PARENTS’ DIFFERENTIAL TREATMENT IN MEXICAN AMERICAN FAMILIES

A Thesis in
Human Development and Family Studies

by
Jenny Padilla

© 2014 Jenny Padilla

Submitted in Partial Fulfillment
of the Requirements
for the Degree of
Master of Science

December 2014
The thesis of Jenny Padilla was reviewed and approved* by the following:

Susan M. McHale
Director, Social Science Research Institute
Professor of Human Development and Family Studies
Thesis Adviser

Mayra Bamaca
Assistant Professor of Human Development and Family Studies

Eva S. Lefkowitz
Associate Professor of Human Development and Family Studies
Professor-In-Charge, Graduate Program

*Signatures are on file in the Graduate School
ABSTRACT

I examined the longitudinal associations between parents’ differential treatment (PDT) and youths’ depressive symptoms, and risky behaviors from early adolescence through young adulthood. I also tested the moderating roles of birth order, dyad gender constellation, and cultural values in these associations. Mothers, fathers, and two siblings in 246 Mexican American families were interviewed on three occasions. Multilevel models revealed that youth who experienced less warmth and more conflict with parents relative to their sibling, reported more depressive symptoms. Youth who experienced more conflict with parents relative to their sibling, also reported more risky behavior. Fathers’ cultural socialization moderated associations, such that youth who experience more paternal warmth and reported high levels of cultural socialization reported less risky behavior compared to those who reported low levels of cultural socialization.

Keywords: depressive symptoms, parents’ differential treatment, Mexican American families, siblings, young adulthood
TABLE OF CONTENTS

Acknowledgements ..v
INTRODUCTION ...1
 Moderators ...4
 The Current Study ...5
METHOD ..6
 Results ...11
 Discussion ...16
References ..20
APPENDIX A: Analysis Results ...24
 Means and Standard Deviations for Study Variables ...24
 Growth Curves Predicting Youths’ Adjustment ...26
 Models Predicting Youths’ Depressive Symptoms ...27
 Models Predicting Youths’ Risky Behavior ...28
 Interaction of PDT & Cultural Socialization on Youths’ Depressive Symptoms29
 Interaction of PDT & Cultural Socialization on Youths’ Depressive Symptoms30
 Interaction of PDT & Cultural Socialization on Youths’ Risky Behavior31
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my adviser Susan M. McHale, you are a wonderful mentor to me. I would like to thank you for always encouraging my research and supporting my growth as a research scientist. I would also like to thank Mayra Bamaca for being a part of my committee, and for your great comments and suggestions. You both made my defense an enjoyable and constructive experience.

A special thanks to my family. Ma & Papi thanks for your unwavering support in all of my educational endeavors and never letting me give up on anything I start. To my brothers, Phil and Johnny, thank you for always having the words to keep me going. You are my best friends and biggest cheerleaders. And of course, Ethan, I would like to express appreciation for your patience and understanding especially when I feel as if I have the weight of the world on my shoulders. I love you all.
Parents’ Differential Treatment in Mexican American Families

Children who grow up in the same family are not necessarily exposed to the same family environment. Indeed, siblings who grow up in the same family are often as different from one another as they are from strangers (Rowe & Plomin, 1981; Plomin & Daniels, 1987). And, the observation that parents often treat their children differently, has led researchers to describe parents’ differential treatment (PDT) as a key component of siblings’ non-shared experiences within the family throughout development (Feinberg & Hetherington, 2001; Shanahan et al., 2008). Further, although parents’ intentions may be to balance the needs and interests of each sibling, when children within the same family are treated differently by their parents, siblings who are treated less favorably often show adjustment problems (e.g., Conger & Conger, 1984, Feinberg et al., 2000; Shanahan et al., 2008; Richmond, Stocker, & Rienks, 2005).

Such findings are consistent with the tenets of social comparison theory (Festinger, 1954), which posits that individuals make comparisons with others to evaluate and/or enhance aspects of the self. Adler’s theory of individual psychology (1956) suggests that because of their close proximity and shared characteristics, siblings are prime candidates for generating such comparisons. Thus, siblings’ perceptions of relative standing within the family have implications for their self-concepts and well-being (Ansbacher & Ansbacher, 1956). Adler’s and social comparison theories align with empirical findings on differential treatment, which document that, unfavorable or unequal treatment is linked to lower esteem and more depressive symptoms (Conger & Conger, 1994; Feinberg et al., 2000; Richmond, Stocker, & Rieks, 2005). Despite empirical evidence showing PDT has negative implications for individuals’ well-being, gaps in our knowledge of this family dynamic remain.
Many studies on PDT has focused on European American families and we know little about differential treatment and its implication in other socio-cultural groups. A cultural-ecological perspective outlines the ways in which cultural forces shape family beliefs, values, and practices (Spencer, 1995), and suggests that family processes such as PDT may not have the same implications across socio-cultural groups. Weisner’s (1993) research indicates that non-Western societies do not possess the same democratic ideal of equal treatment of siblings; rather siblings’ roles tend to be highly differentiated by gender, age, and the needs of the family. This is an important consideration because, if parents’ patterns of differential treatment are linked to their cultural orientations, the negative implications found in European American families may not emerge in socio-cultural groups that emphasize a collectivist orientation. Research on Mexican American family dynamics have demonstrated that PDT-adjustment links were not evident when youth expressed strong familism values (McHale et al., 2005) or more frequent cultural socialization in African American families (Solmeyer et al., in press), therefore youths’ reactions to differential treatment may be culturally bound.

