter car model for the DFMV showing the locations of the load cell and the 

accelerometers, as well as showing the locations of the forces that are balanced out Source: 

Ashmore, S. and Hodges, H. (1990, October 28). Dynamic Force Measurement Vehicle (DFMV) and 

Its Application to Measuring and Monitoring Road Roughness.  

 

Currently, there is no standard that is widely used to classify terrain harshness. In 

addition to the ISO classification discussed above, one system used by the Army classifies 

terrain using a profilometer, like the one described above. The terrain is classified as 

primary, secondary and off-road. The classifications are based on the elevation profile of 

the terrain. The problem with the classification system is that the amplitudes that define 

each regime heavily overlap with the others [3]. The current methods are most concerned 

with improving road conditions or synthesizing courses digitally to use for testing. They 
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are also concerned with how vehicles perform on certain terrain profiles. However, they 

are usually not concerned with how and where on the vehicle the terrain causes wear or 

on how the terrain affects overall fuel economy. Current methods do not address 

classifying terrain across a broad spectrum of wavelengths (types of terrain) in real time 

or in identifying what kinds of terrain vehicles are operating on. Another concern with 

profiling methods is that the data is always post-processed and cannot be done in real-

time in the field. 

To help solve these problems, AMSAA developed the TRIC algorithm. The goal of TRIC 

is to provide a terrain harshness classification system in real time that includes medium 

and long terrain wavelengths as well as short wavelengths for vehicles deployed in the 

field. Because the TRIC classification is based on the vehicles’ response to the terrain, it 

creates a classification system that is more focused on vehicle wear and in determining 

the amount of time spent on a particular terrain. This gives more information than a 

system that just profiles the terrain or that just classifies the short wavelengths – the 

“roughness.” It is designed to be used in the field by in-operation vehicles as well as on 

test courses.   

1.3 Thesis Outline 

Chapter Two of this thesis gives a detailed explanation of the TRIC algorithm and 

examines the methods used to reproduce the TRIC algorithm based on data provided by 

AMSAA from runs done on test courses by two different vehicles. The results of the 

reproduction are discussed.  
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Chapter Three discusses the possibility of using an accelerometer placed above the 

suspension inside the body of the vehicle rather than below the suspension on the axis. 

This would allow for a less expensive setup when gathering data required to classify 

terrain harshness. Data for this analysis was obtained from vehicles with accelerometers 

placed on the axle and above the suspension in the body of the vehicle and which were 

driven over test courses in Nevada. Chapter Four discusses a method for classifying 

vehicle operational modes using a k-means clustering algorithm. Results of the algorithm 

applied to data from test runs done on courses in Nevada and from vehicle runs done in 

State College, Pennsylvania are presented. Chapter Five presents a method for correlating 

the TRIC classifications to the operational mode classifications. Results from the 

correlations done on the same data used in Chapter Four are presented. Finally, Chapter 

Six summarizes the research and results of the analysis. Suggestions for future work and 

continuation of this research are also presented. 
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Chapter 2 - Reproduction of the TRIC Algorithm 

2.1 AMSAA Terrain Regime Identification and Classification 

(TRIC) 

 

The TRIC algorithm divides the terrain into short wavelengths, medium wavelengths, and 

long wavelengths. Each of these wavelength bands are classified into low amplitude, 

medium amplitude, and high amplitude. This gives 27 different classifications of terrain 

harshness, as shown in the cube in Figure 5.  

The short wavelength terrain can be thought of as repetitive small bumps in the terrain 

that causes vertical displacement and vibration in the vehicle. Short wavelength terrain 

measurements are made from a z-axis accelerometer, which measures the acceleration of 

the up and down motions of the vehicle. It ranges from smooth terrain, such as a paved 

road, to rough terrain, such as a rocky road or a Belgium block style of road, like the roads 

shown in Figure 6. The definition of smooth and bumpy depends on the type of vehicle 

and is discussed more in Section 2.3.  On the vehicle, it can affect the condition of the 

fastened joints, the electronics and human comfort and safety.  
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Figure 5: Cube showing the 27 different levels of harshness that the TRIC algorithm classifies 

Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification (TRIC) 

 

 

Figure 6: Example of short wavelength terrain with smooth terrain on the left and rough terrain 

on the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC) 

 

 The TRIC algorithm places the accelerometer on the axis of the vehicle so that it is below 

the suspension. The data is collected at a sampling frequency of 60 Hz – 100 Hz (or is 

decimated down to that frequency) and a low-pass filter of 25-30 Hz is applied. Then, the 

RMS values of the acceleration data are determined for 20 second blocks of time as well 
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as the average speed over the same 20 second blocks of time. These values are plotted 

against each other and speed and vehicle-specific thresholds are applied to classify each 

point of averaged data as low, medium or high amplitude. Low amplitudes are assigned 

a value of 1, medium amplitudes are assigned a value of 2 and high amplitudes are 

assigned a value of 3. Figure 7 shows the flow diagram of the short wavelength portion of 

the algorithm. 

 

Figure 7: Flow diagram of the short wavelength portion of the TRIC algorithm, the thresholds 

HighSlope, HighIntercept, LowSlope and LowIntercept are specific to each vehicle 

 

Next, the medium wavelength terrain can be thought of as larger repetitive bumps than 

the short wavelength data, and may impart a noticeable rocking motion instead of simple 
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vertical acceleration. The measurements are made from a gyroscope, but only the pitch 

and roll measurements are needed for the algorithm; yaw is not used. The definitions of 

pitch, roll and yaw are shown in Figure 8.  

 

Figure 8: Pitch is defined as rotation around the axis running from the left to the right of the 

vehicle, roll is defined as rotation around the axis running from the front to the back of the 

vehicle and yaw is defined as rotation around the axis running from the top to the bottom of the 

vehicle Source: http://wmfclipart.com/images/Army/10-ton-truck.WMF.html, obtained, arrows 

added by author 

 

Terrain ranges from flat terrain such as a paved road (the same as the short wavelength 

data) to bumpy terrain such as a path containing large boulders as shown in Figure 9. The 

definition of what is flat and what is bumpy is determined by the specific vehicle being 

tested. The suspension and steering of the vehicle can be worn by this type of terrain and 

it also affects the stability of the vehicle as well as human comfort. 
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Figure 9: Example of medium wavelength terrain with flat terrain on the left and bumpy terrain 

on the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC) 

 

The pitch and roll data is taken from the gyroscope, and the difference between each 

sample is taken giving ΔPitch and ΔRoll values. Then a pitch and roll vector magnitude is 

computed, which represents the rate of angular change, using a standard vector 

magnitude formula as shown in Equation (2.1). 

|𝑃𝑅| =  √∆𝑃𝑖𝑡𝑐ℎ2 + ∆𝑅𝑜𝑙𝑙2 (2.1) 

where |𝑃𝑅| is the pitch and roll vector magnitude. It is assumed that the faster the angular 

rate of change, the bumpier the terrain [3]. 

Once the vector magnitude is calculated, the mean is calculated over 20 second periods 

and vehicle specific thresholds are applied to determine low, medium and high 

amplitude. The thresholds are note speed dependent. Low amplitudes are assigned a 

value of 10, medium amplitudes are assigned a value of 20, and high amplitudes are 

assigned a value of 30. Figure 10 shows the flow diagram for the medium wavelength 

classifications.  
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Figure 10: Flow diagram of the medium wavelength portion of the TRIC algorithm, the higher 

and lower thresholds are specific to each vehicle 

 

Finally, the long wavelength terrain is defined as the hilliness of the terrain. The data is 

taken from the speed and altitude measurements from a GPS device mounted on the 

vehicle. The terrain is classified from flat to hilly, as seen in Figure 11. Terrain is 

considered flat whenever the percent grade is less than 2% and is considered hilly or steep 

when the percent grade is greater than 8%. These classifications are independent of vehicle 

type. Large, steep elevation changes in the terrain can affect the life of the engine, 

transmission and brakes of the vehicle. It can also negatively affect the fuel economy.  
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Figure 11: Example of long wavelength terrain with flat terrain on the left and hilly terrain on 

the right Source: Hatton, K. (2011, March 2). Terrain Regime Identification and Classification 

(TRIC) 

 

The vehicle speed data is taken from the GPS and numerically integrated to obtain the 

distance traveled. Change in distance over 20 second periods are calculated. The altitude 

data is also taken from the GPS and the 20 second change in altitude values are calculated. 

The change in altitude divided by the run gives the percent grade. The run is not the same 

as the distance traveled but can be calculated with simple geometry shown in Figure 12 

and Equation (2.2). The thresholds are applied to obtain low, medium and high amplitude 

harshness values. The low amplitudes are assigned a value of 100, the medium amplitudes 

are assigned a value of 200 and the high amplitudes are assigned a value of 300. The flow 

diagram for the long wavelength classifications can be seen in Figure 13.  
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Figure 12: Simple geometry diagram to relate distance travelled, the run, and the altitude 

 

𝐺𝑟𝑎𝑑𝑒 =  
𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒

√𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑2 − 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒2
 (2.2) 

 

 

Figure 13: Flow diagram of the long wavelength portion of the TRIC algorithm 
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Once the harshness values for each classification of wavelength are determined, they are 

added together to obtain the overall harshness of the terrain. The final portion of the TRIC 

algorithm flow diagram is shown in Figure 14. 

 

Figure 14: Final portion of the flow diagram for the TRIC classifications 

 

Once the values are added together, there are 27 different combinations of short, medium 

and long wavelength classifications. It is also important to mention that there is a 

minimum speed threshold of 5 mph. Any time that the average speed over a 20 second 

period is below 5 mph, a value of 0 or a classification of “idle” is given, which gives 28 

different possible harshness values. The values can be color-coded and overlaid on a map 

of the course in order to give a visual representation of the harshness of the terrain. 

Examples of such maps are shown later in Section 2.3. In order to not bog down the map 

with 28 different colors, “degenerate” TRIC classifications are used, as shown in the cube 

in Figure 5, to reduce the total number of colors down to seven. An eighth color of black 

is used to represent the idle classification.  
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As a note, the thresholds for the each vehicle were obtained by AMSAA using test courses 

with known features. Vehicle responses were recorded for certain sections on various 

courses at the Aberdeen Proving Ground and Yuma Proving Ground. These sections have 

been classified as primary, secondary, and off-road for the roughness (corresponding to 

low, medium and high amplitudes in the TRIC algorithm). A similar approach was used 

for the bumpiness where certain sections had features that caused different degrees of 

pitch and roll on the vehicle. The thresholds were set to match the classifications on the 

courses. Such a system was not needed for hilliness, or long-wavelength. For all vehicles, 

less than a 2% grade is considered flat or low steepness, a 2% to 8% grade is considered 

medium steepness, and anything greater than an 8% grade is considered high steepness 

[3].  

Because the thresholds are based on vehicle response to the terrain, they are different for 

each vehicle, because each vehicle has a different response to terrain. The exception is the 

long wavelength classifications, being because independent of vehicle size or type, the 

steepness of the terrain will not change. For the short wavelength, the weight of the 

vehicle and the type and size of the tires are two variables that will affect the 

measurements at the accelerometers. For the medium wavelength, the size of the vehicle, 

specifically the wheelbase, will affect the thresholds. A larger vehicle with a larger 

wheelbase will not have the same pitch and roll magnitude (angular rate of change) as a 

smaller vehicle with a smaller wheelbase. A method being developed could convert a PSD 

in the time domain to a WNS in the spatial domain. The WNS for vehicles of different 
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sizes could then be compared and thresholds could be determined from the comparisons 

rather than relying on running different size vehicles over test courses with known 

profiles multiple times. The WNS could also potentially be used to define the division 

between medium and long wavelengths for each vehicle. This method is briefly discussed 

in Appendix A. 

Important factors that affect the vehicle’s response to the terrain are tire pressure and the 

weight of the load. AMSAA performed several tests using vehicles with different tire 

pressures and different load weights. Difference in the data from the sensors used for 

TRIC were compared, and thresholds were determined that resulted in the lowest errors 

across all the tests [3]. New thresholds could be determined for different weight loads and 

tire pressures, but with so many variations and combinations possible, a huge database 

would need to be produced for the algorithm to be implemented in the field.  

2.2 Methods 

Data supplied to ARL by AMSAA included the information from several military vehicle 

runs on various test courses. Four data sets were used involving four different courses. 

The two Army vehicles used in the tests were the Oshkosh Heavy Expanded Mobility 

Tactical Truck (HEMTT) and the Oshkosh Family of Medium Tactical Vehicles (FMTV). 

The HEMTT, an eight-wheeled vehicle, diesel-powered, with off-road capabilities, is 

primarily used to transport heavy cargoes [7]. The FMTV, a six-wheeled all-terrain 

vehicle, is also primarily used for a variety of combat missions including troop transport, 

resupply, and hauling [8].  The two vehicles are shown in Figure 15. The tests took place 
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on the Churchville, Perryman and Belgian Block courses at the Aberdeen Proving Ground 

in Maryland and on the road between the Churchville course and the Perryman course. 

The data included raw data from an unsprung accelerometer, the pitch and roll data from 

a gyroscope, and the speed and altitude data from a GPS. The data also included the 

filtered, 20-second RMS unsprung accelerometer data, the 20 second average of the pitch 

and roll vector magnitude and the 20-seond grade of the slope.    

 

Figure 15: Above: the Oshkosh HEMTT Below: the Oshkosh FMTV Source: 

oshkoshdefense.com, May 2014 

 

The first task of this research was to reproduce the TRIC algorithm in MATLAB. The raw 

data from AMSAA was used as the basis for reproducing the algorithm. The raw data was 
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passed into the algorithm written in MATLAB to obtain the 20 second values. If the time 

length of a data set was not evenly divided into 20 second periods (meaning there would 

be a remainder), the average of the remainder was taken for the final data point.  These 

values were then compared to the AMSAA 20-second averages with the expectation that 

they should be the same. The MATLAB code for the algorithm can be found in Appendix 

C. 

An immediate challenge encountered when reproducing the algorithm was whether to 

do a sliding average of 20 second periods with no overlapping, or to do some percentage 

of overlapping in the average. Examination of the AMSAA averages showed that an 

average with no overlapping was done. This was determined by the number of points in 

the data after averaging. With this information, the AMSAA algorithm could be 

reproduced. A more accurate picture of the terrain harshness could be obtained by 

averaging with an overlap between the 20 second periods. A future version of the 

algorithm may include averaging done with overlapping to better represent the terrain. 

After it was determined that no overlapping was used in the averaging, the number of 

data points in the reproduced averages did not always match the number of points in the 

AMSAA averages, sometimes they were off by one point. When the number of data points 

was off after averaging, it was always that the AMSAA averages had one more data point. 

It was unclear why this was the case.  

Another problem was that the data averages from the reproduced algorithm were not the 

same as the corresponding values from the AMSAA averages. The reason for the 
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difference is not known. Because of this, the TRIC classifications did not match between 

those produced by the reproduced algorithm and those supplied by AMSAA. Table 1 

shows the error percentage between the two sets of classifications for the four tests. 

Table 1: Percentage of classification points that matched between the reproduced TRIC 

algorithm and the classifications supplied by AMSAA. Each of the four courses are listed with 

the vehicle used to collect the data. 

