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Abstract

This thesis is concerned with feature screening methods for varying-coefficient mod-
els in ultrahigh dimensional longitudinal setting. Motivated by an empirical anal-
ysis of the Childhood Asthma Management Project, CAMP, we introduce a new
screening procedure for time-varying coefficient models with ultrahigh dimensional
longitudinal predictor variables. The performance of the proposed procedure is in-
vestigated via Monte Carlo simulation. Numerical comparisons indicate that it
can outperform existing ones substantially, resulting in significant improvements
in explained variability and prediction error. Applying these methods to CAMP,
we are able to find a number of potentially important genetic mutations related
to lung function, several of which exhibit interesting nonlinear patterns around
puberty.
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Chapter 1
Introduction

Various feature selection methods have been developed in high dimensional data

analysis and widely used in diverse fields. The goal is to recover the underlying

model structure when a large number of predictors are introduced at the initial

stage, but only a small subset of them are truly associated with the response. The

feature dimensionality p is usually much larger than the sample size n. These so

called “large p, small n” problems require tools that are not only powerful, but also

computationally efficient. While association methods such as the LASSO (Tibshi-

rani, 1996) and SCAD (Fan and Li, 2001) are powerful, they require significant

computational resources for large-dimensional data sets. One of the main issues

stems from having to handle all the predictors jointly, which is an enormous com-

putational burden when dealing with hundreds of thousands or possibly millions

of predictors simultaneously. An elegant and effective solution is to incorporate

screening rules. A screening rule is a method which analyzes much smaller subsets

of the predictors and attempts to filter out those that are clearly null. Such rules

may attempt to pick the “best” subset of predictors, or just a substantially smaller

subset which could in turn be analyzed by other methods. By using such screen-

ing rules, it is not unusual to see full day computation times reduced to minutes.

The primary goal of this work is to develop an effective screening procedure for

longitudinal genetic studies such as CAMP.

A number of feature screening procedures have been developed in various con-

texts. Fan and Lv (2008) developed a sure independence screening procedure (SIS)

for ultrahigh dimensional linear models. Furthermore, they showed that SIS pos-
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sesses the sure screening property, i.e. with probability tending to one, it produces

a subset which contains the true underlying predictors. Fan et al. (2010) extended

the SIS for ultrahigh dimensional generalized linear models by ranking the maxi-

mum marginal likelihood estimates. Fan et al. (2011) proposed an SIS for ultra-

high dimensional additive models by ranking the magnitude of each nonparametric

component. In addition, model-free SIS procedures have been advocated in more

recent literature. Zhu et al. (2011) proposed an SIS for the multi-index model set-

ting. Li et al. (2012) developed a distance-correlation based SIS, which are directly

applicable for a multivariate response and grouped predictors. He et al. (2013) pro-

posed a quantile-adaptive model-free feature screening procedure for heterogeneous

data. Screening procedures have also been developed for varying-coefficient mod-

els. Liu et al. (2014) developed an SIS for varying-coefficient models with ultrahigh

dimensional predictor variables (ultrahigh dimensional varying-coefficient models

for short) by using conditional Pearson correlation coefficient to rank the impor-

tance of predictors. Fan et al. (2013) proposed an SIS for ultrahigh dimensional

varying-coefficient models by extending the B-spline techniques in Fan et al. (2011)

for additive models. Song et al. (2014) further extended the proposal of Fan et al.

(2013) for longitudinal data. Both Liu et al. (2014) and Fan et al. (2013) were de-

veloped based on independent and identically observed data, while the proposal of

Song et al. (2014) did not incorporate within subject correlation and dynamic er-

ror variance at the screening stage; a key ingredient of our proposed methodology.

Chapter 2 gives more detailed introductions of these screening methods.

1.1 Motivation

Over the last several decades we have seen the rapid development of high dimen-

sional techniques fueled by the precipitous advancement of technology. As our

computing power has increased, so has our ability to obtain and examine ever

larger and more complicated data sets. One of the primary examples of such

data come from genetic association studies. In traditional genome-wide associa-

tion studies (GWAS) hundreds of thousands or even millions of single nucleotide

polymorphisms (SNPs) are explored to find associations with some phenotypes

of interest, e.g. blood pressure, height, asthma, etc. Companies are develop-
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ing cheaper and cheaper sequencing technologies while also providing increasingly

larger pictures of an individual’s genome. Indeed, the next technological step con-

sists of high throughput sequencing technologies which are capable of complete

genome sequencing. Such studies result in millions of genetic mutations which

include, not only SNPs, but also insertions or deletions of segments of DNA.

The present work was motivated by the Childhood Asthma Management Pro-

gram (CAMP), a 4 year clinical trial which explored the impact of daily asthma

medications on lung development in growing children. We consider 540 subjects

each contributing 16 clinical visits. The goal is to determine which genetic mark-

ers, among hundreds of thousands, affect lung development. The specific outcome

we focus on here is FEV1, a common proxy for lung development, which represents

the volume of air one can expel out of their lungs in one second. Given that the

subjects may change rather rapidly over the course of the trial, we also wish to

understand how the effect of significant SNPs changes over time. Analyzing such

longitudinal genetic data poses a substantial challenge for data scientists and ne-

cessitates the development of new data analytic tools to address scientific questions

and test important hypotheses.

1.2 Contributions

While the vast majority of GWAS are cross-sectional, there are numerous lon-

gitudinal studies which also have genetic measurements. However, high dimen-

sional methods for longitudinal outcomes have only been sparsely studied. In a

longitudinal genetic study such as CAMP, it is typical that researchers collect

many baseline variables, a huge number of genetic markers and longitudinal pre-

dictor variables/phenotypic traits. Some baseline variables and longitudinal pre-

dictor variables should be included in the analysis based on prior studies. None of

the aforementioned works on feature screening for ultrahigh dimensional varying-

coefficient models have studied this situation, and this work intends to fill this gap.

This work also makes a substantial improvement to the B-spline methods in Fan

et al. (2013) and Song et al. (2014) for ultrahigh dimensional varying-coefficient

models, by effectively incorporating within subject correlation and dynamic error

structure. This is now straightforward for standard multivariate regression models
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because it is reasonable to assume that the working models are true or well approx-

imate the truth. However, feature screening procedures focus on cycling through

very small submodels, which are inherently misspecified. This poses a substantial

challenge for constructing effective screening rules using longitudinal data. The

main contributions of this thesis project is to present an effective screening rule

based on B-spline regression and to demonstrate how within subject variability

can be harnessed for increased screening accuracy by Monte Carlo simulation.

Furthermore, we illustrate the proposed screening rule via an empirical analysis

and comparison of the CAMP data. Our empirical analysis clearly shows that the

proposed nonparametric approach is especially useful for such studies as children

change quite extensively over a four-year period with highly nonlinear patterns.

Chapter 3 gives detailed illustrations of our newly proposed procedure, the Monte

Carlo simulations, and the real data application.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we give a detailed re-

view of the existing feature screening procedures with ultrahigh dimensional data

for linear models, nonparametric additive models, and varying-coefficient models.

We also introduce the statistical methods for varying-coefficient models with a

focus on polynomial splines techniques. In Chapter 3, we propose a new screen-

ing procedure for time-varying-coefficient model under longitudinal data setting,

and discuss how to incorporate within subject correlation and dynamic error vari-

ance into the screening procedure to increase screening accuracy. We conduct a

Monte Carlo simulation to examine the finite sample performance of the proposed

screening procedure, and to compare with existing ones. To show its application,

we present an empirical analysis and comparison of CAMP data using the newly

proposed procedure and existing procedures. Some conclusion remarks and future

work are discussed in Chapter 4.



Chapter 2
Literature Review

2.1 Feature screening for ultrahigh dimensional

data

High and ultrahigh dimensional data analysis plays an important role in modern

scientific discovery and statistical research. By high dimension, it is assumed that

the dimension p increases with sample size n at a polynomial rate: pn = O(nα) for

some α > 0. Compared to traditional statistical analysis, it brings new challenges

such as noise accumulation and spurious correlations, and creates computational

issues including heavy cost and algorithmic instability (Fan et al., 2014). Various

variable selection and dimension reduction methods are developed to address the

issue of noise accumulation in order to effectively and accurately make future

prediction and gain scientific insight into the relationship between the features

and response.

Nowadays, data with ultrahigh dimensionality are continuously produced with

new technologies at much cheaper cost. Here, it means that pn increases with

sample size n at an exponential rate: pn = O(exp(an)) for some a > 0. In this sce-

nario, variable selection and dimension reduction methods can be computationally

infeasible. For instance, in genome-wide association studies (GWAS), the avail-

ability of inexpensive and high-throughput measurement of the whole genome and

transcriptome enables the generation of hundreds of thousands of single-nucleotide

polymorphisms (SNPs). The ultrahigh dimensionality of SNPs requires new data
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analysis techniques to study their genetic associations with certain phenotypes.

One potential solution is a two-stage approach, where a computationally efficient

screening procedure is first employed to reduce the dimensionality to a moderate

scale under sample size, and then more sophisticated variable selection techniques

can be applied to identify important predictors and recover the sparse model. First

proposed by Fan and Lv (2008), the idea of feature screening is that 1) marginal

association of a predictor with the response is estimated and used as a criterion to

measure the predictor’s importance in the joint model, and 2) instead of selecting

truly important variables, it aims at removing unimportant ones and generates a

subset that contains all the active predictors with high probability.

2.1.1 Screening methods for linear models

Fan and Lv (2008) introduced the concept of sure screening and proposed Sure

Independence Screening (SIS) method based on correlation learning in linear model

setting. Consider the following linear model

y = Xβ + ε, (2.1)

where y = (y1, . . . , yn)T is an n×1 response vector, X = (x1, . . . ,xn)T is an n×p
design matrix where the rows are independent from each other. Here, it is assumed

that p >> n, and only a small subset of x = (X1, . . . , Xp)
T are truly associated

with the response. Therefore, β is sparse and has d < n nonzero components. For

simplicity, all predictors are standardized to have mean 0 and standard deviation

1. Then, ω = (ω1, . . . , ωp)
T defined as

ω = XTy, (2.2)

is a vector of marginal correlations of predictors with the response. Thus, for any

given γ ∈ [0, 1], a submodel can be defined by

Mγ = {1 ≤ j ≤ p : |ωj| is among the first [γn] largest of all}, (2.3)

where [a] refers to the integer part of a. Thus, simply ranking the marginal cor-
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relations and cutting off at certain point can effectively bring the full model with

dimensionality p to a submodel with size d = [γn] < n.

