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Abstract

An induced matching in a graph G = (V,E) is M ⊆ E such that it
is a matching and also the edge set of an induced subgraph of G. The
goal in the Maximum Induced Matching (MIM) problem is to maxi-
mize the size of M . This problem can be modelled as a special case
of Set Packing, or Maximum Independent Set, and, like these prob-
lems, it is very hard to approximate, which motivates our focus on
restricted classes of graphs. This work improves on the work of Duck-
worth et al. who showed that MIM is APX-hard even for bipartide
3-regular graphs, while a simple linear time greedy algorithm gives an
approximation ratio of d− 1 for d-regular graph. We improve this ra-
tio for 3-regular graphs from 2 to 5/3, also using a linear time greedy
algorithm. We believe that our new methodology can be applied to
other classes of graphs as well. More specifically, we conjecture that
for 4-regular graphs it gives an approximation ratio of 7/3, improving
on 3.

We also provide an improved lower bound on approximability of
MIM in 3-regular graphs.

Keywords: Graph theory, combinatorial problems, approximation
algorithms, induced matchings, greedy algorithms.
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1 Introduction

In this thesis, we study the Maximum Induced Matching problem. The input
to the problem is an undirected graph (V,E). For an edge set A ⊆ E, we use
V (E) to denote its node set, the union of edges inA. For a node set S ⊆ V , we
define E(S) = {e ∈ E : e ⊆ S}, the set of edges induced by S. A set of edges
M is an induced matching if |V (M)| = 2|M | and E(V (M)) = M . The goal
in MIM is to find an induced matching of maximum size (see an example in
Figure 1.) This problem was introduced by Stockmeyer and Vazirani [1] who
motivated it as a risk-free marriage problem: find the maximum number of
married couples such that each married person is compatible with no married
person other than his/her spouse. Another motivation stems from the Strong
Edge Coloring problem, where adjacent edges should be given different colors.
Additionally, two edges that are both adjacent to a third edge should also be
given different colors. Subject to these constrains, we minimize the number
of colors. Equivalently, edges of each color form an induced matching. As in
similar coloring problems, if we can approximate the maximum single color
set with ratio F , we can also approximate the minimum number of colors
with ratio F ln |V |. (Here, F is an upper bound on |SA|/|S∗|, where SA is
the solution found by the algorithm, and S∗ is an optimum solution). In the
last 30 years MIM was investigated by a number of people. Duckworth et al.
[2] provide a recent extensive bibliography.

To us, the problem offers an interesting case study on greedy algorithms.
Greedy algorithms are typically fast and scalable (meaning that the running
time is linear or proportional to the time of sorting), and for some problems
they offer the best known approximation ratios. However, sometimes we
need to replace the obvious choice criteria with more insightful ones. One
could offer a life advice that even if we agree to be greedy (i.e., make our
selections fast and never change them), we do not have to be stupid. But
this advise is not always correct. For example, for the Set Cover (and Set
Packing) problem, the most obvious choice criteria—picking the largest (or
the smallest) set suffices to obtain the best known approximation. So, it is
a genuinely open problem: does it pay to try to be clever? It is morally
reassuring if we can show that it does.

Our results concern restricted versions of MIM: d-MIM (restricted to
graphs of degree d, i.e., where every node has at most d neighbors) and
d-regular-MIM (restricted to d-regular graphs, where every node has exactly
d neighbors).
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For d-regular-MIM, Duckworth et al. [2] provided a very simple greedy
algorithm with approximation ratio d− 1. For d=3, we improve this ratio to
5/3 < 2. They also provided characterizations of inapproximability, namely
that one should not expect (in the sense that we explain in Section 5) poly-
nomial time approximation algorithms for 3-MIM with a ratio better than
1 + 1/475 and for 3-regular-MIM with a ratio better than 1 + 1/K, where
K ≈ 1250 is implicit. We improve these provably difficult ratios to 1+1/288
and 1 + 1/482, respectively.

2 The algorithm of Duckworth et al.

The algorithm of Duckworth et al. [2] is based on the observation that MIM
is a special case of Set Packing.

