
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

CONFIGURABLE ACCELERATORS FOR VISUAL AND TEXT

ANALYTICS

A Dissertation in

Computer Science and Engineering

by

Mi Sun Park

c⃝ 2014 Mi Sun Park

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2014

The dissertation of Mi Sun Park was reviewed and approved1 by the following:

Vijaykrishnan Narayanan
Professor of Computer Science and Engineering
Dissertation Co-Advisor, Co-Chair of Committee

Mary Jane Irwin
Evan Pugh Professor of Computer Science and Engineering
Dissertation Co-Advisor, Co-Chair of Committee

C. Lee Giles
Professor of Computer Science and Engineering
David Reese Professor of Information Sciences and Technology

Brad Wyble
Assistant Professor of Psychology

Omesh Tickoo
Technical Engineering Manager
Intel Labs
Special Member

Lee Coraor
Professor of Computer Science and Engineering
Graduate Program Chair of Computer Science and Engineering

1Signatures are on file in the Graduate School.

iii

Abstract

Continuously recording a person’s daily life and creating a digital backup of it is no

longer just science fiction. Current lifelogging technologies allow us to automatically capture

every single minute of a person’s experience from wearable sensors. However, how to efficiently

manage the captured personal multimedia data and provide user services using the data still re-

mains a great challenge. This dissertation presents a proposal to leverage hardware acceleration

for a personal analytics system that can continuously capture a person’s daily life and respond

user queries using the captured lifelog. First, two visual accelerators for biologically-inspired

recognition are introduced: HMAX accelerator for object recognition and gist accelerator for

scene recognition. This includes a description of the novel architecture, and an analysis of the

experimental results of each accelerator by comparing its performance to contemporary solu-

tions on different platforms. Second, a prototype system of personal analytics, which consists of

front-end recognition and back-end text analytics, is presented to realize the vision of creating a

lifelog system that enables total recall through total capture of a person’s everyday experience.

Third, a text accelerator for Naive Bayes multiclass classifier is presented to support the real-

time text processing of the back-end analytics in personal analytics system. By leveraging these

visual and text accelerators, the front-end system is able to extract essential information from

multimedia data and transmit the lifelog data into the back-end system in real-time. Therefore,

the analytics can perform content-aware lifelog analysis and support efficient query processing

using the lifelog data.

i

Table of Contents

List of Tables . v

List of Figures . vii

Acknowledgements . ix

Chapter 1. Introduction . 1

Chapter 2. Accelerator for Object Recognition . 4

2.1 Introduction . 4

2.2 Background . 6

2.3 HMAX: A Cortical Model for Object Classification 7

2.4 Architecture of HMAX Accelerator . 8

2.4.1 Memory Subsystems . 11

2.4.1.1 Fast On-chip Image Memory (FOIM) 12

2.4.1.2 Fast On-chip Coefficient Memory (FOCM) 13

2.4.2 Architecture for Sparse and Dense HMAX 14

2.4.2.1 Custom Instruction-set for S2C2 14

2.5 Optimizations and System Integration . 15

2.5.1 Multiple Pipelines - Sparse v/s Dense 16

2.5.2 Memory Optimization . 17

2.6 Experimental Results . 17

ii

2.6.1 Performance . 18

2.6.2 FPGA Resources . 19

2.6.2.1 Scalability . 19

2.6.3 Influence of Double-Buffering . 20

2.6.4 Comparison with Related Efforts 21

2.7 Conclusion . 22

Chapter 3. Accelerators for Attention, Object and Scene recognition 24

3.1 Introduction . 24

3.2 Background . 26

3.3 Models of Neuromorphic Vision . 27

3.3.1 Gist-Saliency Models for Scene Recognition and Attention 27

3.3.2 HMAX Model for Object Recognition 29

3.4 Hardware Design . 30

3.4.1 Configurable Architecture of Gist-Saliency Accelerator 30

3.4.1.1 Gist-dedicated Blocks 31

3.4.1.2 Saliency-dedicated Blocks 32

3.4.2 Reconfigurable Architecture of HMAX Accelerator 32

3.4.3 System Integration . 33

3.5 Experimental Results . 34

3.5.1 Gist-saliency Accelerator . 36

3.5.1.1 Gist-based Scene Recognition 36

3.5.1.2 Saliency-based Visual Attention 39

iii

3.5.2 HMAX Accelerator . 39

3.5.2.1 Recognition Accuracy 40

3.6 Conclusion . 41

Chapter 4. Leveraging Accelerators for Query Support Personal Analytics 42

4.1 Introduction . 42

4.2 Background . 43

4.3 Overview of Personal Analytics System 45

4.3.1 Front-end Multimodal Recognition 46

4.3.2 Back-end Text Analytics . 48

4.4 System Design . 49

4.4.1 Front-end Design . 49

4.4.2 Multi-level Text Classification . 51

4.4.3 User Profile based Personalization 54

4.4.4 Query Processing . 54

4.5 Experimental Results . 56

4.5.1 Recognition . 57

4.5.2 Classification . 58

4.5.3 System Output . 59

4.6 Conclusion . 61

Chapter 5. Accelerator for Text Classification . 63

5.1 Introduction . 63

5.2 Background . 66

iv

5.3 Naive Bayes Classifier . 67

5.3.1 Naive Bayes Algorithm . 67

5.3.2 Enhanced Naive Bayes . 68

5.4 GPU-Accelerated Parallel Text Classification 70

5.4.1 Profiling . 70

5.4.2 Practical approach . 72

5.4.2.1 Simplified Approach . 73

5.4.2.2 Feedback loop enabled Approach 74

5.4.3 Automation Flow . 75

5.4.3.1 Data partitioning for multiple devices 78

5.4.4 Optimizations . 78

5.5 Practical Use-Case: Personal Analytics System 80

5.6 Experimental Results . 81

5.6.1 Classification . 82

5.6.2 Influence of Optimization Techniques 83

5.6.3 Comparison with Different Platforms 85

5.7 Conclusion . 87

Chapter 6. Conclusion and Future Work . 89

6.1 Summary of Dissertation Contributions 89

6.2 Future Research Directions . 91

Bibliography . 93

v

List of Tables

2.1 Resource Utilization on Virtex6 SX475T . 19

2.2 Performance Improvement with dual-FOIMs 20

2.3 Comparison of HMAX Implementations . 21

3.1 Resource Utilization of (one pipeline) Gist-Saliency Accelerator on Virtex6

SX475T . 36

3.2 Scene Classification Accuracy . 38

3.3 GIST Computation of (800x600) Color and Grayscale Images 38

3.4 Comparison of Gist Implementations (800x600) 39

3.5 Comparison of Saliency Implementations (640x480) 39

3.6 Comparison of Hmax Implementations (256x256) 40

3.7 Object Classification Accuracy Improvement from scene understanding 41

4.1 Recognition and its Associated Text File . 48

4.2 Profiling on Recognition Algorithms (O: meets requirement, X: does not meet

requirement) . 48

4.3 Performance Comparison for Recognition (2Kx2K) 57

4.4 Resource Utilization on a Virtex6 SX475T FPGA 58

4.5 Classification Accuracy on test data . 60

4.6 User Experience of Query-and-Response . 61

5.1 Profiling of Naive Bayes Text Classification running on CPU (w/ 13KB test file) 70

vi

5.2 Basic Steps for OpenCL Programming [1] . 76

5.3 Platform Specification . 81

5.4 Classification Accuracy Comparison to existing Text Classifiers 82

5.5 Enhancement Effect on our Naive Bayes Classification Accuracy 83

5.6 Performance Comparison of Two Approaches on the Integrated Platform (w/

60,188 dictionary words, 517 stop words) . 84

5.7 Floating- vs Fixed-point Computation in our feedback loop enabled approach

on CPU . 84

5.8 Improvement using Mapped Pinned Memory on the Integrated Platform 85

5.9 Execution Time (s) Comparison with Various Local Work Size (w/ 200KB Test

File) . 86

5.10 Performance Comparison of Text Classification on multi-core CPUs and GPUs

(w/ 200KB test file) . 87

vii

List of Figures

2.1 Processing Element in HMAX primitive . 9

2.2 The hardware (4x4) primitive for HMAX . 9

2.3 S2C2 Accelerator . 11

2.4 Pseudo-code for S2C2 Accelerator . 15

2.5 Optimized Overall System . 17

2.6 Performance for various Bitwidth . 18

2.7 Performance Scaling with number of FPGAs 20

3.1 Gist shared with the Saliency-based Attention [2] [3] 28

3.2 Configurable Gist-Saliency Pipeline . 32

3.3 Flows and Parameters for Gist and Saliency in the Common Blocks 33

3.4 Two-level Hierarchical Accelerator System for Fine-grained Recognition - Saliency

and gist results on a test image, from the Stanford Scenes dataset [4], are shown.

The result from the saliency shows the most salient location on the image la-

beled with a red-box along with the corresponding saliency map. The gist result

shows the predicted scene category labeled on the test image. 35

3.5 Performance Scaling for Different Frame Size 37

3.6 Scene Recognition Result on Stanford Scenes dataset [4]. 37

3.7 Object Recognition Result on Caltech 101 Object dataset [5]. 41

4.1 Conceptual Model for Personal Analytics System 46

viii

4.2 Personal Analytics Prototype System . 50

4.3 Entities and Classes applied in Hierarchical Classification 52

4.4 Query-Response Output from Personal Analytics System 56

4.5 Multiple Face and Object recognition . 58

4.6 Classification Accuracy on Training Data using Cross Validation 59

4.7 Screenshot of the Back-end Text Analytics 60

5.1 Work Flow Diagram of Naive Bayes Classifier 71

5.2 Data Flow of our suggested Practical Approach 72

5.3 Global Dictionary Structure with probabilities 73

5.4 Dynamic Configuration-enabled Automation Flow 77

ix

Acknowledgements

First, I would like to sincerely appreciate my advisors, Dr. Vijaykrishnan Narayanan

and Dr. Mary Jane Irwin, for giving me an opportunity to work with their research group at

the Micro-Systems Design Lab (MDL). Their professional guidance and constant support have

been invaluable assets during my graduate study. They have always believed in me and my

research, and supported me by inspiring and motivating me to do quality research. Personally,

I am very proud of being part of this MDL academic family and extremely lucky to have these

two wonderful advisors who have given me much more than enough.

I would like to thank Dr. C. Lee Giles and Dr. Brad Wyble for serving on my dissertation

committee. My sincere thanks to Dr. Omesh Tickoo and Dr. Ravi Iyer for not only being my

internship mentors but also giving me continuous support and care. It was a great pleasure to

work with them. I really appreciate their friendship.

I wish to thank my 351 lab mates and close friends in state college. For the unforgettable

last 5 years of my life has been happened here in Penn State. With their help, I could be able to

overcome ups and downs of my graduate life. Specially, I thank Ji Sook Park, Jung-woo Sohn,

Ummason Cha sister and my church family.

Last, I really want to appreciate my family and true friends who support me no matter

what I do. My priceless family are always on my side and give me endless support. I love them

so much. And my best friend, Sun Min Park, never stopped encouraging me whenever I had the

moments of whining, complaining and struggling. My true friends in Korea made me smile and

truly wished me to succeed in this PhD journey. Thank you and love you all.

1

Chapter 1

Introduction

Human brain is the most powerful processor and the most efficient. Engineers have

forever marveled it’s abilities and dreamed of creating artificial machines capable of emulating

the brain. One significant challenge in this quest is to mimic the visual cortex to process visual

information as efficiently as the brain. To address this challenge, I identified key models of

attention and recognition in the human brain. The models of interest are - the bottom-up visual

attention model based on Saliency, the multi-class object recognition model based on HMAX

(Hierarchical Model And X), and the context-based scene recognition model based on Gist. In

this work, I present hardware accelerators for these computational models to provide real-time

performance and high recognition accuracy with low power consumption. I focus mainly on

two recognition accelerators by providing in-depth details on the configurable architecture of the

accelerators and how the accelerators can be integrated together for optimal performance. The

reason is that the recognition accelerators are used as front-end of a personal analytic system that

is the end goal of this dissertation and would be discussed in the following.

The vision of Vannevar Bush’s MEMEX : ”a device in which an individual stores all his

books, records, and communications, and which is mechanized so that it may be consulted with

exceeding speed and flexibility. It is an enlarged intimate supplement to his memory” [6], has

inspired many researchers to construct a system that can continuously capture and record per-

son’s everyday activities. Owing to technological advances in wearable sensors such as Google

2

Glass [7], Looxcie [8] and SenseCam (aka Revue 3MP) [9], it is possible to automatically record

a person’s entire life from various types of wearable sensors. However, after gathering large

amounts of personal multimedia data from these different sensors, how to efficiently manage the

captured lifelog data that must be logged and retrieved remains a great challenge. For effective

and efficient data management, we convert all the different types of sensory data into text and

perform text classification on the logged data. In this dissertation, I present a prototype system

of query-and-response support personal analytics to provide content-aware lifelog analysis and

query response service using machine learning techniques. It includes a proposal of a novel ar-

chitecture of multi-level classification for accurate query response and user profile integration for

system personalization. Furthermore, by leveraging the real-time recognition accelerators, the

system is able to transform unstructured multimedia data to structured lifelog data by extracting

essential information from various sensors for further analysis.

In addition to visual recognition accelerators, I also designed a text accelerator for Naive

Bayes based multiclass classification to provide real-time personal lifelogs analysis and provide

user services. This work is motivated to efficiently process incoming lifelogs regardless of the

data volume and response to a user query based on the analysis of the streaming and stored

logs in personal analytics system. I utilized all these visual and text accelerators to personal

analytics system towards realizing the vision of the Bush’s MEMEX, albeit with limited scope

in capability for number of objects and classes it can recognize. However, the prototype system

of personal analytics can still provide practical insights and help to reduce the gaps between the

real and the vision.

This dissertation provides the following major contributions:

3

• A HMAX-based object recognition accelerator is presented with performance comparison

to other contemporary solutions.

• An integrated acceleration system of gist-based scene recognition and HMAX-based ob-

ject recognition is developed for fine-grained recognition with improvement in accuracy.

• A end-to-end prototype system of personal analytics, which consists of front-end multi-

modal recognition and back-end text analysis, is proposed for efficient user query process-

ing.

• A text accelerator for Naive Bayes multiclass text classification is included for efficient

personal lifelogs analysis in the personal analytics system.

Each chapter deals with techniques for designing and building each system including

in-depth details on applied computational model, proposed hardware architecture and analysis

of experimental results. The remainder of this proposal is organized as follows. Chapter 2

presents the HMAX accelerator for multi-class object recognition. Chapter 3 provides the gist

accelerator for context-based scene recognition. Chapter 4 explains the prototype system of

personal analytics for lifelogging a person’s daily experience. Chapter 5 introduces the Naive

Bayes accelerator for efficient text processing. Finally, Chapter 6 concludes the current work

and provides a brief description of possible future work.

4

Chapter 2

Accelerator for Object Recognition

2.1 Introduction

The functioning of the brain has long fascinated researchers. Reverse engineering the

brain is considered as one of the grand challenges of engineering. The ability to reverse engineer

the brain promises computing systems that are capable of cognitive functions. While current

systems excel in several applications, computer systems are still in infancy in cognitive activities.

There has been recent progress in such systems that outperform humans in quiz competitions [10]

and Chess [11]. While these represent significant strides forward for such cognitive systems, the

size of systems deployed to support these applications and the narrow domain of end applications

is a dampener for immediate wide-spread adoption.

In contrast, the ability to harness the significant advances in understanding the human

visual cortex provides an opportunity to impact a variety of smart vision applications. There are

various biologically inspired recognition algorithms that have been proposed including Convo-

lutional Neural Networks (CNN), Deep Belief Networks, and HMAX [12]. These biologically-

based models are robust to wide variations in scale, lighting, pose, background clutter and are

more suitable for general purpose object classification with multiple classes than traditional com-

puter vision approaches. In this work, we focus on the HMAX algorithm [13] which is a widely

accepted model to abstract the behavior of the visual cortex. In the HMAX model, a hierarchy

5

of features is extracted by the two stages of convolutional template matching and pooling op-

erations. At the S1 stage, the image is convolved with a Gabor filter to extract information at

different orientations at different scales. The first pooling layer, C1 is used to improve invari-

ance to the input image through application of local maximum operators. The second template

matching stage, S2 is the most computationally intensive portion of HMAX and applies learned

patches to convolve with the features extracted from the C1 layer. The final pooling stage con-

siders all scales and orientation to extract a feature vector C2 that is then provided to a classifier.

HMAX has been shown to be more successful in classifying objects from a large number of

classes with accuracies ranging around 70-80%.

The ability to classify objects in real-time has a variety of end applications including se-

curity surveillance, remote elder care monitoring and unmanned aerial vehicles. A key challenge

is that most existing solutions for accelerating HMAX have been either performed on platforms

that are not amenable for embedded systems either due to their low performance or high power

consumption. These efforts include the implementation of a CNS framework on GPUs and ac-

celerators for HMAX on FPGAs [14] [15] [16]. In this work, we choose a FPGA platform to

implement our design due to its configurable nature as well as the ability to customize the under-

lying architecture to the accuracy needs of the application. The configurable nature of the FPGA

is particularly useful due to the different variants of HMAX and refinements to the underlying

HMAX model that are emerging in this active research area in neurosciences [17]. Further, one

can tune the data bitwidth and the pipeline to trade-off the required performance, power and

accuracy needs of the classification application.

This work makes the following contributions towards accelerating HMAX algorithms.

6

• An adaptable processing element (PE) that can be configured either dynamically or stat-

ically is proposed. This feature enables efficient support for different variants of HMAX

template matching (sparse and dense) as well as different stages (S1 and S2).

• The PE design has been tuned to exploit the underlying features of a Virtex-6 platform

by mapping to an high-speed pipelined DSP48E1 slice, and these PEs are tiled through

dedicated cascade chain.

• A 2D systolic array that can be dynamically configured to support convolutions of different

kernel sizes is proposed (such as 4x4, 11x11, 16x16).

• A customized memory hierarchy is proposed to efficiently access the template patches

and the input image and reduce the impact of costly memory accesses. We also pro-

pose scheduling techniques for mapping template patches when executing on multiple

pipelines.