SIS is shown to have sure screening property, which means that the submodel

after screening contains the true model with probability tending to one under

certain conditions. To be more specific, let M0 = {1 ≤ j ≤ p : βj 6= 0} be the

index set for nonzero components of β, and define z = Σ−1/2x and Z = XΣ−1/2

where Σ = cov(x). The following regularity conditions are needed to establish

sure screening property:

C1. z has a spherically symmetric distribution and Z has a concentration prop-

erty, which states that there exists some c, c1 > 1 and C1 > 0 such that the

following inequality

P (λmax(p̃−1Z̃Z̃T ) > c1 and λmin(p̃−1Z̃Z̃T ) < 1/c1) ≤ e−C1n (2.4)

holds for any n × p̃ submatrix Z̃ of Z with cn < p̃ ≤ p, where λmax(A)

and λmin(A) are the largest and smallest eigenvalue of matrix A. Also, the

random noise ε ∼ N(0, σ2) for some σ > 0.

C2. var(Y ) = O(1) and for some κ ≥ 0 and c2, c3 > 0,

min
i∈M0

|βj| ≥
c2
nκ

and min
i∈M0

|cov(β−1j Y,Xi)| ≥ c3. (2.5)

C3. There exist some τ ≥ 0 and c4 ≥ 0 such that λmax(Σ) ≤ c4n
τ . This

condition rules out strong collinearity.

Suppose the above three conditions are satisfied, and if 2κ+ τ < 1, then there

exists some θ < 1 − 2κ − τ such that when γ ∼ cn−θ with c > 0, it has for some

C > 0,

P (M0 ⊂Mγ) = 1−O(exp(−Cn1−2κ/ log n)) (2.6)

The sure screening property guarantees that the submodel will contain the true

model with an overwhelming probability. And since the size of the submodel

d = [γn] is smaller than n, many standard variable selection methods such as

SCAD (Fan and Li, 2001), adaptive lasso (Zou, 2006) and Dantzig selector (Candes

and Tao, 2007) can be applied to further reduce the dimension and estimate the
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coefficients. The simulation studies in Fan and Lv (2008) show that SIS followed

by SCAD generates the most accurate model.

Although effective in reducing the dimensionality, SIS requires strong condi-

tions for holding sure screening property, such as the concentration property of

the design matrix, the identically normally distributed assumption for the predic-

tors, etc. Under more relaxed conditions, Xue and Zou (2011) proposed a new

method called aggressive betting for sparse noiseless signal recovery, which has

the exact recovery property with overwhelming probability. Consider first an un-

derdetermined linear equation system yn×1 = Xn×pβp×1, where p >> n and X

here is called a sensing matrix. The sparsest solution is obtained by the following

optimization problem:

min ||β||L0

(
=

p∑
j=1

1(βj 6= 0)

)
subject to y = Xβ. (2.7)

The aggressive betting method is based on SIS correlation learning, and it is com-

putationally efficient to find the solution. The idea is to find a secure bet M
such that M0 ⊂ M, where M0 is the index set for true signals. Then, the lin-

ear system can be rewritten as y = XMβM, where XM = (. . . , xj, . . .)
T and

βM = (. . . , βj, . . .)
T with j ∈M1. And the nonzero components can be extracted

from βM = X−1M y as the sparse signals. Xue and Zou (2011) proposed to use SIS

correlation learning to find this secure bet. They use γ = 1 in (2.3), and generates

an aggressive betting index set M1 that contains the first n largest |ωj|’s. It can

be shown theoretically that M1 is a secure bet with overwhelming probability for

a wide class of random sensing matrices.

Xue and Zou (2011) further considered sparse recovery in a contaminated linear

system defined by yn×1 = Xn×pβp×1 + εn×1, where ε denotes the measurement

error. The sparest solution can be found from the following minimization problem:

min ||β||L1

(
=

p∑
j=1

|βj|

)
subject to ||y −Xβ||L2

=

√√√√ n∑
i=1

(yi − xiβ)2

 ≤ ν,

(2.8)

where ν denotes the size of the error term ε. They proposed to perform SIS

first to reduce the dimension and then do robust compressed sensing (2.8), and
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showed that the sure screening property holds with an overwhelming property.

Compared to SIS in Fan and Lv (2008), the aggressive betting method relaxes

the concentration property and identical distributions condition for X and only

requires independence of its entries. Moreover, they provide theoretical insights

on the impact of noise-to-signal ratio on the probability of sure screening.

Motivated by SIS, Wang (2009) studied the popular and classical variable

screening method, forward regression (FR), under the ultrahigh dimensional setup.

They proposed FR screening method, and established its screening consistency

property. Consider again the linear model (2.1). Let M(k) be the index set of the

submodel at the kth step. Then, FR algorithm can be applied as follow.

Step 1. Set M(0) = ∅.

Step 2. At the kth step where k ≥ 1, for every j ∈ {1, . . . , p}\M(k), construct a

candidate model based on the index setMj =M(k−1)⋃{j}. Then compute

residual some of squares (RSS) from the candidate model y = XMj
β+ε us-

ing least square estimation, i.e. RSSj = yT (In−XMj
(XT
Mj
XMj

)−1XT
Mj

)y,

where In is an n × n identity matrix. Choose the model with the smallest

RSS and update the index set to M(k).

Step 3. Iterate Step 2 for n times, which yields a solution path consisting of n nested

models M = {M(k) : k = 1, . . . , n}.

The solution path M is defined to achieve screening consistency if

P (M0 ⊂M(k) ∈M for some 1 ≤ k ≤ n)→ 1. (2.9)

Suppose the following conditions are satisfied: 1) both X and ε are normally

distributed; 2) there exist 0 < τmin < τmax < ∞ such that 2τmin < λmin(Σ) <

τmax(Σ) < τmax/2; 3) ||β||L2 ≤ Cβ for some Cβ > 0 and minj∈M0 |βj| ≥ νβn
−ξmin

for some ξmin > 0; and 4) there exists constants ξ, ξ0 and ν, such that log p ≤
νnξ, |M0| ≤ νnξ0 and ξ + 6ξ0 + 12ξmin < 1. Then, Wang (2009) showed that as

n→∞
P (M0 ⊂M(Kνn2ξ0+4ξmin ))→ 1, (2.10)

where K = 2τmaxνC
2
βν
−4
β τ−2min. This means that with probability tending to one,

FR can select all relevant predictors within O(n2ξ0+4ξmin) steps, which is a much
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smaller number than n under the 4th condition. To further refine the model, the

author suggested using the following BIC criterion (Chen and Chen, 2008) for a

model defined by M

BIC(M) = log

(
1

n
RSS(M)

)
+

1

n
|M| (log n+ 2 log p) . (2.11)

The best model denoted by M̂ can be selected from the solution path M to be

the one with the smallest BIC. It can be shown that the model M̂ is screening

consistent, i.e. P (M0 ⊂ M̂)→ 1, as n→∞.

Remark Liang et al. (2012) extended this method to semiparametric partially

linear models and proposed profiled forward regression (PRF) screening method.

Specifically, they consider the partially linear model,

Y = XTβ + g(U) + ε, (2.12)

where g(·) is an unknown smooth function, and U is an univariate explanatory

variable in [0, 1]. To deal with the nonparametric part, the authors adopted the

profile least squares approach used in Fan et al. (2005). They define the profiled

response and the profiled predictor as Y ∗i = Yi−E(Yi|Ui) andX∗i = Xi−E(Xi|Ui)
respectively, where each component of X∗i is X∗ij = Xij−E(Xij|Ui) for i = 1, . . . , n

and j = 1, . . . , p. Then the model reduces to classical linear regression model

Y ∗i = X∗i β + εi. (2.13)

The unknown functions E(Yi|Ui) and E(Xi|Ui) can be estimated nonparametrically

by methods such as local linear regression (Fan and Gijbels, 1996). Then, the

forward regression screening procedure can be applied using the profiled estimators.

Under the same setting of linear model (2.1), Wang (2012) considers in specific

the correlation structure among predictors, and proposed factor profiled SIS (FP-

SIS). It assumes that the correlation structure of the high-dimensional predictors

can be well represented by a set of low-dimensional latent factors:

Xi = BZi + X̃i, (2.14)
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where Xi is the ith row of X, Zi is a d-dimensional latent factor and B = (bjk)

is an p × d loading matrix. X̃i contains the information in Xi that is missed by

Zi, and cov(X̃i) is a diagonal matrix. In addition, it is assumed that Yi, Xij and

X̃ij have mean 0 and variance 1, and cov(Zi) = I. εi is allowed to be correlated

with Xi through the latent factor Zi: εi = ZT
i α+ ε̃i, and this might causes biased

ordinary least squares estimates and affect the performance of SIS.

The idea of FP-SIS is to remove the common factor Zi by profiling the response,

predictor and noise. Specifically, define a profiled response as Ỹi = Yi −ZT
i γ with

γ = BTβ +α. Then, model (2.1) can be written as

Ỹ = X̃β + ε̃, (2.15)

where X̃ and ε̃ are uncorrelated, and columns of X̃ are also mutually uncorrelated.

In this case, β can be estimated consistently.