Indeed, research that has focused on PDT in other racial/ethnic groups highlights how contextual factors shape youths’ reactions to PDT (McHale et al., 2005; Solmeyer et al., in press). However, an important direction for research on sibling-related family dynamics is understanding the implications of differential treatment across a range of socio-cultural groups over time. As noted, other than the few studies described above, prior research that has tested associations between parents’ differential treatment and youth adjustment have focused almost exclusively on European and European American families (Conger & Conger, 1994; McGuire, Dunn, & Plomin, 1995; Shanahan et al., 2008). The current study builds on the work of McHale...
and colleagues (2005) using a longitudinal design to examine the role of PDT in youth adjustment in Mexican American families and to investigate socio-cultural moderators of these linkages.

Parents’ Differential Treatment and Youth Adjustment

As prime candidates for social comparison, sisters and brothers compare their parent-child relationship relative to their siblings’ relationships with parents (Ansbacher & Ansbacher, 1956). Adler’s theory of individual psychology suggests that siblings’ self-esteem may be adversely affected when they receive less favorable treatment. Shanahan and colleagues (2008) found that parents’ differential warmth in middle childhood was linked to increases in depressive symptoms in late adolescence for siblings who received less favorable treatment. Research has also found that less favorable parental treatment in middle childhood is associated with higher levels of psychological difficulties in early adolescence (Richmond et al., 2005), as well as higher levels of vandalism and violence in adolescent boys, and higher levels of theft in adolescent girls (Scholte et al., 2007). It is important to note these are among the few studies which have taken into account dyadic parent-youth relationship quality, a variable that may explain the links between differential treatment and youth adjustment. As such, a goal of the current study is to highlight the effects of PDT beyond dyadic parent-youth relationship quality.

As outlined, an important direction for research is to study these associations in other socio-cultural groups, and into later stages of development. Prior longitudinal studies have focused on childhood and adolescence and very little is known about later implications (e.g., Jenkins et al., 2003; Tamrouti-Makkink, et al., 2004). Arnett (2000) has highlighted the distinctiveness of the 18-25 age period, as a time when issues of identity become particularly salient and family relationships are reevaluated. Given these individual and family changes, it is important to understand PDT and its implications in young adulthood.
Moderators of Associations Between Differential Treatment and Youth Outcomes

Many studies have examined sibling characteristics as potential moderators of PDT’s effects on youth adjustment. These studies have documented that negative reactions to PDT are not universal, such that stronger associations between unfavored treatment and poor adjustment are sometimes evident for girls as compared to boys. Such gender differences have been attributed to girls’ tendency in being more relationship-oriented than boys, therefore focusing more on social comparisons to understand their status in the family (Maccoby, 1998). Siblings in same-sex dyads may also be more inclined to make social comparisons than youth in mixed sex dyads because they expect more similar treatment due to their shared characteristics (Ansbacher & Ansbacher, 1956). Taken together, these patterns imply that sister-sister dyads may be the most likely to engage in social comparisons and thus exhibit stronger reactions to PDT. Siblings’ birth order also has been found to moderate associations between PDT and youth outcomes, with first-borns reacting more strongly to PDT. Feinberg and colleagues (2000; 2001) suggested that first-borns are sensitive to their status and privileges being usurped by later-borns.

In addition, as noted, prior research has also demonstrated that reactions to parents’ differential treatment are moderated by cultural factors. Solmeyer and colleagues (in press), for example found that in African American families, when mothers exhibited more cultural socialization, youth who experienced relatively less warmth than their sibling did not show higher levels of risky behavior. In this way, cultural socialization toward promoting youths’ identity with their racial/ethnic group appeared to mitigate the negative impact of PDT in African American families. Researchers noted that youth may be less inclined to respond negatively to PDT when mothers engaged in more frequent cultural socialization.
Research on Mexican American family dynamics has demonstrated that youths’ reactions to differential treatment may also be culturally bound: Similar to the effects of cultural socialization in African American families, youths’ familism values moderated the links between PDT and youth adjustment such that the PDT-adjustment linkages were not evident when youth expressed strong familism values (McHale et al., 2005). These authors suggested that, in contrast to the tenets of Adlerian theory and social comparison theories more generally, in some socio-cultural groups equal treatment may be neither the norm nor the ideal. The values of *familismo* or familism, emphasizes family support, loyalty, and interdependence among family members (Domench-Rodriguez, 2002; Marin and Marin, 1991). In this way, Mexican American families promote communal over individualistic values, and a key aspect of their cultural values and practices places the needs of the family before the needs of the individual. As such, cultural values and practices may serve as protective mechanisms and siblings may not react negatively to differential treatment in Mexican American families with higher levels of familism and more frequent cultural socialization.

The Current Study

In effort to better understand PDT processes in a communally-oriented socio-cultural group, in the present study, I extended McHale and colleagues’ (2005) concurrent analyses to examine PDT-adjustment linkages in the same sample, measured on three occasions across eight years, assessing how changes in PDT were associated with changes in youths’ adjustment from early adolescence into young adulthood. More specifically, this paper examined the longitudinal associations between both mothers’ and fathers’ differential warmth and conflict and youths’ depressive symptoms and risky behavior in two-parent Mexican American families, and tested
both structural (e.g., gender, gender constellation of the dyad, birth order) and cultural factors (i.e., familism values, cultural socialization) as potential moderators of these linkages.