We have developed a prototype of the accelerator on a Xilinx Virtex-6 FPGA and experimental

results shows 31X and 2X to 107X speedups over existing GPU and FPGA implementations

respectively.

2.2 Background

There has been a growing interest in designing systems for cortically inspired recogni-

tion algorithms. Hardware accelerators for CNN based visual recognition has been proposed

[12] [18]. Several recent approaches to speedup brain-inspired visual algorithms such as atten-

tion maximization algorithms [19], saliency extraction [20] and retinal image enhancement tech-

niques [21] were proposed and implemented on an FPGA. Prior works on accelerating HMAX

7

on FPGA platform and GPU platform [14] [16] [22] were also proposed. However the existing

solutions for accelerating HMAX are not amenable for embedded systems either due to high

power consumption or their low performance, therefore we propose an energy-efficient, high-

performance FPGA-based accelerator for HMAX which outperforms the prior works.

2.3 HMAX: A Cortical Model for Object Classification

HMAX is a biologically inspired model that mimics the hierarchical feed-forward or-

ganization of the first few stages of the visual pathway in primates. In its simplest version,

the model consists of four layers of alternating S (convolutional) and C (pooling) computational

units, referred as S1, C1, S2 and C2. These stages extract a feature vector from a grayscale image

that can then be passed to a classifier for object classification. With more understanding of the

brain and differences in modeling them, variants of the HMAX model have emerged [17] [23].

The goal of this work is to design an architecture to accelerate the most computationally inten-

sive stage, S2, of HMAX to achieve optimal performance. Further, we recognize that a merged

S2C2 system can reduce memory access and propose an efficient architecture of the combined

S2C2 system. While not elaborated in this work, our accelerator design also supports Gabor

filter acceleration (S1 layer) as mentioned in Section 2.4. We provide an overview of the S2 and

C2 layers that account for more than 90% of the total execution time of the HMAX model while

running on CPU [14].

In the S2 and C2 stages, we can classify HMAX into two variants - dense and sparse.

The dense version is the base model in [24] and the sparse version is the model which employs

sparsification [24]. The S2 features are calculated by template matching every position and scale

8

of the C1 pyramids (referred as Xs) with a dictionary of pre-computed patches (Pi), which is

given by the following Gaussian Radial Basis Function (GRBF).

R(Xs,Pi) = exp(−∥ Xs −Pi ∥2

2σ2α
) (2.1)

where α = (Mi/4)2, Mi is the size of the patches (aka prototypes) and σ is set to 1. The dense

patches are of size Mi x Mi x Nθ , where Mi={1,..4075} = {4,8,12,16} and Nθ is number of orien-

tations (from 4 to 12), whereas the sparse patches are of size Mi x Mi and each coefficient in the

Mi x Mi patch has a preferred orientation.

The C2 stage is a global max across scales for each of the 4075 pyramids, to obtain a

single vector, each value of which is response to a given patch. The C2 module stage contributes

to a massive reduction in the amount of data since it reduces an entire image pyramid after S2 to

a single element in C2.

To implement this algorithm in hardware, the exponential computation can be moved

after C2 to minimize the number of exponential operations. This would require doing an across-

scales Global Min operation (instead of Global Max) in C2. The exponential is then applied on

this reduced data to obtain the C2 feature vector.

2.4 Architecture of HMAX Accelerator

The proposed architecture supports multi-level configurability to compute convolutions

in both S1 and S2 layers, in addition, it also supports S2 computations for both sparse and dense

patches.

9

Fig. 2.1 Processing Element in HMAX primitive

At the lowest level of our architecture hierarchy is the processing element (PE) depicted

in Fig 2.1. This PE can be dynamically configured at run-time to operate as a Gabor filter (for S1)

or a sparse, or a dense GRBF (for S2) filter. This feature is supported by enabling or disabling

the components inside the PE. For example, configuring the PE to operate as a Gabor filter,

disables the n:1 multiplexer and the subtractor in the PE as shown in the Fig 2.1. In the case

of sparse GRBF operation, all the components inside the PE are enabled, the n:1 multiplexer

selects the input pixel depending on the precomputed dominant orientation. The subtractor is for

computing the Euclidean-distance between the C1 input pixel and the patch as seen in equation

3.3. In addition, any component inside the PE can also be undefined at compile-time, which

helps save resources.

Fig. 2.2 The hardware (4x4) primitive for HMAX

10

At the next level, we cascade the PEs in two-dimension to form a 2D (4x4) systolic array

(denoted as primitive, henceforth and depicted in Fig 2.2). This primitive serves to support con-

volution variants of different sizes required for S1 and S2 operations. In addition to the benefits

of the regular systolic data flow, our design exploits the cascaded DSP48E1 slices on the FPGAs

for enhanced performance of this primitive. Specifically, the multiply-accumulate part of the

PE was optimally pipelined to match the DSP48E1 structure. Further, each column of the ar-

ray was mapped to the column-wise cascaded DSP48E1 slices in an FPGA to enhance resource

utilization efficiency and reducing wiring delays. Every clock cycle, the primitive receives 4

input pixels and performs 16 multiply-accumulate operations with a set of preloaded patch coef-

ficients. In the next cycle, the input pixels are shifted to neighboring PEs to the right, while the

multiplied values are passed to PEs in subsequent rows for accumulation. We can also tile PEs

to form a 2D primitive of any size, however our choice of 4x4 was influenced by the smallest

patch size used in HMAX.

At the next level, the 4x4 systolic primitives form a reconfigurable convolution engine

(RCengine) shown in Fig 2.3. that can be configured either as 16 independent 4x4 convolutions,

4 8x8 convolutions, 1 12x12 convolution or 1 16x16 convolution. The RCengine has three

components which can be configured at run-time to support these configurations. (1) It contains

programmable delay elements at the output of each 4x4 array to introduce appropriate delays

for accumulation at the adder tree when composing them to operate as a larger size primitive.

(2) The number of inputs to the adder tree changes with the mode - 16 for 16x16, 9 for 12x12,

4 for 8x8 and 0 for 4x4. (3) The configurable routing fabric (CR) which includes a bank of

multiplexers selects the appropriate pixels to feed each 4x4 primitive. For example, in the 4x4

mode, all the primitives operate on rows i to i+3 and so CR broadcasts these values to all 4x4

11

arrays. In the 8x8 mode, the primitives P1, P2 operate on rows i to i+3, while primitives P5,

P6 operate on rows i+4 to i+7. The RCengine supports run-time operations of all patch sizes

up to 16 by computing with zero-padded patch coefficients for some patch sizes which are not

multiple of 4. The output throughput is 16 pixels/cycle for the patch sizes of (1x1, 2x2, 3x3,

4x4), 4 pixels/cycle for (5x5, 6x6, 7x7, 8x8) and 1 pixel/cycle for patch sizes between 9x9 and

16x16. Further, the reconfiguration latencies of the RCengine are minimized to support iterative

processing of different set of patches. The RCengine (including the 256 patches coefficients)

can be completely reconfigured in about 18 cycles for a different mode.

Fig. 2.3 S2C2 Accelerator

2.4.1 Memory Subsystems

Due to the large amount of data involved with HMAX computations, the data movement

is a significant contributor to overall performance. In order to address this, we have designed

12

customized on-chip memory architectures for both the image data and the prototypes by utilizing

BRAMs on the FPGA.

2.4.1.1 Fast On-chip Image Memory (FOIM)

In the S2C2 accelerator, the motivation for on-chip storage of image data are two-fold :

• The RCengine requires access to 1 pixel each from up to 16 consecutive rows of the C1

image every cycle depending on the mode it is operating. Moreover, each pixel can have

up to 12 orientations. This makes the required bandwidth much greater than what the

external interfaces (DDR memory/PCIe) can support.

• Since, the number of patches in the S2 stage is typically high, and a single RCengine can

process at most 16 patches (4x4 case) in one pass, the S2C2 accelerator requires multiple

passes to complete the GRBF computation on a single scale of the C1 image pyramid.

This implies there are large number of repeated accesses to the same C1 image.

Our high-bandwidth and low-latency on-chip memory architecture addresses these bot-

tlenecks. The FOIM utilizes bank-interleaving to allow multiple reads per cycle. The rows of

the image are interleaved to up to 16 banks and each bank has independent read/write ports. The

FOIM also has multiple columns where each column stores corresponding pixels of different

orientations.

Each cycle all columns of all the banks are read to allow reading 16 pixels per cycle

from 16 contiguous rows, (we use 16 since it is the maximum size of patches). The FOIM also

handles the sliding window data access for convolutions by implementing an intelligent address

13

generator to emulate raster scan order. The FOIM is reconfigured at run-time to change the

image size to support the different scales of the C1 pyramid.

Each scale of the C1 pyramid is read repeatedly from the FOIM to complete the pro-

cessing of all the patches. The above process is further repeated for all scales of the pyramid to

complete the S2 computation for one image.

2.4.1.2 Fast On-chip Coefficient Memory (FOCM)

The S2 stage involves processing a large number of patches (up to 5000), multiple times

(up to 11) for a single image and this operation is repeated for each input image. This requires

initializing the RCengine pipeline with a new set of 256 patches before loading the image into

the pipeline every iteration. For optimal performance, we incorporate an on-chip memory archi-

tecture to store the patches.

The FOCM employs bank-interleaving (with 4 banks) and multiple columns (4 columns)

to allow 16 reads per cycle. This enables the initialization of the 256 coefficients for the

RCengine in just 16 cycles. Each iteration, the FOCM initializes the RCengine pipeline with

a unique set of patches. This loading of patches into the FOCM is done once at configuration

time.

The FOCM not only minimizes the initialization latency of the pipeline for each iteration,

but also enables a high degree of flexibility and data reuse. Any change in the number of patches,

distribution or the actual prototype coefficients can be accommodated without having to modify

the hardware. The FOCM also generates a control header to the pipeline before every iteration,

which includes information on the mode of operation, number of valid patches etc which are

used to configure the RCengine.

14

2.4.2 Architecture for Sparse and Dense HMAX

The overall architecture for the S2C2 accelerator as shown in Fig 2.3, includes the FOIM

as the high bandwidth image memory and an S2C2 pipeline. The S2C2 pipeline includes a

RCengine module for the GRBF computation which has a CR module to route data from the

FOIM into each (4x4) primitive, an FOCM to feed coefficients and handle per iteration control

and a C2 module to compute the C2 vector.

This architecture is for the Sparse S2 which can complete processing all the orientations

in one pass. However, in the Dense S2, each individual orientation of each patch needs to be

applied independently on its corresponding orientation of the C1 image and the results combined

before computing the C2 vector. So, the GRBF computation of img[θ i] with prototype[θ i], must

be repeated for all orientations (Nθ).

Also, the dense patches are essentially 3-dimensional arrays and require much larger

memory. In this case, we use the FOCM to store only the 4x4 and 8x8 patches and fetch the

12x12 and 16x16 patches from DDR memory. A portion of the FOCM memory space is used

as a cache for these patches. This is because, the 12x12 and 16x16 patches are not used for the

smaller pyramid levels (upper 4 scales). For the remaining pyramid levels, the image sizes are

relatively larger and computation time is found to mask the DDR memory access time.

2.4.2.1 Custom Instruction-set for S2C2

The accelerator includes an on-chip instruction queue to store accelerator specific in-

structions. As shown in Fig 2.4, for each iteration, the S2C2 pipeline fetches an instruction from

the queue, which is basically a control command to configure the pipeline for that particular

iteration. It includes the mode of operation and number of valid patches for the RCengine, level

15

information for C2 and additional bits for sparse/dense selection and orientation selection for

dense. The RCengine further configures its internal primitive delay elements, adder tree and CR

based on the mode of operation. The entire reconfiguration process for each iteration takes about

4 cycles.

The number of instructions in the queue is equal to the number of iterations. Once all

instructions are executed, the next C1 pyramid level is fetched and the same set of instructions are

re-executed. The instruction queue is hence implemented as a circular FIFO buffer. However,

as we move up the pyramid, not all iterations need to be processed (for smaller images many

patches are not executed) and this is controlled by configuration registers in the pipeline.

The instruction sequence is generated off-line in software and loaded into the queue

through the host interface, once during configuration time. At run-time, there is no intervention

from software/host and the accelerator can independently operate on streaming images.

for scale (s = 0,s < 11,s++)
for iterations (i = 0; i < 1000; p++)

Load Instruction from Queue into S2C2 pipeline (4 cycles)
Load patch coefficients into RCengine (16 coeffs per cycles)
Read image from the FOIM into S2C2 pipeline (16 pixels per cycle)

end
end
Compute Exponential and Normalize and to obtain C2 vector

Fig. 2.4 Pseudo-code for S2C2 Accelerator

2.5 Optimizations and System Integration

This section describes two architectural enhancements which improve performance of

the accelerator and integration aspects of the system.

16

2.5.1 Multiple Pipelines - Sparse v/s Dense

The performance can be improved by instantiating multiple parallel S2engines (aks pipelines)

to perform the S2 computation as shown in Fig 2.5. Since all pipelines operate on the same im-

age data, the output bus from FOIM is broadcast to all S2engines and so there is no resource

overhead for image data access.

Since the image is broadcast to each pipeline, the patches operating on each pipeline must

be unique. So, each S2engine must have a dedicated FOCM. The patches can be partitioned into

multiple pipelines such that for each iteration, each FOCM initializes its corresponding pipeline

with a unique set of patches. This partitioning and loading of patches into each FOCM is done

offline in software once at configuration time.

For Sparse HMAX, each pipeline operates on all orientations of a prototype simulta-

neously and hence each pipeline is connected to its own C2 module and generates a C2 vector.

However, for Dense HMAX, each pipeline operates on a different orientation of the same C1 im-

age. Hence, each prototype must be partitioned such that individual orientations are loaded into

FOCMs of different pipelines. Another complication for Dense version is that, a pipeline adder

tree is required to combine the outputs of the multiple S2engines and a common C2 module is

used on this combined S2 image to generate a single C2 vector.

A simple partitioning mechanism would be to balance the load on each pipeline and by

operating each pipeline in the same mode for each iteration. If not, the pipeline that operates on

smaller patch takes the longer time to complete the iteration and becomes the critical path. This

partitioning can be done off-line as well.

17

Fig. 2.5 Optimized Overall System

2.5.2 Memory Optimization

In order to mask the initialization/load time for the FOIMs, we duplicate the FOIM so as

to implement a double-buffer architecture. This allows pre-fetching the next C1 image while the

current one is being processed.

2.6 Experimental Results

We use the Dinigroup DNV6F6-PCIe multi-FPGA platform [25] for prototyping our

accelerator. The board has two Virtex-6 SX475T FPGAs which can be used as compute devices.

The operating frequency of 100MHz for the FPGAs and 256x256 grayscale images are used

in our experiments. We have validated our S2C2 accelerator running on both the FPGAs. In

addition, the board power is measured with P440 Kill A Watt power meter. The static power

consumption is 26.5 Watt, while the dynamic power of our S2C2 accelerator running on both the

FPGAs is 26.5 ∼ 27.5 Watt.

Our software system takes prerecorded video files (.avi) or live video from a camera and

generates video streams to communicate with the hardware via USB, Ethernet or PCIe. The

software also preconfigures algorithmic and architectural parameters such as image size, # of

18

FPGAs or types of operations (sparse/dense or Gabor) and generates the configuration data and

instruction sequence required by the accelerator. The software optimally partitions the patches

to the FOCMs in multiple pipelines to improve performance. In order to support arbitrary-sized

convolutions, the software also appropriately zero-pads the coefficients for those cases where

patch sizes are not multiple of 4.

2.6.1 Performance

Fig. 2.6 Performance for various Bitwidth

Fig 2.6 shows the trade-off between performance and accuracy for various input bitwidth

of the fixed-point implementation. Since a Xilinx DSP48E1 slice has an in-built 25x18 mul-

tiplier, for the GRBF computation we pass only 18-bits of the subtracted value into one of the

slice inputs for 24-bit and 20-bit cases to use minimum # of DSP48E1s. Each RCengine uses 256

DSP48E1 slices for all cases. The error rate of C2 feature vectors is compared to a floating-point

MATLAB implementation and the performance based on the maximum frequency and the # of

pipelines is shown. The performance is higher for smaller bitwidths due to lower resource uti-

lization which allows more parallel pipelines and higher frequency. We use 24-bit input images

19

to maintain a high classification accuracy in all other experiments. This results the classification

accuracy about 97% on 56 images set.

2.6.2 FPGA Resources

The performance of the accelerator depends heavily on the number of pipelines, which

further depends on the algorithm parameters. We consider four separate algorithmic variants

- sparse or dense and different number of orientations (Nθ). The table 2.1 shows the resource

utilization for each variant. The number of pipelines that can fit is primarily controlled by the

BRAMs and DSPs in Dense, whereas by LUTs and BRAMS in Sparse. For Sparse, due to the

significant use of the n:1 multiplexer in each PE, LUTs resources rather than DSPs are the major

restriction on the number of pipelines we can apply in a single FPGA.

For Dense, we undefined the multiplexers at compile-time to improve the efficiency of

hardware resources. This allows up to 6 pipelines to be fit on a single FPGA. When Nθ is 4, we

use 4 pipelines so that we can compute all orientations of a patch in one iteration. But, when Nθ

is 12, we use 6 pipelines and need 2 iterations to compute all orientations of a patch.

Table 2.1 Resource Utilization on Virtex6 SX475T
Slice Regs Slice LUTs BRAMs DSP48E1 # S2engines

Dense 4Θ 173,704 (29%) 134,700 (45%) 535 (50%) 1,024 (51%) 4
Dense 12Θ 256,672 (43%) 197,252 (66%) 803 (75%) 1,536 (76%) 6
Sparse 4Θ 275,336 (46%) 238,860 (80%) 723 (68%) 1,024 (51%) 4
Sparse 12Θ 279,968 (47%) 212,908 (72%) 746 (70%) 512 (25%) 2

2.6.2.1 Scalability

Fig 2.7 shows that performance scales well with using multiple FPGAs, due to the op-

timized local memory applied in our architecture. The accelerator architecture on each FPGA

20

is identical and only the patches are partitioned across pipelines on multiple FPGAs. This chart

shows that the design is scalable and more resources imply higher degree of parallelism from the

accelerator. The Sparse versions are faster than Dense due to reduced amount of computations

and smaller number of orientations implies better performance.