By the above results, the model can be rewritten into matrix forms of the

observed variables:

Y = Zγ + Ỹ = Zγ + X̃β + ε̃, and X = ZBT + X̃. (2.16)

Let S(Z) denote the linear space spanned by the column vectors of Z, then

H(Z) = Z(ZTZ)−1ZT is an n × n projection matrix onto S(Z) and Q(Z) =

I −H(Z) is another projection matrix onto the space orthogonal to S(Z). Then

model (2.15) can be well approximated by Q(Z)Y = Q(Z)Xβ+Q(Z)ε, if a good

estimate of Q(Z) is available. Wang (2012) proposed to first estimate the latent

factor dimension d by a maximum eigenvalue ratio criterion, and use a least square

type objective function to estimate the loading matrix B and then estimate Z by

a profiled objective function. It has been shown that factor dimension d can be

estimated consistently, and with a correctly specified d, S(Z) can be estimated

accurately. Finally, the factor profiled response and predictor can be obtained by

Ŷ = Q(Ẑ)Y and X̂ = Q(Ẑ)X, and SIS can be applied. This procedure also has

sure screening property. As suggested in Wang (2009), one can use BIC criterion

defined in (2.11) to further reduce the model size.

All previous screening methods developed for linear model are based on Pearson

correlation learning. Li et al. (2012) proposed a robust rank correlation screening
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(RRCS) method based on Kendall τ correlation coefficient. Given pairs of data

{Yi, Xij}ni=1, the marginal rank correlation coefficient between Y and Xj is defined

as

ωj =
1

n(n− 1)

n∑
i 6=k

I(Xij < Xkj)I(Yi < Yk)−
1

4
, j = 1, . . . , p. (2.17)

And the importance of predictors can be ranked by the magnitudes of ωj, so that

a submodel can be defined the same way as (2.3).

There are several nice features about RRCS that Pearson correlation based

SIS does not have. First, it is robust under outliers and influence points in the

observations. Second, the Kendall τ is invariant under monotonic transformation,

which allows RRCS to discover nonlinear relationship and deal with semipara-

metric models such as transformation regression models and single-index models

under monotonic constraint to the link function without involving nonparametric

estimation. Third, the use of ranking information greatly simplifies the theoret-

ical derivation and allows RRCS to achieve sure screening property with only a

moment condition.

2.1.2 Screening methods for additive model

Fan et al. (2011) extended SIS (Fan and Lv, 2008) to nonparametric model, and

proposed nonparametric independence screening method for additive models. The

idea is similar to SIS, i.e. to rank the importance of each predictor in the joint

model based on a measure of the goodness of fit of their marginal model. The dif-

ference occurs at the marginal model of the response Y against each predictor Xj,

which is nonparametric regression in this scenario. To be more specific, consider

the following nonparametric additive model

Y =

p∑
j=1

mj(Xj) + ε, (2.18)

where {mj(Xj)}pj=1 are unknown smooth functions and ε is the random error with

conditional mean 0. For identifiability, it is assumed that {mj(Xj)}pj=1 have mean
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0. The index set for the true model is now defined by

M0 = {1 ≤ j ≤ p : E[mj(Xj)
2] > 0}. (2.19)

To identify important variables and recover sparsity, the following p marginal non-

parametric regression problems are considered:

min
fj∈L2(P )

E(Y − fj(Xj))
2, (2.20)

where P denotes the joint distribution of (X, Y ) with X = (X1, . . . , Xp)
T , and

L2(P ) is the class of square integrable functions under the measure P . The solution

to the minimization problem (2.20) is fj(Xj) = E(Y |Xj), which is the projection

of Y onto Xj. Then, the marginal utility of Xj can be measured by Ef 2
j (Xj).

To estimate Ef 2
j (Xj), Fan et al. (2011) used B-spline basis functions to ap-

proximate {fj(·)}pj=1. Let Sn be the space of polynomial splines of degree l ≥ 1

and {Ψjk, k = 1, . . . , dn} be a normalized B-spline basis with ||Ψjk||∞ ≤ 1, where

|| · ||∞ is the sup norm. Then, for any fnj ∈ Sn and j = 1, . . . , p,

fnj(x) =
dn∑
k=1

βjkΨjk(x). (2.21)

Under some smoothness conditions, fj(·) can be well approximated by fnj(·) for

j = 1, . . . , p, and the marginal nonparametric regression problem can be formulated

into

min
fnj∈Sn

1

n

n∑
i=1

(Yi − fnj(Xij))
2 = min

βj∈Rdn

1

n

n∑
i=1

(Yi −ΨT
ijβj)

2, (2.22)

where βj = (βj1, . . . , βjdn)T and Ψij = (Ψ1(Xij), . . . ,Ψdn(Xij))
T . Using ordi-

nary least square method, the minimizer of (2.22) can be obtained as β̂j =

(ΨT
j Ψj)

−1ΨT
j Y , where Ψj = (Ψ1j, . . . ,Ψnj)

T and Y = (Y1, . . . , Yn)T . Thus,

Ef 2
j (Xj) can be estimated by ||f̂nj||2n = 1

n

∑n
i=1 f̂

2
nj(Xij) with f̂nj(Xij) = ΨT

ijβ̂j.

Similar rule as (2.3) can be applied to select a submodel with |β̂Mj | replaced by

||f̂nj||2n. Note that it is also equivalent to rank the residual sum of squares of the

marginal regression model, where RSSj = 1
n

∑n
i=1(Yi − f̂nj(Xij))

2.

The theoretical basis of the sure screening is, as pointed out by Fan et al. (2011),
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that the marginal signal of the true predictors {Ef 2
j , j ∈ M0} does not vanish.

The minimum signal of {||fnj||}j∈M0 is at the same level of the marginal projection

{||fj||}j∈M0 when the approximation error is negligible, which can be controlled by

the number of basis functions used. Under certain regularity conditions, the uni-

form convergence of {||f̂nj||j∈M0} to {||fnj||j∈M0} and the sure screening property

hold.

2.1.3 Screening methods for varying-coefficient models

Fan et al. (2013) extends NIS procedure (Fan et al., 2011) to screen variables in

ultrahigh dimensional sparse varying-coefficient models with the following form:

Y = β0(W ) +

p∑
j=1

βj(W )Xj + ε, (2.23)

where {βj(·)}pj=0 are unknown smooth functions and W is some observable expo-

sure variables. It is assumed that β = (β1(·), . . . , βp(·))T is sparse, and the index

set for the true sparse model is defined as M0 = {1 ≤ j ≤ p : E[β2
j (W )] > 0}.

The marginal strength of each predictor can be measured by the expected con-

ditional correlation between Y tand Xj with respect to W . Consider the following

marginal regression model for Xj:

min
βMj0 (W ),βj(W )∈L2(P )

E[(Y − βMj0 (W )− βj(W )Xj)
2|W ]. (2.24)

The minimizer of (2.24) is

βMj0 (W ) =
cov(Xj, Y |W )

var(Xj|W )
, βMj (W ) = E(Y |W )− βMj0 (W )E(Xj|W ). (2.25)

Then the utility of Xj is defined by

uj = E[βMj0 (W ) + βMj (W )Xj]
2 − E[βM0 (W )]2 = E

{
[cov(Xj, Y |W )]2

var(Xj|W )

}
, (2.26)

where E[βM0 (W )]2 = E(Y |W ). To estimate uj, similar technique used by Fan

et al. (2011) is applied, i.e. to approximate unknown coefficients {βMj0 (W )}pj=1 and
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{βMj (W )}pj=0 by B-splines basis functions:

βMj0 (W ) ≈
dn∑
k=1

ηjkΨjk(W ) and βMj (W ) ≈
dn∑
k=1

θjkΨjk(W ). (2.27)

Then, ηj = (ηj1, . . . , ηjdn)T and θj = (θj1, . . . , θjdn)T can be estimated by minimiz-

ing the ordinary least squares:

min
ηj ,θj

1

n

n∑
i=1

[Yi −Ψij(Wi)ηj −Ψij(Wi)θj]
2, (2.28)

where Ψij(Wi) = (Ψ1(Wi), . . . ,Ψdn(Wi))
T . Then a sample estimate of the marginal

utility uj can be obtained by

ûj =
1

n

n∑
i=1

[β̂Mj0 (Wi) + β̂Mj (Wi)Xij]
2 − 1

n

n∑
i=1

[β̂0(Wi)]
2 (2.29)

where β̂Mj0 , β̂Mj and β̂M0 are the estimates for βMj0 , βMj and βM0 using LSE from

(2.28). An equivalent measure of marginal strength is the residual sum of squares

of the marginal regression model, which can be calculated by

v̂j =
n∑
i=1

[Yi − β̂Mj0 (Wi)− β̂Mj (Wi)Xij]
2. (2.30)

By properly choosing thresholds τn or νn, a submodel can be defined by

Mτn,νn = {1 ≤ j ≤ p : ûj ≥ τn} = {1 ≤ j ≤ p : v̂j ≥ νn}. (2.31)

Under certain regularity conditions, the sure screening property holds.

A very similar screening procedure is proposed in Liu et al. (2014), where the

conditional correlations between Y and Xj’s are estimated using kernel smoothing

method. Consider again the varying-coefficient model (2.23). The importance of

predictors can be measured by E[ρ2(Xj, Y |W )], where the conditional correlation
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ρ(Xj, Y |W ) is defined as

ρ(Xj, Y |W ) =
cov(Xj, Y |W )√

var(Xj|W )var(Y |W )
. (2.32)

To estimate ρ(Xj, Y |W ), Liu et al. (2014) applied kernel smoothing method to esti-

mate the five conditional means involved: E(Xj|W ), E(Y |W ), E(X2
j |W ), E(Y |W )

and E(XjY |W ), which are assumed nonparametric smoothing functions of W . Let

K(t) be a kernel function and Kh(t) = K(t/h)/h, where h is a bandwidth. Then

the kernel regression estimate for E(Y |W ) is

Ê(Y |W ) =
n∑
i=1

Kh(Wi −W )Yi∑n
i=1Kh(Wi −W )

. (2.33)

Estimates for the other four conditional means can be similarly defined, and

ĉov(Xj, Y |W ), v̂ar(Xj|W ) and v̂ar(Y |W ) can be obtained, and ρ̂(Xj, Y |W ) can

be calculated as well. Based on the observed i.i.d. data {yi, wi, xij}ni=1, a plug-in

estimate for E[ρ2(Xj, Y |W )] is uj =
∑n

i=1 ρ̂
2(xij, yi|wi)/n for j = 1, . . . , p. Then,

the screened submodel is defined by

M̂ = {j : 1 ≤ j ≤ p : uj ranks among the first d}, (2.34)

where Liu et al. (2014) suggested using d = [n4/5/ log(n4/5)]. Under certain reg-

ularity conditions, this method has both ranking consistency and sure screening

properties, where the former states that the ranks of the true predictors are con-

sistently higher than the ranks of the unimportant predictors.