First, I tested the time-varying associations between mothers’ and fathers’ differential warmth and conflict and youths’ depressive symptoms and risky behavior controlling for: the absolute level of parent-youth relationship qualities, parental education, youths’ country of birth, and age spacing between younger and older siblings. Second, I tested whether the linkages were moderated by gender, gender constellation of the sibling dyad, birth order, and cultural factors. I expected to find associations between PDT and poor youth adjustment over time, with stronger associations for girls, girl-girl dyads, and older siblings. In addition, I expect that high familism values and high cultural socialization would mitigate the negative effects of less favored treatment on youth adjustment.

Method

Participants

The data came from a longitudinal study of 246, two-parent Mexican American families. Participating families were recruited through schools in a southwestern metropolitan area. The criteria for participation at Time 1 were that (a) family membership included a seventh grader and at least one older adolescent sibling living in the home, (b) family membership included both a mother and a father figure living in the home (all non-biological fathers had lived with the target children for at least 10 years), (c) mothers were of Mexican origin (93% of fathers also were of Mexican origin, although this was not a study criterion), and (d) fathers were employed for pay for at least 20 hours/week. Mothers, fathers, and siblings were interviewed in their homes on three occasions over eight years. The current analyses focused on the siblings who participated in three waves of data collection that spanned early adolescence to young adulthood.
To recruit families, letters and brochures (in both English and Spanish) that described the study were sent to families, and follow-up telephone calls were made by bilingual staff to determine each family’s eligibility and interest in participation. Bilingual recruitment materials were developed in consultation with the project’s Latino advisory board, which included parents and professionals in the community, and provided feedback on recruitment materials and strategies. Families’ names were obtained from five school districts and five parochial schools. Schools were selected to represent a range of socioeconomic situations, with the proportion of students receiving free or reduced lunch varying from 8% to 82% across schools. Letters were sent to 1,851 families with a Hispanic seventh grader who was not learning disabled. For 438 families (24%), the contact information was incorrect, and repeated attempts to find updated information were unsuccessful. An additional 42 (2.4%) families moved between the time of the initial screening and final recruitment contact, and 8% refused to be screened. Eligible families included 21% of the initial rosters (and 29% of those we were able to screen); of those who were eligible, 75% agreed to participate and 64% completed interviews.

At Time 1, families represented a range of education and income levels (from poverty to upper middle class). The percentage of families that met federal poverty guidelines was 18.3%, a figure similar to the 18.6% of two-parent Mexican American families living in poverty in the county from which the sample was drawn. The median family income was $40,000 (for two parents and an average of 3.39 siblings). Mothers and fathers had completed an average of 10 years of education ($M = 10.34, SD = 3.74$, for mothers; $M = 9.88, SD = 4.37$, for fathers). Most parents had been born outside the United States (70%); this subset of parents had lived in the United States an average of 12.4 ($SD = 8.9$) years and 15.2 ($SD = 8.9$) years, for mothers and fathers, respectively. About two thirds of the parents were interviewed in Spanish. With respect
to siblings, the sample included 68 sister–sister pairs, 55 sister–brother pairs, 57 brother–sister pairs, and 66 brother–brother pairs. The majority of siblings were full biological pairs ($n = 234$; 95%). The average spacing between siblings was 2.96 years ($SD = 1.63$, range = 1–9). The total number of siblings living in the household averaged 3.39 ($SD = 1.20$, range = 2–8). Older siblings were 15.7 ($SD = 1.6$) years old, on average, 47% had been born outside the United States, and 82% were interviewed in English. Younger siblings averaged 12.8 ($SD = .58$) years of age, 38% had been born in Mexico, and 83% were interviewed in English. Therefore I controlled for country of birth in the MLM analyses.

Time 2 interviews were completed when younger siblings were 17.72 years of age, on average ($SD = .57$), and older siblings were 20.65 years of age, on average ($SD = 1.56$) and Time 3 interviews were conducted two years after Time 2, when older siblings averaged 22.57 years of age ($SD = 1.57$) and younger siblings were 19.6 years of age ($SD = .66$). Retention rates were 75% and 70% for Times 2 and 3, respectively. Those who did not participate: could not be located ($n = 43$ at Time 2; $n = 45$ at Time 3), had moved to Mexico ($n = 2$ at Time 2; $n = 4$ at Time 3), could not presently participate or were difficult to contact ($n = 8$ at Time 2; $n = 4$ at Time 3), or refused to participate ($n = 8$ at Time 2; $n = 8$ at Time 3). Because participating families reported higher maternal education at Time 1 as compared to non-participating families at Time 2 ($M = 10.62$; $SD = 3.80$ versus $M = 9.48$; $SD = 3.45$) and Time 3 ($M = 10.75$; $SD = 3.75$ versus $M = 9.35$; $SD = 3.53$) I controlled for parental education in all analyses.

Procedures

After obtaining informed consent and, for youth under the age of 18, assent, data were collected at Times 1, 2, and 3 in home interviews. Interviews lasting an average of 3 hours for parents and 2 hours for youth, family members reported on their family relationships and
personal characteristics including, cultural values and adjustment. Interviews were conducted individually with laptop computers by bilingual interviewers; questions were read aloud because of variability in parents’ and youths’ reading levels. Families received $100 for in-home interviews with all four family members at Time 1, families received $125 at Time 2, and each family member received $75 at Time 3. The University’s Institutional Review Board approved all procedures.

Measures

All measures were forward and back-translated into Spanish for Mexican dialect in the local area by two separate individuals. All final translations were reviewed, and discrepancies were resolved. At the initial stage of the study, focus groups and pilot work were conducted to ensure the cross-ethnic and language equivalence of existing measures and the telephone procedure.