Perryman, FMTV (Loaded) Perryman to Churchville, HEMTT 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

100 89.7 99.5 96.7 86.81 85.71 

Churchville, HEMTT (Unloaded) Belgian Block, HEMTT 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

SWL Match 
(%) 

MWL Match 
(%) 

LWL Match 
(%) 

62.84 88.51 33.1 74.22 73.19 79.38 

 

The long wavelength classifications for the Churchville HEMTT test were different from 

the AMSAA classifications. This is because the AMSAA classifications did not use the 

absolute value of the slope. This means that any negative slope would be classified as low 

amplitude. If we assume that negative slopes will cause as much wear on the vehicle as 

corresponding positive slopes, the absolute value of the slope should be used when 

calculating the long wavelength classifications. There were some points in this test that 

were classified by AMSAA as having slopes with a percent grade above 30%, which are 

not present on the Churchville course [9]. The other three tests did not show as much error 

in the long wavelength classifications because they are flatter courses and so using the 

negative slopes did not have as much of an effect.  
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A representative from AMSAA was contacted to address the differences of the 

reproduced classifications and the AMSAA classifications. The received response was to 

not trust the provided classifications, to process the data through the reproduced 

algorithm, and use those classifications [10]. Based on the response, it was decided to 

continue analysis with the reproduced algorithm and not pursue causes for difference any 

further.   

In the following section, the process of the TRIC algorithm is shown, as an example, using 

raw data from the Churchville test put through the reproduced algorithm. 

2.3 Algorithm Reproduction Analysis Using AMSAA Data Sets 

2.3.1 Churchville Course with HEMTT vehicle 

The Churchville Test Area is located at the Aberdeen Proving Grounds in Maryland. The 

course used for this test can be seen in Figure 16. The course consists of dirt roads with 

steep inclines and tight turns. It is designed to stress a variety of the vehicle subsystems 

including the engine, drivetrain and suspension [10]. This type of terrain was selected to 

give a full spectrum of harshness classifications for all three wavelength types in the TRIC 

algorithm. 
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Figure 16: Left: Churchville Test area where the black line represents the path taken for this test 

Right: Sample Image of terrain and road of the course 

 

Figure 17 shows the map overlaid with the path of the vehicle, color coded with the TRIC 

classifications, and shows the overall harshness. Dark green shows the sections of the 

course that are smooth, flat and level. Red shows the harshest sections of the course, which 

are rough, bumpy and steep. On this course, the other colors show that there is every 

classification of terrain in between the two extremes. 

The maps can be broken down further to show the amplitudes of just the short 

wavelengths, the medium wavelengths, or the long wavelengths. These maps can be 

useful if one is just looking for the harshness of a certain type of terrain. Figures 18 through 

20 show these maps for the short, medium and long wavelengths respectively.  
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Figure 17: Map of the Churchville course overlaid with the terrain classifications obtained from 

a HEMTT vehicle 

 

The maps can be broken down further to show the amplitudes of just the short 

wavelengths, the medium wavelengths, or the long wavelengths. These maps can be 

useful if one is just looking for the harshness of a certain type of terrain. Figures 18 through 

20 show these maps for the short, medium and long wavelengths respectively.  

Figure 18, the short wavelength map, shows that the course is mainly smooth. The eastern 

(right) section of the course is a little rougher with a small section near the middle that is 

very rough. Figure 19, the medium wavelength map, shows that the course has a medium 

level of bumpiness throughout, with only small sections that are flat or very bumpy. And 

finally, Figure 20, the long wavelength map, shows that the course is not very level. 

Several sections had a percent grade between 2% and 8% while several other sections had 

a percent grade above 8%. 
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Figure 18: Short wavelength classifications for the Churchville course driven by a HEMTT 

 

 

Figure 19: Medium wavelength classifications for the Churchville course driven by a HEMTT 
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Figure 20: Long wavelength classifications for the Churchville course driven by a HEMTT 

 

Figure 21 shows scatter plots of the short, medium and long wavelength averaged data 

from the reproduced algorithm. The maps are more useful in visualizing the course, but 

these scatter plots can be more useful in visualizing how fast the vehicle is travelling over 

certain types of terrain. In all three wavelength regimes, the data is plotted against speed, 

but only the short wavelength classification is dependent on speed. The threshold lines 

are shown as solid lines on the plot. These thresholds were determined experimentally by 
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AMSAA and are specific to the HEMTT2. The short wavelength upper and lower 

threshold lines are given respectively by the equations:  

𝑎 =  .0325𝑠−1 ∗ S − .105𝑔 
(2.3) 

 

and 

𝑎 =  .01𝑠−1 ∗ S +  .026𝑔 
(2.4) 

 

 where a is the z-axis acceleration in units of g’s, S is vehicle speed, and where a unit of g 

is equal to 9.8
𝑚

𝑠2. The medium wavelength upper and lower thresholds are given 

respectively by |𝑃𝑅| =  .09095° and |𝑃𝑅| =  .03570°, where |𝑃𝑅| is the pitch and roll vector 

magnitude in units of degrees. The long wavelength upper and lower thresholds are given 

respectively by 𝐺𝑟𝑎𝑑𝑒 =  .08 and 𝐺𝑟𝑎𝑑𝑒 =  .02, where Grade is the grade of the slope and 

is unitless. The grade multiplied by 100 gives the percent grade. For any wavelength, if 

the vehicle speed is below 5 mph, the point is classified as idle and is not given a low, mid 

or high amplitude classification. The data points are color-coded according to their TRIC 

                                                      

 

2 The long wavelength thresholds are the same regardless of the type of vehicle. The short 

wavelength threshold will depend on the dynamics of the vehicle, and will be different for each 

vehicle. The medium wavelength thresholds should change based on vehicle size because mid-

sized bumps on the terrain will be experienced differently by vehicles with different wheelbase 

sizes. See Appendix A. 
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classification. Green data points represent low amplitude, orange data points represent 

mid amplitude and red data points represent high amplitude.  

 

Figure 21: Top Left: Reproduced short wavelength data; Top Right: Reproduced mid wavelength 

data; Left: Reproduced long wavelength data 

 

2.3.2 Summary of Reproduction Results 

Despite the differences between the classifications from the reproduced algorithm and the 

classifications provided by AMSAA (see Table 1), it was determined that the reproduced 

algorithm followed the TRIC algorithm flow diagrams shown in Figures 7, 10, 13 and 14, 

and could be used for the remainder of this research. The reproduced classifications were 

determined to be more accurate based on a few errors in the AMSSA classifications, 
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specifically not using the absolute value of the slope and having some percent grade 

values above 30%, which are not present on the Churchville course.   

An example of the TRIC algorithm was shown using raw data supplied by AMSSA from 

a HEMTT operating on the Churchville test course. A map was produced which displayed 

the overall terrain classifications as well as classifications for the short, medium and long 

wavelengths. Scatter plots were also shown that displayed the TRIC classifications in 

relation to the thresholds. They also showed how terrain was classified at certain speeds.    
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Chapter 3 - Comparison of Sprung and Unsprung 

Accelerometers 

 

3.1 Background 

To record the data necessary for the TRIC algorithm, AMSAA developed a Health and 

Usage Monitoring System (HUMS) called the System Health and Reliability Computer 

(SHARC), shown in Figure 22.  

 

Figure 22: System Health and Reliability Computer (SHARC) used by AMSAA to collect the 

data required for the TRIC algorithm Source: Hatton, K. (2011, March 2). Terrain Regime 

Identification and Classification (TRIC) 
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The SHARC includes all the sensors required for the TRIC algorithm, including GPS, a 

triaxial accelerometer and a triaxial gyroscope. The SHARC also includes a connection to 

the vehicle bus capable of monitoring the engine, transmission, braking system and other 

electronic systems in the vehicle, as well as inputs for four analog sensors. The various 

sensors allow the SHARC to generate vehicle usage patterns, terrain classification, and 

record fault codes from the engine and transmission [3].  

In the TRIC algorithm, there is the requirement that the triaxial accelerometer be placed 

below the suspension on the axle of the vehicle. The accelerometer is called unsprung in 

this case because the signal received is not affected by the vehicle suspension. However, 

it would save costs if the accelerometer could be placed in the body of the vehicle with the 

rest of the sensor package. In this case the accelerometer would be called sprung because 

the signal would be influenced by the vehicle suspension. This research is interested in 

determining if the same TRIC classifications could be obtained from sprung accelerometer 

data and unsprung accelerometer data. 

3.2 Data and Analysis 

To make the comparisons between the sprung and unsprung accelerometers, data were 

used from seven tests performed at the Nevada Automotive Test Center (NATC) in the 

Fall of 2012. The tests were done with an Oshkosh Medium Tactical Vehicle Replacement 

(MTVR).  The MTVR is a six-wheeled off-road vehicle and is used for a variety of tasks by 

both the U.S. Marines and the U.S. Navy [11]. Figure 23 shows an MTVR. NATC has a 

variety of paved and off-road courses that are used to test a variety of aspects and systems 
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of a vehicle. The data were collected at NATC to be used for different health monitoring 

and usage purposes, and not just for terrain classification. However, these data were 

chosen because the MTVR vehicles were equipped with the right sensors, including both 

sprung and unsprung accelerometers, to be able to implement the TRIC algorithm. Three 

unsprung accelerometers were placed on the vehicle: one on the front axle, one on the 

middle axle and one on the rear axle of the vehicle. The sprung accelerometer was placed 

at the front of the vehicle, inside the cab. Data were also used from a test done in the hills 

around State College, PA. This test was done with an MTVR and was collected by Penn 

State ARL. 

 

Figure 23: U.S. Marines and U.S. Navy MTVR Source: oshkoshdefense.com, July 2014 

 

3.2.1 Unsprung Accelerometer Locations 

One advantage of using unsprung accelerometers is that the location where it is mounted 

shouldn’t matter. Before looking at the comparison of the unsprung and sprung 

accelerometers, it is useful to compare the different unsprung accelerometers (front, mid 
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and rear). To compare data for each of seven tests done at NATC, the data from each 

accelerometer was run through the TRIC algorithm, and a percentage was calculated for 

how many classifications matched between each combination of accelerometers.  Of the 

seven tests, three were done on gravel and four were done on paved roads. This is 

significant because it is more likely that the terrain classifications coming from the three 

accelerometers taking data over paved road would have a better match than the 

classifications from the accelerometers taking data on a rough road. After the first 

analysis, the percentages of classifications that were the same between accelerometers 

were much lower than expected. Once it was realized that there was a DC offset between 

the channels, and the data were corrected, the match greatly improved and was close to 

what was expected. Table 2 shows the results of the comparisons. 

Table 2: The percentage of matching TRIC classifications between pairs of accelerometers 

 Accelerometer Locations 

Paved Test Name Front and Mid 
(% same) 

Front and Rear 
(% same) 

Mid and Rear 
(% same) 

Acceleration 99.38% 100.00% 98.38% 

Cruising 100.00% 100.00% 100.00% 

Sort 100.00% 100.00% 100.00% 

Warm Up 98.50% 98.50% 100.00% 

Average 99.47% 99.63% 99.60% 

Gravel Test Name 
   

Cruising 92.63% 93.68% 94.74% 

Coast Down 84.06% 81.16% 84.41% 

Steering 96.08% 92.15% 96.08% 

Average 90.92% 89.00% 91.74% 

Overall Average 95.81% 95.07% 96.23% 
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As expected, the classifications between the different channels on paved roads were 

almost exactly the same. The classifications on the gravel were the same between channels 

90% of the time on average. This is not a huge difference, but the difference is significant 

enough that when doing the TRIC classification, an accelerometer location on the vehicle 

should be chosen and the same location used for all vehicles of that make. This will make 

the results consistent across all tests.  

To verify the results, a test was done by Penn State ARL in the hills around State College, 

PA. The test was done on a paved road with loose gravel and dirt on the surface. The 

vehicle used in this test was the MTVR. The accelerometers were mounted in 

approximately the same places as they were in the previous test. In this test the 

classifications from front accelerometer only matched the middle accelerometer 

classifications 73% of the time, the front matched the rear only 55% of the time, and the 

middle matched the rear 82% of the time. The reason for the larger differences in this test 

are not known, but could have to do with the gravel, dirt, paved road combination, rather 

than just a paved road or just a gravel road as was the case above. Another reason may be 

that in the NATC test the MTVR was loaded, but in the ARL test the MTVR was not 

loaded. However, the conclusion remains the same that when outfitting a fleet of vehicles 

with sensors, the location of the accelerometer should be consistent.  

3.2.2 Sprung Versus Unsprung Comparison  

The first test examined here was a coast down test done on a gravel course with a loaded 

MTVR. This test gave good variation between high, medium and low amplitudes in the 
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TRIC classification of the short-wave length regime. The duration of the test was 

approximately 23 minutes. Figure 24 shows the path the MTVR took overlaid on a Google 

Maps image and Figure 25 shows the TRIC classifications for the short-wavelengths, also 

overlaid on a map. Figure 25 is here to give an idea of the bumpiness of the course. In 

Figure 25, each colored point on the map represents the RMS of 20 seconds of data. 

Because the sprung accelerometer was placed in the front of the vehicle, the data from the 

unsprung accelerometer located at the front was used for the TRIC algorithm because it 

was the closest to the sprung accelerometer.  

To first compare the unsprung and sprung accelerometers, the time series of each set of 

data were plotted together and can be seen in Figure 26. The RMS value of the unsprung 

data is .2430 g’s and the RMS value of the sprung data is .0367 g’s or 6.6 times smaller than 

the unsprung. The suspension acts as a low-pass filter, attenuating the amplitudes of the 

higher frequencies. The general shape of both data series are similar, but different because 

of noise from the vehicle that gets into the sprung measurements. This was expected 

behavior because of the effects of the suspension.  
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Figure 24: Path that MTVR took on a gravel course at the NATC. Data from this run will be used 

to compare unsprung and sprung accelerometers. 

 

 

Figure 25: Short wavelength classifications of the gravel coast down test driven by an MTVR 
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Figure 26: Time series of the unsprung and sprung accelerometer data from the MTVR coast 

down test on gravel course 

 

The next step in comparison was to look at the spectral density of both the unsprung and 

sprung accelerometer data. An average spectral density was calculated for each set of data 

with a Hanning window applied to each time series record and a 50% overlap was done 

between each record. A 30 Hz low pass filter was applied to both sets of data. Figure 27 

shows the plot of the spectral densities. The spectral densities are very similar until about 

2 Hz, at which point the magnitude of the sprung spectral density drops significantly 

below the magnitude of the unsprung spectral density. This is because the suspension 

system of the truck acts as a low pass filter, attenuating the amplitudes of the higher 

frequencies that could cause system damage and operator and passenger discomfort. 
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hope that the same TRIC classifications could be extracted from the sprung data as from 

the unsprung data. The peaks seen at 5 Hz and 35 Hz in the sprung PSD are from noise in 

the body of the truck that never made it to through the suspension to the unspung 

accelerometer. 

 

Figure 27: Spectral densities of the unsprung and sprung data from the MTVR coast down test 

on a gravel course 
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function is computed. Once computed, the transfer functions can then be averaged and 

the average can be applied to the sprung accelerometer data collected by any vehicle of 

the same type and passed through the TRIC algorithm. To help negate noise, a transfer-

function estimate in the frequency domain was obtained using the cross-spectrum of the 

sprung and unsprung data. Equation (3.1) shows the equation for the transfer function 

estimate. 