Fig. 2.7 Performance Scaling with number of FPGAs

2.6.3 Influence of Double-Buffering

The performance improvement from introducing the double-buffer architecture for FOIMs

is listed in Table 2.2. As shown, the impact of the improvement on load latency is more in Sparse

versions due to reduced computations and higher for larger Nθ due to increase in sample size.

In addition, the number of patches also matters, since the load latency can occupy a significant

portion of the total time when the # of patches is small.

Table 2.2 Performance Improvement with dual-FOIMs
Patch Dense 4Θ Dense 12Θ Sparse 4Θ Sparse 12Θ
4075 0.2% 0.6% 0.8% 1.2%
1024 3.7% 4.2% 3.7% 10.3%

21

2.6.4 Comparison with Related Efforts

Table 2.3 Comparison of HMAX Implementations

SPARSE 4Θ with 4075 prototypes (Frames Per Sec) DENSE 12Θ with 5000 prototypes (Frames Per Sec)
Telsla C1060 4 x Virtex5 2 x Virtex6 2 x Virtex6 Quad-core 4 x Virtex5 2 x Virtex6

GPU [15] SX240T [14] SX475T SX475T [16] Xeon CPU [14] SX240T [14] SX475T
2.8800 3.6100 90.3880 45.84 0.0045 0.0909 8.4996

In Table 2.3, we compare the performance of our HMAX S2C2 Accelerator with existing

implementations. For the Sparse case, we use the CNS framework [15] on a GPU for compar-

ison. The CNS (rev.372) numbers were obtained using a single NVIDIA Tesla C1060 GPU

running CUDA 3.0 at 1.3 GHz. This was hosted on a Linux machine with dual quad-core In-

tel(R) Xeon(R) CPU running at 2.27Ghz and with 12GB RAM. We used the same set of patches

on both the GPU and the FPGA platforms. Our accelerator running on two Virtex-6 FPGAs

provides 31X speedup over the CNS implementation on GPU for the Sparse 4Θ case. Further,

the power measurement shows that our FPGAs running at 27.5 Watt consumes around 85% less

power compared to the GPU running at TDP of 187.8 Watt [26].

We also compare our performance with two recent FPGA accelerators [14] [16]. Our

two-FPGA system outperforms their Nallatech four-FPGA system and the similar work on the

Virtex6 SX475T by 25X and 2X respectively. Comparison with [14] is reasonable since we use

only 2 FPGAs compared to their 4 FPGA system to offset the 2X more resources on our Virtex6

device. In addition, our speedup over [16] is 2X, although we used the same # of patches, the

same frequency and the same Virtex6 FPGA platform.

The significant performance improvements compared to GPU and FPGA [14] implemen-

tations is due to the resource efficient compute elements, high degree of coarse- and fine-grain

22

parallelism and efficient on-chip memory architectures. While the acceleration approach in [16]

is similar to ours, our system benefits from custom instruction sets along-with minimized load

latencies. Further, our 2D systolic primitive which utilizes cascaded DSP48E1 slices instead of

logic slices to realize the convolution engine, allows more parallel pipelines on a single FPGA.

For the Dense case, we compare our results with CPU and FPGA numbers from [14].

We configure our accelerator with the same number of patches and 12 orientations. The table

2.3 shows that our system provides a speedup of 2164X and 107X respectively over the 3.2 GHz

quad-core Xeon CPU and the four-FPGA Nallatech system. This huge speedup over [14] for

dense S2C2 is specifically because their system relies heavily on access to DDR memories and

also due to lack of reuse. In contrast, our system can operate 6 orientations simultaneously and

maximize reuse of the image data and patches from on-chip memories.

2.7 Conclusion

Neuromorphic vision algorithms can provide significant improvements in accuracy and

robustness of visual perception tasks such as attention, classification and recognition. Owing

to the huge computational demands imposed by these algorithms, customized hardware accel-

erators are a necessity to provide sustained performance at low power budgets. In this work,

we have presented an energy-efficient, high-performance FPGA-based accelerator for HMAX

model, which is widely accepted and applied in multiclass object classification and recognition.

Our accelerator introduces an adaptable processing element to support different stages

of HMAX (S1 and S2) and variants (sparse and dense). It includes a hardware primitive which

has a 2D systolic structure and can be dynamically configured for Gabor or GRBF of varied

sizes. A significant effort has been put into designing efficient multiported on-chip memories to

23

provide low-latency and high bandwidth for access to both image data and patches. Finally, the

architecture is scalable to multiple pipelines and devices to extract higher parallelism.

A detailed evaluation of the accelerator shows several performance trade-offs with re-

spect to bitwidths and FPGA resources. Comparisons with existing works show that our system

provides large speedups over GPU (31X) and FPGA implementations (2X to 107X). This ac-

celerator provides real-time throughput for most algorithmic variants and is the first amenable

solution for deployment in an embedded system.

24

Chapter 3

Accelerators for Attention, Object and Scene recognition

3.1 Introduction

The human brain has a remarkable ability to obtain high-level visual information and

subsequently use that information to extract complex visual relationships between objects and

their surroundings. While the exact biological processes that allow the brain to possess such

function are the subject of numerous studies, neuroscientists have made progress towards un-

derstanding the brain’s cognitive abilities and have successfully been able to produce models

of cognitive function which are highly in agreement with experimental data [27] [28] [29] [30].

In particular, this work focuses on three categories of models pertaining to scene understanding

(gist) [3], visual-attention (saliency) [2], and object identification (hierarchical models and X,

HMAX) [23].

All three categories play an important role in modelling the brain’s ability to understand

a scene and piece together a complete picture. As a result, it is also important to understand how

information collected from one area may influence that of another, rather than treating them in

isolation. For instance, the gist model is a biologically-inspired scene recognition that extracts

summary statistics over an entire image [2]. Alternatively, objects themselves can be found

through the saliency visual attention model [3], which attempts to automatically identify regions

within scenes which are visually perceived to be foreground objects. These detected objects

may then be identified via HMAX, a feed-forward hierarchical object recognition model. During

25

object recognition, scene understanding can be used to tune a priori probabilities to help improve

recognition accuracy for objects.

One key area of interest has been the ability to execute these biologically-inspired algo-

rithms efficiently in hardware, specifically for use in environments that have energy and power

constraints. For example, these architectures are pertinent to analyzing video streams in real-

time for artificial vision applications including mobile augmented reality, autonomous vehicle

navigation, remote elder care monitoring, mobile robotics, and security. Heterogeneous System

on Chips (SoC) are an attractive platform for these types of applications as they are comprised of

both general purpose cores and domain-specific accelerators. For example, the recent introduc-

tion of the FPGA-Atom based platform integrates Atom cores with an on-chip FPGA providing

the capability to run control oriented tasks on a low-power CPU and computationally dependent

tasks on application specific hardware.

This work presents two real-time hardware accelerators. The first configurable gist-

saliency accelerator can be dynamically configured to support two key video analytics algo-

rithms which extract the gist of the scene and identify visual saliency. The second reconfigurable

HMAX accelerator is used to classify objects. We integrate these accelerators into a two-level

hierarchical accelerator system to improve recognition accuracy and reduce computations by fo-

cusing on only the interesting areas instead of using an exhaustive search in a scene with scene

awareness (understanding).

This work provides the following two major contributions:

26

• A run-time configurable architecture is proposed for supporting both gist-based scene

recognition and saliency-based visual attention - this includes the first hardware imple-

mentation of the gist model.

• An integrated two-level hierarchical accelerator system is proposed for fine-grained recog-

nition with improvement in accuracy.

We have developed the accelerator prototype on a Dinigroup multi-FPGA platform and experi-

mental results demonstrate large speedups over other contemporary solutions on different plat-

forms.

3.2 Background

A variety of hardware accelerators for biologically-inspired algorithms have been de-

veloped. Visual attention algorithms such as Attention based on Information Maximization

(AIM) [31] and a bottom-up saliency model [32] have also been accelerated using FPGAs. The

AIM algorithm defines the saliency of visual content as the measure of local information within a

scene. The intent is to maximize information of sampled visual-attentions by identifying regions

which are visually perceived to be unique from the background.

There have been several HMAX accelerators presented in [33] [34] [35]. The main

focus of these works is to design a high performance run-time reconfigurable accelerator for

the computationally intensive S2 stage in the HMAX model. Recent efforts on accelerating a

HMAX-based neuromorphic system for universal recognition was presented in [36]. Accelera-

tion frameworks for biologically plausible spiking neural networks [37] and convolution neural

networks for synthetic vision systems [38] have been developed.

27

Recently, closely related work was presented in [39], which presents a FPGA frame-

work for an end-to-end attention and recognition system using saliency and HMAX accelerators.

However, there is no prior work on hardware acceleration of the gist-based scene recognition al-

gorithm. Our work presents the first hardware implementation of gist and further use of scene

understanding from the gist accelerator as a cue to improve recognition accuracy.

3.3 Models of Neuromorphic Vision

In this section, we describe three widely accepted biologically-inspired attention and

recognition models.

3.3.1 Gist-Saliency Models for Scene Recognition and Attention

The gist recognition model and saliency attention model share the significant portion of

computational stages as shown in Figure 3.1. These models begin by extracting feature maps

from orientation, color and intensity channels at multiple spatial scales (1 : 20 to 1 : 28) from an

input color image. The initial image pyramid is generated by interpolating each subsequent scale

using a 5x5 Gaussian filter. Within the orientation and color channels, there are sub-channels

which are computed to extract features specific to orientation (θ = 0, 45, 90, and 135◦) and color

combinations (Red-Green and Blue-Yellow), respectively. The color and intensity feature maps

(and orientation feature maps for saliency), M(c, s), are obtained by computing a center-surround

difference (CSD) with each sub-channel. As shown in Equation 3.1,

Mi(c,s) = |Oi(c)− Interps−c(Oi(s))| (3.1)

28

where O(c) is a Gaussian filter output at scale c and i = 6, the CSD is found by computing

the difference between a center (fine) scale c and a surround (coarse) scale s, where c = 2, 3, 4

and s = c + d, with d = 3, 4. This is done by interpolating the surround to the finer scale and then

performing a point by point subtraction.

The orientation feature maps for gist, M(c), are computed by a set of Gabor filters (at

each θ) applied to the grayscale image representation at four scales (c = 0, 1, 2, 3) with i = 4 as

shown in equation 3.2.

Mi(c) = Gabor(θi,c) (3.2)

Fig. 3.1 Gist shared with the Saliency-based Attention [2] [3]

After the feature maps are computed, the gist model extracts a partial feature vector by

finding the mean within subregions defined by a 4x4 grid over each of 34 feature maps (4x4 for

orientation, 2x6 for color and 6 for intensity). Each of the partial feature vectors contains 16

29

values and are then combined to form a 544 gist-feature vector, which is passed to a classifier for

scene classification. The saliency model, on the other hand, generates three conspicuity maps

for the three channels by normalizing the each of 42 feature maps (4x6 for orientation, 2x6 for

color and 6 for intensity) and computing a weighted sum across scales at scale c = 4. The three

conspicuity maps are normalized and summed to form a saliency map. For an in-depth treatment

of Gist and Saliency, see [2] [3].

3.3.2 HMAX Model for Object Recognition

The HMAX recognition model consists of four stages of S1 (Gabor filter), C1 (Local

pooling), S2 (Template matching) and C2 (Global pooling). These stages extract a feature vector

and send it to a classifier for object classification.

The S1 stage performs a convolution on an image pyramid of 12 scales from an input

grayscale image with 2D Gabor filters at multiple orientations at different scales. The C1 stage

is computed by convolving the S1 pyramids with a 3D Max filter at every 10x10 units in position

and 2 units deep in scale to obtain scale and position invariance [17] [23].

The S2 stage extracts intermediate features by performing template matching at every

position and scale of the C1 pyramids with 4075 sparse prototype patches. The patches are of

size n x n, where n ∈ {4,8,12,16}, and each coefficient in the patch has its preferred orientation.

The response of the C1 pyramids X to these prototype patches P is computed by the Gaussian

Radial Basis Function (GRBF),

R(X,P) = exp(−∥ X −P ∥2

2σ 2α
) (3.3)

30

where σ = 1 and α = (n/4)2. The S2 stage consumes more than 90% of execution time

of HMAX software implementation running on CPU [33].

The C2 stage computes a global max across scales for each of the 4075 S2 pyramids to

obtain a 4075 C2-feature vector, each element of which is the maximum response to a given

patch. For an in-depth treatment of HMAX, see [17].

3.4 Hardware Design

In this section, we describe the hardware design of our two accelerators. The run-time

configurable gist-saliency accelerator is designed for scene recognition and attention, while the

reconfigurable HMAX accelerator is for object recognition.

3.4.1 Configurable Architecture of Gist-Saliency Accelerator

The proposed configurable architecture of a gist-saliency accelerator pipeline depicted in

Figure 3.2 has three parts: (i) The configurable common blocks for gist and saliency, (ii) Gist-

dedicated blocks and (iii) Saliency-dedicated blocks. The common blocks include image de-

composition into I, RG and BY components, Gaussian and Laplacian pyramids generation using

successive 2D convolutions and down-sampling, separable steerable filters and center-surround

difference modules. Each of these modules can be dynamically configured using domain-specific

instructions which have feature-specific control information for 7 different channel computations

(4 for orientation, 2 for color and 1 for intensity). Each channel is computed one at a time by exe-

cuting the pipeline, therefore it requires 7 iterations to complete the gist or saliency computation

if using one pipeline.

31

Although the same pipeline is used for both gist and saliency computation, the data flow

and working set of data (due to different algorithmic parameters) are different. The different data

flow sequences for the various channels of gist and saliency and algorithmic parameters used in

the common blocks are shown in Figure 3.3.

3.4.1.1 Gist-dedicated Blocks

The gist-dedicated blocks include subregion mean operation and feature concatenation

modules. The subregion mean operator is used to calculate the mean of a 2D n x n grid over

each feature map. Up to 6 different scales of parallel input streams from the previous CSD

module requires multiple, parallel subregion mean computations. Therefore, the mean operator

instruction format has fields to indicate the desired size of the grid, markers for indicating the

start or end of a stream from a different scale or different pipeline, and the size of the incoming

image. For example, in our gist configuration, we compute the mean values for 16 subregions

in each of the 2D feature maps. Each subregion is a 2D grid whose size varies for each channel

and each scale within a channel. Finally, the feature concatenator appends thirty four extracted

16-partial feature vectors to generate a final 544 gist feature vector.

In general, 96 mean operators (adders, shifters and buffers) are required for the mean of

16 subregions of each of 6 parallel feature maps. However, since the feature maps are streaming

into the mean operation modules in a raster-scan pattern, we only use 24 mean operators by

extracting the mean of each 4 row subregions of 4x4 subregions sequentially. This optimization

improves the resource utilization of the gist-dedicated blocks by a factor of 4.

32

3.4.1.2 Saliency-dedicated Blocks

There are maximum normalization, across-scale addition and accumulation modules in

the saliency-dedicated blocks. The maximum normalizer and across-scale adder are used to nor-

malize each of 42 feature maps and compute across-scale addition to generate three conspicuity

maps at scale 4. Then the accumulator sums the conspicuity maps across the three channels to

form a saliency map, where the maximum value of the saliency map indicates the most salient

image region.

Fig. 3.2 Configurable Gist-Saliency Pipeline

3.4.2 Reconfigurable Architecture of HMAX Accelerator

Since the S2 stage of the HMAX model is found to be the most time consuming [33],

we focus on accelerating the critical S2 stage with succeeding C2 stage using hardware. We im-

plemented our HMAX S2C2 accelerator by leveraging the state-of-the-art HMAX S2 architec-

tures [34] [35]. Our accelerator design is based on a 2D systolic primitive and can be dynamically

reconfigured to compute convolutions of different patch sizes of n x n, where n ∈ {4,8,12,16}.

33

Fig. 3.3 Flows and Parameters for Gist and Saliency in the Common Blocks

We use sixteen 4x4 primitives to form a reconfigurable S2C2 accelerator, along with

C2 module for across-scale max operation and two memory subsystems for buffering C1 image

pyramids (4 pyramids of 11 scales) and 4075 patches. The number of primitives used in the

reconfigurable accelerator is determined by the biggest patch size, while the primitive size is

determined by the smallest patch size used in the GRBF computation. Therefore, our accelerator

can be run-time reconfigured to perform one 16x16 convolution, one 12x12 convolution, four

8x8 convolution or sixteen 4x4 convolution per cycle.

3.4.3 System Integration

Recognition systems without front-end attention require an exhaustive search over the

entire image, especially for a high resolution broad-area image, where a target object is too

small, or is not placed at the center of the image. This is computationally expensive and ineffi-

cient. Furthermore, since classification accuracy is inversely correlated to the number of classes,

it is hard to obtain optimum accuracy only using one recognition system. Therefore, we present

34

a two-level hierarchical accelerator system by integrating our bio-inspired attention and recog-

nition accelerators, using the configurable gist-saliency accelerator as first-level processing and

then using the HMAX accelerator as second-level processing for fine-grained recognition.

As shown in Figure 3.4, we compute both the saliency and gist features in parallel to

use the gist for scene understanding (”place”) and the saliency for finding a region of interest

(ROI). When the gist feature vector and saliency map are generated from the hardware, the gist

feature vector is used for scene classification. The HMAX accelerator performs recognition on

the pre-identified ROI from the saliency map to generate a C2 feature vector. The extracted C2

feature vector is then passed for object classification using a Regularized Least-Squares (RLS)

classifier.

After we obtain raw outputs from the object classifier, we rank them in descending order

of probability and select top 3 candidate object classes. Then we choose the highest ranking

object class which belongs to the gist predicted scene category, if found in the candidate classes.

Otherwise, it classifies as the first class from the candidates which has the highest probability.

Our experimental results show from 9% to 14% improvement in recognition accuracy.

In summary, our hierarchical system is (a) computation-efficient by only computing

on the interesting area of a visual scene instead of exhaustively searching, and (b) accuracy-

enhancing by utilizing visual scene understanding as a cue to drive better recognition.