Both methods proposed in Fan et al. (2013) and Liu et al. (2014) are devel-

oped for independent data. For longitudinal data with correlated response, Song

et al. (2014) and Cheng et al. (2014) proposed to apply screening procedure in

Fan et al. (2013) and assume working independence at the screening stage. The

only difference is that they considered marginal weighted least square estimation,

where equal weight for single observation or equal weight for single subject is used.

The sure screening property is established in both works under certain conditions.

After reducing the number of covariates to a moderate size by screening, Cheng

et al. (2014) proposed to further identify varying coefficients using a group SCAD
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estimator by accounting for within-subject correlation.

2.2 varying-coefficient model for longitudinal

data

Parametric models such as linear model and generalized linear model are the most

fundamental tools in statistical analysis. However, they are developed based on

strict assumptions about the relationship between the response and the covariates.

In practice, dynamic features exist in data from various scientific areas worth great

attention and exploration, and its underlying mechanism cannot be fully under-

stood via parametric modeling. One of the many attempts to increase flexibility

and incorporate dynamic features is to fit the data with varying-coefficient model,

which allows the regression coefficients to depend on certain covariates. First pro-

posed in Hastie and Tibshirani (1993), the varying-coefficient model is defined

as

y = XTβ(U) + ε, (2.35)

where y is the response, X = (X1, . . . , Xp) is a p−dimensional predictor, U is the

univariate index variable, and ε is the random error with E(ε|X, U) = 0. Here,

β(U) = (β1(U), . . . , βp(U))T consists of p unknown smooth functions of U , which

need to be estimated by nonparametric approach. Model (2.35) can be easily

extended to generalized linear model framework, by assuming

E(y|X, U) = g−1(XTβ) (2.36)

where g−1(·) is the inverse of the link function g(·).
One of the various applications of varying-coefficient model is to analyze lon-

gitudinal data. Longitudinal data occur frequently in biomedical research, where

the subjects are measured repeatedly over a given period of time. By allowing the

coefficients to vary with time, one can explore time-dependent effects and patterns

without posing parametric constraints on the temporal changes of the relationship

between response and covariates.

Specifically, consider a random sample from n subjects, and for the i−th
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subject, we observe the response yi(t) along with its covariate vectors xi(t) =

(xi1(t), . . . , xip(t))
T at times tij, j = 1, · · · , Ji, where Ji is the total number of

observations from the ith subject. To explore potential time-varying effects, we

consider the following time-varying coefficient model

yi(t) = β0(t) +

p∑
k=1

βk(t)xik(t) + εi(t), (2.37)

where {βk(t), k = 0, . . . , q} are nonparametric smooth coefficient functions, and

εi(t) is the error term with conditional mean E{εi(t)|xi(t), zi(t)} = 0. The vari-

ance and covariance functions of εi(t) is assumed to be time-varying and denoted

by σ2
ε(t) and Cε(s, t) for s 6= t. Meanwhile, within-subject correlation is consid-

ered while observations from different subjects are independent. In general, it is

assumed that t ∈ T , where T is an interval in R.

2.2.1 Coefficient functions estimation

There are mainly three different estimation methods for {βk(t), k = 0, . . . , q} in

(2.37). One is kernel-local polynomial smoothing proposed in Hoover et al. (1998),

Fan and Zhang (1999) and Fan and Zhang (2008), etc. One is smoothing spline

estimation, see Hastie and Tibshirani (1993), Hoover et al. (1998) and references

therein. The last one is polynomial spline introduced in Huang et al. (2002, 2004)

and Huang and Shen (2004), etc. In this section, we mainly describe the estimation

method using polynomial splines proposed by Huang et al. (2002, 2004), and briefly

introduce kernel-local polynomial smoothing in Section 2.2.1.6.

2.2.1.1 Polynomial splines

Polynomial splines are piecewise polynomials with the polynomial pieces jointing

smoothly at a set of interior knots based on certain continuity and derivatives

conditions. The knots are denoted by ξ0 < ξ1 < . . . < ξL < ξL+1 where ξ0 and

ξL+1 are two end points of the interval on T . A spline of degree d ≥ 0 consists

of polynomials of degree d on each of the intervals [ξl, ξl+1), 0 ≤ l ≤ L − 1 and

[ξL, ξL+1], and globally has d − 1 continuous derivatives for d ≥ 1. Thus, the

parameters need to be determined by the users include:
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(a) The degree of the spline function, d;

(b) The number of knots, L;

(c) The positions of the interior knots, {ξl, l = 1, . . . , L};

(d) The number of free coefficients, i.e. degree of freedom of the spline function,

M = L+ d+ 1.

One need to specify two out of (a), (b) and (d) to create the spline basis. Setting

d = 0, 1, 2, 3 corresponds to, respectively, a piecewise constant function, linear,

quadratic and cubic spline, among which cubic spline is the most commonly used.

2.2.1.2 B-spline approximation and least squares estimation

While there are different options of spline basis, we introduce Basis spline, or B-

spline, which is a spline function that has the minimal support with respect to

a given degree, smoothness and knots positions. See De Boor et al. (1978) and

Schumaker (1981) for detailed construction and good properties of B-spline. Let

{Bkm,m = 1, . . . ,Mk} be a B-spline basis for a linear space Gk of spline functions

on T , then βk(t) can be approximated by

βk(t) ≈
Mk∑
m=1

γkmBkm(t), k = 0, 1, . . . , p. (2.38)

Mk, the number of basis functions used for βk(t), can be different for different

k. Larger Mk leads to more accurate approximations of the varying coefficients

but at the cost of higher variance (i.e. the tradeoff between bias and variance).

Therefore, it is natural to allow Mk to increase with sample size. Then, model

(2.37) becomes, approximately, a linear regression model:

yi(tij) ≈
p∑

k=0

Mk∑
m=1

γkmBkm(tij)xik(tij) + εi(tij), (2.39)
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where xi0(tij) ≡ 1 for all i and j. Using least square method, {γkm,m = 1, . . . ,Mk;

k = 1, . . . , p} can be esitmated by minimizing

n∑
i=1

ωi

Ji∑
j=1

(
yi(tij)−

p∑
k=0

Mk∑
m=1

γkmBkm(tij)xik(tij)

)2

, (2.40)

where ωi is the weight for the i−th subject. ωi ≡ 1 and ωi = 1/Ji corre-

spond to, respectively, equal weights for all observations and all subjects. Let

γ = (γT0 , . . . ,γ
T
p )T with γk = (γk1, . . . , γkMk

)T ,

B(t) =


B01(t) · · · B0M0(t) 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 Bp1(t) · · · BpMp(t)

 , (2.41)

Zi = (Zi1, . . . ,ZiJi)
T with ZT

ij = xTi (tij)B(tij), Ωi = diag(ωi, . . . , ωi), and yi =

(yi(ti1), . . . , yi(tiJi))
T . Then, provided that

∑
iZ

T
i ΩiZi is invertible, the minimizer

of (2.40) becomes

γ̂ =

(
n∑
i=1

ZT
i ΩiZi

)−1 n∑
i=1

ZT
i Ωiyi. (2.42)

Hence, βk(t) can be estimated by β̂k(t) =
∑

m γ̂kmBkm(t).

2.2.1.3 Variance-covariance estimation for the spline estimators

Based on (2.42), the variance-covariance matrix of γ̂ is

var(γ̂) =

(
n∑
i=1

ZT
i ΩiZi

)−1( n∑
i=1

ZT
i ΩiViΩiZi

)(
n∑
i=1

ZT
i ΩiZi

)−1
, (2.43)

where Vi ≡ var(yi) = (Cε(tij, tij′)) and Cε(t, s) is the variance-covariance function

of ε(t). The variance-covariance matrix of β̂(t) = (β̂0(t), . . . , β̂p(t))
T is var(β̂(t)) =

B(t)var(γ̂)BT (t).
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2.2.1.4 Selection of smoothing parameters

Due to computational complexity, it is impractical to select in an optimal way

for all three parameters: the degrees of splines, the number of basis functions (or

numbers of knots), and the locations of knots. Huang et al. (2004) suggested using

equally spaced knots and fixed degree, and only selecting the number of basis

functions M by “leave-one-out” cross-validation (LooCV). This technique is also

advocated in Rice and Silverman (1991), Hart and Wehrly (1993) and Hoover et al.

(1998). Specifically, let β̂(−i)(t) be the spline estimator obtained from deleting all

the data of the i−th subject. Define the cross-validation criterion to be

CV =
n∑
i=1

Ji∑
j=1

{
ωi

(
yi(tij)− xTi (tij)β̂

(−i)(tij)
)2}

. (2.44)

Then, {Mk, k = 0, . . . , p} is obtained by minimizing this cross-validation score.

When the sample size is very large, one can also use the “K-fold” LooCV to reduce

computation.

2.2.1.5 Asymptotic Theory

The asymptotic properties of spline estimator β are discussed in Huang et al.

(2004). Let Mn = max0≤k≤pMk and dist(βk,Gk) = infg∈Gk supt∈T |βk(t) − g(t)|
be the L∞ distance between βk(·) and Gk. The following technical conditions are

considered:

C1. The time points {tij, j = 1, . . . , Ji, i = 1, . . . , n} are independently dis-

tributed on T as FT with a Lebesgue density fT (t) which is bounded away

from 0 and infinity uniformly over t ∈ T . Moreover, they are also indepen-

dent of the response and covariates {(yi(tij)),xi(t)), i = 1, . . . , n}.

