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ABSTRACT
The dissemination of circulating tumor cells implicated in the metastatic spread of
cancer accounts for the majority of canoelated deaths. Circulating tumorllsehave
been established as a prognostic biomarker and are associated with worse odticgemes.
true nature and mechanism of circulating tumor cells remain a mysiémgir
comprehensive analysis has been hindered byfabethat they are extremely rare,
occurringat a rate of one in a billion blood cellEhis work describes the development of
a Flexible Micro Spring Array system for lakeée enrichment of circulatgitumor cells
from whole blood. It incorporates Iexible spring structuresmicrofabricaed from
parylene polymer toapidly separateells based on their size and deformabhilidgvice
performancewas characterizewvith respect to capture efficiency, enrichment against
leukocytes,and maintenance of celNiability and proliferability through reconstructed
model systems using cancer cell linesrc@ating tumor cells ananicroclusters were
successfully enriched fromigical samples obtained from breast, lung and colorectal
cancer patientsand characterizethrough immunocytochemicanalysis The detection
of circulating tumor cellsvas correlated to cancer patient survival in a structuredirtrial
nortsmall cell lung canceto demonstratehe clinical relevance the flexible micro
spring arraydevice The mechanism of physical cell sepamatat low pressure was
investigated through analytical models accountor cell size anddeformability. It was
ultimately determined that the critical factor for aptures the size othecell nucleus,

comprisinga novel mechanism fairculatingtumor cellenrichment.
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Chapter 1

Introduction and Background

Parts of this chaptdrave been published the following review articles

Harouala R, Kang Z, Zheng SY, Cao L. Circulating tumor cells: Advances in isolation
and analysis, and challenges for clinical applications. Pharmacology &
therapeutics 2014;141:204.

Harouaka R, Nisic M, Zheng SY. Circulating tumor cell enrichment based @icphy
properties. Journal of laboratory automation 2013;188%5

1.1 Cancer and Metastasis

Theprocess of cancer metastasis by which tumor cells detach from a primary site,
spread through the circulatory system, and form distant secondary tismesgonsible
for the majority of cancer deathBumors that occuin humans aresually derived from
tissues of epithelial origin(1). The progressionof a primary epithikal cancer cell to an
invasive metastatic cell involves several ste@Sg.1-1). First, cancer cells undergo
epitheliatmesenchymal transitioieMT) to (i) reduce adigon to neighboring cells and
(il) dissolve the basement membrane tgtouhe secretion of extracellular tna
metalloproteases (MMPs). {iiiintravasation, or the entry of a cancer cell into the
bloodstream, is achieved by the release of molecules, such as vascular endothelial growth

factor (VEGF), that stimulate angiogersedn the bloodstream, cancer setlan interact
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with platelets (iy, which protect the cancer cell from the immune system. After reaching

the secondary site, canceglls can exit the bloodstream) (y inducing endothelial cell
retraction or death. Ldgt the cancer cells undergnesenchymaépithelial transition

(MET) (vi) and continue to ptiderate at the metastatic sif@)

fibroblast Q platelet

endothelial cell ECM protein ~ Wmmm basement membrane

granulocyte

cancer cell @ macrophage cancer stem cell
.
s

-

epithelial cell
[ @]

©

growth factor @@ erythrocyte

lymphocyte protease

metastases

Fig. 1-1. Overview of the process of metastaés



1.2 Circulating Tumor Cells

When migratory cancer cells are present the bloodstreanthey are calld
circulating tumor cells (CTCs). They were first reported in 1869 by Australian physician
Thomas Ashworth who discovered the presen:
cancer itselfo in the bl ()oQleratentaylaeetast at
validated CTC enrichment and enumerattenhnology has been establishadwhich
CTC counts above a known threshofda progostic marker and predictor @atient
outcome in metastatic brea®), prostate(6), and colon cancer§/). Based on these
clinical evaluations the US Food and Drug Administration (FDAgleared the
CellSearch instrument(Veridex, LLC, Raritan, NJ, USAjor CTC enrichment and
enumeration for the above indicated canckrsas been eablished through thsuccess
of CellSearcN that enumeration of CTCs is indeed a surrogate for active disease and
that increased CTC numbers aredicve of worse prognosis. Furthdzy demonstrating
the successful isolation of clinically relevant cdilem the bloodof cancer patients,

researchers havevealed the potential for further analysis of CTCs beyond enumeration.