3.5 Experimental Results

The Dinigroup DNV6F6-PCIe multi-FPGA platform [25] was selected for prototyping

our accelerators for biologically-inspired attention and recognition algorithms. The board is

comprised of six compute FPGAs, each one of which are Xilinx Virtex6 SX475T devices and

35

Fig. 3.4 Two-level Hierarchical Accelerator System for Fine-grained Recognition - Saliency and
gist results on a test image, from the Stanford Scenes dataset [4], are shown. The result from
the saliency shows the most salient location on the image labeled with a red-box along with the
corresponding saliency map. The gist result shows the predicted scene category labeled on the
test image.

operates at 100MHz. Host communication is provided via a PCIe x8 link between one of the

compute FPGAs and a software system built via the DNSEAM-PCIe [40].

Input images are provided directly to the accelerators either through video files or live

video data from a camera with minimal pre-processing. The accelerators use a 24-bit fixed-

point numerical representation which provides real-time performance with an error rate of 1 ∼

3× 10−5, compared to floating-point MATLAB software references. For power consumption

comparison, we measure the board power with a power meter [41], while we use Thermal Design

Power (TDP) numbers for the reference platforms.

In order to support a multi-FPGA prototype of our accelerators, we use two FPGAs each

for gist-based scene recognition and HMAX-based object recognition, one for saliency-based

36

visual attention and the other FPGA as network interface. By fully utilizing the multi-FPGA

platform, we support a real-time neuromorphic system to process visual information similarly to

the visual cortex.

3.5.1 Gist-saliency Accelerator

Our gist-saliency accelerator can be dynamically configured at run-time to support both

gist-based scene recognition and saliency-based attention by sharing the configurable logic blocks,

therefore, we provide the resource utilization for the common, gist-dedicated, saliency-dedicated

blocks and overall gist-saliency pipeline in Table 3.1. The common blocks are RAM intensive,

since input images are buffered on-chip for the image decomposition. Gist-dedicated blocks

consume little resources since the subregion mean operation module is optimized by a factor

of 4, while saliency-dedicated blocks need large size of logic and RAM for normalizing each

feature map, which is required to store incoming 6 feature maps in parallel.

Table 3.1 Resource Utilization of (one pipeline) Gist-Saliency Accelerator on Virtex6 SX475T
Slice Regs Slice LUTs BRAMs DSP48s

Common Blocks 72,760 (12%) 85,998 (29%) 458 (43%) 376 (19%)
Gist-dedicated 7,018 (1%) 8,554 (3%) 12 (1%) 0 (0%)

Saliency-dedicated 67,186 (11%) 62,440 (21%) 159 (15 %) 316 (16%)
Overall Pipeline 146,973 (25%) 156,992 (53%) 629 (59 %) 692 (34%)

3.5.1.1 Gist-based Scene Recognition

Figure 3.5 shows the performance results with degree of parallelism (number of FPGAs)

for different frame sizes. The performance scales linearly with both frame size and the number

of utilized FPGAs. The accelerator architecture on each FPGA is identical and only different

custom instructions are loaded into pipelines on multiple FPGAs. This graph shows that our

37

design is scalable and using more resources implies a higher degree of parallelism from the

accelerator.

Fig. 3.5 Performance Scaling for Different Frame Size

The result from the gist system for scene classification is shown in Figure 3.6. The

gist feature vector from the gist accelerator is used by a RLS classifier to classify images from

Stanford scenes dataset [4]. The gist system is tested with 6 different classes (beaches, buildings,

forests, highways, industry and mountains). 30 random images from the scene dataset are used

for training and 30 non-overlapping images are used for testing from each class. As shown in

Table 3.2, the classification accuracy is higher with fewer classes, since it becomes easier for the

classifier to distinguish a single class from the other classes using one-vs-all strategy.

Fig. 3.6 Scene Recognition Result on Stanford Scenes dataset [4].

Table 3.3 shows trade-off between performance and classification accuracy for two dif-

ferent versions of the gist computation. The version for color images (CIO-gist) computes all

38

Table 3.2 Scene Classification Accuracy
of classes # of test images # of correct images Accuracy

3 90 75 83.3 %
4 120 99 82.5 %
5 150 121 80.7 %
6 180 145 80.6 %

three channels, while the version for grayscale images (IO-gist) computes only intensity and

orientation channels to extract the gist feature vector. The IO-gist provides 1.3X speedup over

the CIO-gist for an image size of 800x600 but underperforms in terms of classification accu-

racy. The reason for the IO-gist speedup is that two iterations of color channel computations

are avoided. If dedicated color channel pipelines exist, it can be reconfigured for other channel

computations. Due to the configurability of the accelerator, the version of gist computed is based

solely on preference (FPS or Accuracy) without changing the hardware implementation.

Table 3.3 GIST Computation of (800x600) Color and Grayscale Images
Frames Per Sec Accuracy

(FPS) 3 classes 4 classes 5 classes 6 classes
CIO-gist 117.9 83.3 % 82.5 % 80.7 % 80.6 %
IO-gist 156.5 81.1 % 76.7 % 75.3 % 67.2 %

In Table 3.4, we compare the performance of our accelerator with existing CPU imple-

mentations for gist computation for 800x600 color images. Our gist accelerator is prototyped on

two Virtex6 FPGAs and shows 38X and 393X speedups and 188X and 30X higher performance-

per-Watt (FPS-per-Watt) over Intel high-performance Core i7-3960x and ultra low-power Atom

platforms respectively.

39

Table 3.4 Comparison of Gist Implementations (800x600)
CPU [42] CPU [42] Our FPGA

Intel Core i7-3960x Intel Atom 2 x Virtex6 SX475T
Frequency 3.30 GHz 1.30 GHz 100 MHz
Precision floating-point floating-point fixed-point (24bit)

Power 130 W 2 W 26 W
Frame Rate 3.07 fps 0.30 fps 117.94 fps

FPS-per-Watt 0.024 0.15 4.53

3.5.1.2 Saliency-based Visual Attention

Table 3.5 shows the attention performance comparison between our accelerator and ex-

isting GPU and FPGA implementations [43] [39] for 640x480 color images. Our accelerator

executes on one Virtex6 FPGA and allows speedups of 2X and 1.1X over the GPU and FPGA

implementations.

The saliency accelerator provides better throughput compared to the gist accelerator’s

throughput, because the gist model computes on bigger spatial scales from the same input image

for orientation channel computation.

Table 3.5 Comparison of Saliency Implementations (640x480)
GPU [43] FPGA [39] Our FPGA

Geforce 8800GTX Virtex6 SX475T Virtex6 SX475T
Frequency 1.35 GHz 100 MHz 100 MHz
Precision floating-point fixed-point fixed-point (24bit)

Power 155 W 12.6 W 13 W
Frame Rate 94.3 fps 169.5 fps 193.7 fps

FPS-per-Watt 0.61 13.45 14.9

3.5.2 HMAX Accelerator

In Table 3.6, we compare the performance of our hardware accelerator with existing GPU

and FPGA implementations [15] [34] for HMAX S2C2 computation for 256x256 grayscale

40

images. Our accelerator implemented based on [35] runs on two Virtex6 FPGAs and obtains

speedups of 31X and 2X over the GPU and FPGA platforms respectively.

Table 3.6 Comparison of Hmax Implementations (256x256)
GPU [15] FPGA [34] Our FPGA

Telsla C1060 2 x Virtex6 SX475T 2 x Virtex6 SX475T
Frequency 1.3 GHz 100 MHz 100 MHz
Precision floating-point fixed-point fixed-point (24bit)

Power 187.8 W 65 W 21.4 W
Frame Rate 2.88 fps 45.84 fps 90.50 fps

FPS-per-Watt 0.015 0.705 4.228

3.5.2.1 Recognition Accuracy

The results from our system on images from Caltech 101 object dataset [5] for multi-class

object classification is shown in Figure 3.7. The C2 feature vector from the HMAX accelerator

is used by a RLS classifier to classify images into 12 classes.

Table 3.7 shows improvement in object recognition accuracy from scene understanding,

which is learned from the first-level gist-based scene recognition processing in our hierarchical

system. Classification probability based ranking mechanism is applied to select the highest

ranking object belonging to the gist predicted scene category, if found in the top 3 candidate

classes. For example, if we have ferry, car and ketch as the candidate classes in an order with

the predicted scene category as highways, then our system classifies it as a car, instead of a ferry.

Our hierarchical system has been validated with 20 images from each object class from up to

12 different classes. The results show 9% to 14% improvement in accuracy over HMAX-only

recognition system and the throughput of our hierarchical system is determined by the HMAX

system.

41

Fig. 3.7 Object Recognition Result on Caltech 101 Object dataset [5].

Table 3.7 Object Classification Accuracy Improvement from scene understanding
of scene # of object classes HMAX-only Gist + HMAX
categories per category Accuracy New Accuracy

4 3 69.17 % 77.92 %
2 77.50 % 84.38 %

3 3 72.22 % 82.22 %
2 83.33 % 92.50 %

Scene Category Object Class

highways
car
stop sign
motorbikes

beaches
ketch
ferry
crab

forests
panda
leopards
beaver

buildings
cup
laptop
chair

3.6 Conclusion

As video and image content becomes increasingly prevalent, there will be a profound

increase in the number of applications which attempt to leverage this information in a variety

of ways. A common trend of these applications is to increase the amount of automation where

scene understanding plays a growing role. We presented and integrated a two-level hierarchical

accelerator system for fine-grained recognition, which improves accuracy from 9% to 14%. Re-

sults show that our accelerators provide real-time performance, energy efficiency and from 1.1X

to 393X speedups over existing CPU, GPU and FPGA implementations, which are significant

factors for embedded systems.

42

Chapter 4

Leveraging Accelerators for Query Support Personal Analytics

4.1 Introduction

There is a growing range of wearable devices and sensors for augmenting virtual reality,

fitness-related monitoring, and medical wellness monitoring. By 2016, wearable wireless medi-

cal device sales will reach more than 100 million devices annually [44]. The market for wearable

sports and fitness-related monitoring devices is projected to grow as well, reaching 80 million

device sales by 2016 [45]. It is expected that the smart glasses market will explode from the cur-

rent $1 million value to a $700 million by 2016 [45]. These sensors gather large amounts of data

that must be efficiently logged and retrieved, lest they will soon become data generators rather

than useful personal aids. Consequently, the design of an efficient personal analytics system

that gathers information from these sensors, and responds to queries about this person from the

logged information is critical. Such personal analytics system can be employed in a variety of

end applications such as helping a person with dementia remember of past events, assist visually

impaired in navigation, and provide augmented reality to enhance real world information.

The focus of this work is on the design and evaluation of a personal analytics system that

can efficiently gather, store, and retrieve personalized information. Our system is inspired by

smart glass systems with vision and audio sensors such as those developed by many companies

such as Google, Atheer, First Person Vision, Lumus and Vergence Labs. Our front-end system

gathers both visual and audio input from sensors. The front-end also serves as the interface for

43

voice-based queries to the personal analytics system. This work presents a front-end prototype

that is a co-design of hardware accelerators and software components to extract relevant infor-

mation from the sensed data in real-time. The back-end system combines the extracted sensor

information with data pulled from the user’s social websites and personal gadgets, such as a cell

phone, to log the events.

This work provides the following major contributions:

• A technique to transform all sensed video and audio input to text format and using text

analysis as the common back-end analysis mechanism.

• A query-and-response friendly architecture with the introduction of last-level dimension-

based categories of person, time and place in hierarchical classification is proposed for

efficient query response.

• A technique to integrate user profiles to provide personalization for the user without per-

turbing the general design structure for the analytics system

We have incorporated these techniques in the design of an integrated system of real-time

front-end multimodal recognition and streaming back-end text analytics to transform unstruc-

tured multimedia data to a structured personal lifelog and to support content-aware lifelog stor-

age and retrieval. We also report on query results accuracy and user experiences that indicate

that the proposed system is a major step towards providing personal analytics support.

4.2 Background

Vannevar Bush introduced the concept of ”MEMory Extender” (MEMEX) [6] in 1945.

He described a MEMEX as an electromechanical device which enables individuals to store,

44

navigate and annotate an entire library’s worth of personal information. Since then, his vision

has inspired many researchers to construct a system that can continuously capture and record

a person’s daily activities using various sensors. The earliest work on capture and retrieval

of life activities is presented in [46]. It considered small activities such as email transactions,

telephone calls and exchanging electronic files as retrieval keys to help with everyday memory

problems. The DARPA LifeLog [47] and Microsoft Research MyLifeBits [48] projects were also

initiated to realize the MEMEX vision. However, DARPA LifeLog was canceled in 2004 due to

privacy issues and Microsoft Research MyLifeBits is still on-going to make easy annotation on

multimedia data.

A variety of wearable sensors such as wearable cameras, microphones, GPS and accel-

eration sensors are used for capturing and recording personal lifelogs have been developed and

presented in [49] [50] [51]. Automatic multimedia annotation methods have been presented

in [52] [53] by generating associated metadata in XML files. [54] presents user’s activity recog-

nition and logging using a personal gadget and provides web-based service to remind past events

for memory augmentation. The state-of-the-art lifelogging systems including Memoto lifelog-

ging camera [55], Nokia lifeblog [56] for automatic multimedia diary and NikeFuel [57] for

tracking activities and movements help users to easily collect multimedia data and provide min-

imal analysis/service based on the collected data. Apple’s SIRI personal assistant [58] and Wol-

fram Alpha answer engine [59] are somewhat similar to our work in terms of providing user

services, however, SIRI and Wolfram Alpha are mainly for factual question answering. Previous

work in this area has concentrated on piecewise-lifelogging system by either focusing on col-

lection of specific types of sensory data or building tools for easy data management. Our work

presents a practical approach of bringing these pieces together to build an end-to-end automatic

45

lifelogging and analytics system that can capture, store and manage personal multimedia data

from various sensors and also provides user services based on the content-aware lifelog analysis

using machine learning techniques.

4.3 Overview of Personal Analytics System

Creating an intelligent machine which can recognize, interpret, process, learn and recall

similar to or better than human beings is a significant challenge. To address this challenge, we

identify key elements for realizing the vision and propose the conceptual model for personal an-

alytics as shown in Figure 4.1. The personal analytics model has two functionally distinct parts:

wearable sensors and the analytics database. The idea is to extract meaningful information from

various types of wearable (Video, Audio, GPS, etc.) sensors and support content-aware personal

lifelog analysis using information retrieval and machine learning techniques to proactively rec-

ommend or reactively respond to user queries. Techniques for this include web searching for

factual information, data mining of personal information from social networking sites (SNS)

such as Facebook and Linkedin for a user’s behavior and preference learning, and classification

and clustering for content understanding.

The research and development on various types of wearable sensors for capturing per-

sonal life has been actively investigated [49] [51] [8] [60]. However, the research on how to

efficiently manage the captured personal multimedia data and provide user services using the

data is still ongoing and has not been fully developed yet. Therefore, our research focus is

more on content-aware data analysis and query processing while still providing practical design

techniques for an end-to-end personal analytics system, which consists of front-end multimodal

recognition and back-end text analytics.

46

Fig. 4.1 Conceptual Model for Personal Analytics System

4.3.1 Front-end Multimodal Recognition

There are two important factors we need to consider in designing the front-end recogni-

tion system for employment in an embedded system. The first is identifying key different types

of recognition in order to extract essential information from various input sensors. The second

is building an energy-efficient real-time recognition system.

The identified key types of recognition are (a) face recognition, (b) scene recognition,

(c) object recognition and (d) speech recognition. The face, scene and object recognition are

needed to identify entities of people, places and objects from video input, respectively. Speech

recognition, on the other hand, is used determine what is being said from the audio input. In

addition, event-related information can be identified either from a user calendar (in text format)

or from the content of speech, for example, when setting up a meeting. Since people, places,

objects and events are the four primary entities of interest generally used in natural language

47

processing, we identified the key types of recognition based on the need of supporting these

primary entities.

We implemented the three types of video-based recognition system using the state-of-

the-art recognition algorithms: eigenface-based real-time face, gist-based scene and HMAX-

based object recognition [61] [2] [17]. After processing face, scene and object recognition in

parallel, our front-end system generates an associated text file that includes a timestamp and the

identified class of people, object or scene along with classification probability as shown in Table

4.1. When recognizing multiple classes, the recognition result of each class is appended into the

file. The back-end analytics then stores the processed image with its associated text file into the

corresponding class in the multi-level classification system.

To support streaming speech recognition, we used Nuance Dragon NaturallySpeaking

software [62] coupled with the Dragon dictation application for an android phone. When using

a phone as a remote microphone, the speech recognition program converts speech into text and

directs it to the input console of the analytics system. Similar to the video input, our analytics

classify the text stream from the console, save it in a text file with a timestamp and classification

probability and store it into the corresponding class in the multi-level classification system.

The second important factor, building an energy-efficient real-time system, can be achieved

through the use of hardware accelerators. From profiling shown in Table 5.1, the software im-

plementations of gist-based scene recognition and HMAX-based object recognition do not meet

real-time throughput requirements, while they show high recognition accuracy. Therefore, we

implemented hardware accelerators on multi-FPGA system for scene and object recognition for

high performance and low power.

48

Table 4.1 Recognition and its Associated Text File
Recognition File Format
Face [FR] timestamp, probability1, person1; probability2, person2;...
Scene [SR] timestamp, probability, place
Object [OR] timestamp, probability, object
Speech timestamp, probability, content

Table 4.2 Profiling on Recognition Algorithms (O: meets requirement, X: does not meet require-
ment)

Recognition Real-time Performance Power Recognition Accuracy
Face [61] O O O
Scene [2] X X O

Object [17] X X O
Speech [62] O O O

4.3.2 Back-end Text Analytics

The main advantage of our back-end text-based analytics is that it can abstract away

from different input types (Video, Audio, Text, etc.) and provide an exclusively text-based

output. In other words, the analytics can be completely independent of any types of input sensor

devices. It is important to note that, while different types of new sensors (GPS and Brain Waves)

can be added in the front-end recognition, the back-end text analytics will not require changes.

