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Abstract

Survival models have been applied to time-to-event data for a long time, and
usually a number of covariates are assumed to influence the distribution of the
time to event through the model. The Cox proportional hazard model is commonly
used in this context. To have a parsimonious model without losing consistency in
estimation, several authors have extended the variable selection techniques of Fan
and Li (2001) to survival settings. For example, the variable selection problem for
the Cox model is studied in Fan and Li (2002). Recently, survival models like the
Cox model are also extended to apply to dynamic network data (Vu et al., 2011b;
Perry and Wolfe, 2013), where the observations are dependent. In this dissertation,
we study the variable selection problem for a survival model other than the Cox
model. In addition, we extend the variable selection work to the dynamic network
model setting.

We first discuss the problem of variable selection for the proportional odds
model, an alternative to Cox’s model, and show how to maximize the penalized
profile likelihood to estimate parameters and select variables simultaneously. Using
a novel application of the semiparametric theory developed by Murphy and Van der
Vaart (2000), we derive asymptotic properties of the resulting estimators, including
consistency results and the oracle property. In addition, we propose algorithms to
maximize the penalized likelihood estimator based on a majorization-minimization
(MM) algorithm. Tests on simulated and real data sets demonstrate that the newly
proposed algorithm performs well in practice.

Next, we extend the penalization idea to the Cox model in an egocentric ap-
proach to dynamic networks, and select covariates by maximizing the penalized
partial likelihood function. Asymptotic properties of both the unpenalized and
penalized partial likelihood estimates are developed under certain regularity con-
ditions. We also implement the estimation and test the prediction performance of
these estimates in a citation network. Since the covariates are time-varying, the
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computation cost is high. After variable selection, the model is reduced, which
simplifies the calculation for future predictions. Another method to reduce the
computational complexity is to use the case-control approximation, in which in-
stead of using all the at-risk nodes in the network, only a subset is sampled to
evaluate the partial likelihood function. By using this approximation, the com-
putation time is shortened dramatically, while the prediction performance is still
satisfactory in the citation network.
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Chapter 1
Introduction and Literature Reviews

1.1 Introduction

Systematic collection of a group of explanatory variables to predict and summarize

the pattern of response variables has been used very commonly in various area of

science. Especially in recent years, the development of technology brings the pos-

sibility of obtaining massive data and data with complicated structures to reduce

potential model bias. However, the tradeoff is that models can become extremely

complicated by introducing too many covariates, or by giving too much freedom on

coefficients by assuming a nonparametric form. This motivates researchers to find

proper approaches simplifying the model while keeping the accuracy of model es-

timation or prediction. One approach is to select a smaller number of explanatory

variables using variable selection techniques.

Variable selection techniques have been well-developed for the linear regres-

sion and general linear model settings. Properly selecting the set of variables can

reduce the prediction error while only introducing a tolerable bias. Best subset se-

lection through classic variable selection criteria, including Adjusted R2, Mallow’s

CP , AIC, and BIC, might result in the best model. However, it is not workable

for models with a large number of covariates because it is computationally inten-

sive. Stepwise selection is too computationally simple but has some significant

drawbacks. In recent years, approaches using penalization have developed quickly.

Tibshirani (1996) introduced the idea of shrinkage by proposing a restricted least

squares approach. The resulting estimates shrink to zero as compared with the



2

original least squares estimates, and some of them will be set to zero. This ap-

proach is equivalent to penalized least squares using the L1 penalty. Fan and Li

(2001) studied properties of penalized least squares and penalized likelihood esti-

mates using different penalty functions, and proposed the SCAD penalty. They

showed that under certain conditions and properly chosen penalty functions, pe-

nalized likelihood estimates possess an oracle property, i.e. the zero coefficients

can be identified correctly with probability approaching to 1, and those nonzero

coefficients could be estimated as if the zero coefficients were known to be zero in

advance, as sample size goes to infinity. Sparsity of the estimate depends on sin-

gularity of the penalty function at the origin, which creates computational issues

for maximization of the penalized likelihood function. Fan and Li (2001) proposed

using local quadratic approximation (LQA) of the penalty term. Hunter and Li

(2005) showed this algorithm is a type of minorization-maximization algorithm

and proposed a slightly perturbed version of LQA. Zou and Li (2008) proposed

using local linear approximation (LLA) for the penalty term, which is known to

be the best convex approximation for penalty terms. Details of this literature will

be discussed in Section 2 of this chapter.