𝐻(𝑓) =  
�̅�𝑋𝑌

�̅�𝑋𝑋

 (3.1) 

where H(f) is the transfer function, �̅�𝑋𝑌 is the average cross-spectrum from the sprung to 

the unsprung accelerometer, and �̅�𝑋𝑋 is the average auto-spectrum of the sprung 

accelerometer data. With this method, noise is averaged out in the output channel and it 

also preserves the phase relationship between the input and output channels, which is 

necessary to be able to reconstruct the unsprung accelerometer data [12]. Figure 28 shows 

a plot of the transfer function estimate for the MTVR on the gravel course. 
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Figure 28: Transfer function estimate between the unsprung and sprung accelerometer channels 

for the MTVR on an NATC Gravel course 

To see how good the transfer estimate was, the coherence function was calculated. 

Coherence gives a measure of how strongly two signals are related, or how coherent they 

are. It gives a value between zero and one. Two signals that are completely coherent will 

have a value of one. If the coherence is not close to one, then the estimate of the transfer 

function is probably poor. Equation 3.2 gives the equation used to calculate the coherence 

[12].     

𝛾2 =
(�̅�𝑋𝑌)∗�̅�𝑋𝑌

�̅�𝑋𝑋�̅�𝑌𝑌

 (3.2) 

where γ2 is the coherence value. 
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Figure 29 shows the coherence of the unsprung and sprung accelerometers of the MTVR 

on the gravel course.  

Unfortunately, the coherence values turned out to be pretty poor across the whole 

spectrum. The reason that the coherence is so poor is that the sprung accelerometer is 

receiving signals from other sources on the truck that don’t make it to the unsprung 

accelerometer, such as vibrations caused by the engine. The coherence indicates that the 

transfer function estimate would probably not be very accurate. However, it was decided 

to apply the transfer function to the sprung accelerometer data in an attempt to reproduce 

the unsprung data, and then compare it to the original unsprung data and see what kind 

of results could be obtained.  

 

Figure 29: Coherence values from 0-50 Hz of the unsprung and sprung accelerometers mounted 

on a MTVR driven over a gravel course 
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The unsprung data can be reproduced a couple of different ways. The first way is to take 

the transfer function estimate in the frequency domain, take the inverse fast Fourier 

transform (FFT), and convolve that with the sprung time series data. The other way, 

considered to be simpler, is to take the FFT of the sprung series time data, multiply that 

with the frequency domain transfer function estimate, and take the inverse FFT of the 

result to give a reproduced unsprung time series data. Since the transfer function estimate 

was obtained by averaging the spectral densities, it will be shorter in record length than 

the FFT of the sprung time series data. This can be handled in a couple of different ways 

so that the transfer function estimate can be multiplied with the spectrum of the sprung 

data.  

The first way is to interpolate the transfer function estimate to make it the same length as 

the sprung data spectrum. This is done by taking the inverse FFT of the transfer function, 

appending as many zeroes as needed, taking the FFT of the appended time series transfer 

function, and multiplying this with the sprung spectrum. The problem with this approach 

is that the complete sprung time series is needed before the transfer function estimate can 

be used to reproduce the unsprung data. This is fine if there is no interest in real-time 

classification, as it could only be used to classify the terrain after the run is complete.  

The second way to handle multiplying the frequency domain transfer function to the 

spectrum of the sprung data is to multiply the transfer function to sections of the sprung 

series spectrum of the same length as the transfer function. Two similar methods can be 
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applied to avoid discontinuity at the end of each record where the transfer function is 

applied. The two methods are the overlap-add and the overlap-save [13, 14]. 

The overlap-add method divides the data into records of length K, usually a power of two 

for efficiency. The inverse FFT of the transfer function estimate, h, can be taken and zero 

padded to interpolate the transfer function if needed. The FFT of the record of length K is 

taken, multiplied with the transfer function estimate, and the inverse FFT is taken of the 

result to obtain the unsprung accelerometer estimate. If h is an arbitrary length P, then 

when a convolution in the time domain between h and the record of length K is taken, the 

result will be of length K+P-1. Because of this, the final P-1 points of the unsprung estimate 

are added with the first P-1 points of the next unsprung estimate record. This avoids 

inaccuracies that arise from the circular convolution. The overlap-save method is similar, 

but the first P-1 points of each unsprung estimate are dropped and the record is appended 

to the previous record. It is the first P-1 points that are inaccurate when a circular 

convolution is done [13, 14].  Both methods are accurate and give the same result, but the 

overlap-save is more intuitive and the algorithm is slightly easier to code, and is the 

method that was used for this research. When using either the overlap-save or the overlap-

add method, processing can be done in real time and the terrain classification can be 

transmitted immediately to researchers. When done on many vehicles operating in the 

field, correlations can be made to terrain harshness and vehicle system damage. Figure 30 

shows a chart of the overlap-add method. 
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Figure 30: Diagram of the overlap-add method where little k denotes the number of records and 

little l denotes the beginning value of x(t)  

Source:  

http://commons.wikimedia.org/wiki/File:Depiction_of_overlap-

add_algorithm.png#mediaviewer/File:Depiction_of_overlap-add_algorithm.png,  

letters changed to reflect notation in this thesis 

 

The overlap-save method was used to obtain an estimate of the unsprung spectral density 

with the MTVR data from the gravel coast down test. The spectral density of the unsprung 

data estimate was taken and compared to the spectral density of the original unsprung 

data to check for accuracy. Figure 31 shows the results of the spectral densities. 

Unfortunately, the transfer function estimate was very poor. Comparing Figure 31 to 

Figure 27, it can be seen that the spectral density of the unsprung data estimate resembles 

the sprung data spectral density in magintude, except in the region of 0-15 Hz and around 

35 Hz where the values of the coherence function are slightly higher. A plot of the time 

series, shown in Figure 32, shows that the amplitudes of the unsprung estimate data are 

much smaller than the amplitudes of the original unsprung data.  
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Figure 31: Spectral densities of the unsprung data and the unsprung data estimate from MTVR 

data on a gravel course doing a coast down test. 

 

Figure 32: Original unsprung data time series plotted with the estimate of the unsprung series 

obtained using the transfer function series 
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The RMS value of the unsprung data estimate is .085 g’s which is 2.3 times bigger than the 

RMS of the sprung data, but is still 2.9 times smaller than the RMS of the original unsprung 

data. This means that the transfer function did have an effect on the sprung data, but the 

effect was not large enough to accurately represent the unsprung data. 

To help improve the match between the measured and estimated unsprung spectra, a gain 

was applied to the transfer function estimate that would make the RMS value of the 

original unsprung data equal to the RMS value of the estimated unsprung data. Since the 

TRIC algorithm uses 20 second RMS values, doing this should help the transfer function 

estimate give better terrain classification results.  

The sum of the spectral density values, over a range of frequencies, multiplied by the 

frequency spacing, Δf, (this is equivalent to integration of a continuous function) will be 

equal to the mean-square value of the time series [12]: 

1

𝑁
∑ 𝑥𝑛

2 =  ∑ 𝑆𝑋𝑋 ∙ ∆𝑓

𝑁−1

𝑚=0

𝑁−1

𝑛=0

 
(3.3) 

where xn is the time series, N is the length of xn, and SXX is the spectral density. The square 

root (because the root mean square needs to be the same for the time series) of this 

‘integration’ performed on the original unsprung data spectral density can be divided by 

the square root of the integration of the estimated unsprung data spectral density to give 

the gain value to be applied to the transfer function. If the gain values for the tests were 

similar, then the average gain value could be used to give an improved estimate of the 

terrain classifications.  
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For the gravel coast down test used in used for the analysis in Section 3.2.2, the gain 

applied to the transfer function estimate was √8.19 or 2.86. Figure 33 shows the PSD of the 

unsprung estimate from the transfer function with the gain applied overlaid on top of the 

original unsprung PSD. Looking back at Figure 31, it can be seen that the transfer function 

with the gain applied gives a much better estimate of the unsprung data.  

 

Figure 33: PSD of the unsprung data estimate obtained from applying a gain of 2.86 to the 

transfer function estimate 

 

Next, the short wavelength terrain classification was performed for both the original 

unsprung and the estimated unsprung data. Figure 34 shows the scatter plots of the 

classifications, as well as the scatter plot for the classifications from the sprung 

accelerometer.  
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Figure 34: Top left shows the short wavelength terrain classifications for the original unsprung 

data, top right shows the classifications for the unsprung data estimate obtained after the gain 

was applied to the transfer function, and the bottom is the classification for the unsprung data 

estimate with no gain applied to the transfer function 

 

In this case when the transfer function with the gain is used, the data is classified higher 

than it should be, especially at the lower speeds, and classified lower than it should be at 

the higher speeds. Before the gain was applied to the transfer function, only 39.13% of the 

classifications were the same. After the gain was applied, 52.17% of the classifications 

were the same. While the results are better than the classifications obtained from the 

original sprung data, they are still fair at best. However, if one was limited to using only 

a sprung accelerometer while classifying terrain, it is recommended to apply the gain to 

the transfer function estimate to give better results.    
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When the gain was applied to the transfer functions of tests on paved roads, the accuracy 

of the classifications went down. This is because on the paved roads the classifications 

were mostly low amplitude. The transfer functions generally lowered the RMS 

amplitudes, so the classifications remained the same – low amplitude. For the three gravel 

tests, applying the gain to the transfer function estimate improved the classification 

accuracy, sometimes by a large amount and sometimes by a small amount. The amount 

of the gain applied to the transfer function estimate for each of the seven tests and the 

classification accuracy before and after the gain was applied can be seen in Table 3. 

Table 3: Accuracies of the terrain classifications for the unsprung data estimates before and after 

a gain was applied to the transfer function estimate, as well as the gain values 

Paved Tests 
Gain Applied to 

Transfer 
Function 

Accuracy 
before gain 

Accuracy 
after gain 

Acceleration 2.53 99.38% 85.19% 

Cruising 2.42 99.23% 74.05% 

Sort 1.14 93.68% 91.58% 

Warm Up 2.07 98.50% 95.49% 

Gravel Tests 
      

Cruising 3.43 3.16% 69.47% 

Coast Down 2.86 39.13% 52.17% 

Steering 1.90 82.35% 84.31% 

 

It is important to remember when applying the transfer function estimate that it may 

classify roads with low harshness, such as a paved road, as a road with medium 

harshness. On average in the NATC tests, less than 10% of the points that should have 

been classified low amplitude were classified as mid amplitude. 
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The above method of obtaining the transfer function estimated was also done on data 

obtained by Penn State ARL in the hills around State College, PA. The sprung 

accelerometer was attached to the frame of the vehicle above the suspension at each of the 

three axles. The test was done on a paved road with gravel and dirt on the surface. Figure 

35 shows the route of the vehicle on a map.  

 

Figure 35: Path of the MTVR in the hills near State College, PA 

 

First, the spectral densities were produced for each of the accelerometers, as shown in 

Figure 36. The spectral densities are similar to the ones in Figure 27, except where the 

sprung PSD rises up at around 30 Hz. This indicates that some noise between 20-30 Hz 

was getting into the sprung accelerometer but not into the unsprung accelerometer.   
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Figure 36: Spectral density for the sprung and unsprung accelerometers used on the MTVR in 

the State College test 

 

Next, the coherence was generated. It is shown in Figure 37. The coherence values for this 

test are better than the coherence values of the NATC test (the closer the value is to one, 

the more coherent the two signals are at that frequency). The spot where the coherence is 

worst is in the same frequency range that the sprung PSD had a “hump.” The 

improvement in coherence values probably has to do with the location where the sprung 
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suspension. With these improved results, the transfer function estimate should be 

improved as well. 

 

Figure 37: Coherence values for the MTVR test in the State College 

 

Next, the transfer function was produced, and it is shown in Figure 38. This is the transfer 

function with the gain applied to equalize the RMS values of the unsprung data and the 
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20-30 Hz, but hopefully it will not affect the TRIC classifications significantly.  
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Figure 38: Transfer function estimate between the sprung accelerometer and the unsprung 

accelerometer for the MTVR State College test 

 

Figure 39 shows the spectral densities of the unsprung accelerometer data and the 

unsprung estimate data. The unsprung estimate PSD shows improvement from the PSD, 

and is very close in shape and magnitude to the measured unsprung PSD. Referring back 

to Figure 33, it can be seen that the transfer function estimate did a better job in estimating 

the unsprung data from the sprung data in this test than in the NATC test. 
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Figure 39: Spectral densities for the unsprung accelerometer and the unsprung estimate from 

the sprung accelerometer used on the MTVR in the State College test 

 

Finally, the unsprung estimate data was processed with the TRIC algorithm. Figure 40 

shows the scatter plots of the short wavelength TRIC classifications for the original 

unsprung data, the unsprung estimate data and the original sprung data. The 

classifications from the original unsprung data matched the classifications from the 

unsprung estimate data 97% of the time. This shows a large improvement over the NATC 

test, which only matched 52% of the time. This test shows that when the sprung 

accelerometer is mounted to the frame of the vehicle, rather than in the cab, the transfer 

function estimate becomes a more viable option.  

10 20 30 40 50
-120

-100

-80

-60

-40

-20

0

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

 

 

Original Unsprung PSD

Unsprung Estimate PSD



59 

 

  

 

Figure 40: Top Left: Classifications from the original unsprung accelerometer; Top Right: 

Classifications from the unsprung estimate; Bottom: Classifications from the sprung 

accelerometer 

 

3.3 Transfer Function Estimate Conclusions 

The transfer function estimates were obtained for seven different MTVR test runs on 

various NATC courses, including the coast down test on the gravel course discussed in 

the previous section. In these tests the unsprung accelerometer was mounted on the front 

axle and the sprung accelerometer was mounted in the cab of the vehicle. The results for 

all seven sets of data were similar to results of the gravel course test run shown. While 

some had better coherence functions than others, all had poor coherence. This led to 
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estimated usprung data that was too low in amplitude across the whole range of 

frequencies. To help improve the transfer function estimates, a gain was applied to each 

of the seven transfer functions. The gain was chosen so that the RMS of the original 

unsprung data and the unsprung data estimates were the same. The results of applying 

the gain improved results from some courses but not for others. For paved tests, the 

accuracy of the classifications decreased after the gain was applied. This is largely due to 

the fact that the data for paved road tests are mostly classified as low amplitude and 

remain so with the estimated unsprung data. For the gravel tests, there was improvement 

with the gain applied to the transfer function, but the accuracy of the classifications was 

still fair at best.  

Another test was done by Penn State ARL that showed even better that the transfer 

function estimate is a viable option for estimating the unsprung accelerometer data from 

the sprung accelerometer. This test was done on paved road with a dirt and gravel 

covering in the hills near State College, PA. In this test, the sprung accelerometer was 

mounted on the frame above the suspension rather than in the cab. The classifications 

from the unsprung estimate data matched the classifications from the original unsprung 

data 97%, a 77% increase over using the original sprung data.   

Another way that the sprung accelerometer may be used to replace the unsprung 

accelerometer is to define the thresholds the same way that the thresholds were defined 

using the unsprung data. The vehicles could be driven on courses with known harshness 

levels and the thresholds for sprung accelerometer data could be set so that all data 
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classified on course sections classified by the Army as off-road would be classified as high-

amplitude by TRIC, sections classified by the Army as secondary would be classified as 

mid-amplitude by TRIC, and sections classified as primary by the Army would be 

classified as low-amplitude by TRIC.  