There is great interest in obtaining molecular information from CTCs, as they
may constitute a reaout for bothprimary and metaatic tumorsSuccess in CTdased

analysis has the potential to provide fiiale and norinvasive surrogates for diagnosis
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and prognosis, predictive biomarkers for making treatment decisions, and samples for
monitoring drug resistancdhe majority of onventional cancer treatments have had
limited success in curing metastatic diseaseuA®rs evolveevenan effective response

to therapy is typically short lived, and patients often relapse withi@d41thonths of
therapeutic interventio8-10). CTCs may provide a souréer longitudinal molecular
analysisof tumors during the clinical management of patients that could facilitate both

clinical investigations and caar patient care.

1.3Enrichment of Circulating Tumor Cells

The clinical application and biologicadtudy of CTCs has been hindered by the
fact that theyare extremelyare eventsThe inherent complexity and inhomogeneity of
biological systems has necessitatedfthetionationand sortingof cells as a gerequisite
for comprehensive analysis. This is especially the case when analyzing complex fluids
like blood, where cells of interest may be obscured by a diverse mix of surrounding cells.
The underlying principle of cell fractionation involves exploittiifferences in properties
of discrete cell types to separate thebme of the earliest whole blood fractionation
approaches takes advantage of the limited membrane expansion capacity of red blood
cells to selectilg lyse them through induction of an osmeopressure imbalancgd.l).

Other techniques achieve sgexifractions of white blood cells through selective
adhesion to surfacgd2, 13), response to enzymégs4), or particular affinity tonylon

wool (15, 16). The identification of protein antigens that eemique to certain cell types
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opened the door to highly specific cell selection based on antibodies. These
i mmunoaffinity approaches appliedl78th pos

and negative selection through targeted complement(3i20).

Antibodies are also employed to pabel cells for single cell sorting.
Fluorescence activated cell sorting (FACS) separates fluorescently labeled cells one at a
time after focusing through a flow chaml§f, 22). Magnetc Cell Sorting (MACS) isa
techhique that conjugates antibodies to magnetic particles foflgireling and uses a

magnetic field to pull away contaminants or particular cells of int€28s25).

Fractionationapproacheshat exploitinherentphysical popertiesof cells donot
require prelabeling. The most commonly applietsethodis density based centrifugation.
Rotational force applied within a centrifugalign cells into separatefractionsalong a
density gradienfrom which theymay then be collected. The separatwincells is
assisted through the use of a synthetic saccharide solution in-Faaomjlie to isolate

mononuclear cells from blood and bone marrow aspi(at&s

Various approaches that have been developed for i€dl@tion from blood are
discussed below. Thechnologes may begrouped by their principle of CTC enhiment
(Fig. 1-2). Each approach isypically evaluated using cell line model systems for
multiple performance parameters (i.e. capture efficiencgirery, enrichment against

leukocytes, cell viability, processing speed, blood sample capaity)then validated
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through testing with clinical samplesThe optimalisolation approachmay require a
compromise aman performance parameters, aisdlikely to depend on the intended

downstream application.

1. Immunoaffinity 3. Direct Analysis
o Whole Blood
§ § \ o 0 %] - / ‘
o o ‘ {
T 9 ® . ©
L ¢ @ . ~ @™
8 l 1_;\ -
(¥} 3 a
£
=
(7]

2. Physical Properties

90 9@ e
25 2 [| @209 -‘hll I’Il- ® "
S ‘» , S 5 @
-8 2 g 288 4 o - @ "]
e A L 4 " =
3 % (=] e ®o ® & o Q \_.) .
=] o e > b A P | ——
os:‘.. L4 ? “ |
Centrifugation Size/Deformability  Dielectrophoresis
A A "’ o
Q CTC @  Leukocytes « =  Erythrocytes
4 @ A .-

Fig 1-2. Approaches for CTC isolation from whole blood. 1: Immunoaffinity based
techniques target specific markers to selectively enrich CTCs or depleteyes. 2:
Physical properties may be exploited to separate CTCs from blood cells based on
differences in density, size, deformability and electrical properties. 3: Direct analysis

achieved by high throughput assaying of all cells in blood after egtte lysis(27)