C2. The eigenvalues λ0(t) ≤ . . . ≤ λp(t) of Σ(t) = E[x(t)xT (t))] are bounded

away from 0 and infinity uniformly on T , i.e. K1 ≤ λ0(t) ≤ . . . ≤ λp(t) ≤ K2

for some positive constants K1 and K2.

C3. There exists a positive constant K3 such that E[xk(t)] ≤ K3 for t ∈ T and

k = 0, . . . , p.
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C4. There exists a constant K4 such that σ2
ε(t) ≤ K4 <∞ for t ∈ T .

C5. lim supn(maxkMk/minkMk) <∞

C6. ε(t) can be decomposed into two independent parts ε(1)(t) and ε(2)(t), where

ε(1)(t) has mean zero with arbitrary covariance structure, and ε(2)(t) is mea-

surement error with mean zero and variance σ2 that are independent at

different time points.

Theorem 1.(Consistency) Under conditions C1-C5, dist(βk,Gk) = 0, k =

1, . . . , p, and limnMn logMn/n = 0, β̂k, k = 1, . . . , p, are uniquely defined with

probability tending to one. Moreover, β̂k, k = 0, 1, . . . , p, are consistent, that is,

limn→∞ ||β̂k − βk||L2 = 0

Let β̃k(t) = E[β̂k(t)] be the mean of β̂k(t). The rates of convergence is estab-

lished in the following theorem.

Theorem 2.(Rates of Convergence) Suppose conditions C1-C5 hold, and

limnMn logMn/n = 0. Then, ||β̃k − βk|| = Op(ρn) and ||β̂k − β̃k||2L2
= Op(1/n +

Knn
−2∑

i J
−1
i ), where ρn = max0≤k≤p dist(βk,Gk). Consequently, ||β̂k − βk||2L2

=

Op(1/n+Knn
−2∑

i J
−1
i + ρ2n).

Theorem 3.(Asymptotic Normality) Suppose conditions C1-C6 hold, and

limnMn logMn/n = 0 and limnMn maxi Ji/n = 0. Then, {var[β̂(t)]}−1/2(β̂(t) −
β̃(t))→ N(0, I) in distribution, where β̃(t) = (β̃0, . . . , β̃p)

T .

The asymptotic normality results can be used to construct asymptotic confi-

dence intervals and confidence bands.

2.2.1.6 Other methods

The varying-coefficient model can be considered as a linear model at each given

time point. Therefore, it is reasonable to estimate the coefficients using data from

a local neighborhood, which is the idea of kernel-local polynomial smoothing. The

coefficient functions {βk(t), k = 1, . . . , p} are approximated locally by

βk(t) ≈ βk(t0) + β
′

k(t0)(t− t0) ≡ ak + bk(t− t0) (2.45)
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for any t in a neighborhood of t0. ak and bk can be estimated by minimizing the

weighted least squares

n∑
i=1

Ji∑
j=1

(
yi(tij)−

p∑
k=1

(ak + bk(tij − t0))xi(tij)

)2

Kh(tij − t0), (2.46)

where Kh(t) = K(t/h)/h, K(t) is a kernel function and h is a bandwidth. Fre-

quently used kernels include Gaussian kernel (K(t) = 1√
2π

exp(−t2/2)), uniform

kernel (K(t) = I(|t| < 1/2)), and Epanechikov kernel (K(t) = 0.75(1 − t2)+,

t ∈ [−1, 1]), etc. See Fan and Zhang (1999) for matrix form of the solution. Here,

h is the only tuning parameter to control the extent of smoothing, so that the

choice of h is essential. LooCV described in Section 2.2.1.4 can be applied, but

it might cause heavy computation. Another popular method is to use the Mean

Squared Error (MSE) criterion, which can be decomposed into the summation of

variance and the squared bias. More details of estimation procedures for bias and

variance can also be found in Fan and Zhang (1999).

2.2.2 Covariance structure estimation

An important issue with longitudinal data analysis is to study the within-subject

correlation structure. Good estimation of the covariance structure improves the

efficiency of estimated regression coefficients, makes better prediction of individual

trajectory, and also shed valuable insights in practical problems (Sun et al., 2007).

This issue has been thoroughly investigated in parametric modeling; see Diggle

et al. (2002) and references therein. In nonparamtric setting, Wang (2003) pro-

posed a marginal kernel method that incorporates the true correlation structure.

This method has been further extended to marginal generalized semiparametric

partially linear models by Wang et al. (2005), which achieves semiparametric in-

formation bound derived in Lin and Carroll (2001). Qu and Li (2006) proposed

an estimation method for varying-coefficient model that uses penalized quadratic

inference functions to incorporate within-subject correlation. In this section, we

introduce two estimation procedures for the covariance structure. The first one

(Huang et al., 2004) applies polynomial splines to approximate both variance and

covariance function. The second one (Fan et al., 2007) uses a kernel estimator
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for the nonparametric variance function, and assumes a parametric form for the

correlation structure.

2.2.2.1 Polynomial splines method

Huang et al. (2004) proposed a spline based estimate of the covariance function.

Let {Bm,m = 1, . . . ,M} be a splines basis on T with a fixed knot sequence.

Cε(t, s) can be approximated by a tensor product spline on T × T :

Cε(t, s) ≈
∑
m

∑
l

umlBm(t)Bl(s), t, s ∈ T , t 6= s. (2.47)

Note that E[ε(tij)ε(tij′)] = Cε(tij, tij′) for j 6= j′ and C(t, s) = C(s, t). Thus,

{uml : uml = ulm} can be estimated by minimizing

n∑
i=1

Ji∑
j,j′=1,j<j′

(
ri(tij)ri(tij′)−

∑
m

∑
l

umlBm(tij)Bl(tij′)

)2

, (2.48)

where ri(tij) ≡ yi(tij)− β̂0(tij)−
∑

k β̂k(tij)(tij), and β̂k(tij) for k = 0, 1, . . . , p can

be obtained using method described in Section 2.2.1.2. Let ûml be the minimizers.

Then, a spline estimator for Cε(t, s) is Ĉε(t, s) =
∑

m

∑
l ûmlBm(t)Bl(s).

To estimate the variance function σ2
ε(t), it can be approximated by

σ2
ε(t) ≈

∑
m

vmBm(t), (2.49)

where vm can be estimated by minimizing

n∑
i

Ji∑
j

(
r2i (tij)−

∑
m

Bm(tij)

)2

. (2.50)

A spline estimator for σ2
ε(t) is denoted by σ̂2

ε(t) =
∑

m v̂mBm(t).

Good estimations of Cε(t, s) and σ2
ε(t) depend on appropriate choices of smooth-

ing parameters. In practice, equally spaced knot sequences are usually preferred,

and the number of knots can be chosen subjectively or through cross-validation

procedures described in Section 2.2.1.4.
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2.2.2.2 Semiparametric estimation method

Fan et al. (2007) considered a parametric correlation structure with a nonpara-

metric variance function. To estimate σ2
ε(t) nonparametrically, they used a kernel

estimator

σ̂2
ε(t) =

∑n
i

∑Ji
j r

2
i (tij)Khε(t− tij)∑n

i

∑Ji
j Khε(t− tij)

. (2.51)

For the correlation structure, let Ci(θ) be the correlation matrix for the i−th sub-

ject with (j, j′)th element equaling ρ(tij, tij′ ,θ). The function form of ρ(s, t,θ) is

known (e.g. working independence, ARMA(1, 1), etc.), but θ is unknown and

needs to be estimated. Although ρ(s, t,θ) might not be the true correlation func-

tion, one can always find a θ to improve the efficiency of coefficient estimation. To

estimate θ, Fan et al. (2007) proposed two minimization criterion: quasi-likelihood

and minimum generalized variance of the regression coefficients. To further reduce

modeling biases, Fan et al. (2007) suggested expanding the family of parametric

functions by taking a linear combinations of different correlation structures.



Chapter 3
A new feature screening procedure

3.1 Methodology

In this section, we introduce a screening method for ultrahigh-dimensional time-

varying coefficient model for longitudinal data. Suppose that we collect a random

sample from n subjects, and for the i-th subject, we observe the response yi(t)

along with its covariate vectors {zi(t),xi(t)} at times tij, j = 1, · · · , Ji, where Ji is

the total number of observations from the ith subject. The covariate vector zi(t)

is a low-dimensional predictor consists of variables that are believed to impact

the response based on empirical evidence or relevant theories. While we always

include the argument t, a particular covariate need not change with time, such as

gender. Thus, zi(t) should be included into the model, and is not subject to be

screened. The covariate vector xi(t) is ultrahigh dimensional and contains a vast

number of covariates such as hundreds of thousands of SNPs. It is believed that a

relatively small number of x-variables have an impact on the response, and most

of x-variables are likely to be irrelevant. To explore potential time-varying effects,

we consider the following time-varying coefficient model

yi(t) = β0(t) +

q∑
l=1

βl(t)zil(t) +

p∑
k=1

γk(t)xik(t) + εi(t), (3.1)

where {βl(t), l = 0, · · · , q} and {γk(t), k = 1, · · · , p} are nonparametric smooth

coefficient functions, and εi(t) is the error term with conditional mean zero on the
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covariates: E{εi(t)|xi(t), zi(t)} = 0. It is assumed throughout this paper that the

variance of εi(t) varies across time, and the error εi(t)s are independent between

subjects but correlated within subject. In model (3.1), t need not be calendar time.

For example, we may set t to be the age of a subject in order to explore potential

age-dependent genetic effects and examine whether genetic effect changes across

developmental stages. In general, it is assumed that t ∈ T , where T is an interval

in R.

The goal of a screening procedure is to effectively filter out as many unimpor-

tant x-variables as possible while retaining all important x-variables. To denote

the significant variables, we define the index set

M0 = {1 ≤ k ≤ p : ‖γk(·)‖2 > 0}. (3.2)

The screening procedure proposed by Liu et al. (2014) based on conditional corre-

lation cannot be used for feature screening for model (3.1) because of the inclusion

of z-variables. The screening procedures developed in Fan et al. (2013) and Song

et al. (2014) may be directly applicable for model (3.1) by assuming within-subject

observations are independent. In this section, we introduce a more effective screen-

ing procedure, which improves the proposal of Fan et al. (2013) by incorporating

within-subject correlation and taking into account the time-varying error variance.