For each node u we will consider a star of u, the set of edges that contain
that node; in turn, for each edge e we consider the union of stars of its
endpoints and we call it a “double star”. More formally,

Definition 1 For v ∈ V we define a “star of v” as Sv = {e ∈ E : v ∈ e}.
For {u, v} ∈ E we define a “double star” of {u, v} as D{u,v} = Su ∪ Sv.

Observation 1 Double stars have the following two properties:

1. M ⊆ E is an induced matching (IM) iff De ∩ Df = ∅ for every two
different edges e, f ∈M ;

2. if d is the maximum node degree then |De| ≤ 2d− 1 for every e ∈ E.

According to item 1 in Observation 1, MIM is equivalent to finding a
maximum set packing, namely, a packing of sets of the form De. Moreover,
according to item 2 of Observation 1, when we are solving an instance of
d-MIM, the sizes of these sets are bounded by 2d − 1, which allows us to
apply heuristics for packing sets of bounded size, like the ones of Hurkens
and Shriver [3]. So far, no better algorithms for d-MIM were presented.
In this work, we show how to approximate 3-regular-MIM better by using
heuristics and upper bound arguments that are specific to this problem.

Analyzing the approximation ratio of algorithms for MIM in d-regular
graphs requires an upper bound on the size of induced matchings. Because
|De| = 2d − 1, a packing of De sets has at most |E|/(2d − 1) sets. This is

2
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Figure 1: Marked edges form an induced matching.

the bound used by Duckworth et al. [2]. They described a greedy algorithm
that repeats selecting an edge from H, the current set of edges.

After a selection of edge e, the greedy algorithm removes from the current
set every edge h that is in conflict with e, i.e., such that De ∩Dh ̸= ∅.

Definition 2 For each edge e ∈ H, the edge set Ee = {h ∈ H : De ∩Dh ̸=
∅}.

With this definition, we can formulate greedy algorithm DMZ-Alg (see
Figure 2).

In the analysis of the approximation ratio of DMZ-Alg we need another
definition.

Definition 3 When H ⊆ E is implicit, deg(u) = |{{u, v} ∈ H : v ∈ V }|.

Lemma 1 Ee has these two properties:

1. Ee = {h ∈ H : h ∩ V (De) ̸= ∅};

2. |E{u,v}| ≤ d(deg(u) + deg(v)− 2) + 1.

Proof. Item 1 is obvious. To show Item 1, assume that Dh ∩De ̸= ∅, then
we have edge f ∈ Dh ∩De. Because f ∈ De, f ⊂ V (De). Because f ∈ Dh,
f ∩ h ̸= ∅. This implies that h ∩ V (De) ̸= ∅. Concerning Item 2, we use
the fact that E − H is a union of sets of the form Ef , where f ’s are edges
already selected. Thus, if we have {u, v} ∈ H, while {v, w} ∈ E − H then
{v, w} ∈ Ef for some selected f . This f does not contain w, otherwise {u, v}

3
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H ← E
M ← ∅
while H ̸= ∅

e← a member of H with the minimum |Ee|
insert e to M
remove Ee from H

Figure 2: Greedy algorithm DMZ-Alg of Duckworth et al.

would also be removed. This means that there is a path (u, v, w, x, y) where
f = {x, y}. This implies that every edge that contains w would either be
removed before the selection of f or during that selection.

We conclude that E{u,v} consists of edge {u, v} and the union of star sets
Sw for those w ̸∈ e where either {w, u} ∈ H or {w, v} ∈ H. Hence, the
number of those star sets is deg(u) + deg(v)− 2. p

It suffices to analyze DMZ-Alg for one connected component. Let m be
the number of edges in that connected component.

In the first iteration DMZ-Alg selects an edge e that has both nodes of
degree d, and by Lemma 1, |Ee| ≤ d(2d − 2) + 1. In subsequent iterations,
we always can select e that contains a node u with deg(u) ≤ d − 1, hence
|Ee| ≤ d(2d− 3) + 1 = (2d− 1)(d− 1) (again, by Lemma 1.)