1.3.1 Immunoaffinity

Immunoaffinitybased CTC isolation takes advantage of highly specific affinity
reactions between capture antibodies and target antigens present on cells of interest. The

following antibody capture approachesve been developed:

1.3.1.1 Magnetic beadsThe CellSearch® instrument wurrently the only
FDA-cleared technology that is clinically @led for CTC enrichment (Fig.-3). Its
enrichment process involves the binding of antibody functionalized magnetictbeds
epithelial cell adhesion molecule (EpCAM) antigen on CTCs, and the subsequent
isolation of these beads with a magnet. Enumeration of CellSeanmch@ed CTCs has
been established as a prognostic marker and predictor of patient outcome in metastati

breast(5), prostatg6), and colon cancels).



Fig 1-3. CellSearch® instrument for CTC enrichment and detectiddource

www.cellsearchctc.cop/

A similar approach has been developgging a prototype magnetic sweeper
device to improve the capture of cells bound to-BptCAM-coated magnetic beads.
This technology has a capture efficiency of 62%, a purity of 51% from whole blood, and
a throughput of 9 mL/houi28). This AMagSweeper o device
primary and 21 of 30 metastatic breast cancer patient blood samples using single cell
level reverse transcription polymerasaichreaction (RTIPCR) based detectiq?9). A
recent magnetic sifter device generates extremely high magnetic field gradients around
the edges of magnetic pores anmicroarray format to enhance capture efficiency to
91.4% or higher and performs enrichment in a vertical flow configuration to improve the

processing speed, optimized at 10 mL/h@D).



Adnatest® (Adnagen AG, Langenhagen, Germany) is a commercialized series of
assays that employs magnetic beads functionalized with cocktails of antibodies specific
to either breast, prostate, colon, ovarian or EMT/stem cell mareereamprove
enrichment. Adnatest BreastCancerTM coupled with multiplexedP®R based CTC
detection correlatewith patient outcome in metastatic breé3t) and ovaian cancer
(32. The assay was also used to identify a subset of CTCs expressing stem cell and
EMT markers in primary breast cancé83). In a comparative study Adnatest
BreastCancerTM was positive for 29 of 55 metastatic breast cancer patients compared

with the detection of 02 CT@4 in 26 of 55

1.3.1.2 Microfluidic flow: Nagrath, Toner and colleagues developed a
microchip consisting of an array of 78,000 silicon micropillars functionalized with
antibodies targeting EpCAM, allowing the direcbpessing of wh@ blood (Fig. 14).

The micropillar geometry provides an abundant total surface area for potential contact
(970 mm2), resulting in a capture efficiency of >60% and a final sample purity of about
50% when processing at a t ACohighpuivaofuRer
enrich and identify CTCs in 115 of 116 tested blood samples from patients with various

metastatic cancer typ€35).
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Whole Blood Microfluidic Chip Circulating Tumor
Cells (CTCs)

|\ h“”‘m"?mmg.rm}r

Nlﬂ!

Fig 1-4. CTC-chip. (a) Onestep process for pohaf-care isolation of CTCs from
peripheral blood.l{) Schematic of the manifold assembly. The microfluidic chip is sealed
from above with a biological grade adhesive tape andedlan the manifold. d

Scanning electron micrograph (SEM) image of the microposts €8%)y.

A similar micropillar approagénhancads 1 mpl
di fferenti al i mmunocapturedo micr ospécifipo coat
membrane antigen (PSMA). This microchip achieved a capture efficiency of 85% and

purity of 68%, and identified CTCs from 18 of 20 prostate cancer pasieniles(36).
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To overcome fabrication challenges with the first generation-€fii@, Stott and
Toner et al have reported an niempalived tste
encouraged microfluidic mixing through the generation of microvor({8és Here the
specific capture antibodies were conjugated to the herringiltagged grooves along the
bottom surface of the device, and the flow patterns resulted in increased cell to surface
contact. Thigesignimproved capture efficiency to 91.8% using antibodies for EpCAM,
and CTCs and microclusters were detected in sampbes ¥4 of 15 prostate cancer
patients(37). More recently, to facilitate the retrieval of CTCs for further analysis,
Ozkumur and Toner e-it C haithat @hablese ditteppositiveantin CT C
EpCAM CTC selection or leukocyte depletion after an initial - ¥iased enrichment step
and hydrodynamic focusing. They reported high capture efficiencies of up to 98.6%,
with varying purities in the range of 0.0242%. CTCs were detected in 37 of 42