We next describe our procedure.

For each k, we define a marginal nonparametric regression model with the kth

x-variable:

yi(tij) = β∗0k(tij) +

q∑
l=1

β∗lk(tij)zil(tlj) + γ∗k(tij)xik(tij) + ε∗i (tij), (3.3)

where {β∗lk(t), l = 0, 1, . . . , q} and γ∗k(t) are smooth coefficient functions. Intu-

itively, the residual sum of squares of model (3.3) may be used to measure the

importance of the k-th x-variable. A smaller residual sum of squares implies that

the corresponding x-variable explains the more variation of the response variable,

and therefore would be more important.

Model (3.3) is a nonparametric regression model. We employ a regression spline

method to estimate its coefficient functions and obtain its residuals. Using cubic
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B-splines bases, we approximate {β∗lk(t), l = 0, 1, . . . , q} and γ∗k(t) as follows:

β∗lk(t) ≈
Mln∑
m=1

ηlmBm(t) and γ∗k(t) ≈
Lkn∑
h=1

θkhBkh(t), (3.4)

where {Bhm(·),m = 1, . . . ,Mhn} is a set of B-splines which may differ across h,

and Mln and Lkn are the numbers of basis functions used for β∗lk(t) and γ∗k(t)

respectively. Larger Mkn and Lln lead to more accurate approximations of the

varying coefficients but at the cost of higher variance (i.e., the tradeoff between

bias and variance). Model (3.3) becomes, approximately, a linear regression model:

yi(tij) ≈
M0n∑
m=1

η0mB0m(tij) +

q∑
l=1

Mln∑
m=1

ηlmBlm(t)zil(tij) (3.5)

+

Lkn∑
h=1

θkhBkh(t)xik(tij) + ε∗i (tij).

The error term ε∗i (tij) is assumed to be independent between subjects and cor-

related within subject. Moreover, the variance of ε∗i (tij) is assumed to be time-

varying. Incorporating the error covariance structure into the model estimation

is expected to increase screening accuracy. Intuitively, one may apply the tech-

niques related to weighted least squares (WLS) methods or generalized estimating

equation (GEE) method (Liang and Zeger, 1986) to construct an estimate for

the coefficients. However, the situation here is much more challenging than the

parametric GEE because (a) the working marginal model (3.5) is a misspecified

model, and (b) the total computational cost for estimation of error variance and

parameters in the error correlation matrix in each marginal model would be ex-

tremely expensive in the presence of ultrahigh dimensional x-covariates. Instead

of estimating the covariance matrix of ε∗i = (ε∗i (ti1), . . . , ε
∗
i (tiJi))

T , we propose an

approach to construct the weighted matrix in the weighted least squares method.

We propose to construct V (tij), a working variance function for ε∗i (tij), by

applying the techniques in Huang et al. (2004). We apply the ordinary least
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squares method and regression spline technique to the following working model

yi(tij) = βw0k(tij) +

q∑
l=1

βwlk(tij)zil(tlj) + εwi (tij), (3.6)

and obtain the corresponding residuals {ri(tij)}. Assuming that V (t) is a smooth

function of t, we can approximate V (tij) ≈
∑Hn

h=1 αhBhn(tij). Minimizing the

following least squares function

n∑
i=1

Ji∑
j=1

(
r2i (tij)−

Hn∑
h=1

αhBhn(tij)

)2

, (3.7)

lead to a least squares estimate for the coefficients: {α̂h, h = 1, . . . , Hn}. Then,

define V̂ (tij) =
∑Hn

h=1 α̂hBhn(tij).

In this paper, we consider a parametric model for the working correlation ma-

trix. Denote by Ri(λ) = (Rjk), the J1 × Ji working correlation matrix for the

i-th subject, where λ is an s × 1 vector that fully characterizes the correlation

structure. Commonly used correlation structures include autoregressive (AR) cor-

relation structure, stationary or nonstationary M-dependent correlation structures,

as well as parametric families such as the Matérn. In practice, we propose to em-

ploy moment estimators for the parameters λ in the correlation structure based

on the residuals ri(tij)s in feature screening procedures. Denote by λ̂ the resulting

moment estimate of λ.

We propose the following weighted matrix for the i-th subject

Wi = V̂
− 1

2
i R−1i (λ̂)V̂

− 1
2

i , (3.8)

where V̂i is the Ji × Ji diagonal matrix consists of the time-varying variance

V̂i =


V̂ (ti1) 0 . . . 0

0 V̂ (ti2) . . . 0
...

...
. . .

...

0 0 . . . V̂ (tiJi)

 . (3.9)
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Then, the generalized estimating equation becomes

n∑
i=1

XT
i Σ−1i (λ)(yi −Xiβ) = 0, (3.10)

where yi = (yi1(tij), . . . , yiJi(tij))
T . Note that Xi and β are different from what

we define before. Here, Xi is a submatrix of the design matrix for model (3.5)

consisting only data of the ith subject, and β contains all the coefficients to be

estimated, i.e. {ηlm,m = 1, . . . ,Mln, l = 0, 1, . . . , q; θkh, h = 1, . . . , Lkn}. The un-

known parameters λ and β can be estimated iteratively using Newton-Raphson

algorithm. Note that one can choose different working structures based on the

nature of data being analyzed. The simplest case would be working independence,

Ri = IJi , which only accounts for varying variance but ignores within subject

correlation that normally exists in longitudinal data. Another option is compound

symmetry with Rjk = ρ for any j 6= k, which assumes that observations from the

same subject are equally correlated regardless of their time lags. This is equivalent

to the correlation structure of a mixed effect model with a random intercept. More

appropriate options for longitudinal data include first-order autoregressive (AR-1)

with Rjk = ρ|i−j|, and stationary stationary correlation structure. In our simu-

lation studies and real data example, we use stationary M -dependent correlation

structure. For instance, when the ith subject has Ji = 5 observations and we set

M = 3, then its correlation matrix can be specified by

Ri(λ) =



1 α1 α2 α3 0

α1 1 α1 α2 α3

α2 α1 1 α1 α2

α3 α2 α1 1 α1

0 α3 α2 α1 1


, (3.11)

where λ = (α1, α2, α3)
T . One would expect α1 > α2 > α3, since measurements

taken closer in time would be more related. If there is not enough information

about the data to impose any structure, one can choose fully unstructured corre-

lation matrix with Ji(Ji − 1)/2 unknown parameters to be estimated.

Given V̂i and R̂i, we can compute (3.8) by Σ̂i, and WLSE of the coefficients in



31

(3.5) by β̂ = (
∑n

i=1XiΣ̂
−1
i Xi)

−1(
∑n

i=1XiΣ̂
−1
i yi). Plugging in these coefficients

back into the B-spline approximations in (3.4), {β̂∗lk(t), l = 0, 1, . . . , q} and γ̂∗k(t)

can also be obtained.

We can then obtain the WLS estimate for regression coefficients in model (3.5),

and calculate the fitted value ŷ
(k)
i (tij). This enables us to calculate the weighted

mean squared errors denoted by uk:

uk =
1

n

n∑
i=1

J−1i (yi − ŷ(k)
i )TWi(yi − ŷ(k)

i ), (3.12)

where ŷ
(k)
i = (ŷ

(k)
i (ti1), . . . , ŷ

(k)
i (tiJi))

T . Note that smaller value of uk indicates

stronger marginal association between the k−th covariate and the response. Thus,

we sort {uk, k = 1, . . . , p} in an increasing order, and define the screened submodel

as:

M̂τn = {1 ≤ k ≤ p : uk ranks among the first τn}, (3.13)

where τn is the sub model size chosen to be smaller than the sample size n. Fol-

lowing Fan and Lv (2008), we set τn = [n/ log(n)], where [a] refers to the integer

part of a.

3.2 Simulation studies

To make our simulation results more generalizable to real world applications, we

generate data mimicking the CAMP data, and compare the finite sample perfor-

mance of the new method with that of sure independence screening (SIS) (Fan

and Lv, 2008) and nonparametric independence screening (NIS) with varying-

coefficient models (Fan et al., 2013). The screening proposed in Song et al. (2014)

is essentially equivalent to that in Fan et al. (2013) under our simulation setting

since the number of observations for each subject is the same for all subjects (as is

the case in CAMP). We do not include procedures proposed by Song et al. (2014)

and Liu et al. (2014) in our numerical comparison as they cannot be applied to

our setting.

We set the feature dimension, p, to 2000. We first randomly choose p SNPs from

CAMP as the x-variables and set gender as the only z-variable. This is because only
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gender among the baseline variable has a significant impact on the response based

on our preliminary analysis of the CAMP data using an age-varying coefficient

model. The distribution of the age variable are approximately normal over the

range [5, 17.2]. To achieve better numerical stability, we make a transformation

on the time points {t̃ij, j = 1, . . . , Ji; i = 1, . . . , n} so that they are approximately

uniformly distributed on [0, 1] by tij = Φ((t̃ij− t̄)/st), where Φ(·) is the cumulative

distribution function of N(0, 1), and t̄ and st are the sample mean and standard

deviation of all time points t̃ij in the CAMP data. We generate the simulated data

from

yi(tij) = β0(tij) + β1(tij)Genderi +

p∑
k=1

γk(tij)SNPik + εi(tij). (3.14)

In each replication, we randomly select n = 200 subjects from the CAMP data,

and directly take their Gender variable, time tij and the p selected SNPs to this

replication.

The error term εi(tij) is generated from a zero mean Gaussian process with

variance and correlation defined by

Var(εi(tij)) ≡ V (tij) = 0.5 + 3t3ij, and cor(εi(tij), εi(tik)) = 0.5ρ
|j−k|
1 + 0.5ρ2,

(3.15)

where we use a correlation structure as a combination of AR(1) and compound

symmetry with equal weights. We set (ρ1, ρ2) = (0.6, 0.4) and (0.8, 0.6) in our

simulation.