Summarizing, we have a lower bound BL on the number of selected edges
and an upper bound BU on the size of the maximum induced matching:

BL ≥ m− d

(2d− 1)(d− 1)
, BU ≤ m

2d− 1
. (1)

Because BL and BU are integer, we can show that (d − 1)BL ≥ BU .
If not, let m > d be the smallest integer such that some BL,BU satisfy
(1) while (d − 1)BL < BU . Subtracting (2d − 1)(d − 1) from m decreases
BL by 1 and BU by d − 1, hence m would still have that property unless
m−d ≤ (2d−1)(d−1). But then BU ≤ d−1, while BL ≥ 1, a contradiction.
(This analysis is slighly tighter than in [2].)
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3 New upper bound and selection criteria

These ideas work for 3-regular-MIM but we formulate them in more general
terms, because we hope that they also work for 4-regular-MIM and perhaps
they can be extended for any d-regular-MIM.

Definition 4 For an edge set M , set XM = E −
∪

e∈MDe.

Definition 5 Let Y (A) be an integer function defined on edge sets. Integer
function Y is an X-estimator if |A ∩XM | ≥ Y (A) for every IM M .

Observation 2 If M is an IM, then |M | = |E|−|XM |
2d−1

.

With the previous upper bound, |E|
2d−1

, a way to guarantee that a greedy
algorithm satisfies approximation ratio ρ was that when the selection of e
removes Ee set of edges we have |Ee| ≤ (2d − 1)ρ. With X-predictor it
suffices to have

|Ee| − Y (Ee) ≤ (2d− 1)ρ.

Our last idea is to count both edges and nodes, rather than just edges.
Because our input is a d-regular graph, we have this identity:

|E| = |E|+ d|V |
3

.

Now to guarantee ratio ρ it suffices to select edges so that

|Ee|+ d|Re| − 3Y (Ee)

3
≤ (2d− 1)ρ ≡ |Ee|+ d|Re| − 3Y (Ee) ≤ 3(2d− 1)ρ.

Definition 6 Set U ⊆ V consists of nodes that were not removed yet, i.e.,,
U = {u ∈ V : deg(u) > 0}, Re ⊆ U is the set of nodes that would be removed
by e, i.e., with all incident H-edges in Ee.

Let Ui = {u ∈ U : deg(u) = i}, and Ni is the set of neighbors of nodes
in Ui. We also define σ(u), the sum of degrees of the neighbors of u.

The resulting algorithm, BL-Alg, is shown in Figure 3. To analyze its
approximation ratio in 3-regular graphs we need additional definitions.

Definition 7 Re is the union of three disjoint parts: e, Ri
e = VD(e) and the

remainder Ro
e, where Ro

e consists of nodes that are not in e ∪ Ri
e but have

neighbors only in Ri
e.

5
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1 H ← E
2 U ← V
3 M ← ∅
4 while H ̸= ∅
5 e← a member of H minimizing c(e) = |Ee|+ d|Re| − 3Y (Ee)
6 insert e to M
7 remove Ee from H
8 remove Re from U

Figure 3: Algorithm BL-Alg for d-regular-MIM. To complete the descrip-
tion, we need an implementation of an X-predictor Y .

The following fact is used to compute Y (A).

Lemma 2 Assume that M is an induced matching and C is a set of edges
of a 4-cycle. If C ∩M ̸= ∅ then C ∩XM ̸= ∅.

Proof. Let e ∈M ∩C and e′ be the edge in C that is disjoint with e. Nodes
of e′ cannot be in VM because they are adjacent to e, thus e′ ∈ XM . p

4 3-regular graphs

In this section we will prove the approximation ratio ρ = 5/3. As we have
shown in the previous section, it suffices that we are always able to select an
edge e such that

|Ee|+d|Re|−3Y (Ee) ≤ 3(2d−1)ρ ≡ c(e) = |Ee|+3|Re|−3Y (Ee) ≤ 25 (2)

We will show that (2) holds with two exceptions. The first selection
in a connected component has c(e) ≤ 37. In the subsequent selections, it
may happen that we select e with c(e) = 27 > 25, but then the subsequent
selection has c(e′) = 7.