Besides linear regression and general linear models, survival models have also

been used widely. The response variable in a survival model setting is time to

the event of interest, and researchers are interested in how this time to event

variable is affected by a set of covariates. Typical approaches for estimation in a

survival analysis are likelihood-based. These likelihood-based approaches usually

maximize some type of “likelihood” such as partial likelihood, profile likelihood,

or even marginal likelihood to estimate the coefficients of the covariates. The pe-

nalized version of these “likelihoods” can be used for model selection. Fan and

Li (2002) studied the variable selection problem for Cox’s proportional hazard

model and derived the oracle properties for the estimator. The Cox proportional

hazards model is widely used because it has a partial likelihood which excludes

the nonparametric baseline hazard parameter and hence facilitates the estimation.

Another semi-parametric survival model is the proportional odds model, which

can be used as an alternative to the Cox model but which does not have a par-

tial likelihood function. This brings many challenges for variable selection in the

proportional odds model. In Chapter 2 of this dissertation, we discuss these chal-
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lenges and study the variable selection problem for the proportional odds model

through the penalized profile likelihood approach. In addition, efficient algorithms

are developed based on an MM algorithm philosophy. In Section 3, more details

about comparisons between Cox’s model and the proportional odds model will be

discussed.

Survival models like the Cox model and the Aalen additive model are also

used in settings when one does not have independent observations, for example,

in analysis of network data. Usually the counting process approach is adopted

to relax the assumption of independent observations. Especially in recent years,

the study of network data has attracted a lot of attention and the methodology

has developed quickly in a variety of fields. Researchers have developed more

interest in large and time-varying networks. Some approaches model the intensity

process for nodes or edges using the Cox or Aalen model (Vu et al., 2011a,b;

Perry and Wolfe, 2013). In the Section 4 of this chapter, some related models

will be reviewed and discussed. These models encompass the dynamic property of

time-varying networks and also include time-varying covariates, which can include

numerous aspects to characterize various dynamic properties of the networks. We

can obtain “snapshots” of such networks even though sometimes they change and

grow quickly. However, the tradeoff is that the estimation for the model can

become extremely complicated if we introduce a large number of covariates. This

motivates us to find proper approaches simplifying the model while keeping the

accuracy of model estimation or prediction. In other words, we want to build

suitable survival models for large, time-varying networks and apply model selection

techniques on these models. In this disseration, we apply the idea of penalization to

select variables in a network setting using survival models. Chapter 3 will discuss

theoretical properties of the maximizer of the penalized likelihood function and

Chapter 4 provides some algorithms to implement the optimization.

1.2 Variable Selection Techniques

Many settings in statistical modeling require including a large number of covari-

ates to reduce model bias in the initial stage of model fitting. Also, a revolution in

data collection technology has made it possible to obtain observations for a huge
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number of variables at the same time. Although including more variables results

in smaller bias for the model, it also has problems associated with it. One problem

is lack of freedom in estimation: in some statistical settings, the number of obser-

vations one can obtain is far fewer than the number of variables in the model. For

regression problems, this can cause collinearity and hence explosion of variance.

Another problem is the curse of dimensionality, since in high-dimensional settings,

independency among variables can become very tricky. Finally large numbers of

variables will increase the model complexity as well as the computational bur-

den. All these call for model and variable selection methods that balance between

statistical accuracy and model and computational complexity.

The rest of this section is organized as follows: the first subsection reviews liter-

ature for classic variable selection criteria, and the next two subsections introduce

variable selection approaches through penalized least squares or likelihood.

1.2.1 Subset Selection and Classic Model Selection Crite-

rion

1.2.1.1 Linear Regression Settings

Variable selection techniques are first developed for linear regression. For a simple

linear regression model, we assume

y = βTx + ε, ε ∼ N(0, 1)

where x = (x1, x2, ..., xp) is a p-dimensional vector, independent of ε. Observations

are n i.i.d pairs (x(i), y(i)). Using matrix notation, let X = (x(1),x(2), ...,x(n)) and

Y = (y(1), y(2), ..., y(n)). If n > p, the least squares estimator(LSE) of β is

β̂ = (XTX)−1XTY. (1.1)

If h is a q dimension vector, and C is a q× p matrix, the major inference problem

for β is to test

H0 : Cβ = h versus H1 : Cβ 6= h. (1.2)