Recent technological advances allow us to easily convert sensory data into text. Furthermore,

information retrieval such as web searching and user information extraction from SNS, can be

plugged easily into our analytics for enhancing the query response performance using more

user-specific information as well as factual data, since all of these are text-based techniques that

require no additional conversion.

A simple but effective method to further personalize the analytics used in our system is

through the use of user profiles. User profiles, including a contact list, can be easily extracted

from a cell phone, which are already carried by large segments of the population. This contact list

contains the information of personally important people to the user. By applying this information

49

to the system, our analytics system is able to learn about the user’s relationships and match

particular names from the contact list to corresponding classes in the entity of people.

For content-aware lifelog analysis, we implemented three different multiclass text clas-

sifiers to understand the content of incoming personal lifelog. The classifiers are Naive Bayes,

linear Support Vector Machines (SVMs) and Term Frequency-Inverse Document Frequency (TF-

IDF), all of which are well-known techniques for text classification. In general, naive bayes and

TF-IDF classifiers are simple to implement and require relatively less training data, while SVMs

provide high accuracy and are theoretically well-structured for preventing overfitting. Our end-

to-end system takes advantages of different text classifiers to achieve high recognition accuracy.

4.4 System Design

In this section, we describe hardware and software co-design of our personal analytics

system. The energy-efficient real-time hardware accelerators are designed for object and scene

recognition. Simple but effective architectures for efficient query processing are proposed. We

also provide practical design techniques such as user profile mapper, pertinent words extractor,

ranker and text-to-speech for user friendly services. Figure 4.2 shows functional view of the

end-to-end prototype system of personal analytics.

4.4.1 Front-end Design

FPGA-based hardware accelerators for biologically-inspired recognition models of gist

and HMAX are implemented. The gist model [2] is a context-based scene recognition that ex-

tracts summary statistics over an entire image by capturing the ”gist” of the scene from a multi-

scale set of visual features into a low dimensional signature vector. The HMAX model [17] is

50

Fig. 4.2 Personal Analytics Prototype System

a feed-forward hierarchical multiclass object recognition to abstract the behavior of mammalian

visual cortex by extracting a hierarchy of features from alternating simple (template matching)

and complex (pooling) layers. These biologically-inspired models are computationally expen-

sive, therefore, for real-time performance and energy efficiency, hardware accelerators are a key

necessity.

We implemented both the accelerators by leveraging the state-of-the-art hardware archi-

tectures [39] [63] to meet the real-time requirements. The main idea of the proposed gist archi-

tecture is to design a run-time configurable and highly parallel gist pipeline. We perform differ-

ent channel (orientation, color and intensity) computations by executing a single feed-forward

gist pipeline multiple times or executing multiple pipelines in parallel with domain-specific in-

structions. Reconfigurable HMAX accelerator is designed based on sixteen 4x4 systolic prim-

itives and can be dynamically reconfigured to compute convolutions of different template sizes

of 4x4, 8x8, 12x12 and 16x16. The 4x4 primitives are based on cascaded multiply-accumulate

processing elements with programmable delay elements and perform 16 multiply-accumulate

51

operations with 4 input pixels per clock cycle. Therefore, the HMAX accelerator can be run-

time reconfigured to perform sixteen 4x4, four 8x8, one 12x12 or one 16x16 convolution per

clock cycle.

By taking advantage of real-time video-based recognition system we can provide proac-

tive recommendations to a user. Since the system expects and recognizes certain objects reg-

ularly in daily activities, when particular objects are missed the system can alert or provide a

recommendation to the user, for example, taking pills or carrying a cell phone.

4.4.2 Multi-level Text Classification

The proposed query-and-response friendly architecture for the back-end analytics in our

prototype system, depicted in Figure 4.2 is based on a hierarchical classification structure. It

is a three-level text classification and supports three different classification techniques (Naive

Bayes, linear SVMs and TF-IDF). Each level of the multi-level classification corresponds to a

particular entity or entities and all together can address the previously mentioned four primary

entities (events, objects, people and places).

Figure 4.3 shows representing entities in each level as well as corresponding classes in

each entity. The first-level and second-level are based on the entities of events and objects,

and people respectively. However, the third-level is not based on a particular entity but rather

on dimension-based categories of place, time and person. This is because the three entities of

events, objects and people are often directly or indirectly associated with place, time and person.

Building associations between them is helpful for classification and retrieval. One important

thing to mention is that the dimension-based categories are very general and reflect no user-

specific preference unlike the entities that have a set of predefined classes based on user interests.

52

Fig. 4.3 Entities and Classes applied in Hierarchical Classification

In other words, the entities of people and places are subset of the categories of person and place.

The last-level is specially designed to efficiently respond to user queries, since users tend to

ask questions in the forms of ”where is ...?”, ”who is ...?” and ”when did ...?”. Each category

of place, person and time is strongly related to each of these question forms (where, who and

when) respectively.

For example, when a user makes a query regarding the location of his/her keys, our

analytics system knows that this query is strongly related to the class of keys and the category

of place. Therefore, our system can easily respond to the query by directly retrieving the most

relevant lifelog from the class of keys and the category of place. In case there is no dimension-

based categories applied, then the system only has class information that is not sufficient enough

for instant query response. Therefore, having dimension-based categories as last-level makes the

analytics system more capable of user query responses by directly retrieving data from relevant

53

categories. In addition to the three dimension-based categories, we have one extra category of

others, which covers user’s ”what is ...?” questions as well as uncategorized data.

Algorithm 1 briefly describes the test data flow in the multi-level classification system.

Each test data is classified at most three times with three different training models and threshold

values. The threshold values are determined during training stage. The first-level and the second-

level are independent of each other, prioritizing the entities of events and objects over the entity

of people.

Algorithm 1 Hierarchical Classification
Require: test data, test
Require: threshold values, t1, t2 and t3
Require: training models, tmodel1, tmodel2 and tmodel3

c := classification probability of test
class1,2,3 := identified class from each level of classification
c = ClassifyTest(test, tmodel1)
if c > t1 then

AssignClass(test, class1)
goto LastLevelClassif

else
c = ClassifyTest(test, tmodel2)
if c > t2 then

AssignClass(test, class2)
goto LastLevelClassif

else
AssignClass(test, others)

end if
end if
LastLevelClassif:
c = ClassifyTest(test, tmodel3)
if c > t3 then

AppendClass(class3)
else

AppendClass(others)
end if

54

4.4.3 User Profile based Personalization

The user profile-based system personalization method is applied in our analytics. This

method allows our system to extract valuable information from user profiles in XML from per-

sonal devices (mobile phones and laptops) or SNS, and become personalized by integrating the

private information into the lifelog database.

The XML format of our profile contains the fields of name, gender, phone number, group,

title and company. Owing to the flexibility of XML, these custom fields can be changed based

on the information required. Essentially, our personal analytics system is designed for general

users who want to record their daily lives and be able to recall the previous details of their life.

However, each person has his/her own personally important people with names and relations

to them. Thus, we designed our personal analytics system to be general enough to be used

by anyone, yet flexible enough to intelligently recognize each user’s meaningful people from

their face, name, relation or the content of conversations. In other words, our system is able to

recognize a specific person’s relationships without being trained, after parsing user profiles.

4.4.4 Query Processing

In order to support query processing over person’s past experiences (aka events), the

first step is to identify whether it is a query. This can be determined either by using a query

indication keyword before the actual query phrases or training the system with a class of query.

We tested both methods and found that the keyword method outperforms the training method

from experiments. It is possibly due to the text classification techniques used in the experiments

(Naive Bayes, Linear SVMs and TF-IDF) are based on bag-of-words representations, where

the order of words is not taken into consideration, while the word order plays a significant role

55

in distinguishing queries from non-query statements. Also, the automatic query classification

can malfunction when normal conversation contains questions not meant to be processed by the

system.

Figure 4.4 shows a sample of a query-and-response output of our personal analytics sys-

tem. In this example, the system recognizes Query as the query keyword and classifies the rest

of the sentence to determine the corresponding class. After finding the class of Keys and the

category of Location, we apply two factors to rank the stored lifelogs in the class and category

and retrieve the top three most relevant personal events. The two factors used in the ranking

algorithm are classification probability and recency based on an event timestamp. It retrieves the

top three most recent events, which have classification probability above than a certain threshold,

from the specified class. Since we provide query response service by recalling previous personal

experience based on the relevance of objects, events, people and places entities, recency is very

important to construct the most desirable response, unless user specifies a specific time.

There are two more techniques used in our system for user friendly response service. The

first technique is to automatically extract pertinent words, that are most relevant terms to answer

a user query, from the selectively retrieved lifelogs after ranking. The second is to speak back to

user in a predefined simple form with the pertinent words, when responding to a user query. To

identify pertinent words from retrieved lifelogs, we keep track of terms/words which contribute

to a particular class when building a model of training (aka vocabulary). If there are matching

words from the vocabulary and the retrieved lifelogs and the words have high scores, then we

define these words as pertinent words to the user query.

The query and response example, depicted in Figure 4.4, shows the extracted pertinent

words of office, office and car along with their timestamps and ranks, in the response of the

56

user seeking for his/her key. The first event is from audio input, while the other two events are

automatically generated from video input. The complete lifelog sentences are also shown in

parentheses, in case a user wants to know exactly what happened in the past.

Fig. 4.4 Query-Response Output from Personal Analytics System

4.5 Experimental Results

We use the Dinigroup DNV6F6-PCIe multi-FPGA platform [25] for prototyping our

hardware accelerators for gist-based scene recognition and HMAX-based object recognition.

Three Virtex6 SX457T FPGAs in the multi-FPGA board are used for our accelerators (one for

gist, two for HMAX) for real-time throughput and the FPGAs operate at 100MHz. Both the

hardware accelerators use a 24-bit fixed-point with an error rate of 1 ∼ 3× 10−5, compared to

the reference floating-point software implementations. Unlike the front-end scene and object

recognition implemented in hardware, the rest of system is software-implemented. Our end-to-

end automatic lifelogging and analytics system is up and running and provides practical insights.

Since there is no publicly available personal lifelog dataset, we created our own dataset of

450 training documents and tested with live video and audio from a camera and microphone. The

training documents are mainly collected from the websites that have definitions and descriptions

of each target class.

57

4.5.1 Recognition

Table 4.3 shows gist-based scene and HMAX-based object recognition performance

comparison between our accelerators and existing CPU [42] and GPU [15] implementations for

2Kx2K images. Our FPGA-based accelerators allow 19X and 31X speedups and consume 10X

and 8X less power over the CPU and GPU implementations respectively. According to [64], an

FPGA consumes approximately 14 times more dynamic power than an equivalent ASIC. There-

fore, we can expect even longer battery life when migrating from FPGA prototyping to ASIC.

For example, a battery of 2600mAh, which is currently used in Samsung Galaxy S4, can support

up to 12.8 hours of both scene and object recognition processing.

The resource utilization on a FPGA for scene and object recognition accelerators are

provided in Table 4.4. Since the size of Block RAMs in a Virtex6 FPGA is 36 Kbits [25] and

one FPGA for scene and two FPGAs for object recognition are used, the accelerators for scene

and object recognition consume 1,9 KByte and 4,3 KByte of memory respectively. The results

of multiple face and object recognition on sample images from a camera are also shown in

Figure 4.5 and the throughput of our front-end recognition system is determined by the object

recognition processing.

Table 4.3 Performance Comparison for Recognition (2Kx2K)
Scene Recognition Object Recognition

Our FPGA CPU [42] Our FPGA GPU [15]
Virtex6 Intel Core 2 x Virtex6 Telsla
SX475T i7-3960x SX475T C1060

Frame Rate (fps) 44.22 2.27 11.31 0.36
Power (Watt) 13 130 21 187

58

Table 4.4 Resource Utilization on a Virtex6 SX475T FPGA
Slice Regs Slice LUTs BRAMs DSP48s

Scene Recg 79,778 (13%) 94,552 (32%) 470 (44%) 376 (19%)
Object Recg 173,704 (29%) 134,700 (45%) 535 (50%) 1,024 (51%)

Fig. 4.5 Multiple Face and Object recognition

4.5.2 Classification

Figure 4.6 shows the classification accuracy of three different text classifiers (Naive

bayes, Linear SVMs and TF-IDF) on training documents using cross validation. The cross val-

idation method randomly splits the documents into training and validation data and repeatedly

test on the validation data for predicting accuracy using the model of training. It is a technique

to predict how accurately a model will perform in practice. Therefore, we used it to objectively

compare the performances of the three classifiers. The results show that the TF-IDF classifier

slightly performs better than the other two methods. It is also shown that the classification accu-

racy is inversely correlated to the number of classes. Accuracy is higher with fewer classes for

all three classifiers.

59

Fig. 4.6 Classification Accuracy on Training Data using Cross Validation

4.5.3 System Output

The screenshot of our back-end analtyics is shown in Figure 4.7. It has an input console

where the speech recognition types text on as we speak, and the GUI for graphical visualizations

of the analytics database. The GUI allows a user to reset the database, update his/her profile,

and show the workingspace that display all stored data in each class as well as the classifica-

tion result with a timestamp and classification probability. It also allows a user to re-fetch the

mapped profile information with a keyword of ”who is”. For instance, when we ask ”who is my

director?”, the system responds that ”Director is Ravi”, or responds ”Ravi is the director” with a

question of ”who is Ravi?”, although the specific name was not part of training.

Table 4.5 shows classification accuracy on 100 test data with three different architectures.

Experimenting with different architectures allows us to determine an optimum design and prove

the flexibility of the system. Our proposed three-level classification architecture shows higher

accuracy than the two-level with the same number of classes and data. The result proves that

the proposed architecture provides higher classification accuracy by having a separate level for

events/object and people entities. One more thing to mention is that the three-level architecture

60

Fig. 4.7 Screenshot of the Back-end Text Analytics

provides lower accuracy than the two-level with smaller number of classes, as expected. It is

because as the number of classes increases, the accuracy decreases.

Table 4.5 Classification Accuracy on test data
three-level (15 classes) two-level (15 classes) two-level (12 classes)

events/objects events/objects/people events/objects
+ people + dimension + people

+ dimension
Accuracy 86.67 % 73.33 % 96.67 %

Table 4.6 shows the sample results of user experience of query-and-response with two

different architectures. Our proposed architecture #1 is based on three-level classification with

the dimension-based categories as last-level. The conventional architecture #2, on the other

hand, is based on two-level classification without the dimension-based categories. The response

results of both the architectures show the top three most relevant events based on the ranking

factors. It is observed that the response results of architecture #2 are not finely related to the

user queries, but rather coarsely related to the queries. For example, when a new event of ”my

friend took my key” is classified as a class of Keys in Query-1 case, our architecture #1 further

61

Table 4.6 User Experience of Query-and-Response
Query-1 Where are my keys?

archi. #1
rank 1: school (I left keys in the school)
rank 2: car (keys are at my car)
rank 3: market (I left the key in the market)

archi. #2
rank 1: my friend took my key
rank 2: I left keys in the school
rank 3: keys are at my car

Query-2 Who did I have a meeting with?

archi. #1
rank 1: doctor (I have a doctor appointment this morning)
rank 2: advisor (Team meeting with my advisor this afternoon)
rank 3: mentor (weekly meeting with mentor)

archi. #2
rank 1: lunch meeting today
rank 2: I have a doctor appointment this morning
rank 3: Team meeting with my advisor this afternoon

processes it and identifies it as the class of Keys and the category of person. Therefore the new

unrelated event is not retrieved in the response of seeking for keys unlike the architecture #2.

Furthermore, the architecture #1 shows extracted pertinent words along with complete

lifelog sentences. The pertinent words help the analytics system to provide a user friendly service

by speaking back to the user in a concise form with essential data.

Random 15 users were asked to experience with these two cases and select either of

them. All the users reported that the test results of the proposed architecture #1 are more precise

and accurate to their queries and definitely provide higher satisfaction to them. It proves that

our simple but effective architecture with dimension-based categories as last-level efficiently

processes user queries. Based on the results from Table 4.5 and 4.6, we can conclude that our

proposed architecture provides high classification and query response accuracy.

4.6 Conclusion

In this work, we presented an end-to-end personal analytics system for user-friendly

query processing. The personal analytics system consists of real-time front-end multimodal

62

recognition and streaming back-end text analytics system. The front-end recognition supports

face, object, scene and speech recognition for transforming multimedia data into lifelog, while

the back-end analytics supports multi-level classification for content-aware lifelog analysis and

efficient query processing. A novel architecture, which correlates user probable question forms

into the last-level of the hierarchical classification, is proposed for accurate query response.

We also used three different text classifiers (Naive Bayes, Linear SVMs and TF-IDF) to obtain

optimum classification accuracy. Results show that our system allows real-time recognition

performance, high classification accuracy and accurate query response.

63

Chapter 5

Accelerator for Text Classification

5.1 Introduction

With the advent of the Internet and social media, the generation of data has been growing

exponentially. It is reported that we create 2.5 quintillion (1018) bytes of data every day and

90% of the world’s data has been generated in the last two years alone [65] [66]. The era of

big data has driven great interest in data mining and analysis to effectively extract information

for user services. Due to the size and amount of data, it becomes harder to perform real-time

text processing with general purpose CPUs. Further, although the evolution of GPU architec-

ture and parallel programming models such as OpenCL [1] and CUDA [67] made it easier to

accelerate computationally intensive applications using GPU, real-time text processing is still a

great challenge. Especially the irregular nature of non-fixed length strings and less involvement

of parallel floating-point computations have prevented text processing from taking full advan-

tage of massively parallel processors. Therefore, research and development on an accelerator

for real-time text classification will provide valuable contributions to text processing domain by

sharing practical design and optimization techniques.

It should be noted that although CUDA (Compute Unified Device Architecture) [67] has

more mature features and tools than cross-platform OpenCL (Open Computing Language) [1],

it is specific to NVIDIA GPUs. OpenCL is a framework for parallel programming of hetero-

geneous systems that consist of multi-cores, GPUs and other processors. Currently there are

64

plenty of OpenCL support hardware in the market. Major manufacturing companies such as In-

tel, AMD, NVIDIA and ARM provide their own OpenCL SDK to support for multi-core CPUs,

desktop GPU and embedded GPU [68] [69] [70] [71]. In general, there exist two types of GPU:

a power-efficient integrated (aka embedded) and a high-performance discrete (aka dedicated)

GPU. Discrete GPU has its own independent memory that leads to increased performance, but it

is power-hungry and easily heat up. On the other hand, the integrated GPU doesn’t have its own

memory and shares the small portion of system memory with CPU, and consumes less power.