For 3-regular graphs we use the following lemma to compute Y (Ee).

Lemma 3 A Θ-graph is a set of 7 edges T ⊆ H of which 6 edges of the
cycle u, v, w, z, y, x, and the 7th edge is {v, y} (see Figure 4). A set of edges
obtained from T by inserting edge {u, z} is a Θ′-graph.
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Figure 4: Θ- and Θ′-graphs.

1. If T is a Θ-graph then T ∩XM ̸= ∅.

2. If T ′ is a Θ′-graph then |T ′ ∩XM | ≥ 2.

Proof. Property of T follows from Lemma 2 if M ∩T ̸= ∅. Otherwise v and
y are not in VM because they belong to three edges of T , hence {v, y} ∈ XM .
Now we prove the property of T ′. Each edge e ∈ T ′ belongs to two 4-cycles,
thus if e ∈ M then two edges of T ′ that are opposite to e in these 4-cycles
are in XM by Lemma 2. If T ′ ∩M = ∅ then {v, y}, {u, z} ∈ XM . p

We define

Y (A) =


2 if A contains a Θ′,
1 if A contains a Θ,
0 otherwise

The following case analysis is a major part of the proof of Theorem 1.
Case 0: |Ee| ≤ 5. Because Ee is connected, |Re| ≤ |Ee|, hence c(e) ≤
|Ee|+ 3(|Ee|+ 1) = 4|Ee|+ 3 ≤ 23.

Case 0 settles the situations when v ∈ U1, e = {u, v} ∈ H and σ(v) ≤ 5.
In particular, this happens when deg(u) = 2: σ(u) ≤ 1 + 3, and when u two
neighbors in U1: σ(u) ≤ 1 + 1 + 3. Thus later we assume that each u ∈ N1

has degree 3 and exactly one neighbor in U1.
Case 1: U1 ̸= ∅. We select u ∈ N1 with the least σ(u). Assume u ∈ N1 has
neighbors v0, v1, v2, and v0 ∈ U1; our selection is e = {u, v0}.

In this case c(e) ≤ |Ee|+3|Re| while |Ee| = σ(u) ≤ 1+3+3 = 7; moreover
Re = {u, v0, v1, v2}∪Ro

i , hence c(e) ≤ 7+3×4+3|Ro
e| and it suffices to show

|Ro
e| ≤ 2. Assume by the way of contradiction that |Ro

e| ≥ 3. Note that Ro
e

consists of nodes with all neighbors in set {v1, v2}; if the sum of degrees of
nodes in Ro

e is 3, then Ro
e ⊂ U1, and either v1 or v2 has two neighbors in U1,

a contradiction (Case 0). So this sum is 4 and Ro
i consists of two nodes of
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degree 1 and one node of degree 2, so both v1 and v2 have one neighbor of
degree 1 and one of degree 2 and σ(v1) = 6, again a contradiction (v1 ∈ N1

and σ(v1) < σ(u)).
Case 2: two nodes in U2 are adjacent. We select this edge, say e = {u, v}.
Let w, x be the other neighbors of u, v. |Ee| ≤ 7 because Ee consists of e
and 6 edges incident to Ri

e = {w, x}; Ro
i consists of nodes with all neighbors

in Ri
e, the the sum of degrees of nodes of Ro

e is at most 4 and |Ro
i | ≤ 2. We

conclude that c(e) ≤ 7 + 3(2 + 2 + 2) = 25.
Case 3: a cycle in H has 3 nodes u, v0, v1, and u ∈ U2. We select e = {u, v0},
then Ri

e = {v1, w} where w is the non-cycle neighbor of v0, and the sum of
degrees in Ro

e is at most 3; because U1 = ∅ we can conclude that |Ro
e| ≤ 1

and c(e) ≤ |Ee|+ 3(2 + |Ri
e|+ |Ro

i |) ≤ 7 + 3(2 + 2 + 1) = 22.
Case 4: e = (u, v), u ∈ U2, e is in a 4-cycle of H-edges. We select such e
so σ(v) is minimal. Ri

e = {w0, w1, w2} where w0 is the second neighbor of u,
w1 is the fourth node of the 4-cycle and w2 is the neighbor of v outside the
cycle.