It may be possible to obtain a better transfer function if parameters of the vehicle are 

known, such as the mass of the vehicle, the spring and damping properties of the 

suspension, and the spring properties of the tire (tire pressure). Figure 41 shows what is 

known as a quarter car model. It is the vehicle on one side of one axle modeled as a mass, 

spring and damper system.  

 

Figure 41: A quarter car model showing the vehicle modeled as a mass, spring and damper 

system on one side of one axle Source: adapted from Balogh. L. Road Surface Estimation for 

Control System of Active Suspensions 
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The equations of motion [15] for this system are, 

Ms ∙ z̈s =  cs ∙ (żu − żs) + ks ∙ (zu − zs) (3.4) 

 

Mu ∙ z̈u =  ku ∙ (z0 − zu) − cs ∙ (żu − żs) − ks ∙ (zu − zs) (3.5) 

 

where M is mass, k is spring stiffness, c is the damping coefficient and z is displacement. 

The subscripts s and u denote sprung and unsprung mass. 

Because the motion of Mu depends on the motion of Ms, each unsprung location on the 

truck will have a different acceleration, since Ms represents the portion of the overall 

vehicle mass contributing to the motion at that location and is not the same at each 

location. This explains why the tests resulted in different classifications at each of the three 

unsprung accelerometers. Future work may look into where the best location for the 

unsprung accelerometer is. 

A Laplace transform of Equation 3.4 can be taken in order to obtain the transfer function 

between the sprung and unsprung accelerometers [15]. 

Ms ∙ Zs ∙ 𝑠2 =  cs ∙ (Zu − Zs) ∙ s + ks ∙ (Zu − Zs) (3.6) 

   

where s is the complex angular frequency. The transfer function can be obtained by 

solving Equation 3.6 for Zu/Zs. 

Tsu =

cs
Ms

∙s+
ks
Ms

s2+
cs
Ms

∙s+
ks
Ms

  (3.7) 
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Also, 

ω0 = √
ks

Ms
 

(3.8) 

 

2 ∙ ω0 ∙ ξ =
cs

Ms
 (3.9) 

  

 

where ω0 is the natural frequency of the sprung mass and ξ is the damping ratio [16]. 

Plugging Equations 3.8 and 3.9 into Equation 3.7 gives, 

Tsu =
2 ∙ ω0 ∙ ξ ∙ s + ω0

2

s2 + 2 ∙ ω0 ∙ ξ ∙ s + ω0
2
 

(3.10) 

 

Unfortunately, the natural frequency and the damping ratio are not known for the data 

sets used in this research. Future work may include determining these factors for the 

vehicles to obtain a better transfer function that can remove the sensitivity to vehicle 

weight, tire pressure, and suspension properties. Because of the transfer function’s 

dependence on Ms, it would only be good for one location on the vehicle. This is further 

motivation to determine where the best location would be. 
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Chapter 4 - Vehicle Operational Modes 

4.1 Methods  

The Applied Research Laboratory (ARL) at Penn State has used a method of clustering 

vehicle operational data into groups for maintenance and fuel conservation purposes. 

These vehicle operational modes may be correlated to the TRIC classifications. The 

purpose of this chapter is to examine how well this clustering process groups operational 

variables. If successful, this classification could be used with the TRIC algorithm to see 

how terrain affects operator response. This could be useful in helping to reduce driver 

fatigue and vehicle system damage. 

These modes are obtained by calculating the 20 second average values of vehicle 

parameters such as engine speed, vehicle speed and accelerator position that are 

dependent on how the driver is operating the vehicle. The data is then passed through a 

k-means clustering algorithm that outputs defined clusters of vehicle parameters that can 

then be used to define the modes of operation of the vehicle. Many more vehicle operating 

parameters are available on the vehicle data bus, but the engine speed, vehicle speed and 

accelerometer position were down-selected as the most relevant parameters for relating 

operating modes to fuel economy, and possibly maintenance. 
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K-means clustering takes data with n variables and partitions the data into k clusters. The 

algorithm works by choosing k initial cluster centers. Each iteration of the algorithm takes 

each point in the data set and, using the Euclidean distance (n-dimensional), assigns that 

point to the closest cluster center point. Then, the mean of all the points is taken for each 

group, and each center point is updated to be that mean. Once there are no more changes 

to the center points, the algorithm is considered to have converged [17]. Figure 42 shows 

the flow diagram for the k-means algorithm. 

 

Figure 42: Flow diagram for the k-means algorithm 
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Because k is a user input, considerations must be made when choosing its value. In this 

case, there are three variables (engine speed, accelerator position, and vehicle speed)  

going into the operational modes. One method of choosing the value of k follows. If a 

scatter plot were done of the variables, there would be three axes, one for each variable. If 

each axis were divided into three equal portions, this would create 27 cubic regions on the 

plot, which could be potential clusters. Three divisions of each variable gives a variety of 

vehicle operational modes, and is the same number of potential classifications from the 

TRIC algorithm. Because the TRIC algorithm really has 28 classifications because of the 

idle classification, it was decided to use k = 28 for the k-means algorithm. 

MATLAB has a built-in k-means function that makes this process very simple. The syntax 

in MATLAB is IDX = kmeans(X,k)where X is an n-by-p matrix with rows being the 

data and the columns representing each variable. Then k is the number of desired clusters 

and IDX is an n-by-1 vector with the cluster number for each point [18].      

To help in visualizing the operational modes, an ARL engineer wrote a program in the 

Python language that randomly assigns a color to each operational mode defined by the 

k-means clustering. It then places colored points on a map in Google Earth along the path 

of the vehicle. Each dot represents 20 seconds of averaged data. This program inspired 

the same technique for displaying the TRIC classifications like the map seen in Figure 17.  

Instead of using the Python code to display the maps, a MATLAB program was written 

supplemented with an open source function called plot_google_map obtained from the 

MathWorks website [19]. This code plots the points overlaid on a Google Map image with 
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axes defined by latitude and longitude specified in the code. The advantages of the Python 

program utilizing Google Earth is that elevation detail in the terrain can be viewed. The 

advantage of using the MATLAB code with Google Maps is that all other code done for 

this research was done in MATLAB, making it easy to transition from one MATLAB 

program to another. 

The maps by themselves can only show how often a vehicle is changing modes. This is 

because there is no meaning behind the number that the k-means algorithm assigns to 

each group (i.e. it is not in ascending harshness like is the case in the TRIC algorithm 

classifications) and the colors assigned to each group number are generated randomly as 

well. However, there are some other ways to visualize what is happening and obtain more 

information about the operational modes.  

First, a 3D scatter plot can be produced with each of the operational mode variables as 

one of the axes. Each point can be color-coded to the color assigned to its corresponding 

k-means group number. This can give a good idea of what region each color represents. 

Second, a histogram can be used to see how the data points fall within each k-means group 

number. Each bar is color-coded to match the color assigned to the corresponding k-

means group number. Similar to the histogram, a color-coded pie graph can also be used. 

In large data sets, it can be difficult to see on the 3D scatter plot what region the points lie 

in. Another useful way to more concisely see where the vehicle is operating in each group 

number is that each variable of the data can be placed in a column of a spreadsheet and 

the group numbers can be placed in a fourth column. Then the data can be sorted by group 
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number from lowest to highest, as long as the data is sorted with the group numbers it 

will give an easier way to see where the vehicle is operating in each group. The pie chart 

or the histogram can then be referred to to see what color each group belongs to (see next 

section for examples).    

4.2 Data and Analysis - NATC Oval Paved Track with MTVR Data 

Data obtained from the NATC tests with the MTVR were used to make maps with the 

vehicle operational modes. ARL collected data from a HEMTT driven around and near 

State College, PA that were used for this portion of the analysis. The three operational 

variables used in these tests are engine speed, measured in revolutions per minute (RPM), 

accelerator position, measured as a percentage of the maximum depression of the pedal, 

and the vehicle speed, measured in miles per hour (mph).  

The first test examined here was done on a paved, oval track with a loaded MTVR. The 

test lasted approximately one hour and three minutes. Figure 43 shows the map of the 

course overlaid after the data had been passed through the k-means algorithm. The figure 

shows that the modes are frequently changing. This could be for a variety of reasons, one 

of which could be changes in terrain features that will be looked at in the next chapter. 

Another reason could be the nature of the test. It could be that the purpose of the test was 

to change speeds frequently and/or accelerate or decelerate frequently. It is also more 

difficult to tell where the changes are taking place when the course is a loop and the test 

involves several laps. In that case, from the map alone, it would be difficult to tell where 

the operational mode changes take place. The histogram and the pie chart, see Figures 44 
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and 45 respectively, show which group the colors belong to and how often they occur. 

The 3D scatter plot seen in Figure 46 can be used to see the variable values for each group.  

 

Figure 43: Map displaying the color-coded vehicle operational modes, sorted into groups by the 

k-means algorithm in MATLAB 

 

 

 

Figure 44: Histogram showing how often each of the color-coded groups generated by the k-

means algorithm occur 
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Figure 45: Pie chart showing how often each of the color-coded groups occur 

 

 

Figure 46: Color-coded 3D scatter plot of the three operational mode variables 
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It can be difficult to tell on a 3D scatter plot where each point lies, especially when the plot 

cannot be interacted with and rotated. For this reason, it can also be useful to have a table 

sorted by group number. Table 4 shows three groups from this data set and Table 5 shows 

the mean and standard deviation for each variable in each of the three groups.  

The small standards deviation values indicate that the groups are tightly spaced. The 

number of operational mode groups of the vehicle is arbitrary, and more or less could be 

used by changing the value of k.  

Table 4: Three of the vehicle mode groups and the operation variables 

Engine Speed (RPM) 

Accelerator 
Position 
(% Max) Vehicle Speed (mph) 

k-means 
Group # 

800 11 1 1 

778 3 4 1 

811 11 1 1 

808 3 7 1 

774 3 5 1 

793 11 1 1 

1269 31 14 2 

1273 18 17 2 

1281 19 17 2 

1177 41 9 3 

1159 37 7 3 

1174 21 12 3 

1181 37 19 3 

1177 42 9 3 
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Table 5: Mean and standard deviation for engine speed, accelerator position and vehicle speed 

in the first three vehicle operational mode groups 

  Engine Speed Accelerator Position Vehicle Speed 

Group 
Number 

Mean 
(RPM) 

Standard 
Deviation 

(RPM) 
Mean (%) 

Standard 
Deviation 

(%) 

Mean 
(mph) 

Standard 
Deviation 

(mph) 

1 794 15 7 4 3 3 

2 1274 6 22 7 16 2 

3 1174 9 35 8 11 5 

 

4.3 K-means Algorithm Conclusions 

It was shown that the k-means algorithm can successfully group the vehicle operational 

variables into modes by checking the standard deviation of the variables in a group. In 

the data examined, the standard deviations were small, meaning the data was grouped 

tightly. The number of modes desired is arbitrary and decided by the user. These modes 

by themselves can be used to improve fuel economy and reduce system damage by 

looking at how often the vehicle is changing modes and by examining time spent in a 

particular mode. 

The following chapter explores a method for correlating the TRIC classifications to the 

vehicle operational modes which could be used to help understand operator response to 

a terrain. This could be helpful in reducing driver fatigue and system damage even 

further. 
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Chapter 5- Terrain Classifications and Vehicle Operational 

Modes Comparison 

 

The vehicle modes discussed and analyzed in the previous chapter are called operational 

modes because they depend on how the vehicle is being operated by the driver. A 

question that has arisen is how terrain affects operation of a vehicle. This helps vehicle 

operators be more aware of how terrain can affect their driving and allow them to adjust 

their driving. It also helps in identifying improvements to vehicles that will increase 

operator comfort and increase performance over harsh terrain. Knowledge of terrain 

effects on vehicle operation and performance will help with planning for maintenance, 

repair and logistics because the terrain will affect failures in the suspension system, tire 

wear and the fuel use. 

5.1 Methods of Comparison 

To compare the terrain classifications to vehicle operational modes, a correlation between 

the two sets needs to be made over time. A histogram is a useful tool for showing how 

often specific data occurs over time. A two-dimensional histogram can be used to show 

how often specific data in one set occurs at the time as specific data of another set. The 

two-dimensional histogram can be used to show how often data with a specific TRIC 

classification occurs at the same time as data grouped into a specific vehicle operational 
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mode. A spreadsheet can also be used to correlate the two classifications. The rows would 

represent the TRIC classifications or the vehicle operational modes, and the columns 

would represent the other. Each time a specific TRIC classification occurs at the same time 

as a specific vehicle operational mode, a value of one would be added to the 

corresponding cell in the spreadsheet. The hope in using these methods is that specific 

TRIC classifications will strongly correlate to specific vehicle operational modes.  

MATLAB was used to make a two-dimensional histogram of the TRIC classifications and 

vehicle operational modes. These histograms are shown in the following section. 

MATLAB does not have a built-in function for a two-dimensional histogram, but the built-

in function accumarray can serve the same purpose. The syntax for the accumarray 

function is A = accumarray(subs,val,sz) where subs is a matrix containing 

subscript values, val is a vector of elements, sz is the size of the output matrix,  A, in 

the format of [a,b] .  The matrix A sums the elements from the val vector according to 

the subscripts in the subs matrix [20]. For the case of the two-dimensional histogram, subs 

is a 2 column matrix with one column as the TRIC classifications and the other as the 

vehicle operational mode number from the k-means grouping. Each row of the matrix has 

the same time. In the case of this research, both classification systems use 20-second 

averages of the data, so they line up in time. But neither the TRIC algorithm nor the 

method used to obtain the vehicle operational modes must use 20 second averages. This 

depends on the preference of the user. If either the TRIC classifications of the vehicle 

operational modes do not use 20 second records, decimation can be used to make the 
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times the same. The vector val would be a 1-by-1 matrix with a value of 1, and sz is the 

number of classifications in the TRIC algorithm and the number of the k-means groups. 

The function goes through subs and finds each instance of each possible combination of 

the TRIC classification and the operational mode group number. For each instance it finds, 

it uses the value of val, one, and adds it to the corresponding subscripts of the matrix A. 

For example, for the (1,1) entry in the matrix A, the accumarray function finds all 

instances where both the TRIC algorithm and the k-means group number for the 

operational modes are both 1, and adds one for each instance. Then the contour function 

can be used to graphically represent the histogram. The TRIC classifications are plotted 

on one axis, the operational modes on the other axis, and the contours will show how 

many reoccurrences of each combination is present. A 3D surface plot can be used, but 

the contour is easier to see and read with static plots.  

5.2 Terrain Classifications Compared to Vehicle Operational 

Modes 

5.2.1 MTVR on NATC Paved Oval Track 

To show this comparison, the same test from the last chapter, using a loaded MTVR on a 

paved oval track, is examined. In this test the terrain was uniform and not harsh. Figure 

47 shows a map of the course overlaid with the color-coded TRIC classifications. To make 

things easier to read, only seven colors are used on this map.  
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Figure 47: Map overlaid with the terrain classifications of a loaded MTVR vehicle travelling 

around an oval track 

 

Figure 47 confirms that this terrain is uniform and not harsh. There are only 3 shades of 

green in the figure; any shade of green is considered low harshness. The classifications 

appear to change most frequently at or around the curves of the track. The black dots 

represent where the vehicle is not moving or where the speed is below 5 mph.  

Rather than directly comparing maps of terrain classifications and vehicle operational 

modes, the two-dimensional histogram discussed in the last section is easier to read and 

to see correlations. Figure 48 shows a map with the color-coded vehicle operational modes 

(circles) overlaid with color-coded TRIC classifications (squares). The TRIC classifications 
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are slightly offset. Even with the offset, the plot is cluttered and it is difficult to make any 

correlations between the two sets of classifications.   