If β̂ is the least squares estimate, then the constrained least squares estimate
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β̂0 under the null hypothesis is

β̂0 = β̂ − (XTX)−1CT{C(XTX)−1CT}−1(Cβ − h). (1.3)

One may use the corresponding F-test to solve this testing problem:

F =
(RSS0 − RSS1)/q

RSS1/(n− p)
∼ Fq,n−d, (1.4)

where RSS0 and RSS1 are the residual sum of squares under the null and alternative

hypotheses, defined as:

RSS0 = ‖Y −Xβ̂0‖2,RSS1 = ‖Y −Xβ̂‖2. (1.5)

It can be shown that the F-test is equivalent to the likelihood ratio test under the

normal assumption on the error term.

To improve model predictability, one can select significant variables by com-

paring models with different subsets of predictors, which is also necessary when

n < p. The selection criterion should have good properties so that the model

selected enjoys desired advantages.

1.2.1.2 Classic Model Selection Criteria

There is a lot of literature about criteria for variable subset selection. The most

commonly used ones include Cp, AIC and BIC. Suppose for each candidate model,

we can calculate least square estimates and likelihoods, and all the following criteria

are given for models with d predictors.

The most intuitive criterion would be the residual sum of squares (RSS). The

smaller the RSS is, the better the fit it might be. People use

R2
d = 1− RSSd/RSS0 (1.6)

as one criterion due to this intuition. However, including more variables in a model

will definitely improve the model accuracy, hence, decrease the RSSd, and increase

the R2
d. So R2

d cannot serve as a variable selection criterion. The Adjusted R2
d is

an improved version of R2
d, and unlike R2

d, it will not necessarily increase when

more variables are added into the model. The Adjusted R2
d is also referred to as
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Fisher’s A-statistic, and it adjusts the degrees of freedom as follows:

Ad = 1− (1−R2
d)
n− 1

n− d
. (1.7)

While comparing candidate models, one wants to choose the model with greatest

Ad.

Another criterion, which has the same intuition, is Mallow’s CP , which tries to

minimize the scaled sum of squared errors,

Jd =
1

σ2
‖X1β1 −Xβ‖2, (1.8)

where X1 represents the design matrix with only d variables in the candidate model

and β1 are the corresponding coefficients. Then CP is an unbiased estimator of

E(Jd|X) and it is defined as

CP =
RSSd
σ2
− (n− 2d). (1.9)

The model with the minimum value of CP is preferable.

Prediction is always a very important perspective for linear regression, so mod-

els with smaller prediction errors might be more favorable. Based on this perspec-

tive, Allen (1974) proposed a variable selection criterion called the prediction sum

of squares (PRESS) statistic,

PRESSd =
n∑
i=1

(yi − ŷid)2, (1.10)

where ŷid is the predicted value by a model with d variables, which is estimated

by all but the ith observation. Similarly, the Cross Validation (CV) approach also

puts a small subset of data aside, and uses the rest to calculate the prediction error.

CV can be one-fold or K-fold, depending on how many subsets the observations

are divided into. One disadvantage of this approach is that one needs to fit several

regression models to evaluate one criterion value. This might be computationally

intensive when n is large. To avoid this, Golub et al. (1979) found that if n is much

larger than d and under some other mild conditions, the PRESSd statistic can be
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approximated by

PRESSd ≈
RSSd

(1− d/n)2
. (1.11)

The right hand side of (1.11) is actually n times the so-called Generalized Cross Val-

idation (GCV) criterion, which is computationally easier and suitable for broader

types of problems.

The remaining two criteria depend on log-likelihood. One is the AIC, or

Akaike’s Information Criterion, (Akaike, 1973),

AICd = −2`(β̂d) + 2d. (1.12)

It is motivated by estimating the Kullback-Leibler divergence between maximized

likelihood values evaluated at the true and candidate models. It can be shown

that AIC is equivalent to CP asymptotically. The other criterion is the Bayesian

Information Criterion, or BIC (Schwarz, 1978),

BICd = −2`(β̂d) + log(n)d. (1.13)

As variable selection criteria, AIC and BIC use different penalties on the size of

the model. If one assumes that the true model is in the candidate class of models,

BIC will choose the true model consistently as sample size increases. On the

other hand, without this assumption, the model selected by AIC is asymptotically

loss-efficient.