c(e) = |Ee|+ 3(2 + |Ri
e|) + 3|Ro

e| − 3Y (Ee)

= 9 + 15 + 3|Ro
e| − 3Y (Ee)

= 24 + 3(|Ro
e| − Y (Ee))

It suffices to show that |Ro
e| ≤ Y (Ee). It is obvious when R0

e = ∅.
For |Ro

e| > 1 we will show a contradiction. Observe that the sum of
degrees in Ro

e is at most 4: we can use at most two edges incident to w2, and
at most one edge incident to w0, w1. Thus all these edges are used to connect
Ri

e to two nodes of degree 2. This implies that σ(v) = 8 and σ(w0) = 7, but
σ(v) ≤ σ(w0).

For |Ro
e| > 0 we will show that a Θ is contained in Ee and thus Y (Ee) ≥ 1.

Consider x ∈ Ro)e. If x is adjacent to both w1 and w2, we have a Θ with
6-cycle (x,w1, w0, u, v, w2). Other possibilities lead to contradictions. Note
that x ∈ U2 because the neighbors of x are either w0, w1 or w0, w2. If x is
adjacent to w0, w1 we have a 3-cycle, hence Case 3. If x is adjacent to w0, w2

then either w2 ∈ U2 and we have Case 2, or w2 ∈ U3 and

σ(w0) = deg(u) + deg(x) + deg(w1) < deg(u) + deg(w2) + deg(w1) = σ(v).

Case 5: node u has two neighbors in U2, v0 and v1. Let w2 be the third
neighbor of u and w0, w1 other neighbors of v0, v1.

8
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w0 w2 w1

xe xf = xg

Figure 5: Diagram for Case 5

Let e = {u, v0}. If Ro
e = ∅ then c(e) < 25: Ri

e = {v1, w0, w2}; Ee consists
of e and edges incident to Ri

e, so |Ee| = 9; thus c(e) ≤ 9 + 3(2 + 3) = 24.
Thus suppose that xe ∈ Ro

e. If xe is adjacent to v1, then xe ∈ U3, otherwise
we have Case 2, and thus xe is equal to w1 and it is also adjacent to w2, and
4-cycle (xe, w2, u, v1) gives Case 4. Thus xe ∈ U2 and it is adjacent to w0, w2.

Next we try to select f = {u, v1}; c(f) < 25 unless some xf ∈ U2 is
adjacent to w1 and w2 (by repeating the reasoning).

If c(e) > 25 and c(f) > 25, our last attempt is to select g = {w0, xe}: note
that w0 has two neighbors in U2, namely v0, x0. Let y be the third neighbor
of w0; R

o
g = {y, v0, w2}, and g is a good selection unless some xg ∈ U2 is

adjacent to both y and w2. Note that we already know all neighbors of w2

in U2: u, xe and xf , hence xg = xf ; we also know both neighbors of xf ,
namely w1 and w2, hence y = w2. Thus c(g) > 25 unless w0 and w1 are
adjacent. In that case we have a connected component of (U,H) with 8
nodes, u,w0, w1, w2 ∈ U3 and v0, v1, x0, x1 ∈ U2, and with 10 edges: 8 edges
incident to nodes in U2 plus {u,w2} and {w0, w1}. Every selection e′ in that
component eliminates 9 nodes and 6 edges, hence c(e′) = 27, but it also leave
2 nodes connected with an edge e′′, so the next selection is e′′ with c(e′′) = 7.

9
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Figure 6: Diagram for Case 6.

Thus two selections together cost 34 < 2× 25.
Case 6: the remaining case. Assume that u ∈ U2, v0, v1 are the neighbors of
u (in U3, otherwise Case 2), and that the other neighbors of v0, v1 are w0, w1

and w2, w3, respectively. Because we do not have Case 5, |{w0, w1, w2, w3}| =
4. Let e = {u, v0} and f = {u, v1} (see Figure 6).