 

Figure 48: Map of NATC oval track overlaid with vehicle operational modes (circles) and TRIC 

classifications (squares) 

 

Figure 49 shows the contour plot histogram of this test, and Figure 50 shows the 3D 

surface plot histogram. The terrain classifications and operational modes that have a high 

number of matches are circled in red on the contour plot. The circled groups correspond 

to TRIC group 1 with vehicle mode (VM) group 6, TRIC group 1 and VM group 15, TRIC 

group 5 and VM group 23 and TRIC group 11 and VM groups 12 and 13. Appendix D 

contains a table with all of the VM variable (engine speed, accelerator positon and vehicle 

speed) data and the assigned group number for each data point.  
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Figure 49: Contour histogram showing the correlation between the terrain classifications and 

the vehicle operational modes 

 

Figure 50: 3D surface plot histogram showing the correlation between the terrain classifications 

and the vehicle operational modes 
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In this data set, there are only seven of the possible 28 terrain classifications. Table 6 shows 

the classifications that are present and what type of terrain they are. 

Table 6: Terrain classification groups for the MTVR on the oval paved track at NATC and a 

description of each terrain type 

TRIC 
Classification 

Number 

Short 
Wavelength 
Amplitude 

Medium 
Wavelength 
Amplitude 

Long 
Wavelength 
Amplitude 

1 None None None 

2 Low Low Low 

3 Mid Low Low 

5 Low Mid Low 

7 Mid Mid Low 

11 Low High Low 

17 Mid High Low 

 

A histogram of VM groups for just one TRIC group can show more detailed correlations. 

Figure 51 shows a histogram of the VM groups for the seven TRIC classifications from this 

data set. TRIC group 1 is very strongly correlated with VM group 6. Both groups 

correspond to the vehicle idling. While these groups are not significant for vehicle 

maintenance, it shows that the k-means algorithm is grouping the operational variables 

into groups that make sense. Table 7 summarizes the strongest correlations. It shows the 

TRIC group number and the VM group number that are correlated, the percent of the total 

number of that specific TRIC classification that was matched with the correlated VM 

group, and the percent of the total number of that specific VM group that was matched 

with the correlated TRIC classification. 
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Figure 51: Histogram of the VM groups for each TRIC group for the MTVR test 
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Table 7: TRIC groups and VM groups that showed the strongest correlation for the MTVR test 

on the paved oval track 

TRIC 
Group 

Vehicle 
Mode Group 

TRIC 
Classification 
Percentage 

Vehicle 
Mode 

Classification 
Percentage 

1 6 49% 100% 

1 16 13% 100% 

2 25 19% 50% 

5 23 23% 89% 

11 12 23% 78% 

11 13 20% 66% 

 

TRIC groups 2 and 5 were the most common classifications in this data set. They 

correspond to smooth, flat, level terrain and smooth, medium bumpiness, level terrain 

respectively. They correlated strongest with VM groups 23-26. These groups combined 

had an average engine speed of 1304 RPMs, 39% pedal depression, and speed of 20 mph.  

The VM groups with the highest average speeds were groups 12 and 13 (30 mph and 27 

mph respectively) and they both correlated strongest with TRIC group 11. TRIC group 11 

is classified as smooth, very bumpy and level. This correlation shows that speed may 

affect the medium wavelength classifications, and this may need to be taken into account 

in the TRIC algorithm thresholds in the future. 

Looking back at Table 7, one of the most noticeable things is that a majority of the 

classifications from a vehicle mode group matched with the same terrain classification 

group. But the opposite was not true. This is most likely due to the fact that the number 

of groups from the k-means algorithm is user defined. There will be 28 groups no matter 
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what. However, the terrain classification groups are parameter defined, meaning the data 

has to meet a criteriion to be classified into one group or another. Even though there are 

28 different classifications, some groups may not have any data points. So there will 

always be 28 groups in the vehicle modes that each have at least one data point, but in the 

terrain classifications some groups may be empty. From this data taken from simple 

terrain, it can be seen that there is correlation between the terrain classifications and the 

vehicle operational modes.  

5.2.2 HEMTT on APG Churchville Course 

The next data set contains more varied terrain. It was taken from a HEMTT operating on 

the Churchville test course at APG in Maryland. Referring back to Chapter 2, Figure 17 

shows the terrain classifications over the map of the test course. This course includes low-

harshness terrain that is smooth, flat and level all the way up to harsh terrain that is rough, 

bumpy and steep. Figure 52 shows a plot of the color-coded VM groups overlaid on a map 

of the test course. Figure 53 shows the color-coded histogram of the VM groups for the 

data. See Appendix D for a table of the VM variables and their classification. 

To compare the TRIC classifications to the VM groups, a two-dimensional histogram was 

done. The contour plot is shown in Figure 54 and the surface plot is shown in Figure 55. 
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Figure 52: Vehicle operational modes for the HEMTT operating on the Churchville course at 

APG 

 

Figure 53: Color-coded histogram of the HEMTT Churchville VM modes 
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Figure 54: Contour plot histogram of the TRIC classifications and the VM groups for the 

Churchville HEMTT test 

 

Figure 55: Surface plot histogram of the TRIC classifications and the VM groups for the 

Churchville HEMTT test 
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Because of the increase in TRIC classifications, the more varied terrain does not give as 

many matches between the two classifications as the previous test did. However, there 

are patterns present.  Table 8 lists the TRIC classifications present in the data and the 

corresponding terrain type.  

Table 8: TRIC classifications present in the Churchville HEMTT data and the corresponding 

terrain type 

TRIC 
Classification 

Number 

Short 
Wavelength 
Amplitude 

Medium 
Wavelength 
Amplitude 

Long 
Wavelength 
Amplitude 

1 None None None 

2 Low Low Low 

4 Low  Low Mid 

5 Low Mid Low 

7 Mid Mid Low 

8 Mid Low Mid 

9 Low Mid Mid 

10 Low Low  High 

14 Mid  Mid Mid 

15 Mid Low High 

16 Low Mid High 

19 High Mid Mid 

20 High Low High 

21 Mid Mid High 

24 Mid High Mid 

25 High Mid High 

26 Mid High High 

 

Because of the large number of TRIC classifications in the data, only the VM group 

histograms for the specific TRIC groups that have the strongest correlation were 

produced. They can be seen in Figure 56. It is important to remember that the k-means 

assignments are random, so the VM groups for this data set are not the same as the VM 

groups of the data set in the previous section. 
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Figure 56: Histograms of the VM groups for select TRIC classifications from the Churchville 

HEMTT test 
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The data points were most commonly classified as TRIC group 9, 14, or 21. TRIC group 9 

corresponds to smooth, partly bumpy, and partly steep terrain. Group 14 corresponds to 

terrain that is partly rough, partly bumpy, and partly steep. Group 21 is similar terrain, 

but is very steep. Table 9 shows which VM groups were most correlated with these TRIC 

groups and the averages for engine speed, accelerator position, and vehicle speed for the 

VM groups. 

Table 9: TRIC groups with the most classifications, most correlated VM modes, and the averages 

VM variables for those groups for the Churchville HEMTT test 

TRIC 
Group 

Vehicle 
Operational 

Modes 

Average 
Engine 
Speed 
(RPMs) 

Average 
Accelerator 

Position 
(%Maximum) 

Average 
Vehicle 
Speed 
(mph) 

9 18 & 28 1622 56 20 

14 
3, 6, 9, 11 & 

26 
1423 64 14 

21 8, 15 & 25 1395 27 11 

 

In the groups shown in Table 9, as the terrain becomes harsher the vehicle speed drops 

and the RPMs decrease. In TRIC group 14, where the amplitude of all three terrain 

wavelengths was mid-level, the accelerator position was most depressed. This could 

indicate that the vehicle operator became aggressive as the terrain became a little harsher, 

but on terrain classified as TRIC 21 where the terrain was steep, the operator backed off. 

This test, like the previous test, shows that correlations can be made between the TRIC 

classifications and the VM groups, even when the terrain is more varied. 
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5.2.3 Correlation Test Conclusions 

Both the MTVR test on the oval paved course and the HEMTT test on the Churchville 

course showed that the TRIC classifications could be correlated to the VM groups. These 

correlations can be used to discover how operators are responding to the terrain and how 

that is affecting vehicle performance. It can also help in predicting maintenance and repair 

schedules by knowing how a vehicle is operating on different terrains.   

A problem encountered was that specific TRIC groups correlated to several of the VM 

groups. This is because when using the k-means algorithm, k groups are filled, whereas 

the TRIC groups are only filled if the terrain meets the requirements. Future work could 

include some potential solutions to this problem. First, the k parameter (number of 

clusters) can be adjusted by the user manually. This approach may be time consuming 

and may be difficult to do correctly. Second, a clustering algorithm could be developed 

that sorts the data into a number of groups decided on by the algorithm, rather than 

defined by the user. Lastly, training data could be used. Training data is used to develop 

classifications for a certain number of classes. Once the classes are defined, the rules can 

be applied to new data, but the new data does not have to occupy all classes defined. 
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Chapter 6 - Summary and Conclusion 

6.1 Summary and Conclusions 

 

The Terrain Regime Identification Classification (TRIC) algorithm was developed by the 

Army Materiel Systems Analysis Activity (AMSAA) to better understand the effects of 

terrain on vehicle damage and predict maintenance schedules. TRIC does more than just 

profile the terrain, but classifies the vehicle’s response to the terrain. The terrain is divided 

into three regimes – short wavelength, medium wavelength and long wavelength. The 

short wavelength regime includes short, small bumps such as gravel or dirt road. It is 

measured with the z-axis of an accelerometer. The medium wavelength regime includes 

larger bumps that will cause the vehicle to pitch (tip forward or backward) and roll (tip 

side-to-side). It is measured with the pitch and roll output of a gyroscope. The long 

wavelength regime includes the steepness of the terrain, or how hilly it is. It is measured 

from the speed and altitude output of a GPS device. Each regime is classified as either 

low, mid or high amplitudes based on vehicle specific thresholds. When combined, there 

are 27 different possible classifications of terrain harshness. As data is collected on a fleet 

of vehicles, terrain harshness can be correlated to maintenance and maintenance 

schedules can be better predicted.  

The algorithm from AMSAA uses an accelerometer mounted to the axis of the vehicle, 

referred to as an unsprung accelerometer, to measure the up and down accelerations used 
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to classify the short wavelength terrain. It would be cheaper and more convenient to 

replace the unsprung accelerometer with one placed above the suspension, referred to as 

a sprung accelerometer. A process of computing and applying a transfer function to the 

data from a sprung accelerometer to estimate and the data from the unsprung 

accelerometer. This process was carried out on two different data sets. One data set was 

obtained from sensors mounted on a Medium Tactical Vehicle Replacement (MTVR) 

driven over a course at the Nevada Automotive Test Center (NATC). The other data set 

was obtained from sensors on an MTVR driven in the hills near State College, PA.  In the 

NATC test, the sprung accelerometer was located inside the cab of the truck, and in the 

State College test the sprung accelerometer was mounted on the frame of the truck above 

the suspension. The results for the NATC data showed that terrain classifications are 

improved when the transfer function is applied to the sprung data, but the results were 

still poor; only 52% of the classifications were the same as the classifications from the 

unsprung accelerometer. Other NATC tests showed up to 84% of the classifications from 

the unsprung estimate data as being the same as the classifications from the unsprung 

accelerometer, but results were not consistent. The State College test showed that 

classifications from the estimated unsprung data matched the original unsprung data 97% 

of the time. This huge improvement from the NATC tests was because the accelerometer 

was mounted on the frame of the vehicle above the suspension rather than in the cab of 

the vehicle, improving the coherence between the two accelerometers.  
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A method of vehicle operational mode classification was explained. This method used a 

k-means clustering algorithm to group three operational mode variables into groups. 

These variables were engine speed, accelerator position and vehicle speed. Different 

methods of displaying these vehicle modes were produced. Data from a test done at 

NATC with an MTVR were used to produce a map overlaid with color-coded points 

representing the different vehicle modes. This type of display is useful for seeing when 

the vehicle is changing modes. A color-coded histogram and a pie chart were also 

produced for the data, showing how often each mode occurred. These can be used 

alongside a table of the groups and the data points belonging to each group to see how 

the vehicle is operating.  

Once the vehicle operational mode groups were produced, they were compared to the 

classifications from the TRIC algorithm. This was done to see if there was any correlation 

between terrain and how a vehicle is operated. Knowing correlations can help vehicle 

operators adjust their driving on different terrains. It can also help with operator comfort, 

planning for maintenance, repair and logistics because the terrain will affect failures in 

the suspension system, tire wear and the fuel use. The correlations were done by using a 

two-dimensional histogram. Two tests were looked at in this case – an MTVR test on a 

paved oval track at NATC and a HEMTT test done on the Churchville course at APG. The 

MTVR test showed that there were correlations between the terrain classifications and the 

vehicle modes. A majority of the classifications from a vehicle mode group matched with 

the same terrain classification group, but the opposite was not true. This is because all of 
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the groups from the k-means algorithm were populated, but only seven of the TRIC 

classifications were populated. The HEMTT test also showed correlations between terrain 

classifications and vehicle modes. In this test, more of the TRIC classifications were 

populated because the terrain was more varied. However, the test still showed terrain 

classifications being correlated to more than one group. For the long wavelength terrain 

(steep hills), this would be expected because the TRIC algorithm does not distinguish 

between uphill and downhill, but the vehicle operational modes would. In terms of 

maintenance, this would not be of much importance, because on average there would be 

as many uphill roads as downhill. Despite this, there was little overlap between k-means 

groups correlating to more than one TRIC group.  

6.2 Recommendations for Future Work 

In this research, the tire, unsprung mass, suspension and sprung mass were not modelled 

in detail. A more detailed model may show better how to relate the data from the 

unsprung accelerometer to the sprung accelerometer. Knowing vehicle weight and tire 

pressure, as well as the spring and damping properties of the suspension, can reduce 

sensitivity to these factors and provide a more accurate transfer function. Thresholds can 

also be defined for the sprung accelerometer data (without the transfer function applied) 

the same way that they are defined for the unsprung accelerometer data. The Army 

currently has test courses defined as primary roads, secondary roads, and off-road for the 

short wavelength regime. The data from the sprung accelerometer can be compared to 

sections of courses defined as primary, secondary and off-road, and thresholds can be 
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determined so that the data from sections of primary road become low amplitude in TRIC, 

secondary roads become mid amplitude in TRIC, and data from off-road sections become 

high amplitude in TRIC.  

A problem encountered while correlating vehicle operational modes to the TRIC 

classifications was that specific TRIC groups correlated to several of the vehicle mode 

groups. This is because all k-means groups are populated, whereas the TRIC groups are 

only populated if the terrain falls within the thresholds. Future work could include some 

potential solutions to this problem. First, the k parameter (number of clusters) can be 

adjusted by the user manually. This brute force approach may be time consuming and 

may be difficult to do correctly. Second, a clustering algorithm could be developed that 

sorts the data into a number of groups decided on by the algorithm, rather than defined 

by the user. This type of clustering is called unsupervised. Another approach would be to 

use training data to develop classifications for a certain number of classes. Once the classes 

are defined, the rules can be applied to new data, but the new data does not have to occupy 

all classes defined. Because there was no clear one-to-one correlation between the output 

of the TRIC algorithm and the vehicle operating modes determined through k-means 

clusters, another approach to consider is to use both the TRIC classifications and the 

vehicle modes in a classifier to predict maintenance requirements and fuel efficiency. 