In spite of the limited computing capability, the low-power and low-heat characteristics make

integrated GPU ideal especially for embedded system including mobile devices.

There are over 100 existing GPU-accelerated applications [72] and over 15 GPU vendors

including mobile GPU area. Although various applications of GPU have grown significantly,

there is a portability issue. Additionally, the performance gains in these applications are hard to

generalize because it heavily depends on a specific platform and vendor. To overcome the lim-

itation, we propose an OpenCL-based platform- and application- independent automation flow

that helps seamlessly executing across different platforms by dynamically configuring the appli-

cations for the platforms. Since the automation flow supports both integrated and discrete GPU,

we were able to make a fair performance comparison between the two different architectures by

executing the same code. This provides valuable insights into the characteristics of integrated

GPU that has restricted features and runs at lower frequency, compared to discrete GPU.

In this work, we focus on the analysis and optimization of Naive Bayes algorithm and

present a GPU-enabled highly parallel Naive Bayes multiclass classifier for real-time text clas-

sification. A wide range of text classification applications include spam filtering, medical diag-

nosis, automatic categorization of newspaper articles and language identification. Recent study

65

on opinion mining and sentiment analysis of SNS (social networking sites) such as Twitter and

Facebook can also benefit from this classifier.

This work provides the following three key contributions:

• Over 99% of text classification processing is parallelized and computed on parallel pro-

cessors with only one invocation of kernel execution.

• A feedback loop enabled approach is proposed to efficiently process Naive Bayes text

classification in practice.

• An dynamic configuration-enabled automation flow is presented for efficient platform-

and application- independent program execution.

We have incorporated these efforts in the development of a Naive Bayes classifier for efficient

text processing with several optimization techniques from both algorithm and practical imple-

mentation perspectives. The experiment results of our GPU-enabled text classifier demonstrate

7.3X speedup over CPU platform with classification accuracy improvement.

The remainder of the work is organized as follows. Section 5.2 provides the related work

with emphasis on the suitability of OpenCL over CUDA for heterogeneous embedded system.

Section 5.3 introduces Naive Bayes algorithm and modified the algorithmic for practical real-

ization of multiclass text classification. Section 5.4 describes details of design and optimization

techniques for efficient text classification on heterogeneous system using OpenCL. Further, Sec-

tion 5.5 shows a practical use-case of our work that is applied in a prototype system of personal

analytics. Section 5.6 shows the performance improvements of our methods and discusses of the

experimental results. Finally, Section 5.7 concludes this work.

66

5.2 Background

Since CUDA was released from NVIDIA in 2007 [67], a variety of GPU-based accel-

erators have been developed in across many research areas including visual categorization for

efficiently managing large collections of images [73], automatic test pattern generation for high

quality transition faults [74], and term frequency-inverse document frequency rank search en-

gine for text mining [75], and executed on NVIDIA discrete GPU(s). Further, some researchers

made efforts in designing OpenCL-accelerated applications of pattern classification, genetic

programming tree evaluation and vehicle detection [76] [77] [78] to overcome the limitation

of vendor-specific CUDA, while other researchers compared the performance of OpenCL and

CUDA models [79] [80]. According to both the performance comparison studies between the

models [79] [80], it is informed that OpenCL can be a good alternative to CUDA with portability

on multiple architectures and insignificant performance loss.

Particularly for mobile embedded systems, OpenGL for Embedded Systems (OpenGL

ES) programming model [81] and RenderScript APIs [82] have been generally used to leverage

the compute power of the embedded GPU. OpenGL ES is originally designed for rendering 2D

and 3D computer graphics, not for general-purpose computing, and RenderScript is designed

only for Android platform. Recent research [83] shows the expansion of OpenCL domain to

mobile heterogeneous system. It introduces a first OpenCL-based accelerator for image object

removal algorithm on mobile GPU. This implies that our work can be easily deployed to the

domain of mobile GPU platform as well.

Many efforts have been made to improve text classification algorithms and conduct com-

prehensive evaluation of the algorithms [84] [85] [86] [87]. Although there is no one single

67

algorithm in text classification that is best-known, Naive Bayes is definitely one of them and

has proven to be efficient. Therefore, we revisit the algorithm, optimize it from a practical

perspective and maximize parallel execution for fast computation. This work presents a mul-

tiple GPUs-enabled highly parallel Naive Bayes text classifier by leveraging an OpenCL-based

platform- and application- independent automation flow.

5.3 Naive Bayes Classifier

In this section, we provide a brief overview of Naive Bayes multiclass classifier and share

practical considerations for improving the classifier.

5.3.1 Naive Bayes Algorithm

Naive Bayes (aka Naive Bayesian) classifier is a probabilistic classifier based on Bayes’s

theorem [88] with strong (naive) feature independence assumption. It is one of the most com-

monly used text classification algorithms. The goal of text classification (aka text categorization)

is to determine which class a given document belongs to by finding the Maximum A Posterior

(MAP) class. Naive Bayes multiclass classifier can be represented as:

CMAP = argmax
c∈C

P(c|d) (5.1)

where C is a set of classes (c1,c2, ...,cm), d is a document represented as n features (x1,x2, ...,xn),

and P(c|d) is the posterior probability of a class given a document.

By applying Bayes’s theorem, P(c|d) = P(d|c)
P(d) , and naive independence assumption,

P(x1,x2, ...,xn|c) = ∏x∈X P(x|c), we can now have the following equation:

68

CMAP = argmax
c∈C

∏
x∈X

P(x|c)P(c) (5.2)

where P(x|c) is the likelihood probability of each feature given a class and P(c) is the prior prob-

ability of a class. After computing posterior probability of each class for the given document,

Naive Bayes selects the most likely class which has the maximum posterior probability.

5.3.2 Enhanced Naive Bayes

We make performance and accuracy enhancements to the algorithm for more practical

and reliable realization.

Performance: We applied Laplace smoothing and log-domain conversion methods to

improve performance. Laplace smoothing (aka add-one smoothing) is an algorithm that simply

adds one additional value to each word count to avoid a zero probability. It is simple but very

effective, since a zero probability of any words eventually drives a zero posterior probability of

a class that makes difficult for differentiating probabilities of classes and finding a MAP class.

Log-domain conversion is to perform addition instead of multiplication operation to pre-

vent underflow when multiplying many small probabilities, as in the case of calculating likeli-

hoods of rare words in a large document which have many words. We also realized that Naive

Bayes uses argmax for comparing the posterior probability of each class to find the most likely

class. Thus, whichever technique we apply to calculate posterior probabilities doesn’t signifi-

cantly matter as long as we apply the same technique for computing posterior probabilities of

all classes and compare them against each other. With this knowledge, we apply log over log10

69

since the smaller base of log can provide a wider dynamic range, which helps comparing with

single-precision representation.

Accuracy: The current calculation for prior probability is oblivious of document size

significantly. Larger documents have more words that provide additional information beneficial

for text classification. The original formula for the prior computation for text classification

is P(c) = Nc
N , where Nc is the number of documents in each class and N is the total number of

documents in training. However, in practice, the size of documents varies significantly, therefore,

we modified the formula by using words counts instead of document counts to avoid unbalanced

document size as shown in Equation 5.3.

After applying all these optimizations, our final version of Naive Bayes algorithm for

text classification is represented in Equation 5.3.

CMAP = argmax
c∈C

{logP(c)+ ∑
x∈X

logP(x|c)} (5.3)

where P(c) = count(c)
∑c∈C count(c) and P(x|c) = count(x,c)+1

count(c)+|V | with that |V | is the number of unique features

in training.

We have implemented a Naive Bayes multiclass text classifier based on the above equa-

tion. The performance and accuracy enhancements to original Naive Bayes algorithm help to

achieve a better performance over existing algorithms (as will be shown in Section 5.6).

70

5.4 GPU-Accelerated Parallel Text Classification

In this section, we describe details of design and optimization techniques for paral-

lel text classification on heterogeneous system using OpenCL. We suggest an efficient practi-

cal approach to compute Naive Bayes classification and propose an OpenCL-based dynamic

configuration-enabled automation flow for platform- and application- independent parallel pro-

cessing.

5.4.1 Profiling

Figure 5.1 shows a work flow diagram of Naive Bayes multiclass classifier for text clas-

sification with two distinct stages of off-line training and on-line testing. It should be noted that

this work flow diagram is similar to most of the contemporary Naive Bayes classifiers that are

written sequentially. Based on the analysis and profiling of existing implementations of Naive

Bayes, it is found that the step of computing likelihoods of features in the work flow takes the

most execution time (over 99%) when running on CPU, as shown in Table 5.1.

Table 5.1 Profiling of Naive Bayes Text Classification running on CPU (w/ 13KB test file)
Functions Time (%)
(1) Read a test file into memory 0.03
(2) Preprocessing 0.67
(3) Compute likelihoods of features 99.13
(4) Compute priors 0.00
(5) Sort scores 0.17

Therefore, we restructured the sequential code to parallelize this step along with the

previous step of preprocessing for maximum parallel execution. These two steps together take

99.8% of the execution time based on the profiling. The preprocessing step performs natural

language processing-oriented operations such as removing stop-words, converting into lower

71

Fig. 5.1 Work Flow Diagram of Naive Bayes Classifier

cases, and omitting special characters/numbers from strings etc. Stop-words are words which

contain no significant meanings and contributions in classification. In our case, we used a list

of 517 English stop-words, and some examples of stop-words are a, but, or, the, and what.

This preprocessing takes additional time to process, but it helps to improve accuracy of text

classification. The computation time of the computing likelihoods step heavily depends on the

number of words in a test file, the number of classes and the size of training data, since we need

to compute likelihood of each word for each class and accumulate them, then we add a prior

of each class in the later step. When we deal with bigger data, we can possibly obtain more

performance gains by maximizing parallel execution on this computationally intensive step.

72

After deciding which part of the algorithm should be parallelized, we also tried to reduce

the number of host-device data transfer by recomputing intermediate functions directly on GPU

without returning to the host. Due to the nature of heterogeneous system (host + device), min-

imizing host-device data transfer is an important factor for optimal performance, especially for

discrete GPUs which communicate from/to host via PCIe. Since host-device data transfer has

much lower bandwidth than global memory access, one large transfer is much better than many

small ones. The blue dashed box on Figure 5.1 represents the most important and computation-

ally intensive computations in the Naive Bayes algorithm, and now mapped on GPUs with one

invocation of GPU kernel execution.

5.4.2 Practical approach

We suggest a practical approach to efficiently compute Naive Bayes classification. The

proposed approach is matching-and-retrieval based computation with on-line feedback loop en-

abled for avoiding redundant iterations of training. Figure 5.2 shows data flow for the proposed

approach.

Fig. 5.2 Data Flow of our suggested Practical Approach

73

5.4.2.1 Simplified Approach

Based on the analysis of Naive Bayes algorithm and its exiting implementations, we

observed that all of them compute likelihood of each word and a prior probability of each class

on-the-fly during the test stage, regardless of utilizing pre-counted words’ frequencies from the

training stage. Since all the data needed for computing likelihood and prior probabilities can be

obtained from the training stage, we decided to push computation into off-line training stage as

much as possible and perform minimal process during on-line testing for high throughput.

Fig. 5.3 Global Dictionary Structure with probabilities

This is the reason why we came up with a global dictionary. Figure 5.3 shows the sample

of a global dictionary structure with pre-computed probability. The idea is to store all necessary

information such as class information (# of classes, a pair of class label and a prior), likelihood

information (a pair of word string and likelihood of each class) and default likelihood for non-

existent words etc. in the global dictionary and retrieve associated data by doing string matching

against the dictionary when classifying a test documentation. The negative numbers in Figure

5.3 are because of computing log with fraction numbers. This matching-and-retrieval based

approach helps reducing classification computation time. Loading the global dictionary into

74

classifier object is a one-time operation during initializing the classifier, therefore, it doesn’t

affect classification time.

5.4.2.2 Feedback loop enabled Approach

Our simplified matching-and-retrieval approach has one downside: it is unable to dy-

namically update the dictionary for fine tuning the classifier.In order to update the classifier,

the simplified approach must go through the training stage again to generate a new global dic-

tionary, which is usually time consuming. To overcome this issue, we added on-line feedback

loop to the approach as shown in Figure 5.2. This feedback loop enabled approach is somewhat

similar to most of the contemporary approaches by computing likelihood and prior probabilities

on-the-fly, based on pre-counted words frequencies from training. The global dictionary used

in this enhanced approach has words frequencies instead of probabilities. The main purpose

of the feedback loop is to avoid redundant iterations of training stage and allows fine tuning of

the classifier. In practice, training stage usually takes a large amount of time and how to train

the classifier has a significant impact on the classification accuracy. Also, users are often en-

countered to a situation needed to add new classes or files to update the exiting classes of the

classifier. Our feedback loop enabled approach can provide enough flexibility to satisfy these

requirements.

Our implementation supports both the simplified and enhanced approaches dynamically

meaning that after it is configured with a desired approach, it loads a proper global dictionary

and proceed accordingly. Our flexible classifier supports both the approaches, thus, determining

approach type should be purely based on user preference. Also after it classifies, it displays top

3 candidates of classes in a descending order of scores.

75

Log Approximation Fixed-point Owing to the modern GPU architectures for fast floating-

point computation with floating point units (FPU), we don’t need to consider fixed-point compu-

tation seriously. However, many small embedded system especially with low-cost and low-power

microprocessors don’t have FPU. The internal GPU-like parallel processor, we are in early-stage

design and plan to use it as our final platform, doesn’t intend to have FPU due to ultra low-power

purpose. Therefore, we need to manipulate floating-point representations accordingly.

With the analysis of our classifier, we found that we only perform floating-point addition

in the simplified approach, while we compute floating-point addition and division followed by

log computation in the feedback loop enabled approach. In general, if we use floating-point

operations in our program and compile for those FPU-less processors, it will use internal emu-

lation libraries that are extremely slow. Although fixed-point computation is not a major focus

of this research, it is good to consider what functions in our implementation should be modified

or optimized in case it deploys on these FPU-less processors. We applied a computationally fast

approximate logarithm algorithm with fixed-point by leveraging [89] method to our Naive Bayes

implementation and analyzed effects on the execution time.

5.4.3 Automation Flow

As shown in Table 5.2, there are generally recommended 12 basic steps for heteroge-

neous OpenCL programming. Basically host CPU builds up data on a device and then enqueues

a kernel to execute on the device using the data. All the 12 steps are done in the host side,

except the actual kernel execution after the host CPU deploys the kernel and tells the device to

execute it in step (10). The steps from (1) to (7) are one-time OpenCL setup procedure that only

execute once during initialization. The rest of the steps from (8) to (12) is device (multi-core

76

CPU or GPUs) execution procedure for each test. By leveraging these basic procedures, we

have developed an automation flow that dynamically configure important parameters based on

a given device/hardware and the kernel. We have added two extra steps that are (a) checking

device count for properly supporting multiple devices/GPUs and (b) querying maximum kernel

work group size for dynamic local work size assignment. Our dynamic configuration-enabled

automation flow for platform- and application- independent parallel processing using OpenCL is

shown in Figure 5.4. This proposed automation flow has been verified on two different platforms

(specifications are provided in Section 5.6) by executing the exact same code.

Table 5.2 Basic Steps for OpenCL Programming [1]
1 Obtain OpenCL platform

One-time
setup

2 Obtain devices id
3 Create context for device
4 Create command-queue for target device
5 Create program from source code
6 Build the program
7 Create kernel(s) from program functions
8 Allocate device memory

GPU
execution

9 Associate arguments to kernel with kernel object
10 Deploy kernel for device execution
11 Move output data to host memory
12 Release context/program/kernels/memory

In general, there are two ways to support multiple GPUs. The first is to have one context

across all devices and one command-queue per device, while the second is to have one context

and one command-queue per device. According to [90] of the performance comparison between

the two ways, the latter with multiple host threads (one thread per device) is an ideal way to

support true concurrent processing by utilizing multiple GPUs at the exact same time. Therefore,

we first count the number of devices on a given hardware and automatically create the same

number of contexts (one per device) accordingly.

77

Fig. 5.4 Dynamic Configuration-enabled Automation Flow

After OpenCL setup is done, we have to consider two important execution configuration

parameters for optimal performance: local work size (aka local work group size or # of work-

items in a work-group) and global work size (aka total work-items). Choosing the work size

is important for maximizing performance, although there is no rule of thumb. Local work size

can be determined by querying maximum kernel work group size permitted by OpenCL support

devices where work-items execute on. Since the maximum kernel work group size is determined

based on the resource requirements of the kernel [1], it provides a proper configuration for the

specific kernel and the device. There is no constraint for global work size as long as it is a

multiple of the local work size, therefore, we simply round up.

78

5.4.3.1 Data partitioning for multiple devices

We applied two ways to partition input test data for multiple devices. The first coarse-

grain partitioning mechanism is to assign each test file to each device, since we use multiple host

threads for each thread to have its own context and a test file to classify. This is simple but it

has one disadvantage that is the computation time is determined by the slowest worker due to

different file sizes. The second fine-grain method is to find proper memory index after copying

a file to for each device. Unlike image pixels, words/strings have no fixed length. Therefore, we

coarsely divide the memory by the number of target devices and increase memory index/address

till it finds a space or carriage return or line feed for the exact index. This method is suitable

for a large test file, otherwise, it would be better using one device from resource utilization

perspective.

5.4.4 Optimizations

In general, there are three optimization strategies to improve overall performance in a

heterogeneous system [67] [91]: (a) maximizing parallel execution, (b) optimizing memory ac-

cess and (c) optimizing execution configuration. Maximizing parallel execution can be achieved

by exposing data parallelism in target algorithms and overlapping memory transfer with compu-

tation. Memory optimization can be obtained by minimizing host-device data transfer, coalesc-

ing global memory access and maximizing the utilization of local memory that is much faster

than global memory. Lastly, optimizing execution configuration is also important by finding the

right parameters such as local and global work size for different applications on different GPU

architectures to increase occupancy by hide latencies and keep the hardware busy.