Consider selecting e, note that Ri
e = {v1, w0, w1} and |Ee| ≤ 10, so c(e) ≤

10+5×3+3(|Ro
e|−Y (Ee)), hence this is a good selection unless |Ro

i | > Y (Ee).
Therefore assume that xe ∈ Ro

i . If xe ∈ U2, we have one of the previous cases:
if xe is adjacent to v1 we have Case 2, otherwise xe is adjacent to w0, w1 and
we have Case 5. In the remaining situation, xe ∈ U3 and it is adjacent to all
three nodes of Ri

e, w0, w1, v1, and w.l.o.g. we can assume that xe = w2, so
we have edges {w0, w2}, {w1, w2}.

We repeat the reasoning for f , and a prior case occurs or |Ro
f | = 0 unless

one of w0, w1 is connected to both w2, w3. In that situation we have three
edges between w0, w1 and w2, w3, and thus a matching of two edges, say,
{w0, w2} and {w1, w3}. This matching together with paths (w0, v0, w1) and
(w2, v1, w3) forms a 6-cycle, and the third edge between w0, w1 and w2, w3,
together with this 6-cycle, creates a Θ-graph contained in Ee. Therefore
Y (Ee) ≥ 1.

Thus e is a good selection unless |Ro
e| ≥ 2, so some x ̸= xe = w2 belongs

to Ro
e. By the above argement, x belongs to the pair w2, w3, so x = w3 and

as x is connected to both w0, w1, we have all 4 edges between w0, w1 and

10



w2, w3. This new edge, together with Θ we have just described, forms a Θ′,
hence Y (Ee) = 2, while |Ro

e| ≤ 2.

Theorem 1 For every ε > 0 there exists a linear time greedy algorithm that
approximates 3-regular-MIM problem with ratio 5/3 + ε.

Proof. Algorithm BL-Alg can be implemented in polynomial time in 3-
regular graphs. Function c(e) is determined by Ee, which is a subset of (at
most) 13 edges that belong to Ee at the start of the algorithm. Thus it
takes O(1) time to compute each c(e). When we select an edge, we remove
O(1) edges and nodes, hence we need to recompute only O(1) values of c(e).
Moreover, the range of values of c(e) is also O(1), thus selecting an edge that
minimizes c(e) takes O(1) time.

To simplyfy the analysis of the approximation ratio, we can make the
initial edge selection as follows. We arbitrarily select node u0 and we remove
it from U , and the three incident edges form H. Then the former neighbors
of u0 belong to U2 and all edge selections in that component will be done in
the presence of at least one node in U1 ∪ U2. As one of the Cases 1-6 has to
apply, every selection will satisfy c(e) ≤ 25 (after averaging the costs when
we select two edges in Case 5).

When BL-Alg starts in a component, we have some 2n nodes and 3n
edges. Later, there will be ti iterations with Y (Ee) = i used in the compu-
tation of c(e) of the selected edge, which means that this run of BL-Alg
discovers an edge-disjoint collection of t1 Θ-graphs and t2 Θ′-graphs. When
the algorithm terminates in a connected component we have H = U = ∅.
Thus we guarantee the selection of at least

3n− 3 + 3(2n− 1) − 3(t1 + 2t2)

25
≥ 3

5

|E| − |XM∗|
5

− 6

25
=

3

5
|M∗| − 6

25
.

One can see that in sufficiently large connected components, of size Ω(1/ε),
this gives approximation ratio 5/3 + ε. In smaller components we can apply
an exponential time exact algorithm. p
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5 Improved lower bound

Duckworth et al. show that it is NP-hard to approximate 3-MIM with a
ratio better than 1 + 1/474, and that it is similarly hard to approximate
3-regular-MIM with a constant ratio. We improve their analyse.

Definition 8 A combinatorial maximization problem P has a set of in-
stances I, a size function Size : I → N, and instance I has a set Valid(I) of
valid solutions, and an objective function Value : I → N. We assume that
instances have positive sizes and the values of solutions are positive.