This research focused on the use of the TRIC algorithm with vehicles, specifically military 

vehicles. There is also interest in using the algorithm on robots primarily to see how the 

terrain is affecting battery power consumption. Figure 57 shows the short wavelength 
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classifications for a Tankbot robot run done on grass. In this preliminary study, the 

thresholds were done be eye looking at were natural divisions in the data may be. To use 

TRIC on the robots, a more refined way of defining the thresholds will need to be 

developed.  

 

Figure 57: Short wavelength classifications from a Tankbot robot test done on grass. The 

thresholds were done by eye and a more accurate method of developing thresholds is being 

developed 

 

Also, the Robot Operating System (ROS) used on many robots can only process programs 

in languages like Python and C++. An implementation of the TRIC algorithm in the 

Python language is currently in development.  
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6.3 Final Comments 

The purpose of the TRIC algorithm is to help improve vehicle life, prevent damage and 

system failure, better predict maintenance schedules, and improve operator performance 

and comfort based on the interaction of the vehicle with the terrain it traverses. This 

research looked at improving the TRIC algorithm and in ways to make it more useful. 

Ultimately, before the TRIC algorithm can fulfil its purpose, more data will need to be 

collected from the field and correlations to component damage and system failure will 

need to take place. While this research did not correlate the TRIC classifications to vehicle 

maintenance, ways were presented in which the algorithm can be improved to better 

fulfill this purpose in the future. 
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Appendix A- Wavenumber Spectrum Conversion 

Because the TRIC algorithm is based on the wavelengths of terrain to make classifications, 

it may be useful to use wavenumber spectrums (WNS) to define thresholds and divisions 

between the wavelength regimes. A WNS is produced analogously to a power spectral 

density (PSD). The big difference being that the data is sampled in equal divisions of 

distance, rather than in equal divisions of time as is done when transforming to the 

frequency domain. When it is not convenient or possible to sample data spatially, it can 

be difficult to obtain the WNS.  

There is a simple method that can be used to obtain a WNS from the PSD, for a vehicle 

traveling at a constant speed. In a paper from 2000, William Connon describes this method 

for converting a WNS to a PSD [19], but it can be done in reverse as well. This process in 

reverse is described here. First, the wavenumbers can be obtained using Equation (A.1):  

     𝑘 = 𝑓/𝑣                                               (A.1) 

Where k is the wavenumber in cycles/ft, f is the frequency in Hz, or cycles/sec and v is the 

constant speed of the vehicle in ft/sec. Then, the wavenumber spectrum can be obtained 

by using Equation (A.2): 

𝐺𝑤𝑛 = 𝐺𝑓 ∗ 𝑣                                                    (A.2) 
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Where Gwn represents the wavenumber spectrum values, Gf represents the power spectral 

density values and v is again the constant speed of the vehicle. The units of Gwn and Gf 

depend on the measurement of interest. If one was wanting to convert the PSD from a z-

axis accelerometer to a WNS, the units of Gwn would be g2/(cycles/ft) and the units of Gf 

would be g2/Hz. Once Gwn and k are obtained, the WNS can be plotted. Figures 58 and 59 

show the PSD and the resulting WNS from a warm up test done with an MTVR on a paved 

oval track at NATC. This test was chosen because the vehicle’s speed was constant for 

most of the test. One-thousand seconds of data where the speed was constant, about 74 

ft/sec, were used to produce the PSD and resulting WNS. 

 

Figure 58: PSD of 1000 seconds of a warm up test with an MTVR at a constant speed of about 74 

ft/sec 

 

10 20 30 40 50
10

-15

10
-10

10
-5

10
0

Frequency (Hz)

P
SD

 M
ag

n
it

u
d

e 
(g

2
/H

z)



100 

 

 

Figure 59: WNS of 1000 seconds of a warm up test with an MTVR at a constant speed of about 

74 ft/sec 

 

As can be seen, the shape of the two plots are identical, but the magnitudes are different. 

This can also be done for medium wavelength data, the pitch and roll vector magnitude, 

as well as the long wavelength data, the grade. 
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Appendix B -Terrain Variables Sorted Using K-means 

Algorithm 

 

Because the k-means algorithm was used to group the vehicle operational data of engine 

speed, accelerator position and vehicle speed, there was interest in seeing how the k-

means algorithm would sort the variables used in the TRIC algorithm. The three variables, 

z-axis acceleration 20 second RMS values, pitch and roll vector magnitude 20 second 

averages, and terrain grade over 20 second periods, were placed in a matrix and run 

through the k-means algorithm, with k, the number of groups, being equal to 28. The 

resulting k-means group assignments were made into a three-dimensional histogram 

along with the TRIC classifications as was done in the last section.  

B.1 Tests and Analysis 

The resulting contour histogram for the paved oval track used in the last section can be 

seen in Figure 60. The figure shows some strong correlation between the idle modes (TRIC 

group 1 and k-means groups 22 and 23) which is to be expected. Figure 61 shows 

histograms for the k-means groups for each specific TRIC group. 
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Figure 60: Histogram of terrain classification number and the k-means group number from the 

TRIC variables, rather than from the vehicle operation variables as was done in the last section 

 

Like before, because only seven TRIC classifications are made with this data, and all 28 k-

means groups are filled, each TRIC group corresponds with several k-means groups. 

However, there are only a few cases where the k-means groups are correlated to more 

than one TRIC group. This mostly happens in TRIC group 5, which has terrain features 

similar to TRIC groups 2, 7, and 11.  This test shows that k-means algorithm can also be 

used to classify terrain, and can even break the TRIC classifications into smaller sub-

groups, depending on the value of k. 
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Figure 61: K-means group histograms for each of the TRIC classifications in the MTVR test 

5 10 15 20 25
0

5

10

15

20
TRIC Group 1

K-Means Group Number

O
cc

u
re

n
ce

s

5 10 15 20 25
0

2

4

6

8

10
TRIC Group 2

K-Means Group Number

O
cc

u
re

n
ce

s

5 10 15 20 25
0

0.5

1

1.5

2
TRIC Group 3

K-Means Group Number

O
cc

u
re

n
ce

s

5 10 15 20 25
0

2

4

6

8

10
TRIC Group 5

K-Means Group Number

O
cc

u
re

n
ce

s

5 10 15 20 25
0

1

2

3

4
TRIC Group 7

K-Means Group Number

O
cc

u
re

n
ce

s

5 10 15 20 25
0

2

4

6

8
TRIC Group 11

K-Means Group Number

O
cc

u
re

n
ce

s

5 10 15 20 25
0

1

2

3

4

5
TRIC Group 17

K-Means Group Number

O
cc

u
re

n
ce

s



104 

 

The comparison of TRIC classifications and k-means classifications from the variables 

used in the TRIC algorithm was also done on the data from the HEMTT Churchville test. 

Figure 62 shows the two-dimensional contour histogram of the classifications. 

 

Figure 62: Contour histogram for the Churchville HEMTT test 

 

Like the last test, several of the TRIC classification have matches with more than one of 

the k-means groups. This is because there are more k-means groups than TRIC 

classifications used, even though there are more TRIC classifications used here than in the 

previous test. There is some overlap of the k-means groups between the different TRIC 

classifications, but the strongest correlations show little to no overlap. The k-means group 

histograms for specific TRIC classification groups for the strongest correlations are shown 
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in Figure 63. The histograms show that TRIC classification groups 9 and 14 have the most 

overlap between matches with k-means groups. TRIC groups 9 and 14 have very similar 

terrain. Group 9 has low amplitude short wavelength, mid amplitude medium 

wavelength and mid amplitude long wavelength. Group 14 is the same except it has mid 

amplitude for the short wavelength as well. Like the previous test, this test shows that k-

means algorithm can also be used to classify terrain, and can even break the TRIC 

classifications into smaller sub-groups, depending on the value of k. However, similar 

terrains that are classified in a different TRIC group may be classified in the same k-means 

group.  

B.2 Comparison Conclusions 

The conclusion is that the k-means grouping algorithm is a good way to classify the 

harshness of terrain, and can classify the terrain in tighter, smaller groups than the TRIC 

algorithm if that is what is desired. It can be thought of as an approximation to the TRIC 

algorithm, but should not be considered as a replacement, especially if classifications with 

definite thresholds are desired. It will group according the user inputted number of 

groups, and does not place the data into pre-determined classifications, as the TRIC 

algorithm does (see Chapter 5 for a discussion on future work to resolve this issue). 
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Figure 63: Histograms of the k-means groups for selected TRIC groups of the Churchville test 
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Appendix C - MATLAB Code 

C.1 TRIC Algorithm Function 

function 

[AVG_Speed,PctGrade,AVG_PR_Mag,SD_unsprung,SD_unld_unsprung,classTRIC,c

lassTRICd,mwl_hiamp_nonzero,swl,mwl,lwl,T] = 

TRIC(acc_filename,RS232_filename,unloaded_acc_file,ParamDataStructure) 

  
% 

***********************************************************************

** 
% 

***********************************************************************

** 
%  Before running this function the ParseDataBusFile.m function must be 

ran 
%  to create a .mat file of the dearborn data file. 
% 

***********************************************************************

** 
% 

***********************************************************************

** 
% This part extracts altitude and speed from the .mat file. 
% Altitude is converted from meters to feet 
% A 20 second change in altitude is computed.  
% Speed is converted from km/h to mph. 
% Speed is integrated to get a distance array. 
% 20 second block averages of speed are computed 
% The 20 second difference of each point of the distance array is taken 

so  
% that it is really distance traveled every 20 seconds 
% The 20 second change in altitude is divided by the 20 second change 

in 
% distance to give the slope of the terrain 
% 

***********************************************************************

** 

  
%Threshold values 

  

  
xh = .031; %Upper threshold slope for acc vs. speed 
bh = -.1; %Upper threshold intercept for acc vs. speed 
xl = .0055; %Lower threshold slope for acc vs. speed 
bl = .03; %Lower threshold intercept for acc vs. speed 
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mst = 5.825; %min_speed_threshhold 
APRMthrH = .8077; %AVG_PR_Mag_threshold high 
APRMthrL = .3570; %AVG_PR_Mag_threshold low 
% APRMthrH = .048; %New AVG_PR_Mag_threshold high 
% APRMthrL = .02; %New AVG_PR_Mag_threshold low 
PGthrH = .08; %PctGrade_threshold high 
PGthrL = .02; %PctGrade_threshold low 

  
% 

***********************************************************************

* 
% Altitude and Speed from GPS. 20 second Averages taken. Speed 

integrated 
% to get distance. 
% 

***********************************************************************

* 

  
Alt_m = 

ParamDataStructure.J1939.SRC_217.PGN_65256.SPNList.SPN_580.Data; 
Alt = Alt_m*3.2808399; 
Spd_kmh = 

ParamDataStructure.J1939.SRC_217.PGN_65256.SPNList.SPN_517.Data; 
Spd = Spd_kmh*.621371192; 

  
delta_Alt = zeros([floor(length(Alt)/200)+1,1]); 
for bb = 1:floor(length(Alt)/200) 
    delta_Alt(bb) = Alt(200*bb)-Alt((bb-1)*200+1); 
end 
delta_Alt(bb+1) = Alt(length(Alt))-Alt(floor(length(Alt)/200)*200); 

  
AVG_Speed = zeros([floor(length(Spd)/200)+1,1]); 
for aa = 1:floor(length(Spd)/200) 
    AVG_Speed(aa) = mean(Spd((aa-1)*200+1:200*aa)); 
end 
AVG_Speed(aa+1) = mean(Spd(floor(length(Spd)/200)*200:length(Spd))); 

  
Dist = cumtrapz(Spd); 

  
delta_Dist = zeros([floor(length(Dist)/200)+1,1]); 
for cc = 1:floor(length(Dist)/200) 
    delta_Dist(cc) = Dist(200*cc)-Dist((cc-1)*200+1); 
end 
delta_Dist(cc+1) = Dist(length(Dist))-

Dist(floor(length(Dist)/200)*200); 

  
PctGrade = delta_Alt./delta_Dist; 
PctGrade(1) = 0; 

  
 

 

% 

***********************************************************************

** 
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% This part decimates unsprung acceleromter data sampled at 10000 Hz 

down  
% to 100 Hz according to the AMSAA TRIC algorithm. It then takes 20 

second  
% RMS values with the last point being an RMS of whatever the remainder 

is. 
% 

***********************************************************************

** 

  
fid = textread(acc_filename); 
full_acc = fid(:,2); 
fs_acc = 10000; 
N_acc = length(full_acc); 
dt_acc = 1/fs_acc; 
T = N_acc*dt_acc; 
dec1_acc = decimate(full_acc,10); 
dec2_acc = decimate(dec1_acc,10); 

  
% Low Pass Filter (30 Hz) 
b = fir1(8,.6); 
acc = filter(b,1,dec2_acc); 

  
n = 2000; 
SD_unsprung = zeros([ceil(length(acc)/n),1]); 
for xx = 1:floor(length(acc)/n) 
    SD_unsprung(xx) = rms(acc((xx-1)*2000+1:2000*xx)); 
end 
SD_unsprung(ceil(length(acc)/n)) = 

rms(acc(floor(length(acc)/n)+1:length(acc))); 

  
% 

***********************************************************************

** 
% This part decimates sprung acceleromter data sampled at 10000 Hz down  
% to 100 Hz according to the AMSAA TRIC algorithm. It then takes 20 

second  
% RMS values with the last point being an RMS of whatever the remainder 

is. 
% 

***********************************************************************

** 

  
fid3 = textread(unloaded_acc_file); 
full_ul_acc = fid3(:,2); 
dec1_ul_acc = decimate(full_ul_acc,10); 
dec2_ul_acc = decimate(dec1_ul_acc,10); 

  
% Low Pass Filter (30 Hz) 
b = fir1(8,.6); 
acc_ul = filter(b,1,dec2_ul_acc); 

  
n = 2000; 
SD_unld_unsprung = zeros([ceil(length(acc_ul)/n),1]); 
for tt = 1:floor(length(acc_ul)/n) 
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    SD_unld_unsprung(tt) = rms(acc_ul((tt-1)*2000+1:2000*tt)); 
end 
SD_unld_unsprung(ceil(length(acc_ul)/n)) = 

rms(acc_ul(floor(length(acc_ul)/n)+1:length(acc_ul))); 

  
%**********************************************************************

**** 
% This part parses the pitch and roll magnitudes 
% It then takes the difference between each point and takes the pitch 

and 
% roll magnitude (rate of angular change) and then takes the 20 second 
% block average 
%**********************************************************************

**** 

  
fid2 = fopen(RS232_filename); 
PR = textscan(fid2,'%.5f64 %*s %f,%f,%f','delimiter','='); 

  
Pitch = PR{3}; 
Roll = PR{4}; 

  
delta_pitch = zeros([length(Pitch)-1,1]); 
for  pp = 2:length(Pitch) 
    delta_pitch(pp-1) = Pitch(pp)-Pitch(pp-1); 
end 

  
delta_roll = zeros([length(Roll)-1,1]); 
for rr = 2:length(Roll) 
    delta_roll(rr-1) = Roll(rr)-Roll(rr-1); 
end 