Parent-Youth Conflict was measured using an instrument adapted from Smetana (1998) that assessed the frequency of parent-youth conflict in 11 domains (e.g., choosing activities, social life). At separate points in the study, parents were asked how often they experienced conflict with each of their children on a 6-point scale (1 = not at all, 6 = several times a day). Items were summed, with higher scores reflecting higher conflict during the past year. Cronbach’s alphas ranged from .82 to .91.

Parental Warmth was assessed using the 24-item warmth subscale from the Child’s Report of Parental Behavior Inventory (CRPBI; Shaefer, 1965; Schwarz, Barton-Henry, & Pruzinsky, 1985). On this measure, mothers and fathers used a 5-point scale (1 = not at all, 5 = very much) to rate their experiences with each of their children (at separate points of the interview). Items (e.g., “I understand my child’s problems and worries”) were averaged, with
higher scores reflecting higher warmth during the past year. Cronbach’s alphas ranged from .81 to .86.

I used the two siblings’ reports of their dyadic parent-child relationship experiences to calculate perceived differential treatment of maternal and paternal warmth and conflict. To calculate the differential treatment variable, younger siblings’ reports of dyadic parent-child relationships were subtracted from older siblings’ reports for older siblings and vice versa for younger siblings. Thus, a negatively signed score indicated “self-less” (warmth/conflict), and a positively signed score indicated “self-more”. In other words, siblings who scored below 0 on one of the differential treatment variables perceived (or reported) less warmth from, or less conflict with, their parents as compared to their sibling.

Youths’ depression symptoms were assessed using the 20-item Center for Epidemiological Studies Depression Scale (CES-D; Radlolf, 1977). Items were rated on a 4-point rating scale (1 = rarely or none of the time to 4 = all of the time) to describe the frequency of their experiences (e.g., “I had crying spells,” “I felt sad”). Items were summed to create the overall depressive symptoms score. The reliability of the English and Spanish versions of the CES-D has been established for Hispanic populations (e.g., Mosicicki, Locke, Rae, & Boyd, 1989), and in our sample, Cronbach’s alphas ranged from .84 to .90.

Youths’ risky behavior was assessed using a measure initially developed for the Michigan Study of Adolescent Transitions (MSALT; Eccles & Barber, 1990). Items were rated on a 4-point rating scale (1 = never to 4 = more than 10 times) to describe the frequency of their engagement in different activities (e.g., “Stole something worth less than $50”). Cronbach’s alphas for younger and older siblings ranged from .89 to .91.
Youths reported on the cultural socialization practices of their families using a revised version of the Familial Ethnic Socialization Measure (FESM) (Umana-Taylor, 2001). Items assessed the degree to which youths perceived that their families socialized them with respect to their ethnicity. The 12 items (e.g., “My family teaches me about our family’s ethnic/cultural background”) were rated on a 5-point Likert scale (1 = not at all to 5 = very much). Cronbach’s alphas ranged from .91 to .93.

Youths’ familism values were assessed using the Mexican American Enculturation/Acculturation Scale (MAAS; Knight et al., 2009). This scale includes three conceptual domains: (a) support/closeness (b) family obligations, and (c) family as referent. Five of the 17 items are from Sabogal et al. (1987) and the remaining items were developed through focus-group work with Mexican American youth. The 17 items were rated on a 5-point scale (1 = strongly disagree to 5 = strongly agree) on items (e.g., “Family provides a sense of security because they will always be there for you,” “It is always important to be united as a family”). Items were averaged to create the scale scores such that high scores reflect stronger familism values. Cronbach’s alphas were .83 to .90.

Results

Analysis Plan

Given the clustered (time within sibling, siblings within families) and unbalanced design (i.e., siblings were assessed at different ages) I used an MLM approach to examine links between PDT and youths’ depression symptoms and risky behavior (Aiken, 1991; Raudenbush & Bryk, 2002; Singer & Willett, 2003).

I estimated eight, three-level models, testing separate models for maternal warmth,
paternal warmth, mother-youth conflict, and father-youth conflict, each predicting depressive symptoms and risky behavior. All analyses were conducted using SAS Version 9.3. For all of the models, I used the MIXED procedure in SAS. The distribution of depressive symptoms scores was positively skewed, and thus I used square-root transformations of these scores in the analyses.

First, I modeled the developmental course of depressive symptoms and risky behavior by estimating an unconditional growth curve model for each dependent variable (Table 2). I used youths’ age as the metric of time. I centered at age 14 (the average age of the two siblings at the first occasion of measurement) and included a linear age term. Deviance tests comparing the log likelihoods of nested models were used to determine which random variances to include for each dependent measure. I then tested a conditional growth curve model that added birth order, gender, and gender constellation of the dyad and tested their interactions with age to determine variability in the developmental trajectories of the dependent measures. All subsequent models included these variables (e.g., birth order, gender, and gender constellation of the dyad) in the conditional growth curve models.

Based on a series of preliminary MLMs and deviance tests, the fixed effects for age showed that depressive symptoms declined with age, but there was no effect for risky behavior. The conditional model for depressive symptoms and risky behavior revealed that the effect for age was qualified by a trend-level interaction with gender. However, trajectories of depressive symptoms and risky behavior did not differ based on birth order or gender constellation of the dyad.