We set x1, x2, x3, x4 to be significant, and all others are inactive. To make

comparisons fair, we consider two examples for nonzero coefficients. In the first

example, the nonzero coefficients for x-variables are time-varying, while they are

time-invariant in the second example. The specific nonzero coefficient functions

are given below.

• Example I. The nonzero coefficient functions are defined by

γ1(t) = 0.5 cos(πt)1{t≤0.5}, γ2(t) = −0.4 cos(2πt)1{t≤0.5},

γ3(t) = −0.3 sin(2πt), γ4(t) = 0.5(1.2− t).



33

• Example II. The nonzero coefficient functions are defined by

γ1(t) = 0.4, γ2(t) = 0.5, γ3(t) = −0.3, γ4(t) = −0.5.

We set β0(t) and β1(t) to be the coefficient functions estimated from yi(tij) =

β0(tij) + β1(tij)Genderi + εi(tij) using the CAMP data. Their plots are shown

in Figure 3.1. The baseline predictor Gender is also considered in SIS and NIS

method in our numerical comparison.

Figure 3.1. Coefficient Functions for Intercept and Gender

Following Liu et al. (2014), the following four criteria are used to evaluate the

performance of different screening methods.

• Rk: The average of ranks of xk (or SNPk in our case) in terms of the screening

criterion based on 1000 replications.

• M : The minimum size of the submodel so that all true predictors can be

selected. The 5%, 25%, 50%, 75% and 95% quantiles of M are reported from

1000 replications.

• pa: The proportion of 1000 replications where all true predictors are being

selected into M̂τn .

• pk: The proportion of xk being selected into the submodel M̂τn over 1000

replications.



34

Table 3.1: Rj of the Active SNPs

Example 1 : γ(t)’s are time-varying Example 2 : γ(t)’s are time-invariant

Method R1 R2 R3 R4 R1 R2 R3 R4

ρ1 = 0.6, ρ2 = 0.4

SIS 140.605 1054.662 1013.490 1.440 4.341 3.576 1.124 5.588

NIS 17.610 139.569 92.412 1.555 4.436 3.859 1.127 6.453

new method 4.392 4.530 13.165 1.539 7.035 4.457 1.059 14.905

ρ1 = 0.8, ρ2 = 0.6

SIS 261.827 1020.349 1022.777 7.236 4.896 3.939 1.226 6.874

NIS 53.680 231.055 176.300 5.263 5.988 4.611 1.221 10.543

new method 7.109 2.967 12.778 2.787 11.446 6.853 1.102 25.455

To calculate pa and pk, we set the selected submodel size τn = ν[n/ log n], ν =

1, 2, 3 (Fan and Lv, 2008). All the simulation results are summarized over 1000

replications.

Results of Rj’s are reported in Table 3.1, quantiles of M in Table 3.2, and pj’s

and pa in Table 3.3. Outputs of the first example shows that SIS is able to identify

SNP4, with an average rank (R4) of 1.555 and 5.263, and selection proportion (p4)

0.998 and 0.972 under τn = 38, for the two correlation cases respectively. But

it fails to select other three SNPs. This is because γ4(t) provides the strongest

and most stable signal among all with small coefficient (-0.5) and relatively large

intercept (0.6), which is the closest to what SIS is designed for.

NIS can also identify SNP4 very well. In addition, NIS selects SNP1 into the

submodel with relatively large probability, especially under (0.6, 0.4) correlation

scenario and using more conservative submodel size (τn = 76 or 114). However, it

gives bad ranking to SNP2 and SNP3 (R2 and R3 of NIS from Table 3.1) and low

selection rates over 1000 replications (p2 and p3 of NIS from Table 3.3). This is

because NIS can correctly specify the time-varying effects of γ1(t), but the signal

magnitudes of γ2(t) and γ3(t) are not large enough for NIS to detect under the

non-negligible within subject correlation and time-varying variance.



35

Table 3.2: The quantiles of M

Example 1 : γ(t)’s are time-varying Example 2 : γ(t)’s are time-invariant

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

ρ1 = 0.6, ρ2 = 0.4

SIS 563.8 1074.25 1453 1759.25 1955.10 4 5 7 8 10

NIS 18 57 118 255.25 632.10 4 5 8 9 13

new method 4 5 6 10 57.05 4 6 9 14 53.1

ρ1 = 0.8, ρ2 = 0.6

SIS 534.65 1077.5 1466.5 1758.25 1954.0 4 5 8 9 17.05

NIS 43.00 135.0 246.0 447.25 874.4 4 5 8 11 40.05

new method 4 5 7 13 68.2 4 7 13 29 126.25

Our procedure has excellent performance for all four SNPs, generating consis-

tently high ranking and large selection rates under all scenarios. This indicates that

under longitudinal settings, better screening results can be gained from accounting

for varying variance and within subject correlation.

As for the second example, all methods have good performance with SIS per-

forming the best. Thus, our screening method is also valid for linear models.

However, if the underlying model is known to be linear, SIS would be the best

option due to its small computational cost. By comparing the results of the two

correlation scenarios, we can observe that all methods perform slightly worse when

the error correlations get larger.

Given the performance of the three methods, we can definitively recommend

our procedure in practice for longitudinal data. Especially in the setting where

further analyses are to be performed, our method truly shines. While our rankings

for constant effects are slightly worse, they are still very high and thus very likely

to make it past any reasonable screening threshold. Our performance for truly

time varying effects and dynamic errors is substantially better, and it is clear that

SIS and NIS run the risk of missing such signals.
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Table 3.3: Selection proportion pj ’s and pa for true SNPs

Example 1 : γ(t)’s are time-varying Example 2 : γ(t)’s are time-invariant

τn Method p1 p2 p3 p4 pa p1 p2 p3 p4 pa

ρ1 = 0.6, ρ2 = 0.4

38

SIS 0.569 0.010 0.011 0.998 0.000 1.000 1.000 1.000 0.997 0.997

NIS 0.885 0.321 0.534 0.998 0.156 1.000 1.000 1.000 0.993 0.993

new method 0.997 0.987 0.943 1.000 0.927 0.984 0.995 1.000 0.936 0.918

76

SIS 0.669 0.030 0.022 1.000 0.001 1.000 1.000 1.000 0.999 0.999

NIS 0.955 0.515 0.677 0.999 0.336 1.000 1.000 1.000 0.997 0.997

new method 0.997 0.997 0.972 1.000 0.966 0.991 0.999 1.000 0.976 0.966

114

SIS 0.727 0.048 0.034 1.000 0.002 1.000 1.000 1.000 1.000 1.000

NIS 0.972 0.627 0.775 0.999 0.491 1.000 1.000 1.000 0.999 0.999

new method 0.997 0.998 0.983 1.000 0.978 0.997 0.999 1.000 0.984 0.980

ρ1 = 0.8, ρ2 = 0.6

38

SIS 0.380 0.018 0.014 0.972 0.000 0.997 0.999 1.000 0.992 0.988

NIS 0.653 0.171 0.318 0.971 0.040 0.989 0.997 1.000 0.959 0.945

new method 0.969 0.996 0.931 0.996 0.896 0.949 0.982 1.000 0.867 0.808

76

SIS 0.499 0.037 0.028 0.980 0.000 0.999 1.000 1.000 0.996 0.995

NIS 0.807 0.309 0.459 0.993 0.127 0.997 1.000 1.000 0.983 0.980

new method 0.993 0.996 0.965 0.999 0.954 0.983 0.993 1.000 0.936 0.915

114

SIS 0.567 0.054 0.040 0.987 0.003 0.999 1.000 1.000 0.997 0.996

NIS 0.864 0.419 0.556 0.996 0.207 0.997 1.000 1.000 0.992 0.989

new method 0.997 0.998 0.982 1.000 0.977 0.988 0.995 1.000 0.957 0.941
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3.3 Application

The Childhood Asthma Management Program (CAMP) was a longitudinal study

designed to explore the long-term impact of several daily treatments for mild to

moderate asthma in children (The Childhood Asthma Management Program Re-

search Group, 1999, 2000). Here, we consider n = 540 Caucasian subjects, each of

whom contributed 16 clinical visits over 4 years. The primary outcome variable ex-

amined here is lung growth, as assessed by the change in forced expiratory volume

in one second (FEV1, expressed as a percentage of the predicted value), which is

used as the response variable in our analysis. Genomewide SNP data and pheno-

type information are downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap)

study accession phs000166.v2.p1. There are in total eight hundred and seventy

thousand SNPs to be screened. We set the age of the i-th subject at the j-th

measurements to be the time variable tij, and consider the following model

FEVi(ageij) =β0(ageij) + β1(ageij)Genderi (3.16)

+

p∑
k=1

γk(ageij)SNPik + εi(ageij),

where gender is the only baseline predictor, and {SNPik} are the SNP variables.

Throughout this empirical analysis, it is assumed that εi(ageij) is a Gaussian pro-

cess with mean zero and variance Var(εi(ageij)) = V (ageij), a smoothing function

of age.

We apply the feature screening procedure introduced in Section 3.1 and NIS

method to this data set. Both methods select τn = [540/ log(540)] = 85 SNPs. The

two submodels obtained have 15 overlapping SNPs. Since the purpose of screening

procedures is to remove as many irrelevant SNPs as possible, and to retain all

important SNPs, the screening procedures are typically conservative. Thus, we

apply further confirmatory analyses to remove more irrelevant SNPs.

We next employ stepwise regression techniques to further remove unimportant

SNPs. In the forward step, we choose the SNP which results in the greatest

decrease in the weighted residual sum of squares (WRSS), and then use F-test

to determine if this SNP should be added to the model. The F statistic can be
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calculated by

F =
(WRSS1 −WRSS2)/(df2 − df1)

WRSS2/df2
, (3.17)

where WRSS1 and WRSS2 are the weighted residual sum of squares of the model

without and with the candidate SNP respectively, and defined as

WRSS =
n∑
i=1

(yi − ŷi)T Σ̂−1i (yi − ŷi), (3.18)

where Σ̂−1i is the estimated covariance matrix for subject i from its corresponding

model. In the backwards step, to determine if an existing SNP should be excluded,

we check if its contribution is smaller than the newly added SNP. Specifically, let

{SNP(k), k = 1, . . . , K} be the existing SNPs and SNP(K+1) be the new one.