An optimum solution for I is S ∈ Valid(I) that maximizes Value(S). We
denote it S∗

I .
An randomized algorithm provides ρ-approximation for P if on each in-

stance I of P it runs in time that is polynomial in Size(I) and with probability
at least 2/3 finds S ∈ Valid(I) such that ρValue(S) ≥ Value(S∗

I ).

Clearly, MIM is a combinatorial maximization problem, the size of an
instance can be the number of edges, valid solutions are non-empty induced
matching, and the value of a solution is its size.

For a number of combinatorial maximization problems it was proven that,
for sufficiently low ρ, a ρ-approximation algorithm is unlikely to exists, more
precisely, its existence would imply that every NP-problem can be solved in
randomized polynomial time. Tools to obtain such results are special types
of reductions, translations of problems to other problems. Such reductions
may be quite involved, and involve randomization. In other cases we use
gadget reductions that are simple and deterministic and utilize the results
obtained in an involved fashion.

Here we will use an already known result and simple gadget reductions.
The known result in question has the form of
(α−β)-Gap Property: there exists ε0 > 0 such that for every positive ε <
ε0 there exists a randomized polynomial time translation of SAT instances of
size n′ to instances of P of size n = p(n′) such that satisfiable SAT instances
are translated into instances that have valid solutions with value at least
(β− ε)n, while unsatisfiable instances are translated into instances where no
valid solution has value larger than (α + ε)n.

If a problem has such a property, then a ρ-approximation with ρ < β/α
could be used to decide SAT instances in randomized polynomial time.

The cornerstone of this approach is the work of H̊astad [6] who had shown
the (1/2,1) gap property for satisfiability of equations modulo 2 with three
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variables per equation. In this problem an instance of size n is a set of n
equations of the form x+y+z = b, and we want to find an assignment of 0-1
values to the variables that would maximize the number of true equations in
the set.

Chleb́ık and Chleb́ıková [4] used that result to show ( 94
194

, 95
194

)-gap prop-
erty for 3-regular-MIS, Maximum Independent Set problem restricted to 3-
regular graphs. One can use this result as follows:
Given instance (V,E) of 3-regular-MIS,

translate each node u into a gadget Γu and
connect the gadgets with additional edges.

Then we can show that an IM M for the resulting instance can be replaced
with IM M ′ such that
|M ′| ≥ |M |;
M ′ does not contain any additional edges (that connect node gadgets);
each gadget contains at least k and at most k + 1 edges of M ′;
gadgets that contain k + 1 edges of M ′ cannot be connected.

Moreover, given an independent set I ⊂ V we can define MI such for every
u ∈ V we have |Γu ∩M | ≥ k and |Γu ∩M | = k + 1 for u ∈ I.

If a node gadget has a nodes then this proves (194k+94
194a

, 194k+95
194a

)-gap prop-
erty for a version of MIM, and thus hardness of approximation for a ratio
lower that 194k+95

194k+94
= 1 + 1

194k+94
.

For 3-MIM, Duckworth et al. describe gadgets with 5 nodes and k = 1.
Consider an instance (V,E) of 3-regular-MIS. It is well-known that in a d-
regular graph the set of edges is a disjoint union of d perfect matchings, so
we assume that E = E0 ∪ E1 ∪ E2, where Ei’s are those perfect matching.

Γu is a path of 4 edges and 5 nodes, (au0 , c
u
0 , a

u
1 , a

u
2 , c

u
1). We say that c’s

and a’s are contact nodes and auxiliary nodes.
The additional edges are introduced as follows: if {u, v} ∈ E0 we add

edge {cu0 , cv0}, and if {u, v} ∈ E − E0 we add edge {cu1 , cv1}.
Consider an IM M for the resulting instance, we need to show how to

replaceM withM ′ that properly corresponds to an independent set in (V,E).
We will show how to replace edges that contain nodes of some node gadget
Γu.