metastatic cancer patient samples as compared with 29 of 42 using CellS&8ch®

1.3.1.3 Nanostructured substrate: Wang et al employed @anostructured
substrates (Fig.-b) to take advantage of an extremely high contact surface area for
immunoaffinity due to roughness at the nawale (39). They used antEpCAM
conjugated silicon nanopillars and chaotic micromixing to achieve a capture efficiency of
>95% from blood at an optimal throughput of 1 mL/hour. This approach detected CTCs
in 20 of 26 prostate cancer patient blood samples as cethpéth only 8 of 26 using the
CellSearch® systeng40). The chip was further modified with electrospun polymer
nanofibers and incorporated with laser capture ndisgection to isolate single prostate

cancer CTCs for amplification and whole exome sequeng¢#fy. Nagrath and
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colleagues used antibody functionalized graphemdeoranosheets on a patterned gold
surface to successfully capture CTCs in 38 out of 39 blood samples from breast, lung and

pancreatic cancer patier(é?).

Anti-EpCAM re
n
on SiNPs e

: 2) Chaotic mixing Chaotic mixer
L, s chip induces helical flow
that facilitates CTC/

substrate contacts

Blood in
Integration >

’
4

‘ 1) Patterned
Silicon nanopillars (SiNPs)  SINP substrate
Fig 1-5. Nanostructured substrate for CTC isolatidie device is composed of two
functional components, a patterned silicon nanopillar (SiNP) substrate (1) with anti
EpCAM coating exhibiting vastly enhanced Gt€@pture affinity, and an overlaid
microfluidic chaotic mixing chip (2) capable of promoting tsllbstrate contact

frequency(40)

1.3.1.4 Microtubes:Hughes et al employed a biomimetic approach to simulate
the process of selectimediated cell adhesion in blood vessels for CTC capture.
Selecin-coated microtubes induce cell attachment and rolling, which encourages CTC
binding with aniEpCAM and antPSMA antibodies, even at a high flow rate of 4.8

mL/hour. The device achieved a capture efficiency of ~50% and an average purity of
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66%, while siccessfully detecting CTCs in 14 of 14 tested patient blood samples as

compared with 9 of 14 with the CellSearch® sys(é8).

1.3.1.5 In vivo sampling: A novelapproach for in vivo sampling was developed
by functionalizing a medical e with EpCAM antibodies (Fig.-6). The medical wire
i's injected through a cannula into the pat
allow direct continuous sampfgnof large volumes of blood (1.5 3 liters). This
approach successfully enriched CTCs in 22 of 24 patients diagnosed with either breast or

lung cance(44).
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FSMW
Insertion Mark

\ IN-Stopper
\. Indwelling cannula Skin

Functionalized tip of the FSMW

Fig 1-6. Functionalized medical wire (FSMW) for in vivo CTC captukbove: Insertion
of the FSMW into the cubital vein through a conventional cannula. Below: FSMW is
slowly pushed forward into the caula until it is exposed to the blood flow within the

lumen of the vein(44)

1.3.1.6 Leukocyte depletionAn alternate approach to positive immunoaffinity
based CTC selection is to use monoclonal antibodies targeting leukocyte antigens (i.e.,
CD45, CD14) to deplete cells of hematopoietic origin. Some strategies include antibody

labeling of leukocytes for removal through immunomagnetic separaf@s 46), or
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through centrifugation with the RosetteSepTM kit (StemCell Technologies, Vancouver,
Canada)(47, 48). These approaches are capable of high recovery rates with minimal