Then, delete SNP(j) if WRSS of model based on {SNP(k), k = 1, . . . , K} is greater

than WRSS of model based on {SNP(k), k ∈ {1, . . . , K+1}\{j}}. This procedure

automatically stops when no SNP can make a significant contribution to the model.

By applying this procedure to the two submodels obtained from screening, a final

model with 23 SNPs is selected for the new method and a model with 6 SNPs for

NIS.

To further compare these two models, we conduct leave one subject out cross

validation (LooCV) and assess their predication performance. At each evaluation,

we leave the data of one subject out, and predicated his/her FEV. Let yi(tij) and

ŷ
(i)
i (tij), j = 1, . . . , Ji be the observed and predicted value for subject i, then we

calculate the prediction sum of squares (PRESS):

PRESS =
n∑
i=1

Ji∑
j=1

(yi(tij)− ŷ(i)i (tij))
2. (3.19)

Table 3.4 shows the results of the two models selected and the new method out-

performs NIS by more than 10%.

We show in Figure 3.2 the estimated coefficient functions of the best model

selected for the new method. The first two panels are the coefficients for the

intercept and gender (with female as the baseline); the others are for the 23 SNPs.

Detailed information about these 23 SNPs is also shown in Table 3.5. The shape



39

Table 3.4: LooCV Results

Number of SNPs PRESS

new method 23 873.37

NIS 6 992.01

of the intercept function is as expected; as subjects age their lungs develop and

FEV1 increases. We see that there is a slight tapering around 16-17 years old

as teenagers get closer to their adult heights. The shape of the gender function

is especially interesting. We see that at younger ages, boys have slightly higher

(recall female is the baseline) lung function. However, we see a dip and the two

groups begin to converge starting around age 10 which is right around the time

girls begin entering puberty. Boys, on average, enter puberty about a year after

girls which we can also see as the plot rebounds around age 12 as the boys begin

growing larger than the girls. Finally, around age 16 when both groups are closer

to their adult heights, we see the plots settle on a more pronounced difference

between the genders.

The shapes we see in the SNP functions take a variety of forms. Most are

primarily protective (1, 6, 10, 14, 16, 17, 18, 20, 23) or deleterious (2, 3, 4, 5, 7,

9, 11, 13, 15, 19, 21 22) though SNPs 8 and 12 don’t clearly fall into one category.

We also see that the impact of many of the SNPs seems to fundamentally change

before and after puberty. The plot we see for SNP14 might be what one would

expect for a protective SNP; a steady increase which accelerates during puberty

and then tapers off. Shapes that are more surprising are ones like SNP1. This

SNP starts off as protective, but when children hit puberty, it seems to decrease in

effect. SNP3 only seems to be active during puberty, but otherwise doesn’t seem to

have an effect. In many of the plots we see more chaotic or rapid behavior around

puberty. This makes sense as a rapid growth in the children should rapidly change

how SNPs are affecting lung function. What isn’t so obvious is that puberty also

seems to fundamentally change the nature of certain SNPs. Some seem to change

the direction of the effect while some seem most active during puberty. It is these

types of patterns which make nonparametric longitudinal methods so powerful.
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Figure 3.2. Estimated Coefficient Functions for Best Model Selected by Our Procedure

By allowing very general structures for the coefficient functions, we can better find

nonlinear patterns.

We conclude this section by examining the heritability discovered by the mod-

els, as well as the heritability explained by individual SNPs. Heritability is a

concept that summarizes the proportion of variation in a trait due to genetic fac-

tors. Examining heritability is an important step in understanding the genetic

architecture of complex diseases. Since we are selecting a relatively small subset

of SNPs, the heritability we examine here is not the over all heritability of the
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Table 3.5: Information of the 23 SNPs selected by the new method

No. Chromosome SNP Name Chr. Position No. Chromosome SNP Name Chr. Position

SNP1 22 rs5992809 16601985 SNP13 2 rs2894456 222765340

SNP2 16 rs17766975 74968977 SNP14 1 rs1499663 55830578

SNP3 5 rs4704894 157136938 SNP15 1 rs7530486 64955414

SNP4 8 rs16924622 60197787 SNP16 5 rs16902245 85806442

SNP5 10 rs293286 52889045 SNP17 19 rs11673302 9462362

SNP6 4 rs17444879 41429386 SNP18 11 rs10501066 26724528

SNP7 15 rs12050625 30751109 SNP19 13 rs12716713 67431310

SNP8 5 rs17167077 98947056 SNP20 14 rs4904757 41274666

SNP9 2 rs12469442 195233905 SNP21 4 rs10433674 71980590

SNP10 18 rs1459497 52150550 SNP22 1 rs12734254 77180853

SNP11 2 rs1481387 157598327 SNP23 6 rs7751381 117037951

SNP12 5 rs1013193 169131901

disease but only the heritability due to our sub model. The heritability of FEV1

was explored in Reimherr et al. (2014), where they found that the heritability of

FEV1 in asthmatic children was around 46%. However, they also discovered that

heritability can vary substantially with age. In their methods, “time” was study

time (i.e. number of weeks of the trial), where as here we let time be the age of

the child. This is especially important as we can get a more direct handle on how

heritability changes with age. For model (3.16), we consider the total heritability

of all selected SNPs and heritability of a single SNP. The heritability of all SNPs

is calculated by

H(FEV) =
RSS(FEV|Gender)

RSS(FEV|Gender)
(3.20)

− RSS(FEV|Gender, SNP1, . . . , SNPp)

RSS(FEV|Gender)
.
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Here, RSS is the unweighted residual sum squares defined by

RSS =
n∑
i=1

Ji∑
j=1

(yi(tij)− ŷi(tij))2,

where ŷi(tij) is the fitted value from the model using weighted least square estima-

tion, i.e. accounting for time-varying variance and within subject correlation. The

total heritability for our model and best model of NIS are, respectively, 34.673%

and 17.977%. We also estimate the time-varying heritability for all SNPs using a

B-splines approximation and the results are shown in Figure 3.3. There we see a

similar result of Reimherr et al. (2014) that the heritability seems to change quite

substantially with age. In particular, we see rapid increases in the heritability

as children enter puberty. It seems to level off at around ages 16-17. While we

know that the heritability of the NIS sub model is lower than ours, we see another

remarkable difference in their time varying heritability patterns. The NIS model

plot looks similar to ours except at the later ages as it decreases as puberty ends.

This suggests that the NIS model has missed SNPs which play a larger role at the

later ages.

Finally, we calculate the heritability of single SNPs. This is determined by

the order in which each SNP is selected into the model in the stepwise selection

procedure. Let SNP(k) be the kth SNP to be selected into the model, then its

heritability is calculated by

H(SNP(k)) =
RSS(FEV|Gender, SNP(1), . . . , SNP(k−1))

RSS(FEV|Gender)

−
RSS(FEV|Gender, SNP(1), . . . , SNP(k−1), SNP(k))

RSS(FEV|Gender)
.

Table 3.6 and Table 3.7 show the heritability of single SNP in the two best models.

We see that the heritability of the SNPs ranges fairly evenly between zero and

four percent. Interestingly, SNP22 or rs12734254 on gene ST6GALNAC5 was also

discovered in Reimherr et al. (2014) using a very different and stringent statistical

approach, which reaffirms that this gene is influencing lung function.
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Table 3.6: Heritability of Single SNPs by New Method

Selecting Order SNP Name H(SNP(k)) Selecting Order SNP Name H(SNP(k))

1 rs5992809 1.321% 13 rs2894456 3.196%

2 rs17766975 3.494% 14 rs1499663 1.53%

3 rs4704894 0.68% 15 rs7530486 1.267%

4 rs16924622 1.515% 16 rs16902245 0.825%

5 rs293286 2.412% 17 rs11673302 0.53%

6 rs17444879 4.231% 18 rs10501066 0.198%

7 rs12050625 1.408% 19 rs12716713 1.689%

8 rs17167077 1.327% 20 rs4904757 0.204%

9 rs12469442 0.286% 21 rs10433674 0.388%

10 rs1459497 1.245% 22 rs12734254∗ 3.454%

11 rs1481387 0.9% 23 rs7751381 2.051%

12 rs1013193 0.524%

Table 3.7: Heritability of Single SNPs by NIS

Selecting Order SNP Name H(SNP(k)) Selecting Order SNP Name H(SNP(k))

1 rs1522621 4.201% 4 rs2894456 3.423%

2 rs17766975 3.137% 5 rs4323745 2.698%

3 rs17444879 4.183% 6 rs12734069 0.336%



Chapter 4
Conclusions and Future Work

We developed a screening procedure for ultrahigh dimensional varying-coefficient

models motivated by longitudinal genetic studies. From our numerical comparison,

the proposed procedure can outperform the SIS proposed in Fan and Lv (2008)

and NIS proposed in Fan et al. (2013) for longitudinal data. This implies that in-

corporating within-subject variability and within-subject correlation may increase

the accuracy of a screening rule. We further applied the proposed procedure for

an empirical analysis of CAMP data. The newly proposed screening procedure is

able to select a model with much higher heritability and lower prediction error.

There are a number of extensions of the proposed methodology can be ex-

panded. One that we briefly explored, is allowing the correlation structure to also

take a smooth nonparametric form. However, our initial attempts showed that the

resulting estimates were too noisy to be of much use, and resulted in inconsistent

screening results. Thus, finding a nonparametric estimation method for the cor-

relation structure which results in efficient and stable screening would be useful.

Another useful generalization would be to allow for more smoothing procedures

such as local polynomial smoothing, smoothing splines, etc. Regression splines al-

low for nice statistical tests which we exploit in the application section. To achieve

a similar effect, other smoothing methods would need to be incorporated with care.
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