79

After profiling, we have parallelized over 99% of the sequential program and executed

the paralleled code on GPUs with only one invocation of kernel execution meaning a single

data transfer from host CPU to the device GPUs. We also applied memory optimization tech-

niques [91] such as using pinned memory and coalescing global memory access for optimal

performance.

Pinned (aka page-locked) memory is the memory which prevents from being paged-out

by operating system and provides higher bandwidth between host and device, since it allows the

device to use DMA-transfer over PCIe. But it is also noted that over-allocating pinned memory

might reduce overall system performance, because it reduces the amount of memory available

to operating system and other programs. This default version of pinned memory is especially

useful when loading or storing the data multiple times with discrete GPU. A different version,

mapped pinned memory (aka zero-copy memory), allocates pinned host memory, map device

memory to the pinned host memory and return the host pointer. In other words, kernels read the

data directly from the host memory without explicitly copying the data from the host memory to

the device memory. This mapped memory is better when kernels read and write the data exactly

once with integrated GPU. Therefore, since each of these pinned memory type heavily depends

on applications and target hardware, our implementation calls proper APIs dynamically after

identifying a platform (integrated or discrete) type.

Coalesced memory access, which is highly recommended by [91], is for efficient global

memory access on GPUs by combining multiple memory accesses into a single aligned memory

access. It can be achieved when neighboring threads access neighboring locations in memory.

Optimizing execution configuration is somewhat heuristic, since it heavily depends on

applications and GPU architectures. To avoid time-consuming process of experiments, we added

80

a new dynamic parameter assignment step for finding proper configurations as our proposed au-

tomation flow shows in Figure 5.4. This step provides appropriate values of essential parameters

dynamically based on the resource requirements of the kernel and the target device properties.

5.5 Practical Use-Case: Personal Analytics System

One practical use-case of our high throughput text classifier is to accelerate the critical

path of text processing part in a personal analytics system, which consists of front-end multi-

modal recognition and back-end text-based analytics to provide user services such as user query

processing. In a simple term, the personal analytics system is a realization of Vannevar Bush’s

MEMory EXtender (MEMEX) vision [6] to build an entire library’s worth of personal informa-

tion. Due to the advanced lifelogging technology and research on real-time multimodal recogni-

tion processing [55] [63], it became possible to capture every single moment of a person’s daily

activities and automatically extract key information from the event. However, how to efficiently

process incoming lifelogs regardless of the data volume and response to a user query based on

the analysis of the streaming and stored logs still remains a great challenge. Since we convert

sensory data into text for abstracting away from multimodal input to have one common language,

the efficiency of text processing becomes a major factor to determine overall performance of the

system. This is one of motivations for us to develop a maximally parallelized text classifier, in

fact, it is already applied in the personal analytics system for classifying streaming lifelogs and

big text data to identify corresponding entities.

81

5.6 Experimental Results

For validating our Naive Bayes multiclass text classifier, we have set up two different

platforms that have either integrated graphics or discrete graphics card. The details of our plat-

form specifications are shown in Table 5.3. The discrete platform has a NVIDIA GTX 590 graph-

ics card that contains two GPUs. To support true concurrent processing on multiple GPUs, we

used boost thread library [92] to provide multithreaded host/CPU. Experiments on these different

platforms can help us to verify our proposed dynamic configuration-enabled automation flow for

platform and application independent parallel processing by dynamically configuring execution

configuration parameters based on the hardware properties and kernels. Especially performance

analysis on integrated platform is important for embedded system perspective, therefore, we use

the integrated platform as our primary platform to perform various experiments.

Intel OpenCL SDK [68] and Intel OpenCL SDK debugger are also used for our classifier

implementation and OpenCL kernel debugging.

Table 5.3 Platform Specification
#1: Integrated Platform #2: Discrete Platform

Intel
CPU

Intel
Graphics

Intel
CPU

NVIDIA
GPU

Model i7-4770 HD 4600 Xeon E5405 GTX 590
of 8 20 4 16
Compute Units x512 proc.
Freq. (GHz) 3.4 0.350 2 0.607
Memory (GB) 8 1.6 4 1.5
TDP (Watt) 84 80 365

82

5.6.1 Classification

Table 5.4 shows the text classification accuracy of our Naive Bayes classifier with pub-

licly available 20 newsgroups text data set [93] using cross-validation technique. The 20 news-

groups data set has 20 classes/categories and a newsgroup article is classified as belonging to

one of the 20 newsgroups. The cross-validation is a model evaluation method which randomly

divides documents into training and validation data and repeatedly test on the validation data

for estimating accuracy using the model of the training data. It is a technique to predict how

accurately a training model will perform in practice. We also applied this method to existing

implementations of Naive Bayes and Linear SVMs classifier from CMU Bow toolkit [94] for

classification accuracy comparison, since we applied enhancements to the original Naive Bayes

algorithm. For this experiment, we used up to 20 classes with 200 documents per each class and

averaged out the results after 20 times of testing. Our Naive Bayes classifier is developed based

on the previously introduced new prior probability calculation, laplace smoothing, log-domain

conversion and floating-point representation. Table 5.4 shows that our Naive Bayes classifier

performs better than the other two existing implementations.

Table 5.4 Classification Accuracy Comparison to existing Text Classifiers
classes Our Naive Bayes Naive Bayes [94] SVMs [94]

20 90.85 % 86.15 % 77.05 %
18 92.44 % 88.37 % 78.13 %
16 92.00 % 88.58 % 79.99 %
14 93.14 % 89.14 % 78.40 %
12 93.33 % 91.51 % 78.71 %
10 94.00 % 91.89 % 79.06 %

In addition to the classification accuracy comparison to the existing text classifiers [94],

we also analyzed the enhancement effect on the original Naive Bayes algorithm. As the Table

83

5.5 shows that #3 version is our baseline implementation which utilize the techniques of laplace

smoothing and log-domain conversion and fixed-point representation. It should be noted that

without laplace and log-domain conversion techniques, the classifier poorly classifies because it

is exposed to a zero probability and underflow when multiplying many small probabilities. The

baseline implementation still shows moderately better accuracy than the above existing imple-

mentations [94]. After applying the new calculation for prior probability, #2 version shows a

slight improvement in accuracy. It probably will have a bigger effect on unbalanced data set.

Lastly, #3 version of Table 5.5 shows the final classification accuracy of our Naive Bayes with

all the enhancements and floating-point representation. It is also observed that the base of log

computation doesn’t affect the accuracy of classification from our experiment. Both log and

log10 give the same result.

Table 5.5 Enhancement Effect on our Naive Bayes Classification Accuracy
classes #1: Floating-point, New Prior #2: New Prior #3: Fixed-point

20 90.85 % 87.55 % 87.50 %
18 92.44 % 89.94 % 89.88 %
16 92.00 % 89.87 % 89.81 %
14 93.14 % 90.85 % 90.78 %
12 93.33 % 91.41 % 91.41 %
10 94.00 % 92.70 % 92.70 %

5.6.2 Influence of Optimization Techniques

As the steps for OpenCL programming in Table 5.2 show, there are three distinct pro-

cesses: one-time setup, GPU execution and kernel execution. The OpenCL setup from getting

platform information to creating the kernel is one-time execution and the time on our integrated

platform CPU takes about 154 ms. Since this is part of initialization time, it doesn’t affect the

84

throughput of our system. The second process from allocating device memory to writing de-

vice output back to host is considered as GPU execution, which operates for each test file. The

process of deploying kernel for device execution is kernel execution that indicates pure compu-

tation time on GPU. For performance measurement, we used OpenCL profiling events for kernel

execution and query performance counter API for GPU execution.

Table 5.6 Performance Comparison of Two Approaches on the Integrated Platform (w/ 60,188
dictionary words, 517 stop words)

Test File Average Time (s) Simplified Approach Feedback loop enabled Approach
50KB Kernel Execution 0.193 0.195

GPU Execution 0.197 0.200
25KB Kernel Execution 0.111 0.113

GPU Execution 0.115 0.116
13KB Kernel Execution 0.065 0.067

GPU Execution 0.069 0.071

Table 5.6 shows the performance comparison of our simplified approach and feedback

loop enabled approach on the integrated platform with different sizes of test files. The execution

time for both the approaches are similar, it is probably because GPU performs floating-point

calculation very fast using FPU. Compared to the simplified version, the feedback loop enabled

version computes one additional floating-point division and logarithmic calculation. It is ob-

served that there is not much execution gap between the GPU execution and kernel time. It is

because we experimented on the integrated platform meaning the host CPU and graphics reside

on the same die, therefore, the communication cost is relatively small.

Table 5.7 Floating- vs Fixed-point Computation in our feedback loop enabled approach on CPU

Log10 Log
floating fixed floating fixed

Computation Time (ms) 15.24 17.92 15.18 17.82

85

The effects of data types, floating and fixed-point, on the classification time of 1KB test

file are provided in Table 5.7. It is measured on CPU with two different log bases. From the ex-

periment result, we can verify that computation with fixed-point is faster than with floating-point.

It is also observed that using log takes slightly shorter time than using log10. This further agrees

with our decision of using log over log10, since when analyzing the algorithm we found that

using smaller base of log results bigger difference between the numbers after log computation

that leads to help comparing the scores of each class.

Table 5.8 Improvement using Mapped Pinned Memory on the Integrated Platform

Computation Time
GPU Memory Bandwidth

(GB/sec)
(s) Read Write

Non-Mapped Pinned 0.115 1.212 0.130
Mapped Pinned 0.098 1.301 0.140

Table 5.8 shows the performance improvement using mapped pinned memory (aka zero-

copy memory) by mapping a buffer into host memory, and loading data directly from the host

without allocating and transferring the data in advance. From experiment with 25KB test file,

we gained 17% speed improvement with higher memory bandwidth by using mapped pinned

memory on the integrated platform. Intel Vtune Amplifier XE 2013 [95] is used for measuring

GPU OpenCL kernel performance on our Intel integrated platform.

5.6.3 Comparison with Different Platforms

To verify our proposed OpenCL-based dynamic configuration-enabled automation flow

for platform and application independent parallel processing, we have ran our Naive Bayes mul-

ticlass text classifier on various platforms (multi-core CPUs, integrated graphics, a discrete GPU

86

Table 5.9 Execution Time (s) Comparison with Various Local Work Size (w/ 200KB Test File)
Work Size Work Size Work Size Work Size

Local Global Local Global Local Global Local Global
16 27632 32 27648 64 27648 128 27648

Integrated Graphics 0.709 0.709 0.709 0.709
Discrete GPU 0.860 0.715 0.615 0.661
Discrete Two GPUs 0.457 0.382 0.326 0.354

Work Size Work Size Work Size
Local Global Local Global Local Global
256 27648 512 27648 1024 27648

Integrated Graphics 0.708 0.707 X
Discrete GPU 0.723 0.730 0.743
Discrete Two GPUs 0.388 0.393 0.377

and multiple GPUs) by executing the same program. Before we make performance comparisons

with different types of GPUs, we wanted to see the effect of OpenCL-enabled implementation

on multi-core CPUs. Since OpenCL supports different types of devices, we were able to run

OpenCL-based our implementation on 8-cores CPUs on the integrated platform. Surprisingly,

the performance is very slow compared to native implementation with one active thread on the

same processor. It is because we didn’t optimize our Naive Bayes kernel for CPU platform, we

executed the same kernel that is optimized for GPU devices. From this experiment, we learned

that although OpenCL supports different platforms, we still need to optimize kernels for target

platform to achieve optimal performance.

The performance comparison with various local work size for fine tuning on integrated

and discrete platforms is provided in Table 5.9. As we previously discussed, local and global

work size are two important factors to determine optimal performance. Since global work size

is a multiple of local work size, we changed local work size and experimented on various plat-

forms to see the effects on execution time. One interesting result is observed that local work

size doesn’t severely affect on the integrated platform, while it has a significant impact on the

discrete platform. From the experiments, it is found that the local size of 512 and 64 are optimal

87

configuration to the integrated and discrete platforms respectively. The test results also show that

our work on the discrete platform performs better than the integrated platform. It is because the

discrete GPUs run at higher frequency than the integrated graphics, and consumes more power.

Table 5.10 Performance Comparison of Text Classification on multi-core CPUs and GPUs (w/
200KB test file)

Time (s)
Native Multithreaded Implementation on multi-core CPUs 2.734
Our OpenCL-based Implementation on a GPU 0.615
Our OpenCL-based Implementation on two GPUs 0.326

Table 5.10 shows that our OpenCL-accelerated highly parallel Naive Bayes multiclass

text classifier on two GPUs and a single GPU provides 7.3X and 3.4X speedups over native

multithreaded implementation with 2 active threads on multi-core CPUs respectively. Owing to

the portability of our work and proper data partitioning for multiple devices, the performance

can further scale up with more number of GPUs.

5.7 Conclusion

We analyzed and improved Naive Bayes algorithm for highly parallel text processing to

obtain optimal performance in terms of both classification accuracy and computation time. By

paralleling over 99% of the sequential code of the Naive Bayes implementation, we were able to

execute on parallel processors with only one invocation of kernel execution. Many optimization

techniques are also applied to our implementation and various experiments on our methods show

performance improvements.

A feedback loop enabled approach is proposed to efficiently process Naive Bayes text

classification in practice. Further, an OpenCL-based automation flow is presented for platform-

88

and application- independent parallel processing. This flow can help applications seamlessly

executing across different platforms by dynamically configuring based on target hardware and

kernels.

Experiments on various platforms (integrated graphics, discrete GPU and multiple GPUs)

have been performed to verify the effectiveness of our text processing by executing the same

code. The experiment result shows our highly parallel text classifier provides 7.3X speedup over

CPU implementation.

89

Chapter 6

Conclusion and Future Work

Significant efforts have been made in accelerating neuromorphic vision and machine

learning algorithms by utilizing various parallel platforms based on their requirements to obtain

(near) real-time performance. I have studied various state-of-the-art recognition and classifica-

tion algorithms that are computationally intensive but commonly used in many applications such

as surveillance, augmented reality and automotive etc. My work towards accelerating these key

algorithms helps to expand the application range of these algorithms by meeting accuracy, power

and performance requirements. Further, I applied all these accelerators to personal analytics pro-

totype system to realize the MEMEX vision that continuously records an individual’s daily life

and create a digital backup of it.

6.1 Summary of Dissertation Contributions

The research proposed in this dissertation has four major contributions. First, this dis-

sertation starts with design of FPGA-based hardware accelerator for bio-inspired HMAX object

recognition. The reconfigurability of the object recognition accelerator helps to minimizing

hardware resources utilization by enabling dynamic configuration of the pipeline. Because of

adaptable processing element based dynamic hardware primitive composition, the accelerator

scales very well and not only supports different stages of HMAX and variants, and but also

supports convolutions of different kernel size.

90

Second, the configurable gist-saliency accelerator for both attention and recognition is

proposed. The configurable accelerator can be dynamically configured to support two key video

analytics algorithms which extract the gist of the scene and identify visual saliency. I also in-

tegrated this gist-saliency accelerator with my precious HMAX accelerator to form a two-level

hierarchical accelerator system to improve recognition accuracy and reduce computations by

focusing on only the interesting areas without exhaustive search in entire scene image.

Third, I presented the an end-to-end prototype system of personal analytics, which con-

sists of front-end recognition and back-end text analytics. The real-time front-end system sup-

ports video based face, object and scene recognition, and audio based speech recognition to

transform unstructured personal multimedia data to a structured lifelog. The back-end analytics

system supports content-aware lifelog analysis and user friendly query processing using machine

learning techniques. This work provides practical realization of personal lifelogging system that

can capture all the experiences of a person and enables total recall of the person’s entire life.

Finally, a text accelerator for Naive Bayes based multiclass classification is developed.

I optimized Naive Bayes algorithm for high classification accuracy and proposed an OpenCL

based dynamic configuration enabled automation flow for platform and application independent

parallel processing. The automation flow is verified on various platforms including multiple

GPUs platform. This work supports true concurrent parallel processing by dynamically con-

figuring the automation flow based on target platform property and also suggests efficient data

partitioning for multiple devices.

91

6.2 Future Research Directions

The current prototype system of personal analytics have some limitations in terms of

scalability and relationships between classes. Supervised classification techniques, which re-

quire a training stage with labeled data, is used in the analytics system, however, it is sometimes

difficult to collect enough training data for a particular class, and hard to increase the number of

classes due to the inverse relationship between the number of classes and classification accuracy.

The following provides a brief list of possible future work regarding these limitations:

• Semi-supervised learning method for performance improvement.

• Machine learning algorithms development for determining the semantic relationships be-

tween classes.

• Search engine-based approach for overcoming the scalability challenge.

• Different types of recognition accelerators development for entity-rich information extrac-

tion.

Although it still requires in-depth research on the applicability of the above techniques for the

personal analytics system, the methods can possibly improve the overall performance of the

personal system.

The visual and text accelerators for visual understanding and efficient text processing

can be further applied to many other practical applications. Internet Of Things (IoT) is one of

most interesting and definitely attractive research areas to researchers including myself. I believe

that with the acceleration research knowledge can help to make meaningful contributions to the

IoT area. In a simple way, I can apply the practical design techniques of the energy-efficient

92

accelerators to embedded computing-like devices to provide intelligence to anyone’s daily life

by connecting to the existing internet infrastructure for enormous visual recognition and text

data analysis. I will further research on how to efficiently apply my techniques and research

knowledge of acceleration and to help to realize many other important areas including IoT.

93

Bibliography

[1] “OpenCL 1.2 Specification.” [Online]. Available: http://www.khronos.org/opencl/

[2] C. Siagian and L. Itti, “Rapid biologically-inspired scene classification using features

shared with visual attention,” Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, vol. 29, no. 2, pp. 300 –312, feb. 2007.

[3] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid

scene analysis,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20,

no. 11, pp. 1254 –1259, nov. 1998.