The first research goal was to explore the associations between parental differential treatment and youths’ depressive symptoms and risky behavior. I also was interested in both
between- and within-person effects of these predictors and thus PDT was indicated by two variables: at Level 1, PDT was indicated by a time-varying, group-mean centered (i.e., centered at each individual’s cross-time average) variable; at Level 2, PDT was indicated by the grand-mean centered (i.e., centered at the sample mean), cross-time average. The Level 1 variable captured within-person variation, or how an individual deviated from his or her cross-time average at each time point; the Level 2 variable captured between-person variation, or how the individual’s cross-time average differed from the rest of the sample. In this way, the Level 2 PDT term controlled for stable individual differences in PDT, leaving the Level 1 PDT term to represent the within-person PDT effect, and the Level 3 variables captured between-family differences. To control for dyadic parent-child relationship qualities, I entered these variables at Level 2. Additional control variables included immigrant status (country of birth) at Level 2, and age spacing between the siblings, gender constellation of the dyad, and parents’ average level of education at Level 3.

To address the second goal of exploring moderators of PDT-adjustment links, I added interactions between the within-person PDT terms (e.g., gender, birth order, and gender constellation of the dyad) and cultural variables (e.g., familism values and cultural socialization). Given prediction interactions \(p < .10 \) were retained in final models to show trend-level (patterns in PDT) associations, in addition to significant interactions \(p < .05 \).

Preliminary Analysis

As a preliminary step, Table 1 shows the means and standard deviations for youths’ ages, familism values, cultural socialization, depressive symptoms, risky behavior, and dyadic parent-youth relationships, by birth order and across time. Descriptive data on the extent of parental differential warmth and conflict, separately for each parent, are shown in Table 1. Differential
scores indicated that, on average, older siblings experienced more warmth and less conflict with parents than younger siblings. More specifically, youths’ experiences of parental differential warmth fluctuated across time. Average scores for differential conflict increased for both older and younger siblings across the years meaning that there were greater differences in the amount of conflict each sibling experienced with their parents. Parents reported similar levels of warmth for both older and younger children, however they reported more conflict with younger children. Youths’ reported depressive symptoms and risky behavior that fell on the low end of the scale. Skewness of the depressive symptoms ranged from .97 to 1.29, and kurtosis ranged from .81 to 1.44, so as noted, I used a square-root transformed depression variable for all analyses.

Links Between PDT and Depressive Symptoms

Beginning with the control variables, parents’ education, country of birth, and age spacing between siblings were not associated with depressive symptoms (Table 3), however, dyadic parental warmth was negatively, and dyadic parent-youth conflict was positively associated with youths’ depressive symptoms.

Parents’ differential warmth. Significant between-person effects emerged for maternal warmth, indicating that youth who reported less maternal warmth than their sibling, on average also reported more depressive symptoms, on average. Significant within-person effect also emerged for both differential maternal and paternal warmth (see Table 3, Column 2). The effects indicated that, on occasions when youths reported relatively less parental warmth than usual, they also reported more depressive symptoms than usual. The effect for within-person paternal differential warmth was qualified by an interaction with cultural socialization (Figure 1) such that: in families in which youth reported high levels of cultural socialization and relatively more paternal warmth than their sibling, they also reported fewer depressive symptoms ($\gamma = -0.57, SE =$
Parents’ differential conflict. Results for differential parental conflict revealed expected significant between-person effects: Youths who reported relatively more conflict with their mother relative to their siblings, also reported more depressive symptoms, on average. This pattern was statistically significant for both maternal conflict and paternal conflict. No within-person effects emerged for either maternal conflict. However, there was an interaction effect for within-person paternal differential conflict and cultural socialization. Follow-ups shown in Figure 2, revealed that when youth reported high levels of cultural socialization and relatively more paternal conflict than their sibling, they also reported more depressive symptoms ($\gamma = 0.35$, $SE = 0.14$, $p = 0.01$) than those who reported low levels of cultural socialization ($\gamma = 0.14$, $SE = 0.06$, $p = .03$).

Links Between PDT and Youths’ Risky Behavior

Again, most control variables were unrelated to youths’ risky behavior (Table 4). However, dyadic parental warmth was negatively, and dyadic parent-youth conflict was positively associated with youths’ risky behavior. Familism values were also negatively associated with youths’ risky behavior.

Parents’ differential warmth. Significant between-person effects emerged for maternal and paternal warmth, indicating that youth who reported less maternal or paternal warmth than their sibling, also reported more risky behavior, on average. A significant within-person effect also emerged for differential paternal warmth (see Table 4, Column 2). The effects indicated that, on occasions when youths reported relatively less paternal warmth than usual, they also reported more risky behavior than usual. The effect for within-person paternal differential warmth was
qualified by an interaction with cultural socialization (Figure 3), such that when youth reported high levels of cultural socialization and relatively more paternal warmth than their sibling, they also reported less risky behavior ($\gamma = -0.20$, $SE = 0.05$, $p < .0001$) than those who reported low levels of cultural socialization ($\gamma = -0.07$, $SE = 0.02$, $p = .0004$).

Parents’ differential conflict. Results for differential maternal and paternal conflict revealed expected significant between-person effects: Youths who reported relatively more conflict with their mother or father than their siblings also reported more risky behavior, on average. No within-person effects emerged for either maternal or paternal conflict; nor was there evidence of cultural moderation.

Discussion

Grounded in Adlerian and social comparison theories, the present study built on evidence suggesting that parents’ differential treatment has negative implications for youth adjustment and well-being (e.g., Conger & Conger, 1994; McHale et al., 2005; Richmond et al., 2005). This study also expanded on this body of research and theory examining PDT’s effects in three ways: (1) its use of an ethnic homogenous design (i.e., focus on the variability in Mexican American families), (2) its longitudinal scope, extending from early adolescence to young adulthood, and (3) its methodological advances which documents within-person and between-person associations of PDT and youth adjustment in Mexican American families.