1.2.1.3 Algorithms for Variable Selection

For linear regression with a finite number of variables, it is possible to list all

sub-models, and pick the one with the best variable selection criterion. However,

exhaustive search over all subsets for moderate p will be very computationally

intensive and may not be feasible for large p. Instead, we may use forward selection,

backward elimination, or stepwise selection as algorithms for variable selection.

Forward selection starts from the null model, then adds one variable at a time.

The variable chosen to be added is the one that increases the selected criterion the

most. Backwards elimination begins with the full model with all variables, and

deletes the one that increases the selected criterion the most at each step. Both
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procedures stop if the variable selection criterion reaches its optimum value. The

drawback of these procedures is that once you add or delete a variable, you can not

delete or add it ever again. So they do not necessarily result in the same subset that

would be chosen by best subset selection. On the other hand, stepwise selection

can be viewed as a combination of forward and backward selection. Unlike them,

stepwise selection allows both adding a variable and deleting a variable in each

step, and it will not stop until no variables can be added to or deleted from the

current subset.

1.2.2 Penalized Least Square Approach for Linear Regres-

sion

Some of the variable selection criteria above can be written as scaled RSS plus

an additional term which penalizes variables with large coefficients. These criteria

are all under the framework of Penalized Least Square (PLS) approaches, which

have attracted a lot of attention in recent years. One advantage is that one can

conduct variable selection and parameter estimation simultaneously. A penalized

least squares function could be written as

1

2
‖y −Xβ‖2 + n

p∑
j=1

pλ(|βj|), (1.14)

where pλ(·) is the penalty function and λ is a tuning parameter which controls

model complexity. If the penalty properly is chosen properly, minimization of this

function can shrink some coefficients to zero, hence resulting in a sparse estimator.

That is the reason this approach is suitable for variable selection.

1.2.2.1 Types of Penalty Functions

In regression settings, best subset regression with CP , AIC, and BIC are equivalent

to minimizing the following functions, respectively:

1

2
‖y − Xβ‖2 + σ2

p∑
j=1

I(βi 6= 0), (1.15)
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1

2
‖y − Xβ‖2 + n

(σ2
√

2/n)

2

p∑
j=1

I(βi 6= 0), (1.16)

1

2
‖y − Xβ‖2 + n

(σ2
√

log(n)/n)

2

p∑
j=1

I(βi 6= 0). (1.17)

Compared with the Penalized Least Squares problem (1.14), the common penalty

function

pλ(β) = λ

p∑
i=1

I(βi 6= 0) (1.18)

is the L0 penalty, which is also called the entropy penalty. It penalizes the number

of variables in the model, hence it will result in a sparse model. However, it is

difficult to optimize due to the discontinuity of the penalty function at the origin.

Each of (1.15), (1.16) and (1.17) is a special case of (1.14) using the L0 penalty.

In order to make the penalized least squares easy to minimize, the penalty term

may be relaxed. Hoerl and Kennard (1970) introduced penalized least squares with

an L2 penalty:
1

2
‖y −Xβ‖2 +

nλ

2
‖β‖2. (1.19)

For a fixed λ, the solution has a closed form:

β̂ = (XTX + nλId)
−1XTy, (1.20)

which is also referred to as a ridge regression estimator and which was originally

used as an estimator of β when X has collinearity among its columns. It has

been used widely due to its computational simplicity and can give more accurate

predictions than subset regression if the true model is not sparse. In this setting,

the estimate from ridge regression is better than ordinary least squares because

it shrinks the estimates selectively, hence increasing the accuracy of the estimates

(Breiman, 1995). On the other hand, for sparse models, subset selection can beat

ridge regression in terms of giving a sparse model. In this sense, ridge regression

is not suitable for variable selection.

As argued by Breiman (1995), prediction accuracy may be improved by shrink-

ing some coefficients. If the goal is variable selection, it may also be helpful to set

some of the variables to zero. Breiman (1995) introduced the non-negative garrote
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based on constrained least squares. It gives each coefficient a shrinkage scale, then

constrains the magnitude of the sum of these scales. This method can eliminate

some variables and shrink others, and it is relatively stable. Also, the optimization

problem can be solved by quadratic programming, hence relatively simply. How-

ever, the sign and magnitude of the estimates depend on ordinary least squares

estimates, which incurs difficulty in some settings, for example, collinearity or

overfit. Tibshirani (1996) introduced LASSO, which is also based on constrained

least squares estimates, and which is equivalent to penalized least squares with L1

penalty:

1

2
‖y −Xβ‖2 + nλ

p∑
j=1

|βj|. (1.21)

LASSO avoids using ordinary least squares estimates directly, and it can give

different signs from the least square estimates. Efron et al. (2004) introduced

Least Angle Regression (LARS) to find least squares estimates stepwise, and its

modified version can be used to generate the entire path of LASSO solutions.