Suppose that e ∈ M and cu0 ∈ e. We can replace e with f = {au0 , cu0}.
Because au0 has only one neighbor, Df ⊆ De and M is still an IM.

Next, suppose that e ∈M and cu1 ∈ e; we can replace e with f = {au2 , cu1}.
This is clearly fine if e = f , otherwise e is of the form {cu1 , cv1} and no edge
of M can contain au2 . As a result, the only possible edge contaning au1 is
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au0

cu0

au1

au2

cu1

av0

cv0

av1

av2

cv1

Figure 7: Two gadgets Γu,Γv (solid edges), contact edges (dashed) and with
extra edges (thin or very short thick) added to form Γ′

u,Γ
′
v.

{cu0 , au1}, but because of our first type of replacement, such edges are not in
M , and no edge of M contain au1 . Therefore the replacement does not conflict
with other edges of M .

After the replacements, all edges of M are inside node gadget, and it is
easy to see that Γu can contain at most two edges of M , and if it does, then
these edges are {au0 , cu0} and {au2 , cu1}. Therefore gadgets that contain two
edges of M cannot be connected, and IM = {u ∈ V : |M ∩ Γu}| = 2 is
independent.

One can observe that the gadget relies strongly on the auxiliary nodes
having less than 3 neighbors. Duckworth et al. describe how to modify the
gadget to bring the degree of every node up to 3, this approach increases
k from 1 to 6, which proves the hardness of the approximation ratio of 1 +
1/(6× 194 + 94). Instead, we show how to obtain k = 2.

This reduction starts by defining Γu for each u ∈ V as before, but to
describe the modification, we pair the gadgets of u and v for each {u, v} ∈ E0.

To obtain Γ′
u and Γ′

v we insert 8 nodes as shown in Figure 7, the left 4 to
Γu and the right 4 to Γv, and we add 14 edges as shown.

It suffices to show that we can replace edges in an IMM so that among the
new edges, for each pair of gadget M contains exactly two (one per gadget,
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thus increasing k from 1 to 2), marked as very short thick lines in Figure 7.
If this is indeed the case, the short thick lines do not conflict with any edges
of Γ and we can finish the normalizing replacements as before, with the same
conclusions.

Consider first the auxiliary structure S that consists of 8 added nodes,
together will all 13 edges that are incident to those 8 nodes. We will show
that S cannot contain more than 2 edges of M : a cycle of x nodes can
contain two edges of M only if c > 5, thus the only way the upper 6 nodes
(and 8 edges) of S can contain two edges of S is as shown (or symmetric),
in particular, when those edges contain both left-most and rigthmost upper
nodes, and in this case no edge of M can contain the lower nodes of S. It is
also to see that only one edge that contains a lower node of S can be in S,
and if it does, we can have only one upper edge.

As a result, we can continue our analysis as if S did not exists and au1 , a
v
1

were nodes of degree 2.
Next, suppose e = {au0 , av0} ∈ M . If we use it we eliminate nodes

cu0 , c
v
0, a

u
2 , a

v
2. As a result, nodes a1 are also eliminated, because we have

eliminated all their neighbors. We can replace e with {cu0 , cv0} ∈ M and we
would eliminate a proper subset of nodes eliminated by e.

Finally, suppose e = {au0 , av2} ∈ M . If we use it we eliminate nodes
cu0 , a

v
0, a

v
1, c

v
1. As a result, node cv0 is also eliminated as we eliminated all its

neighbors. We can replace e with {av1, av2}.
We can conclude the following

Theorem 2 Assuming that there exists an NP-problems that cannot be solved
in random polynomial time, there exists no randomized polynomial time al-
gorithm that approximates 3-MIM with a ratio lower than 1 + 1/288 and
3-regular-MIM with a ratio lower than 1 + 1/482.

6 Conclusions and open problems

We believe that all results in this paper can be improved and merit further
work.

We conjecture that one can eliminate ε from the statement of Theorem 1
by making a more careful first edge choice and proving it by additional case
analysis. It is also worth attempting to extend Theorem 1 for the case of
4-regular-MIM and other similar cases.
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