My findings contribute to our understanding of the implications of parents’ differential treatment, including that PDT linkages vary as a function of cultural orientation. Research has noted many of the negative implications of PDT for the less favored sibling (Conger & Conger, 1994; McHale et al., 2005; Shanahan et al., 2008), but studies that have illuminated the cultural processes within families that make a difference for youth’s family experiences are limited.
Using an MLM approach, results indicated when families engaged in high levels of cultural socialization, youth who experienced less favored treatment from their father (i.e., more conflict relative to their sibling) reported higher levels of depression. In addition, when youth experienced more paternal warmth relative to their sibling and reported high levels of cultural socialization, they reported fewer depressive symptoms and less risky behavior. These patterns were not in the expected direction given that previous research has demonstrated the mitigating impact of familism values (McHale et al., 2005) and cultural socialization in African American families (Solmeyer et al., in press) on PDT. Perhaps, when youth grow up in a family with high cultural socialization and experience more favored treatment than a sibling, this may promote a sense of belonging and protect against depressive symptoms and risky behavior. Alternatively, when youth experience less favored treatment, the negative implications of PDT are exacerbated in families that more frequently engage in cultural socialization, possibly because unfavored treatment is incongruent with a cultural tradition of family closeness. Cultural socialization sensitizes youth to parents’ differential treatment to make them more reactive for better or worse.

These findings were consistent with a cultural-ecological perspective that highlight the ways in which cultural forces shape the meaning of family experiences (Weisner, 1993), and which therefore have different implications across socio-cultural groups. The present study demonstrates that culture matters in family processes. In addition to highlighting the variation of differential treatment by culture, findings outline the ways in which PDT affects youth development over time. Prior research by Conger and Conger (1994) found that PDT in early adolescence predicted delinquency two years later. The present research demonstrates that parents’ differential treatment continues to impact families across young adulthood. A longitudinal study like this provides a test of siblings’ reactions in later stages of development.
The present study also controlled for dyadic parent-youth relationship quality, a third variable that may explain both PDT and youths’ well-being (Feinberg & Hetherington, 2001; Shanahan et al., 2008). These analyses also controlled for stable individual differences in PDT and captured between-person variation, or how a sibling differed from the rest of the sample as well as individual differences to better understand how changes in PDT affected changes in youths’ adjustment. Additionally, this study moves beyond individual family reporters to two-parent and two siblings to provide a more holistic image of family dynamics over an 8 year span of time. With multiple reporters, researchers are able to better understand how each changing family member affects larger family processes. These methodological advances provide for stronger inferences about PDT-adjustment linkages.

Although the present research makes important contributions to the literature on PDT and to our growing understanding of family dynamics in Mexican American families, this study is not without its limitations. As stated previously, my focus was on a sample with specific characteristics (i.e., two parent Mexican-origin families), and not representative of the larger population. Thus, these findings can not be generalized. However, because I had both mothers and father figures on a local sample, I was able to examine the role that each parents’ differential treatment affects the experiences of siblings in the same family. Future research on PDT in Mexican American families should replicate findings in diverse family structures (i.e., single-parent, step-families) to better understand how PDT affects youth outcomes within the same family. It is also important to consider that while a criterion for the study included a seventh grader and at least one older sibling, multiple siblings existed in some of these families. For the present study, the average number of children in the household was 3.79 (SD = 1.90) at Time 1 and these additional siblings may affect the associations of parents’ differential treatment.
Therefore, an important direction for research is to capture the experiences of the family at its fullest form.

In conclusion the results replicate research on European and European American families in documenting links between PDT and youth adjustment in Mexican American families. That these linkages were evident after the effects of dyadic parent-child warmth were controlled are suggestive of the powerful implications of PDT. In addition to examining patterns of differential treatment in Mexican American families, this study advances research on PDT by demonstrating that its correlates extend into young adulthood and vary along cultural dimensions within an ethnic homogenous group. Future studies should incorporate the experiences of multiple family members in their diverse structures in effort to understand how families operate as social and socializing systems.
References