This algorithm is stable and computationally economical, hence is used widely as

an algorithm to solve least squares with L1 penalties. In general, penalized Lq

(0 ≤ q ≤ 2) least squares estimates are called bridge regression estimators since

they bridge L0 and L2.

1.2.2.2 Choice of Penalty Functions and SCAD Penalty

As discussed above, there are various penalty functions, and some of them will

shrink estimates selectively and set some estimates to zero. So properly choosing

a penalty function can facilitate variable selection as well as improving estimation

accuracy. Some of the penalties are displayed below.

One may ask what kind of penalty function is the best in the setting of variable

selection. To understand this, Fan and Li (2001) started from the simplest case,

where X is orthonormal such that
1

n
XTX = Ip, then they considered the simplest

penalized least squares:
1

2
(z − θ)2 + pλ(|θ|). (1.22)
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Figure 1.1. Plots of different penalty functions, λ = 2

Under the L0 penalty, the minimizer is the hard-thresholding estimator,

θ̂ = zI(|z| ≥ λ), (1.23)

which sets very small coefficients to zero directly. Penalized least squares with

hard-thresholding penalty,

pλ(|θ|) = λ2 − (|θ| − λ)2I(|θ| < λ), (1.24)

also results in the hard-threshold estimator.

The penalized least squares estimator resulting from L1 has the closed from

solution

θ̂ = sgn(z)(|z| − λ)+. (1.25)

Figure 1.2 displays the relation between ordinary least squares estimates and

penalized least squares estimates under different penalty functions. The x-axis is

the penalized least squares estimate, and the y-axis is the ordinary least squares

estimate. The dotted line in each plot indicates the case when the two estimates

are equal. We can examine the properties of penalized least squares estimates

with different penalty functions from this plot. Best subset selection can set small

coefficients to zero and keep large estimates the same as ordinary least squares esti-

mates, hence unbiased. However, it is not stable since there is a jump point around

the value of λ. For LASSO (or L1), the estimate is continuous as the ordinary least

squares estimate changes, hence more stable. But it sets small coefficients to zero
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Figure 1.2. Estimates from different penalty functions, and in all cases, λ is set to be 2

and also shrinks the estimates when they are large. The purpose of shrinking is

to reduce the prediction error, so the shrinkage has to be selective: shrink small

coefficients to zero while keeping large estimates the same as ordinary least square

estimates. Ridge regression shrinks estimates while never setting to zero any coef-

ficients, hence it does not give sparse estimates. To summarize, none of the three

penalty functions fulfills the requirements of variable selection and reduction of

prediction error: hard-thresholding is not continuous, LASSO is biased, and L2 is

not sparse.

Based on these observations, Fan and Li (2001) outline three properties to be

a good penalty function for variable selection: (1) Unbiasedness: avoiding in-

troducing modeling bias, (2) Sparsity: reducing model complexity by eliminating

unimportant variables, and (3) Continuity: avoiding instability in model pre-

diction. They also give sufficient conditions for penalty functions to satisfy these

conditions:

• Unbiasedness: If and only if p′λ(|θ|) = 0 for large |θ|.

• Sparsity: If min
θ
{|θ|+ p′λ(|θ|)} > 0.

• Continuity: If and only if arg min
θ
{|θ|+ p′λ(|θ|)} = 0.

They also proposed a new penalty function, called Smoothly Clipped Absolute

Deviation (SCAD) penalty, which satisfies all three desired properties, defined by

p
′

λ(|θ|) = I(θ ≤ λ) +
(aλ− θ)+

(a− 1)λ
I(|θ| − λ) for some a > 2 and θ > 0. (1.26)
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Usually, a is set to be 3.7, and λ is chosen by a data driven method. Figure

1.3 gives the shape of the SCAD penalty and the relation between ordinary least

squares estimates and SCAD estimates. It is clear that the estimate is continuous

and shrinks small estimates to zero while keeping large estimates unbiased.

Figure 1.3. SCAD penalty, a = 3.7, λ = 1

1.2.3 Penalized Likelihood Approach for Generalized Lin-

ear Model

In the last section, we discussed variable selection through penalized least squares.