[4] “Stanford Dataset for Scene Classification.” [Online]. Available: http://vision.stanford.

edu/fmriscenes/resources.html

[5] “Caltech 101 Database for Object Classification.” [Online]. Available: http://www.vision.

caltech.edu/Image Datasets/Caltech101/

[6] V. Bush and J. Wang, “As we may think,” Atlantic Monthly, vol. 176, pp. 101–108, 1945.

[7] “Google Glass - Wearable Computer.” [Online]. Available: http://www.google.com/glass/

start/

[8] “Looxcie - Wearable Camera.” [Online]. Available: http://www.looxcie.com/

[9] “Vicon Revue 3MP - SenseCam.” [Online]. Available: http://viconrevue.com/product.html

[10] “Ibm-jeopardy-dac2011-keynote.” [Online]. Available: http://www-03.ibm.com/

innovation/us/watson/

94

[11] “Ibm deepblue vs gary kasprov.” [Online]. Available: http://www.research.ibm.com/

deepblue/watch/html/c.shtml

[12] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynamically configurable

coprocessor for convolutional neural networks,” in Proc. of the 37th annual International

Symposium on Computer Architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010,

pp. 247–257.

[13] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,” Na-

ture Neuroscience, vol. 2, pp. 1019 – 1025, Nov 1999.

[14] A. Al Maashri, M. DeBole, C.-L. Yu, V. Narayanan, and C. Chakrabarti, “A hardware

architecture for accelerating neuromorphic vision algorithms,” in IEEE Workshop on Signal

Processing Systems SIPS’11, Oct 2011.

[15] J. Mutch, U. Knoblich, and T. Poggio, “CNS: a GPU-based framework for simulating

cortically-organized networks,” Massachusetts Institute of Technology, Cambridge, MA,

Tech. Rep. MIT-CSAIL-TR-2010-013 / CBCL-286, February 2010.

[16] J. Sabarad, S. Kestur, M. Park, D. Dantara, and V. Narayanan, “A reconfigurable accel-

erator for neuromorphic object recognition,” in Proc. of Asia and South Pacific Design

Automation Conference (ASP-DAC), Jan 2012.

[17] J. Mutch and D. G. Lowe, “Object class recognition and localization using sparse features

with limited receptive fields,” Intl. J. Comput. Vision, vol. 80, pp. 45–57, October 2008.

95

[18] C. Farabet, C. Poulet, J. Han, and Y. LeCun, “CNP: An FPGA-based processor for convo-

lutional networks,” in Field Programmable Logic and Applications, 2009. FPL 2009. Intl

Conf on, sept 2009, pp. 32 –37.

[19] S. Bae, Y. C. P. Cho, S. Park, K. M. Irick, Y. Jin, and V. Narayanan, “An fpga imple-

mentation of information theoretic visual-saliency system and its optimization,” Field-

Programmable Custom Computing Machines, Annual IEEE Symposium on, vol. 0, pp.

41–48, 2011.

[20] S. Kestur, D. Dantara, and V. Narayanan, “SHARC: A streaming model for FPGA accel-

erators and its application to saliency,” in Proc. of Design Automation and Test in Europe

Conference DATE’11, March 2011.

[21] S. Park, S. Kestur, K. Irick, and V. Narayanan, “Invited paper: Accelerating neuromorphic

vision on fpgas,” 2011.

[22] A. Nere, A. Hashmi, and M. H. Lipasti, “Profiling heterogeneous multi-gpu systems to

accelerate cortically inspired learning algorithms,” in IPDPS, 2011, pp. 906–920.

[23] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust object recognition

with cortex-like mechanisms,” Pattern Analysis and Machine Intelligence, IEEE Tran on,

vol. 29, no. 3, pp. 411 –426, march 2007.

[24] J. Mutch and D. Lowe, “Multiclass object recognition with sparse, localized features,” in

Computer Vision and Pattern Recognition, 2006 IEEE Comp Soc Conference on, vol. 1,

june 2006, pp. 11 – 18.

96

[25] “Dinigroup DNV6F6-PCIE Documentation.” [Online]. Available: http://www.dinigroup.

com/product/data/DNV6F6PCIe/files/DNV6F6PCIe v14 lo.pdf

[26] “Nvidia tesla C1060 documentation.” [Online]. Available: http://www.nvidia.com/docs/

IO/43395/BD-04111-001 v06.pdf

[27] A. Oliva and P. Schyns, “Coarse blobs or fine edges? evidence that information diagnostic-

ity changes the perception of complex visual stimuli.” Cognit Psychol, vol. 34, no. 1, pp.

72–107, 1997.

[28] I. Biederman, “Do background depth gradients facilitate object identification,” Perception,

vol. 10, pp. 573–578, 1982.

[29] A. Torralba, “Modeling global scene factors in attention,” JOSA - A, vol. 20, pp. 1407–

1418, 2003.

[30] C. Ackerman and L. Itti, “Robot steering with spectral image information,” Robotics, IEEE

Transactions on, vol. 21, no. 2, pp. 247 – 251, april 2005.

[31] S. Bae, Y. Cho, S. Park, K. M. Irick, Y. Jin, and V. Narayanan, “An FPGA implementation

of information theoretic visual-saliency system and its optimization,” in Intl. Symp. on Field

Programmable Custom Computing Machines, ser. FCCM, 2011, pp. 41–48.

[32] P. Akselrod, F. Zhao, I. Derekli, C. Farabet, B. Martini, Y. LeCun, and E. Culurciello,

“Hardware accelerated visual attention algorithm,” in Information Sciences and Systems

(CISS), 2011 45th Annual Conference on, march 2011, pp. 1 –6.

97

[33] M. DeBole, A. Maashri, M. Cotter, C.-L. Yu, C. Chakrabarti, and V. Narayanan, “A Frame-

work for Accelerating Neuromorphic-Vision Algorithms on FPGAs,” in Computer-Aided

Design (ICCAD), 2011 IEEE/ACM International Conference on, nov. 2011.

[34] J. Sabarad, S. Kestur, M. Park, D. Dantara, V. Narayanan, Y. Chen, and D. Khosla, “A

Reconfigurable Accelerator for Neuromorphic Object Recognition,” in Proc. of Asia South

Pacific Design Automation Conference ASPDAC’12, Jan 2012.

[35] M. Park, S. Kestur, J. Sabarad, V. Narayanan, and M. Irwin, “An FPGA-based Accelerator

for Cortical Object Classification,” in Proc. of Design Automation and Test Conference and

Exhibition DATE’12, Mar 2012.

[36] A. Maashri, M. DeBole, M. Cotter, N. Chandramoorthy, Y. Xiao, V. Narayanan, and

C. Chakrabarti, “Accelerating neuromorphic vision algorithms for recognition,” in Design

Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, june 2012, pp. 579 –584.

[37] D. Thomas and W. Luk, “Fpga accelerated simulation of biologically plausible spiking

neural networks,” in Field Programmable Custom Computing Machines, 2009. FCCM ’09.

17th IEEE Symposium on, april 2009, pp. 45 –52.

[38] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello, “Hardware

accelerated convolutional neural networks for synthetic vision systems,” may. 2010, pp.

257 –260.

[39] S. Kestur, M. Park, J. Sabarad, D. Dantara, V. Narayanan, Y. Chen, and D. Khosla, “Em-

ulating Mammalian Vision on Reconfigurable Hardware,” in Intl. Symp. on Field Pro-

grammable Custom Computing Machines FCCM’12, May 2012.

98

[40] “Dinigroup DNSEAM-PCIE.” [Online]. Available: http://www.dinigroup.com/new/

DNSEAM PCIE.php

[41] “Kill A Watt power monitor.” [Online]. Available: www.killawattplus.com/

[42] “USC iLab for GIST C++ Implementation.” [Online]. Available: http://ilab.usc.edu/

toolkit/documentation.shtml

[43] T. Xu, T. Pototschnig, K. Kühnlenz, and M. Buss, “A high-speed multi-gpu implementation

of bottom-up attention using cuda,” in ICRA’09: Proceedings of the 2009 IEEE interna-

tional conference on Robotics and Automation. Piscataway, NJ, USA: IEEE Press, 2009,

pp. 1120–1126.

[44] “10 Wearable Health Tech Devices To Watch .” [On-

line]. Available: http://www.informationweek.com/healthcare/mobile-wireless/

10-wearable-health-tech-devices-to-watch/240012613?pgno=1

[45] E. Ackerman, “Google gets in your face [2013 tech to watch],” Spectrum, IEEE, vol. 50,

no. 1, pp. 26–29, 2013.

[46] M. Lamming and M. Flynn, “‘Forget-me-not’: intimate computing in support of

human memory,” in Proceedings of FRIEND21: Symposium on Next Generation

Human Interfaces, Tokyo, Japan, 1994. [Online]. Available: citeseer.nj.nec.com/

lamming94forgetmenot.html

[47] “DARPA LifeLog.” [Online]. Available: http://en.wikipedia.org/wiki/DARPA LifeLog

[48] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong, “Mylifebits: fulfilling the

memex vision,” in Proceedings of the tenth ACM international conference on Multimedia,

99

ser. MULTIMEDIA ’02. New York, NY, USA: ACM, 2002, pp. 235–238. [Online].

Available: http://doi.acm.org/10.1145/641007.641053

[49] T. Hori and K. Aizawa, “Context-based video retrieval system for the life-log applications,”

in Proceedings of the 5th ACM SIGMM international workshop on Multimedia information

retrieval, ser. MIR ’03, 2003, pp. 31–38.

[50] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler, G. Smyth, N. Kapur, and

K. Wood, “Sensecam: A retrospective memory aid,” in Proc. 8th International Conference

on Ubicomp, 2006, pp. 177–193.

[51] D.-W. Ryoo and C. Bae, “Design of the wearable gadgets for life-log services based on

utc,” Consumer Electronics, IEEE Transactions on, vol. 53, no. 4, pp. 1477–1482, 2007.

[52] B. Prananto, I.-J. Kim, and H.-G. Kim, “Multi-level experience retrieval for the personal

lifelog media system,” in Signal-Image Technologies and Internet-Based System, 2007.

SITIS ’07. Third International IEEE Conference on, Dec., pp. 175–182.

[53] I.-J. Kim, S. C. Ahn, H. Ko, and H.-G. Kim, “Automatic lifelog media annotation based

on heterogeneous sensor fusion,” in Multisensor Fusion and Integration for Intelligent Sys-

tems, 2008. MFI 2008. IEEE International Conference on, Aug., pp. 703–708.

[54] K. Jeong, J. Won, and C. Bae, “User activity recognition and logging in distributed intel-

ligent gadgets,” in Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI

2008. IEEE International Conference on, 2008, pp. 683–686.

[55] “MEMOTO - Lifelogging Camera.” [Online]. Available: http://memoto.com/

100

[56] “Nokia Lifeblog - Automatic Multimedia Diary.” [Online]. Available: http://www.nokia.

com/global/support/nokia-suite/

[57] “Nike Fuel - Activities of Athletic life.” [Online]. Available: http://nikeplus.nike.com/plus/

[58] “Apple Siri - Personal Assistant.” [Online]. Available: http://www.apple.com/ios/siri/

[59] “Wolfram Alpha - Answer Engine.” [Online]. Available: http://www.wolframalpha.com/

[60] K. Aizawa, D. Tancharoen, S. Kawasaki, and T. Yamasaki, “Efficient retrieval of life log

based on context and content,” in Proceedings of the the 1st ACM workshop on Continuous

archival and retrieval of personal experiences, ser. CARPE’04, 2004, pp. 22–31.

[61] “Multiple Face Detection and Recognition in Real Time.” [Online]. Available: http://www.

codeproject.com/Articles/239849/Multiple-face-detection-and-recognition-in-real-ti

[62] “Nuance Dragon NaturallySpeaking.” [Online]. Available: http://www.nuance.com/

dragon/index.htm

[63] M. Park, C. Zhang, M. DeBole, S. Kestur, V. Narayanan, and M. Irwin, “Accelerators

for Biologically-Inspired Attention and Recognition,” in Design Automation Conference

(DAC), 2013 50th ACM/EDAC/IEEE, June 2013.

[64] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 2, pp. 203–215,

2007.

[65] “ViaWest Data Center.” [Online]. Available: http://www.viawest.com/sites/default/files/

asset/document/ViaWest Big Data Infographic.pdf

101

[66] “IBM Analytics - IT Business Intelligence.” [Online]. Available: http://www.ibm.com/

smarterplanet/us/en/business analytics/article/it business intelligence.html

[67] “CUDA C Best Practices Guide.” [Online]. Available: http://www.nvidia.com/

[68] “Intel OpenCL SDK.” [Online]. Available: http://software.intel.com/en-us/vcsource/tools/

opencl-sdk

[69] “AMD OpenCL SDK.” [Online]. Available: http://developer.amd.com/resources/

heterogeneous-computing/opencl-zone/

[70] “NVIDIA OpenCL SDK.” [Online]. Available: https://developer.nvidia.com/opencl

[71] “ARM Mali OpenCL SDK.” [Online]. Available: http://malideveloper.arm.com/

develop-for-mali/sdk/mali-opencl-sdk/

[72] “NVIDIA GPU Applications.” [Online]. Available: http://www.nvidia.com/object/

gpu-applications.html

[73] K. E. van de Sande, T. Gevers, and C. G. Snoek, “Empowering Visual Categorization With

the GPU,” Trans. Multi., vol. 13, no. 1, pp. 60–70, Feb. 2011.

[74] K.-Y. Liao, S.-C. Hsu, and J.-M. Li, “GPU-based N-detect transition fault ATPG,” in De-

sign Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 1–8.

[75] Y. Zhang, F. Mueller, X. Cui, and T. Potok, “GPU-accelerated text mining,” in Workshop

on Exploiting Parallelism using GPUs and other Hardware-Assisted Methods, 2009.

[76] D. Bharangar, A. Doeger, and Y. Mittal, “Implementation of Fast Artificial Neural Network

for Pattern Classification on Heterogeneous System,” IJSER, 2013.

102

[77] D. A. Augusto and H. J. C. Barbosa, “Accelerated Parallel Genetic Programming Tree

Evaluation with OpenCL,” J. Parallel Distrib. Comput., vol. 73, no. 1, pp. 86–100, Jan.

2013.

[78] K.-M. Cheng, C.-Y. Lin, Y.-C. Chen, T.-F. Su, S.-H. Lai, and J.-K. Lee, “Design of vehicle

detection methods with opencl programming on multi-core systems,” in Embedded Systems

for Real-time Multimedia (ESTIMedia), 2013 IEEE 11th Symposium on, Oct 2013, pp. 88–

95.

[79] J. Fang, A. Varbanescu, and H. Sips, “A Comprehensive Performance Comparison of

CUDA and OpenCL,” in Parallel Processing (ICPP), 2011 International Conference on,

2011, pp. 216–225.

[80] C.-L. Su, P.-Y. Chen, C.-C. Lan, L.-S. Huang, and K.-H. Wu, “Overview and comparison

of OpenCL and CUDA technology for GPGPU,” in Circuits and Systems (APCCAS), 2012

IEEE Asia Pacific Conference on, 2012, pp. 448–451.

[81] “The Khronos Group, The OpenGL ES 3.0 Specification.” [Online]. Available:

http://www.khronos.org/opengles/

[82] “Google Inc., RenderScript - Android Development Guide.” [Online]. Available:

http://developer.android.com/guide/topics/renderscript/compute.html

[83] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accelerating Computer Vision Algo-

rithms Using OpenCL on the Mobile GPU ? A Case Study,” in International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), may 2013.

103

[84] F. Sebastiani, “Machine Learning in Automated Text Categorization,” ACM Comput.

Surv., vol. 34, no. 1, pp. 1–47, Mar. 2002. [Online]. Available: http://doi.acm.org/10.1145/

505282.505283

[85] G. Forman, “An Extensive Empirical Study of Feature Selection Metrics for Text Classifi-

cation,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305, Mar. 2003.

[86] “Multinomial Naive Bayes for Text Categorization Revisited,” in AI 2004: Advances in

Artificial Intelligence, ser. Lecture Notes in Computer Science, G. Webb and X. Yu, Eds.,

2005, vol. 3339.

[87] S. Pitigala, C. Li, and S. Seo, “A comparative study of text classification approaches for per-

sonalized retrieval in PubMed,” in Bioinformatics and Biomedicine Workshops (BIBMW),

2011 IEEE International Conference on, 2011, pp. 919–921.

[88] T. Bayes, “An essay towards solving a Problem in the Doctrine of Chances,” Philosophical

Transactions of the Royal Society of London, vol. 53, pp. 370–418, 1763.

[89] C. Turner, “A Fast Binary Logarithm Algorithm [DSP Tips Tricks],” Signal Processing

Magazine, IEEE, vol. 27, no. 5, pp. 124–140, 2010.

[90] “Single vs. Multiple contexts with multiple GPUs.” [Online]. Available:

https://devtalk.nvidia.com/default/topic/473251/cuda-programming-and-performance/

single-vs-multiple-contexts-with-multiple-gpus/

[91] “OpenCL Best Practices Guide.” [Online]. Available: http://www.nvidia.com/

[92] “Boost Thread.” [Online]. Available: http://www.boost.org/

104

[93] “20 Newsgroups Data set.” [Online]. Available: http://www.nvidia.com/

[94] A. K. McCallum, “Bow: A toolkit for statistical language modeling, text retrieval, classifi-

cation and clustering,” http://www.cs.cmu.edu/ mccallum/bow.

[95] “Intel VTune Amplifier XE 2013.” [Online]. Available: http://software.intel.com/en-us/

intel-vtune-amplifier-xe

Vita

Mi Sun Park is a Ph.D candidate in the Department of Computer Science and Engineering

at the Pennsylvania State University. Mi Sun joined Penn State in Fall 2009 after working in LG

Electronics for 4.5 years as a Firmware engineer. Her work in LG Electronics is about research

and development of CDMA mobile phones for Verizon vendor. Before her industry experi-

ence, she completed her Bachelor in Electrical Engineering from Dalhousie University, Halifax,

Canada in Spring 2005. Her primary research interests are accelerator design for neuromorphic

vision and machine learning algorithms, real-time embedded multimedia system, heterogeneous

parallel computing, and PoC design. Mi Sun has interned at Intel Corporation during 2012, 2013

and 2014 summers, and also served as a program committee for IISWC-2013 conference.