  
PR_Mag = sqrt(delta_pitch.^2+delta_roll.^2); 

  
N = 985; 

  
AVG_PR_Mag = zeros([ceil(length(PR_Mag)/N),1]); 
AVG_PR_Mag(1) = mean(PR_Mag(1:N)); 

  
for nn = 2:floor(length(PR_Mag)/N) 
    AVG_PR_Mag(nn) = mean(PR_Mag((nn-1)*N+1:nn*N)); 
end 
AVG_PR_Mag(ceil(length(PR_Mag)/N)) = 

mean(PR_Mag(nn*N+1:length(PR_Mag))); 

  
fclose(fid2); 

  
% Short wavelength classifications 

  
swl_loamp = zeros(length(SD_unsprung),1); 
for rr = 1:length(SD_unsprung) 
    if (SD_unsprung(rr)<=(xl*AVG_Speed(rr)+bl)) 
        swl_loamp(rr) = SD_unsprung(rr); 
        else swl_loamp(rr) = 0; 
    end 
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end 
swl_loamp_nonzero = swl_loamp~=0; 

  
swl_midamp = zeros([length(SD_unsprung),1]); 
for ss = 1:length(SD_unsprung) 
    if (SD_unsprung(ss)<=(xh*AVG_Speed(ss)+bh) && 

SD_unsprung(ss)>(xl*AVG_Speed(ss)+bl)) 
    swl_midamp(ss) = SD_unsprung(ss); 
    else swl_midamp(ss) = 0; 
    end 
end 
swl_midamp_nonzero = swl_midamp~=0; 

  
swl_hiamp = zeros([length(SD_unsprung),1]); 
for tt = 1:length(SD_unsprung) 
    if (SD_unsprung(tt)>(xh*AVG_Speed(tt)+bh)) 
    swl_hiamp(tt) = SD_unsprung(tt); 
    else swl_hiamp(tt) = 0; 
    end 
end 
swl_hiamp_nonzero = swl_hiamp~=0; 

  
swl = 1:length(AVG_Speed); 

  
% Plot 
figure('Units', 'pixels', 'Position', [1380 550 500 375]); 
slow = 

scatter(AVG_Speed(swl_loamp_nonzero),swl_loamp(swl_loamp_nonzero),80); 
set(slow,'MarkerFaceColor',[0 .75 0],'MarkerEdgeColor',[0 .5 

0],'Marker','o') 
hold on 
smid = 

scatter(AVG_Speed(swl_midamp_nonzero),swl_midamp(swl_midamp_nonzero),80

); 
set(smid,'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[.75 .5 

0],'Marker','o') 
shi = 

scatter(AVG_Speed(swl_hiamp_nonzero),swl_hiamp(swl_hiamp_nonzero),80); 
set(shi,'MarkerFaceColor',[1 0 0],'MarkerEdgeColor',[.75 0 

0],'Marker','o') 
line1 = xl*AVG_Speed+bl; %Lower threshold line 
line2 = xh*AVG_Speed+bh; %Upper threshold line 
sthreshold_l = line(AVG_Speed, line1); 
sthreshold_h = line(AVG_Speed, line2); 
set(sthreshold_l,'Color',[.5 .5 .5],'LineWidth',.25) 
set(sthreshold_h,'Color',[.5 .5 .5],'LineWidth',.25) 
x=[mst,mst]; %For the minimum speed threshold line 
y=[-.05,.5]; 
spd = plot(x,y,':k'); 
%axis([0 50 .08 .3]) 
sleg = legend([slow, smid, shi],'Low Amplitude','Mid Amplitude','High 

Amplitude', 'location','SouthEast'); 
set(gca, 'FontName', 'Georgia', 'FontSize', 26) 
% sti = title('Short Wave Length Data'); 
xlabel('Average Speed (mph)'); 
ylabel('Acceleration (g''s)'); 
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% set(sti, 'FontSize', 16, 'FontWeight', 'bold') 
set(sleg,'FontName', 'Georgia', 'FontSize',20) 
str1 = {'y = (.0325)x-.105'}; 
text(10,.2,str1,'FontName', 'Georgia') 
str2 = {'y = (.01)x+.026'}; 
text(20,.1,str2,'FontName', 'Georgia') 
hold off 

  
%Classifications 
for kk = 1:length(AVG_Speed) 
        if (AVG_Speed(kk)<mst) 
            swl(kk) = 0; 
        else  
            if (SD_unsprung(kk)<=line1(kk)) 
                swl(kk) = 1; 
            elseif (SD_unsprung(kk)>line1(kk)) && 

(SD_unsprung(kk)<=line2(kk)) 
                swl(kk) = 2; 
            else 
                swl(kk) = 3; 
            end 
        end 
end 

  
% Medium Wavelength Classifications 

  
mwl_loamp = zeros([length(AVG_PR_Mag),1]); 
for uu = 1:length(AVG_PR_Mag) 
    if (AVG_PR_Mag(uu)<=APRMthrL) 
    mwl_loamp(uu) = AVG_PR_Mag(uu); 
    else mwl_loamp(uu) = 0; 
    end 
end 
mwl_loamp_nonzero = mwl_loamp~=0; 

  
mwl_midamp = zeros([length(AVG_PR_Mag),1]); 
for vv = 1:length(AVG_PR_Mag) 
    if (AVG_PR_Mag(vv)<=APRMthrH && AVG_PR_Mag(vv)>APRMthrL) 
    mwl_midamp(vv) = AVG_PR_Mag(vv); 
    else mwl_midamp(vv) = 0; 
    end 
end 
mwl_midamp_nonzero = mwl_midamp~=0; 

  
mwl_hiamp = zeros([length(AVG_PR_Mag),1]); 
for ww = 1:length(AVG_PR_Mag) 
    if (AVG_PR_Mag(ww)>APRMthrH) 
    mwl_hiamp(ww) = AVG_PR_Mag(ww); 
    else mwl_hiamp(ww) = 0; 
    end 
end 
mwl_hiamp_nonzero = mwl_hiamp~=0; 

  
mwl = 1:length(AVG_Speed); 
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% Plot 
figure('Units', 'pixels', 'Position', [1980 550 500 375]); 
mlow = 

scatter(AVG_Speed(mwl_loamp_nonzero),mwl_loamp(mwl_loamp_nonzero),80); 
set(mlow,'MarkerFaceColor',[0 .75 0],'MarkerEdgeColor',[0 .5 

0],'Marker','^') 
hold on 
mmid = 

scatter(AVG_Speed(mwl_midamp_nonzero),mwl_midamp(mwl_midamp_nonzero),80

); 
set(mmid,'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[.75 .5 

0],'Marker','^') 
mhi = 

scatter(AVG_Speed(mwl_hiamp_nonzero),mwl_hiamp(mwl_hiamp_nonzero),80); 
set(mhi,'MarkerFaceColor',[1 0 0],'MarkerEdgeColor',[.75 0 

0],'Marker','^') 
set(gca, 'FontName', 'Georgia', 'FontSize', 26) 
xx1 = [0, 50]; 
yy1 = [APRMthrL, APRMthrL]; %Lower threshold line 
yy2 = [APRMthrH, APRMthrH]; %Upper threshold line 
mthreshold_l = plot(xx1, yy1); 
mthreshold_h = plot(xx1, yy2); 
set(mthreshold_l,'Color',[.5 .5 .5],'LineWidth',.25) 
set(mthreshold_h,'Color',[.5 .5 .5],'LineWidth',.25) 
y2 = [0,.11]; 
plot(x,y2,':k') 
%axis([0 50 .02 .055]) 
mleg = legend([mlow, mmid, mhi],'Low Amplitude','Mid Amplitude','High 

Amplitude', 'location','SouthEast'); 
% mti = title('Medium Wave Length Data'); 
xlabel('Average Speed (mph)'); 
ylabel('Pitch/Roll Vector Magnitude'); 
% set(mti, 'FontSize', 16, 'FontWeight', 'bold'); 
set(mleg,'FontName', 'Georgia', 'FontSize',20); 
str3 = {'y = .048'}; 
text(10,.1,str3,'FontName', 'Georgia') 
str4 = {'y = .02'}; 
text(20,.1,str4,'FontName', 'Georgia') 
hold off 

  
% Classifications 
for kk = 1:length(AVG_Speed) 
        if (AVG_Speed(kk)<mst) 
            mwl(kk) = 0; 
        else  
            if (AVG_PR_Mag(kk)<=APRMthrL) 
                mwl(kk) = 10; 
            elseif (AVG_PR_Mag(kk)>APRMthrL) && 

(AVG_PR_Mag(kk)<=APRMthrH) 
                mwl(kk) = 20; 
            else 
                mwl(kk) = 30; 
            end 
        end 
end 

  



114 

 

%Long Wavelength Classifications 

  
lwl_loamp = zeros([length(PctGrade),1]); 
for xx = 1:length(PctGrade) 
    if (PctGrade(xx)<=PGthrL) 
    lwl_loamp(xx) = PctGrade(xx); 
    else lwl_loamp(xx) = 0; 
    end 
end 
lwl_loamp_nonzero = lwl_loamp~=0; 

  
lwl_midamp = zeros([length(PctGrade),1]); 
for yy = 1:length(PctGrade) 
    if (PctGrade(yy)<=PGthrH && PctGrade(yy)>PGthrL) 
    lwl_midamp(yy) = PctGrade(yy); 
    else lwl_midamp(yy) = 0; 
    end 
end 
lwl_midamp_nonzero = lwl_midamp~=0; 

  
lwl_hiamp = zeros([length(PctGrade),1]); 
for zz = 1:length(PctGrade) 
    if (PctGrade(zz)>PGthrH) 
    lwl_hiamp(zz) = PctGrade(zz); 
    else lwl_hiamp(zz) = 0; 
    end 
end 
lwl_hiamp_nonzero = lwl_hiamp~=0; 

  
% Plot 
figure('Units', 'pixels', 'Position', [1980 50 500 375]); 
llow = 

scatter(AVG_Speed(lwl_loamp_nonzero),lwl_loamp(lwl_loamp_nonzero),80); 
set(llow,'MarkerFaceColor',[0 .75 0],'MarkerEdgeColor',[0 .5 

0],'Marker','s') 
hold on 
lmid = 

scatter(AVG_Speed(lwl_midamp_nonzero),lwl_midamp(lwl_midamp_nonzero),80

); 
set(lmid,'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[.75 .5 

0],'Marker','s') 
lhi = 

scatter(AVG_Speed(lwl_hiamp_nonzero),lwl_hiamp(lwl_hiamp_nonzero),80); 
set(lhi,'MarkerFaceColor',[1 0 0],'MarkerEdgeColor',[.75 0 

0],'Marker','s') 
xx1 = [0, 50]; 
yyy1 = [PGthrL, PGthrL]; %Lower threshold line 
yyy2 = [PGthrH, PGthrH]; %Upper threshold line 
lthreshold_l = plot(xx1, yyy1,'b'); 
lthreshold_h = plot(xx1, yyy2,'g'); 
set(lthreshold_l,'Color',[.5 .5 .5],'LineWidth',.25) 
set(lthreshold_h,'Color',[.5 .5 .5],'LineWidth',.25) 
y2 = [-.3,.5]; 
plot(x,y2,':k') 
%axis([0 50 -.15 .1]) 
set(gca, 'FontName', 'Georgia', 'FontSize', 26) 
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lleg = legend([llow, lmid, lhi],'Low Amplitude','Mid Amplitude','High 

Amplitude', 'location','NorthEast'); 
% lti = title('Signed Long Wave Length Data'); 
xlabel('Average Speed (mph)'); 
ylabel('Slope'); 
% set(lti,'FontName','Georgia','FontSize', 16, 'FontWeight', 'bold') 
set(lleg,'FontName', 'Georgia', 'FontSize',20) 
str7 = {'y = .08'}; 
text(10,.1,str7,'FontName', 'Georgia') 
str8 = {'y = .02'}; 
text(20,.1,str8,'FontName', 'Georgia') 
hold off 

  
lwl = 1:length(AVG_Speed); 

  
% Classifications 
for kk = 1:length(AVG_Speed) 
        if (AVG_Speed(kk)<mst) 
            lwl(kk) = 0; 
        else  
            if (PctGrade(kk)<=PGthrL) 
                lwl(kk) = 100; 
            elseif (PctGrade(kk)>PGthrL) && (PctGrade(kk)<=PGthrH) 
                lwl(kk) = 200; 
            else 
                lwl(kk) = 300; 
            end 
        end 
end 

  
% Overall TRIC Classifications for 27 harshness levels or 'degenerate' 
% classifications for just 7 levels of harshness 

  
classTRIC = lwl+mwl+swl; 
classTRICd = lwl+mwl+swl; 

  
clear i; 
for i = 1:length(AVG_Speed) 
    if classTRICd(i) == 111 
        classTRICd(i) = 1; 
    elseif classTRICd(i) == 112 || classTRICd(i) == 211 || 

classTRICd(i) == 121 
        classTRICd(i) = 2; 
    elseif classTRICd(i) == 113 || classTRICd(i) == 122 || 

classTRICd(i) == 212 || classTRICd(i) == 221 || classTRICd(i) == 311 || 

classTRICd(i) == 131 
        classTRICd(i) = 3; 
    elseif classTRICd(i) == 123 || classTRICd(i) == 213 || 

classTRICd(i) == 222 || classTRICd(i) == 312 || classTRICd(i) == 321 || 

classTRICd(i) == 132 || classTRICd(i) == 231 
        classTRICd(i) = 4; 
    elseif classTRICd(i) == 223|| classTRICd(i) == 313 || classTRICd(i) 

== 322 || classTRICd(i) == 331 || classTRICd(i) == 133 || classTRICd(i) 

== 232 
        classTRICd(i) = 5; 
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    elseif classTRICd(i) == 323 || classTRICd(i) == 332 || 

classTRICd(i) == 233 
        classTRICd(i) = 6; 
    elseif classTRICd(i) == 333 
        classTRICd(i) = 7; 
    end 
end 

  
clear i; 
for i = 1:length(AVG_Speed) 
    if classTRIC(i) == 111 
        classTRIC(i) = 1; 
    elseif classTRIC(i) == 112  
        classTRIC(i) = 2; 
    elseif classTRIC(i) == 211 
        classTRIC(i) = 3; 
    elseif classTRIC(i) == 121  
        classTRIC(i) = 4; 
    elseif classTRIC(i) == 113 
        classTRIC(i) = 5; 
    elseif classTRIC(i) == 122  
        classTRIC(i) = 6; 
    elseif classTRIC(i) == 212 
        classTRIC(i) = 7; 
    elseif classTRIC(i) == 221  
        classTRIC(i) = 8; 
    elseif classTRIC(i) == 311  
        classTRIC(i) = 9; 
    elseif classTRIC(i) == 131  
        classTRIC(i) = 10; 
    elseif classTRIC(i) == 123 
        classTRIC(i) = 11; 
    elseif classTRIC(i) == 213  
        classTRIC(i) = 12; 
    elseif classTRIC(i) == 222 
        classTRIC(i) = 13; 
    elseif classTRIC(i) == 312 
        classTRIC(i) = 14; 
    elseif classTRIC(i) == 321  
        classTRIC(i) = 15; 
    elseif classTRIC(i) == 132  
        classTRIC(i) = 16; 
    elseif classTRIC(i) == 231 
        classTRIC(i) = 17; 
    elseif classTRIC(i) == 223  
        classTRIC(i) = 18; 
    elseif classTRIC(i) == 313 
        classTRIC(i) = 19; 
    elseif classTRIC(i) == 322  
        classTRIC(i) = 20; 
    elseif classTRIC(i) == 331  
        classTRIC(i) = 21; 
    elseif classTRIC(i) == 133  
        classTRIC(i) = 22; 
    elseif classTRIC(i) == 232 
        classTRIC(i) = 23; 
    elseif classTRIC(i) == 323  



117 

 

        classTRIC(i) = 24; 
    elseif classTRIC(i) == 332 
        classTRIC(i) = 25; 
    elseif classTRIC(i) == 233 
        classTRIC(i) = 26; 
    elseif classTRIC(i) == 333  
        classTRIC(i) = 27; 

     
    end 
end 
end 

 

 

C.2 K-Means Processing and Map Generation 

% Uses kmeans to classify vehicle operating modes. 20 second averages 

of 
% speed, engine speed, and accelerator position are used. 