This approach can be extended to more general settings, like binary response or

count responses, by replacing the least squares part by a log-likelihood function.

This is more general since penalized least squares is the log-likelihhod for normal

likelihood. In this section, we review the settings of generalized linear models

first, then present the theoretical results and literature for algorithms for variable

selection through penalized likelihood functions. In the end, we briefly mention

the existing methods of tuning parameter selection.

1.2.3.1 Generalized Linear Model and Penalized Likelihood functions

There are three components for linear models: (a) a normal random components

y|xi with mean µi, (b) a linear predictor ηi = xTi β as the systematic component and

(c) the link relation µi = ηi . Generalized linear models allow extensions of two
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components: the random components can be non-normal but in an exponential

family, and the link relation can be a function µi = g(ηi) other than the iden-

tity function. The likelihood function is usually the product of density functions,

denoted by L(xTβ,y), with log-likelihood function `(xTβ,y). Corresponding to

ordinary least squares estimators in generalized likelihood settings are Maximum

Likelihood Estimators (MLE).

In order to guarantee the existence and asymptotic normality of the MLE, Fan

and Li (2001) proposed regularity conditions for the likelihood function. The three

regularity conditions put requirements on the smoothness of the likelihood func-

tion, prepare conditions to use the Dominated Convergence Theorem, and guar-

antee that one can use Taylor expansion for the log-likelihood in a neighborhood

of the true parameter.

If the likelihood function satisfies all the regularity conditions, then the penal-

ized likelihood function is defined as

Q(β) = `(xTβ,y)− n
p∑
j=1

pλ(|βj|). (1.27)

The penalty function pλ(|βj|) can take any of the forms presented in the previous

section. Under certain conditions and with properly chosen λ, maximizing this

function will result in a sparse estimate, hence this approach can perform variable

selection and estimation simultaneously.

1.2.3.2 Theoretical Result of Variable Selection Through Penalized

Likelihood

As discussed in the last section, a good estimate should be sparse and have small

prediction error. In other words, if the true model is sparse, the estimates should

be zero or extremely small for parameters that are truly zero, and close to the true

parameters for those that are nonzero for the true model. This is called the oracle

property. Fan and Li (2001) showed that in general likelihood settings, under

certain conditions, the maximizer of equation (1.27) exists, and this maximizer

possesses the oracle property.

Assume in a general linear model that observations vi = (xi, yi) are i.i.d and
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the model parameters are identifiable. Denote the density function by f(v,β). Fan

and Li (2001) gave the following regularity conditions for the density function:

(A) The observations vi are independent and identically distributed with prob-

ability density f(v,β) with respect to some measure µ. f(v,β) does not

depend on β and β is uniquely identifiable if f(v,β) is known. Furthermore,

the first and second logarithmic derivatives of f satisfy the equations

Eβ

[
∂ log f(V,β)

∂βj

]
= 0 for j = 1, ..., p (1.28)

and

Ijk(β) = Eβ

[
∂

∂βj
log f(V,β)

∂

∂βk
log f(V,β)

]
(1.29)

= Eβ

[
− ∂2

∂βj∂βk
log f(V,β)

]
.

(B) The Fisher information matrix

I(β) = E

{[
∂

∂β
log f(V,β)

] [
∂

∂β
log f(V,β)

]T}
(1.30)

is finite and positive definite at β = β0.

(C) There exists an open subset ω of Ω that contains the true parameter point

β0 such that for almost all v the density f(v,β) admits all third derivatives

(
∂3f(v,β)

∂βj∂βk∂βl
) for all β ∈ ω. Furthermore, there exist functions Mjkl such that

∣∣∣∣ ∂3

∂βj∂βk∂βl
log f(v,β)

∣∣∣∣ ≤Mjkl(v) for all β ∈ ω (1.31)

where mjkl = Eβ0 [Mjkl(v)] <∞ for j, k, l.

If the density satisfies all these regularity condtions and also the true model is

sparse, i.e.,

β0 = (β10,β20),β10 ∈ Rs,β20 ∈ Rr, r + s = p, and β20 = 0, (1.32)
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then if we let an = max
1≤j≤p

{p′λn(|βj0|) : βj0 6= 0}, and bn = max
1≤j≤p

{p′′λn(|βj0|) :

βj0 6= 0}, Fan and Li (2001) showed existence of the penalized likelihood esti-

mator through the following theorem:

Theorem 1 Under the regularity conditions, if bn → 0, then there exists a local

maximizer β̂ of Q(β) such that ‖β̂ − β0‖ = Op(n
−1/2 + an).