Appendix A: Analysis Results

Table 1
Means and (Standard Deviations) for Study Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Time 1</th>
<th>Time 2</th>
<th>Time 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Younger</td>
<td>Older</td>
<td>Younger</td>
</tr>
<tr>
<td>Age</td>
<td>12.55 (0.59)</td>
<td>15.49 (1.57)</td>
<td>17.72 (0.56)</td>
</tr>
<tr>
<td>Familism<sup>b</sup></td>
<td>4.26 (0.52)</td>
<td>4.23 (0.60)</td>
<td>4.14 (0.47)</td>
</tr>
<tr>
<td>Cultural Socialization<sup>b</sup></td>
<td>--</td>
<td>--</td>
<td>3.50 (0.87)</td>
</tr>
<tr>
<td>Depressive Symptoms<sup>b</sup></td>
<td>3.87 (1.20)</td>
<td>3.97 (1.20)</td>
<td>3.41 (1.27)</td>
</tr>
<tr>
<td>Risky Behavior<sup>b</sup></td>
<td>1.37 (0.39)</td>
<td>1.49 (0.43)</td>
<td>1.52 (0.40)</td>
</tr>
<tr>
<td>Dyadic mother-youth warmth<sup>a</sup></td>
<td>4.31 (0.57)</td>
<td>4.31 (0.60)</td>
<td>4.20 (0.61)</td>
</tr>
<tr>
<td>Dyadic father-youth warmth<sup>a</sup></td>
<td>4.11 (0.59)</td>
<td>4.04 (0.67)</td>
<td>3.95 (0.66)</td>
</tr>
<tr>
<td>Dyadic mother-youth conflict<sup>a</sup></td>
<td>2.31 (0.77)</td>
<td>2.22 (0.85)</td>
<td>2.23 (0.71)</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Dyadic father-youth conflict(^a)</td>
<td>2.25 (0.83)</td>
<td>2.19 (0.89)</td>
<td>2.11 (0.69)</td>
</tr>
<tr>
<td>Differential mother-youth warmth(^b)</td>
<td>-0.02 (0.87)</td>
<td>0.02 (0.87)</td>
<td>-0.25 (0.95)</td>
</tr>
<tr>
<td>Differential father-youth warmth(^b)</td>
<td>0.25 (1.04)</td>
<td>-0.25 (1.04)</td>
<td>-0.15 (0.94)</td>
</tr>
<tr>
<td>Differential mother-youth conflict(^b)</td>
<td>0.10 (1.19)</td>
<td>-0.10 (1.19)</td>
<td>0.23 (0.88)</td>
</tr>
<tr>
<td>Differential father-youth conflict(^b)</td>
<td>0.11 (1.31)</td>
<td>-0.11 (1.31)</td>
<td>0.12 (0.92)</td>
</tr>
</tbody>
</table>

Note. Older siblings’ differential treatment scores were created by subtracting younger siblings’ reports from older siblings’ reports. Younger siblings’ differential treatment scores were created by subtracting older siblings’ reports from younger siblings reports. This resulted in the same values for older and younger siblings’ differential treatment scores but with the opposite sign.

\(^a\)Parent reports. \(^b\)Youth reports.
Table 2

Regression Coefficients, (Standard Errors), and Random Effects for the Unconditional and Conditional Growth Curves of Depressive Symptoms and Risky Behavior

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Depressive Symptoms</th>
<th>Risky Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unconditional</td>
<td>Conditional</td>
</tr>
<tr>
<td></td>
<td>γ (SE)</td>
<td>γ (SE)</td>
</tr>
<tr>
<td>Intercept</td>
<td>3.84 (0.05)**</td>
<td>4.10 (0.10)**</td>
</tr>
<tr>
<td>Age</td>
<td>-0.06 (0.01)**</td>
<td>-0.06 (0.01)**</td>
</tr>
<tr>
<td>Birth order (1 = Younger)</td>
<td>-0.19 (0.07)**</td>
<td>-0.01 (0.02)</td>
</tr>
<tr>
<td>Gender (1 = Girl)</td>
<td>-0.25 (0.10)*</td>
<td>0.15 (0.03)**</td>
</tr>
<tr>
<td>Age X Gender</td>
<td>-0.03 (0.02)†</td>
<td>0.01 (0.01)†</td>
</tr>
<tr>
<td>Gender Constellation (1 = SG)</td>
<td>-0.01 (0.10)</td>
<td>0.03 (0.03)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random effects</th>
<th>Variance (SE)</th>
<th>Variance (SE)</th>
<th>Variance (SE)</th>
<th>Variance (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>1.16 (0.06)</td>
<td>1.12 (0.06)**</td>
<td>0.12 (0.03)**</td>
<td>0.11 (0.01)**</td>
</tr>
<tr>
<td>L 2 intercept</td>
<td>0.22 (0.07)</td>
<td>0.23 (0.07)**</td>
<td>0.04 (0.01)**</td>
<td>0.04 (0.14)**</td>
</tr>
<tr>
<td>L 3 intercept</td>
<td>0.004 (0.002)</td>
<td>0.005 (0.006)*</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>

Note. SG = same-gender. L2 = Level 2; L3 = Level 3.

Depressive symptoms scores were square-root transformed.

†p < .10. *p < .05. **p < .01.
Table 3
Regression Coefficients (γ) and Standard Errors (SE) for Multilevel Models Predicting Youths’ Depressive Symptoms