  
%% Load the Data Structure 
clearvars -except T classTRIC classTRICd; close all; 
load('Sort loaded paved_20121106_211003CAN-0_dearborn.mat') 
%% 

  
close all; clearvars -except ParamDataStructure T classTRIC classTRICd; 

  
% Define the variables from the data structure 

  
engineSpeed = 

ParamDataStructure.J1939.SRC_000.PGN_61444.SPNList.SPN_190.Data; 
accPos = 

ParamDataStructure.J1939.SRC_000.PGN_61443.SPNList.SPN_91.Data; 
Spd_kmh = 

ParamDataStructure.J1939.SRC_217.PGN_65256.SPNList.SPN_517.Data; 
lat = ParamDataStructure.J1939.SRC_217.PGN_65267.SPNList.SPN_584.Data; 
long = ParamDataStructure.J1939.SRC_217.PGN_65267.SPNList.SPN_585.Data; 
SpdMPH = Spd_kmh*.621371192; 

  
t = 1:20:T; 

  
% Take the 20 second averages of the engine speed 
fs1 = length(engineSpeed)/T; 
P20 = fs1*20; 
engineSpdAvg = zeros([floor(length(engineSpeed)/P20)+1,1]); 
for i = 1:floor(length(engineSpeed)/P20) 
    engineSpdAvg(i) = mean(engineSpeed((i-1)*P20+1:P20*i)); 
end 
engineSpdAvg(i+1) = 

mean(engineSpeed(floor(length(engineSpeed)/P20)*P20:length(engineSpeed)

)); 

  
clear i; clear P20; 
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% Take the 20 second averages of the accelerator position 
fs2 = length(accPos)/T; 
P20 = fs2*20; 
accPosAvg = zeros([floor(length(accPos)/P20)+1,1]); 
for i = 1:floor(length(accPos)/P20) 
    accPosAvg(i) = mean(accPos((i-1)*P20+1:P20*i)); 
end 
accPosAvg(i+1) = 

mean(accPos(floor(length(accPos)/P20)*P20:length(accPos))); 

  
clear i; clear P20; 

  
% Take the 20 second averages of the vehicle speed 
fs3 = length(SpdMPH)/T; 
P20 = fs3*20; 
speedAvg = zeros([floor(length(SpdMPH)/P20)+1,1]); 
for i = 1:floor(length(SpdMPH)/P20) 
    speedAvg(i) = mean(SpdMPH((i-1)*P20+1:P20*i)); 
end 
speedAvg(i+1) = 

mean(SpdMPH(floor(length(SpdMPH)/P20)*P20:length(SpdMPH))); 

  
clear i; clear P20; 

  
% Take the 20 second averages of the latitude 
fs4 = length(lat)/T; 
P20 = fs4*20; 
latAvg = zeros([floor(length(lat)/P20)+1,1]); 
for i = 1:floor(length(lat)/P20) 
    latAvg(i) = mean(lat((i-1)*P20+1:P20*i)); 
end 
latAvg(i+1) = mean(lat(floor(length(lat)/P20)*P20:length(lat))); 

  
% Take the 20 second averages of the longitude 
longAvg = zeros([floor(length(long)/P20)+1,1]); 
for i = 1:floor(length(long)/P20) 
    longAvg(i) = mean(long((i-1)*P20+1:P20*i)); 
end 
longAvg(i+1) = mean(lat(floor(length(long)/P20)*P20:length(long))); 

  
clc; 

  
% Construct the operational mode variables matrix and run the built in 
% kmeans algorithm 
varMatrix = [engineSpdAvg, accPosAvg, speedAvg]; 
[IDX, C] = kmeans(varMatrix, 28); 
%% 
% Define a random color map 
map = rand(28,3); 
colormap(map); 
cmap = colormap; 
colorCode = [0,0,0; 0 .6 0;.6 .8 .2;.8 1 .4;1 1 0;1 .7 .2;1 0 0;.7 0 

0]; 

  
% Scatter plot of the operational modes variables 
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clear i 
figure(1) 
hold on 
for i = 1:28 
    

scatter3(varMatrix(IDX==i,1),varMatrix(IDX==i,2),varMatrix(IDX==i,3),20

,cmap(i,:),'fill'); 
end 
grid on 
title('Operational Modes of Vehicle') 
xlabel('Average Engine Speed (RPM)') 
ylabel('Average Accelerator Position (%)') 
zlabel('Average Vehicle Speed (mph)') 
hold off 

  
% Scatter plot of the kmeans classification against speed 
figure(2) 
clear i 
hold on 
for i = 1:28 
    scatter(speedAvg(IDX==i),IDX(IDX==i),25,cmap(i,:),'fill') 
    grid on 
end 
title('Average Speed vs. Operational Mode') 
xlabel('Average Speed (mph)') 
ylabel('Operational Mode Number') 
hold off 

  
% Plot of the vehicle path 
figure(3) 
scatter(long,lat,12,'k','fill') 
title('Test Track') 
xlabel('Longitude (degrees)') 
ylabel('Latitude (degrees)') 
grid on 
%% 
% Plot of the color coded operational modes on the map 
clear i; 
figure(4) 
hold on 
for i = 1:28 
    scatter(longAvg(IDX==i),latAvg(IDX==i),50,cmap(i,:),'fill') 
end 
set(gca, 'FontName', 'Calibri', 'FontSize', 22) 
title('Test Track') 
xlabel('20 Second Average Longitude (degrees)') 
ylabel('20 Second Average Latitude (degrees)') 
axis([-119.374 -119.354 39.296 39.306]) 
plot_google_map('maptype','satellite') 

  

  
for j = 0:7 
    

scatter(longAvg(classTRICd==j),latAvg(classTRICd==j)+.0003,50,colorCode

(j+1,:),'fill','square') 
end 
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%% 
% Scatter plot of the operational modes against time 
figure(5) 
hold on 
for i = 1:28 
    scatter(t(IDX==i),IDX(IDX==i),30,cmap(i,:),'fill') 
end 
title('Operational Modes Over Time') 
xlabel('time (s)') 
ylabel('Operation Severity Level') 
%axis([0 3800 0 8]) 

  
grid on 
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Appendix D - Full K-means Group and Variable Tables 

D.1 Sort Test with MTVR on Oval Paved Track 

Table 10: : Twenty second averages of operational mode variables from a sort test on a paved, 

oval road driven by an MTVR and sorted into groups by the k-means algorithm 

Engine Speed  
(RPM) 

Acc Position  
(% Max) 

Vehicle Speed  
(mph) 

Vehicle 
Operational 

Mode 

800 10 1 1 

778 3 4 1 

811 11 1 1 

808 3 7 1 

774 3 5 1 

793 11 1 1 

1269 31 14 2 

1273 18 17 2 

1281 19 18 2 

1177 41 9 3 

1159 37 7 3 

1174 21 12 3 

1181 37 19 3 

1177 42 9 3 

865 3 10 4 

873 3 8 4 

877 8 11 4 

875 3 10 4 

852 3 7 4 

850 3 8 4 

845 3 7 4 

868 3 8 4 

836 13 1 4 

881 3 10 4 

1222 21 17 5 

1209 26 24 5 

1207 19 23 5 
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700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

699 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

699 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

701 3 0 6 

699 3 3 6 

704 4 0 6 

700 3 0 6 

699 3 0 6 

700 3 0 6 

700 3 0 6 

698 3 0 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

701 3 2 6 

700 3 0 6 

700 3 0 6 

700 3 0 6 

927 3 11 7 

956 3 16 7 

945 21 2 7 

942 20 2 7 

950 9 13 7 

1106 33 6 8 

1094 34 6 8 

1099 31 5 8 



123 

 

1090 29 22 8 

1066 29 4 8 

1091 29 5 8 

1216 38 8 9 

1223 38 8 9 

1206 46 10 9 

1219 43 10 9 

1203 42 9 9 

1229 45 11 9 

731 3 3 10 

738 8 0 10 

741 7 0 10 

1284 42 25 11 

1298 43 11 11 

1291 52 30 11 

1297 50 26 11 

1283 41 25 11 

1279 43 10 11 

1279 45 10 11 

1284 48 25 11 

1354 50 23 12 

1371 52 20 12 

1350 48 18 12 

1348 60 34 12 

1376 53 20 12 

1354 57 35 12 

1367 48 40 12 

1370 52 20 12 

1357 55 36 12 

1132 28 31 13 

1136 33 31 13 

1158 36 30 13 

1139 34 31 13 

1147 34 31 13 

1133 34 30 13 

1159 36 29 13 

1116 31 15 14 

1113 24 29 14 

1117 31 30 14 

1127 9 24 14 

1120 24 30 14 
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1129 15 28 14 

1113 17 27 14 

1113 10 23 14 

1117 26 30 14 

1121 3 25 14 

693 3 1 15 

695 3 0 15 

697 3 0 15 

692 3 1 15 

694 3 0 15 

696 3 0 15 

694 3 1 15 

692 3 1 15 

695 3 0 15 

1253 35 25 16 

1251 42 30 16 

1250 40 9 16 

1256 25 13 16 

1252 41 19 16 

1343 47 12 17 

1328 49 22 17 

1323 51 23 17 

715 3 3 18 

709 3 3 18 

714 3 2 18 

984 23 3 19 

975 22 4 19 

990 9 15 19 

984 24 3 19 

913 12 10 20 

898 3 12 20 

921 20 2 20 

887 17 3 20 

898 3 9 20 

1344 24 36 21 

1374 17 37 21 

1202 40 30 22 

1201 39 31 22 

1273 41 25 23 

1273 44 24 23 

1269 35 22 23 



125 

 

1264 47 11 23 

1271 40 25 23 

1270 40 25 23 

1265 41 25 23 

1277 41 25 23 

1272 41 25 23 

1026 9 12 24 

1045 28 4 24 

1033 23 20 24 

1032 12 11 24 

1048 28 4 24 

1011 3 20 24 

1031 25 20 24 

1431 50 15 25 

1448 51 20 25 

1457 54 39 25 

1459 51 39 25 

1425 49 15 25 

1428 49 15 25 

1471 54 40 25 

1438 50 14 25 

1446 51 20 25 

1432 49 15 25 

1453 51 20 25 

1432 49 15 25 

1446 50 15 25 

1480 55 40 25 

1388 37 15 26 

1410 51 13 26 

1397 53 17 26 

1418 49 20 26 

1408 43 15 26 

1391 53 17 26 

1380 36 14 26 

1402 49 19 26 

1398 43 19 26 

1304 23 38 27 

1088 3 23 28 

1095 9 19 28 

1085 12 19 28 
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D.2 Churchville HEMTT Test 

 

Table 11: Twenty second averages of operational mode variables from a test on the 

Churchville course at the Aberdeen Proving Ground in Maryland with a HEMTT 

Engine Speed (RPM) 
Accelerator Position 

(% Maximum) 
Vehicle Speed (mph) 

Vehicle 
Operational 
Mode Group 

1000 21 11 1 

952 24 12 1 

950 21 13 1 

1819 5 11 2 

1842 8 11 2 

1868 8 11 2 

1874 26 11 2 

1825 15 9 2 

1880 23 11 2 

1835 22 29 2 

1496 59 9 3 

1462 75 8 3 

1497 74 25 3 

1494 66 14 3 

1466 72 17 3 

1475 74 17 3 

1485 76 18 3 

1447 74 14 3 

1514 76 10 3 

1490 85 16 3 

1465 64 18 3 

1453 67 14 3 

1248 51 10 4 

1184 9 16 4 

1261 2 8 4 

1262 14 17 4 

1577 28 10 5 

1540 30 18 5 

1553 19 18 5 

1559 29 23 5 

1580 20 22 5 
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1548 73 27 5 

1528 69 19 5 

1693 99 21 6 

1708 100 16 6 

1690 90 31 6 

1699 88 22 6 

2105 94 12 7 

818 15 3 8 

836 2 12 8 

836 10 12 8 

846 3 12 8 

821 19 3 8 

1733 71 10 9 

1721 70 20 9 

1714 21 11 10 

1713 5 10 10 

1728 12 10 10 

1710 21 26 10 

1740 20 30 10 

702 0 3 11 

734 0 8 11 

704 2 13 11 

1689 42 10 12 

1691 63 10 12 

1696 65 10 12 

1683 40 16 12 

1669 48 27 12 

1637 62 10 13 

1655 63 10 13 

1664 93 30 13 

1663 72 16 13 

1657 49 20 13 

1646 74 26 13 

1673 75 21 13 

1815 99 8 14 

1810 55 10 14 

1799 100 8 14 

1826 69 16 14 

1765 54 11 15 

1760 81 10 15 

1758 50 11 15 
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1772 63 11 15 

1902 66 11 16 

1877 67 11 16 

1872 54 11 16 

1916 60 11 16 

1919 64 11 16 

1912 71 11 16 

1878 64 11 16 

1921 72 11 16 

1900 100 7 16 

776 6 11 17 

771 17 2 17 

780 6 4 17 

1593 52 13 18 

1602 50 10 18 

1626 78 18 18 

1594 85 13 18 

1625 92 17 18 

1570 100 25 18 

1622 63 26 18 

1603 77 21 18 

1604 96 16 18 

1590 99 25 18 

1771 18 11 19 

1788 18 11 19 

1785 37 11 19 

1770 20 29 19 

1063 50 2 20 

1064 44 2 20 

1041 7 16 20 

1090 14 16 20 

1041 20 13 20 

1025 21 8 20 

1302 46 12 21 

1311 58 11 21 

1333 22 7 21 

1294 19 17 21 

1287 40 15 21 

1304 27 13 21 

1740 100 5 22 

1746 100 6 22 
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1725 100 12 22 

1755 100 6 22 

1449 12 9 23 

1412 8 18 23 

2001 38 12 24 

1926 26 12 24 

1957 24 12 24 

1920 7 11 24 

1919 20 11 24 

1915 9 11 24 

1617 22 10 25 

1629 14 10 25 

1606 8 9 25 

1635 31 9 25 

1610 36 16 25 

1611 1 21 25 

1402 65 14 26 

1427 76 13 26 

1363 65 3 26 

1425 67 12 26 

1359 58 7 26 

1416 51 9 26 

1431 52 7 26 

1385 45 12 26 

1370 39 10 26 

1417 75 12 26 

929 28 4 27 

912 31 0 27 

924 23 2 27 

1654 10 10 28 

1642 39 26 28 

1653 13 25 28 

1656 31 25 28 

1670 16 25 28 

1646 6 25 28 
 