This theorem gives existence and the convergence rate for penalized likelihood

estimators. It states that there exists a local maximum β̂ for Q(β) such that

‖β̂ − β0‖ = Op(n
−1/2 + an). If an → 0 faster than

1√
n

, then β̂ is
√
n-consistent.

For a specific penalty function, by choosing λn properly, one may be able to get

a
√
n-consistent estimator. For example, for the hard-threshold or SCAD penalty,

put λn → 0, and we will have a
√
n-consistent estimator.

Fan and Li (2001) then showed that the maximized penalized likelihood esti-

mator as derived in Theorem 1 is indeed zero for parameters which are zeros in

the true model. This idea is summarized by the following lemma:

Lemma 1 Assume that

lim infn→+∞lim infθ→0+λ
−1
n pλn(θ) > 0.

Then if λn → 0 and
√
nλn → +∞ as n → ∞, with probability tending to 1, for

any given β1 satisfying ‖β1 − β10‖ = Op(n
−1/2) and any constant C,

Q{(β1,0)} = max
‖β2‖≤Cn−1/2

Q{(β1,β2)}.

The result of Lemma 1 is actually part of Theorem 2, which is the oracle

property:

Theorem 2 (Oracle Property) Assume that the penalty function satisfies the

conditions in Lemma 1. Then if λn → 0 and
√
nλn → +∞ as n→ +∞, with prob-

ability tending to 1, the
√
n-consistent local maximizer β̂ = (β̂1, β̂2)T in Theorem

1 must satisfy:

(a) Sparisty: β̂2 = 0;
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(b) Asymptotic normality:

√
n(I10 + Σn){β̂1 − β10 + (I10 + Σn)−1bn}

L→ N(0, I10),

where I10 = I1(β10), the Fisher information knowing β2 = 0, and

Σn = diag{p′′λn(|β10|), p′′λn(|β20|), ..., p′′λn(|βs0|)},

b = (p′λn(|β10|)sgn(β10), p′λn(|β20|)sgn(β20), ..., p′λn(|βs0|)sgn(βs0))T .

Theorem 2 gives the asymptotic bias and variance of the nonzero part of the

estimators. If Σn → 0 and b→ 0, then it follows that

√
n{β̂1 − β10}

L→ N(0, I10), and β̂2 = 0,

which has the same asymptotic distribution as the MLE for the nonzero part β1,

and zero variance for the zero part β2. So in this case, the penalized likelihood

estimator is more efficient than the regular MLE. In particular, for hard threshold

and SCAD penalties, this is satisfied when λn → 0. But for L1, if an = λn → 0 as

n→∞,
√
n-consistency requires λn = Op(

√
n) while the oracle property requires

√
nλn →∞. Hence, the oracle property does not hold for LASSO. Another merit

of this asymptotic normality result is that it provides a standard error formula

for the estimated parameters. By a sandwich formula, the covariance of β̂ can be

estimated by

ĉov(β̂1) = {∇2`(β̂1)+nΣλ(β̂1)}−1ĉov{∇`(β̂1)}×{∇2`(β̂1)+nΣλ(β̂1)}−1. (1.33)

1.2.3.3 Algorithms

The sum of squared residuals is a quadratic function, hence convex and twice

differentiable. And in exponential families, the negative logarithm of the likelihood

function is also convex and twice differentiable. In this case, if the penalty function

is convex with proper smoothness everywhere except for the origin, any method

suitable for minimizing a convex smooth function could be employed to find the

penalized likelihood estimator. However, neither the SCAD penalty function nor

the Lp penalty for p < 1 is convex, which may make the whole penalized likelihood
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function non-concave. Also, some penalty functions are not sufficiently smooth.

For instance, the L0 penalty is not differentiable at the value of λ. To solve these

problems, Fan and Li (2001) studied variable selection via the nonconcave SCAD

penalty using a local quadratic approximation (LQA) of the penalty term. For

each j, if the true coefficient θ(0) is close to zero, then θ̂ is set to zero directly.