disturbance to CTCs, but achieve relatively low samplgigsir

1.3.1.7 Summary: The specificity of the antibodsntigen reaction allows
isolation of CTCs with a very high level of purity. However, CTC enrichment results
will be heavily dependent on the performance of the particular antibody employed. There
is currently no known ideal CTC antigen target that would allow capture of all CTCs at
the exclusion of all hematopoietic cells. Recent reports have indicated thEp&#M
approaches may miss out on significant populations of CTCs that do not exhibit
epithelial phenotype, presumably due to EMT, in addition to the variable expression of
EpCAM on certain phenotypes of epithelial CT@®, 50). Capture rates may be
increased by using combined cocktails of antibodies that also target antigens specific to a
particular cancer type, though this may then result in reduced specificity and lower
sample purity. Leukodg depletion approaches have the benefit of not disturbing the
CTCs which may minimize phenotypic alterations caused by the isolation process, but
may lose CTCs that are attached to or interacting with leukocytes. Leukocyte depletion
methods result in piires that are typically at least one order of magnitude lower than
positive CTC targeting. In general, an immaiBnity approach requires long
incubation/interaction times to optimize CTC recovery, which could be a bottleneck for
processing speed. Fanethods using positive selection, it might be challenging to

reversibly remove CTCs from the immua#inity tag or surface.
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1.3.2 Physical Properties

Physical properties may be exploited to effectively separate CTCs from peripheral
blood cells. The folwing technologies have been developed based on differences in

density, size, deformability and electrical properties:

1.3.2.1 Density gradient centrifugationCentrifugation is a cheap and efficient
method for separating CTCs in the mononucleocytetifnacof blood away from
erythrocytes and granulocytes based on cell density. Centrifugation with-Faople®
solution (Pharmact&ine Chemicals, Uppsala, Sweden) was used to detect CTCs using
an RTPCR based assay for cytokeratin 20 expression withcdutes of 1 cell/mL of
blood in model systems, successfully identifying CTCs in 24 of 58 colorectal cancer
patients undergoing surgical resectio(bl). OncoQuick® (Grenier BioOne,
Frickenhausen, Germany) is a novel technology that incorporates a porous barrier for
sizebased separation of CTCs in conjunction with dgrsased centrifugation (Fig-1
7). Rosenberg et al reported a vastly improved enrichment efdd@2gainst leukocytes
with OncoQuick® compared to 3f8ld with Ficoll-Paque®(52). OncoQuick® has
identified CTCs in blood samples obtained from 11 of 37rgeséstinal cancer patients
with RT-PCR (52), 5 of 60 primary breast cancer patients and 25 of 63 advanced breast
cancer patients by immunofluorescen@s). In another clinical study CTCs were
detected in 14 of 61 patients using cytospins prepared after OncoQuick® enrichment,
compared to 33 of 61 with CellSearcli®d). Recently, leukapheresis has been proposed

as a centrifugation technique to sample several liters of patient blood, thus concentrating
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CTCs to improve the sensitiyiof downstream detection and analy&$s). CTCs were

detected in 21 of 29 carcinoma patient samples using the CellSearch® system after

concentration by leukaphesis, compared with only 8 of 29 using the conventional 7.5

mL assay(56).

Centrifugation

\ 4

) (i

——Platelets +4—Plasma
Blood Tumor Cells
° loe> eeo— Tumor Cells and
1T—Leukocytes Platelets
Porous- Erythrocytes
Barrier

o 4—L eukocytes
v Erythrocytes

Fig 1-7. CTC enrichment by densityadient centrifugation witl®ncoQuick®.(3)

Separation-
Medium

1.3.2.2 Microfiltration: Microfiltration operates on the principle of retaining

larger CTCs while allowing smaller leukocytes to pass through pores of varying

geometries. Vona, PatelklBr echot, and coll eagues devel

epithelial t umor cell so (| Stehed polycarlmohatei q u e

filters with 8 um diameter circular pores for CTC enrichment and cytological detection
from fixed blood sams (Fig. 18) (57). Tracketched microfilters have been used to

enrich and characterize CTCs in studies involving liver cafi®r melanomg59), lung

(0]
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cancer(60, 61), prostate cancg62) and various other cancef®3). These microfilters
were demonstrated to be more sensitive than CellSearch®, detecting CTCs in 57 of 60

metastatic patients with breast, prostate and lung cancer compared to 42 of 60 with

CellSearch®€64).