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Mother Warmth as Predictor</th>
<th>Father Warmth as Predictor</th>
<th>Mother Conflict as Predictor</th>
<th>Father Conflict as Predictor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ (SE)</td>
<td>γ (SE)</td>
<td>γ (SE)</td>
<td>γ (SE)</td>
</tr>
<tr>
<td>Parents Education Level</td>
<td>0.31 (0.17)</td>
<td>0.29 (0.17)</td>
<td>0.26 (0.17)</td>
<td>0.24 (0.17)</td>
</tr>
<tr>
<td>Youth’s Country of Birth (1 = Non-U.S.)</td>
<td>-0.03 (0.12)</td>
<td>-0.00 (0.12)</td>
<td>-0.07 (0.12)</td>
<td>-0.00 (0.12)</td>
</tr>
<tr>
<td>Birth Order (1 = Younger)</td>
<td>-0.21 (0.12)†</td>
<td>-0.16 (0.12)</td>
<td>-0.21 (0.12)†</td>
<td>-0.22 (0.12)†</td>
</tr>
<tr>
<td>Gender (1 = Girl)</td>
<td>-0.45 (0.12)**</td>
<td>-0.51 (0.12)**</td>
<td>-0.56 (0.12)**</td>
<td>-0.57 (0.12)**</td>
</tr>
<tr>
<td>Gender Constellation (1 = SG)</td>
<td>0.18 (0.12)</td>
<td>0.16 (0.12)</td>
<td>0.21 (0.12)†</td>
<td>0.20 (0.12)†</td>
</tr>
<tr>
<td>Age Gap</td>
<td>0.07 (0.04)†</td>
<td>0.05 (0.04)</td>
<td>0.04 (0.04)</td>
<td>0.05 (0.04)</td>
</tr>
<tr>
<td>Familism</td>
<td>-0.11 (0.10)</td>
<td>-0.11 (0.10)</td>
<td>-0.13 (0.10)</td>
<td>-0.13 (0.10)</td>
</tr>
<tr>
<td>Cultural Socialization</td>
<td>-0.17 (0.08)*</td>
<td>-0.20 (0.08)*</td>
<td>-0.18 (0.08)*</td>
<td>-0.19 (0.08)*</td>
</tr>
<tr>
<td>Dyadic P-Y relationship</td>
<td>-0.38 (0.10)**</td>
<td>-0.26 (0.09)**</td>
<td>0.26 (0.07)**</td>
<td>0.11 (0.07)†</td>
</tr>
<tr>
<td>B-P PDT</td>
<td>-0.24 (0.08)**</td>
<td>-0.06 (0.07)</td>
<td>0.19 (0.06)**</td>
<td>0.22 (0.06)**</td>
</tr>
<tr>
<td>W-P PDT</td>
<td>-0.14 (0.07)*</td>
<td>-0.19 (0.07)*</td>
<td>0.11 (0.07)†</td>
<td>0.14 (0.06)*</td>
</tr>
<tr>
<td>W-P PDT x Cultural Socialization</td>
<td>- -</td>
<td>-0.19 (0.09)*</td>
<td>- -</td>
<td>0.18 (0.09)*</td>
</tr>
<tr>
<td>Deviance</td>
<td>1891.7</td>
<td>1826.3</td>
<td>1887.1</td>
<td>1817.0</td>
</tr>
</tbody>
</table>

Note. P-Y = parent-youth, B-P = between-person, W-P = within-person. SG = same-gender.

†$p < .10. ^*p < .05. **p < .01
Table 4

Regression Coefficients (γ) and Standard Errors (SE) for Multilevel Models Predicting Youths’ Risky Behavior

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Mother Warmth as Predictor</th>
<th>Father Warmth as Predictor</th>
<th>Mother Conflict as Predictor</th>
<th>Father Conflict as Predictor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ (SE)</td>
<td>γ (SE)</td>
<td>γ (SE)</td>
<td>γ (SE)</td>
</tr>
<tr>
<td>Parents Education Level</td>
<td>-0.08 (0.06)</td>
<td>-0.08 (0.06)</td>
<td>-0.08 (0.06)</td>
<td>-0.09 (0.06)</td>
</tr>
<tr>
<td>Youth’s Country of Birth (1 = Non-U.S.)</td>
<td>0.01 (0.04)</td>
<td>0.02 (0.04)</td>
<td>-0.03 (0.04)</td>
<td>0.01 (0.04)</td>
</tr>
<tr>
<td>Birth Order (1 = Younger)</td>
<td>-0.07 (0.03)†</td>
<td>-0.03 (0.04)</td>
<td>-0.07 (0.03)*</td>
<td>-0.06 (0.03)†</td>
</tr>
<tr>
<td>Gender (1 = Girl)</td>
<td>0.19 (0.04)**</td>
<td>0.16 (0.04)**</td>
<td>0.14 (0.04)**</td>
<td>0.14 (0.04)**</td>
</tr>
<tr>
<td>Gender Constellation (1 = SG)</td>
<td>0.05 (0.04)</td>
<td>0.03 (0.04)</td>
<td>0.06 (0.04)</td>
<td>0.06 (0.04)</td>
</tr>
<tr>
<td>Age Gap</td>
<td>0.03 (0.01)†</td>
<td>0.02 (0.01)</td>
<td>0.01 (0.01)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Familism</td>
<td>-0.06 (0.03)*</td>
<td>-0.07 (0.03)*</td>
<td>-0.07 (0.03)*</td>
<td>-0.08 (0.03)**</td>
</tr>
<tr>
<td>Cultural Socialization</td>
<td>0.03 (0.03)</td>
<td>0.01 (0.03)</td>
<td>0.02 (0.03)</td>
<td>0.01 (0.03)</td>
</tr>
<tr>
<td>Dyadic P-Y relationship</td>
<td>-0.12 (0.03)**</td>
<td>-0.11 (0.03)**</td>
<td>0.11 (0.02)**</td>
<td>0.08 (0.02)**</td>
</tr>
<tr>
<td>B-P PDT</td>
<td>-0.10 (0.02)**</td>
<td>-0.05 (0.02)*</td>
<td>0.08 (0.02)**</td>
<td>0.08 (0.02)**</td>
</tr>
<tr>
<td>W-P PDT</td>
<td>-0.02 (0.02)</td>
<td>-0.07 (0.02)**</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.02)*</td>
</tr>
<tr>
<td>W-P PDT x Cultural Socialization</td>
<td>- -</td>
<td>-0.08 (0.03)**</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Deviance</td>
<td>473.5</td>
<td>466.2</td>
<td>455.2</td>
<td>452.1</td>
</tr>
</tbody>
</table>

Note. P-Y = parent-youth, B-P = between-person, W-P = within-person. SG = same-gender.

†p < .10. *p < .05. **p < .01
Figure 1. *Depressive symptoms as a function of differential paternal warmth and cultural socialization.*
Figure 2. Depressive symptoms as a function of differential paternal conflict and cultural socialization.
Figure 3. *Risky behavior as a function of differential paternal warmth and cultural socialization.*