Fig 1-8. Tracketch filter for sizebased CTC microfiltration. Arrows indicate 1: tumor

cel; 2: filter pores; 3: leukocyte$57)
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Zheng, Tai, and colleagues used deterministic photolithography to develop an
improved microfilter with circular or ovalshaped pores fabricated from parylene
polymer, reporting a capture efficiency of 89%&). This parylene microfilter obtained
CTCs in 51 of 57 cancer patients whiBellSearch® was positive for only 266).
Similar microfilters have been developed from silicon substi@&#sand electroformed
nickel (68) detecting CTCs in 37 of 42 lung cancer patient samples compared with 19 of
43 with CellSearch@69) and rectangular slits in SCL{Z0). To encourage viable CTC
capture a thredimensional microfilter was designed out of two layers of parylene to
incorporate support structurebat mitigate cell damage (Fig-9 (71). Xu et al.
employed a slot pore microfilter designed by Tai's group to detect telomerase activity
from viable enriched CTCs filtered from Fichlaque®isolated buffy coats of metastatic

prostate carer patientg72).

.g‘.. lF /0...._:8um
PY ‘o L N . O,.,: 9 um
. top
.F. | /

H%J Df:]b 10pm 20 pm
e lgl —"E?’.'-ﬁ&-*um
®0s, 0 10 pm 20 um

Fig 1-9. 3D-microfilter device for viable CTC enrichme(7.1)

1.3.2.3 Microfluidics: Microfluidic devices have e developed to achieve size

and deformabilitybased sorting of CTCs in a more controlled fashion. Tan, Lim, and
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colleagues designed crescshiaped trap arrays with a fixed 5 pum gap width to enrich
CTCs from whole blood, reporting a capture efficielacd purity of over 80% (Fig. -1
10) (73). This microdevice successfully detects CTCs-briL blood samples ¢dined

from metastatic lung cancer patiefiig).

Fig 1-10. Crescensshaped traps in a microfluidic device isel&@TCs based on size and

deformability. Scale bar is 20 pr.3)

Higher throughput microfluidic approachapply hydrodynamic forces to select

for cells of different sizes by inertial flow fractionation. This principle was incorporated
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through contraction and expansion reservoirs developed for pinch alignment of tumor
cells by Bhagat et g75) and tumor cell trapping in micrecde vortices by Hur et al

(Fig. 1-11) (76). An improved form of the latter approach has been applied to detect
cancer cells from a cohort of 12 breast and lung candenga(77). These devices
allow vastly improved throughput and are capable of processing larger sample volumes
compared to previous microfluidic approaches, but with potential reductions to cell

recovery rate and enrichment against leukocytes.

» Large cells
e Small cells

Flow direction s

(b)

=g
Sample

Inlet

Flush

Fig 1-11. Inertial microfluidics for sizebased CTC enrichment. (a) Generation of laminar

vortices and (b) overview of microfluidic devig&s6)

Sun et al developed a double spiral microfluidic channel to hydrodynamically
separate tumor cells using drag forces, reporting a recovery rate of 88.5% from diluted

blood (78, 79). Lim and colleagues incorporated a spiral microfluidic channel to
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successfully enrich CTCs and microclusters fi2Z@nmetastatic lung caer patients (Fig.

1-12) (80).
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Fig 1-12. Spiral microchannel for CTC isolation using centrdufprces(80)

1.3.2.4 DielectrophoresisElectrical properties of CTCs may be exploited to
discriminate them from blood cells by applying a nwmform electricfield through the
phenomenon of dielectrophoresis (DEP). Interdigitated gold electrodes were used by
Becker, Gascoyne, and colleagues to isolate leukéijaand breast cancer cell lines
(82 from spked healthy donor blood. The application of an electric field generated by
the electrodes attracts tumor cells by positive DEP, while other cells flow past. Upon
removal of the electric field the tumor cells can be collected with a capture efficiency of

95% (82). Based on the success of this method, Huang et al proposed a DEP field flow
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fractionation approach to allow continuous processing of samples that tdigquire
intermittent application of the electrical field for cell recove@B). Gupta et al
devel oped the ApoStreamE instrument for
viable capture with an efficiency of greater than 70% from cell lines spiked into whole
blood (Fig. 113) (84). Thus far, only preliminary efforts of the application of this

technology to clinical samples halveen reporte(B5).

DE

Figl-13DEP separation of g8Cs wusing Apostream











































































































































































































































