Otherwise, the derivative of the penalty function can be approximated by

p′λ(|θ|) = p′λ(|θ|)sgn(θ) ≈ {p′λ(|θ|)/|θ(0)|}θ. (1.34)

Therefore, the penalty function is approximated locally in the following way,

pλ(|θ|) ≈ pλ(|θ(0)|) +
1

2
{p′λ(|θ(0)|)/|θ(0)|}(θ2 − (θ(0))2), for θ ≈ θ(0). (1.35)

But this approach shares the same drawback with the backward stepwise variable

selection: when a variable is deleted at any iteration, it will be excluded from the

final model. Hunter and Li (2005) showed that LQA is a type of MM algorithm

and introduced a method for remedying the flaw of LQA; however, this approach

required introducing a slightly perturbed penalty function, thus slightly weakening

the theoretical properties of the resulting estimators. Zou and Li (2008) introduced

a different class of MM algorithm for variable selection called local linear approxi-

mation (LLA) of the penalty function, which overcomes both drawbacks. In LLA,

the penalty function is approximated by

pλ(|θ|) ≈ pλ(|θ(0)|) + p
′

λ(|θ(0)|)(|θ| − |θ(0)|), for θ ≈ θ(0). (1.36)

In this way, the penalty function is replaced by a convex function, and the penalized

likelihood is concave (though the concavity is strict only if the log-likelihood is

strictly concave). From the MM algorithm point of view, LLA actually finds a so-

called minorizing function for the penalty function, and we can maximize a concave

function instead of the original one. So a method of maximizing concave functions

can apply now. The following Figure 1.4 (Zou and Li, 2008) demonstrates the LLA

and LQA for L0.5 and SCAD penalty. It shows that the LLA is the “best” convex

approximation of the penalty functions.
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Figure 1.4. Local Quadratic Approximation (thick broken lines) and Local Linear
Approximation (thin dotted lines) for different penalty functions, (a) and (b) are for
L0.5 penalty with λ = 2 and (c)(d) are for SCAD with λ = 2. (Zou and Li, 2008)

1.2.3.4 Tuning Parameter Selection Criterion

Both penalized least squares and penalized likelihood require setting the value of

λ before maximizing/minimizing the objective function. According to the theoret-

ical yield the previous section, a properly chosen λ is necessary to result in oracle

estimates. Usually, people use data-driven methods to choose this tuning parame-

ter; we will review some of the criteria in the literature. In practice, we first define

a set of grid points that cover a certain interval (which is decided by the type of

penalty function), then for each λ in the grid, we calculate the score of a certain
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criterion. The best λ is taken to be the one which optimizes the criterion.

Fan and Li (2001) discussed tuning parameter selection procedures through five-

fold cross validation and generalized cross validation. In five-fold cross validation,

the whole data set is divided into five parts, T 1, ...T 5. One at a time, we let one

subset be the test set and the remaining four be training sets. The estimates

based only on the training sets and are denoted by β̂(ν)(λ), ν = 1, 2, ..., 5. Then

the cross-validation score for this λ is

CV (λ) =
5∑

ν=1

∑
(yk,xk)∈T ν

{yk − xT
k β̂

(ν)(λ)}2, (1.37)

where estimates of β depend on λ, and the λ which minimizes the cross-validation

score is the optimum one. The second criterion is generalized cross validation,

which is defined by

GCV (λ) =
1

n

‖y −Xβ(λ)‖2

{1− df(λ)/n}2
, (1.38)

where df(λ) is the degrees of freedom of the model, or the trace of the projection

matrix X{XTX + nΣλ(β̂)}−1XT. In practice, df is taken to be the number of

variables in the model, since asymptotically they are equal (Zhang et al., 2010).

Similarly to cross validation, the minimizer is the best λ.

Wang, Li, and Tsai (2007) found that GCV is similar to the classic variable se-

lection criterion AIC. Furthermore, the model selected by GCV in linear regression

settings tends to include unnecessary variables in the model. This motivated them

to propose a new tuning parameter selector for penalized least square estimates

using the SCAD penalty, called BIC:

BICλ = log σ̂2
λ + df(λ) log(n)/n. (1.39)

They showed that if the true model is among the candidate models (is a linear

regression model), the model selected by BICλ will identify the true model con-

sistently as the sample size increases, while AIC and GCV will overfit the model.

To generalize this to settings other than penalized least square with SCAD,

Zhang, Li, and Tsai (2010) proposed a new tuning parameter selector called gen-

eralized information criterion. It is a class of criteria, including GCV not only and
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BIC as special cases, but also its modified version can be used as classic variable

selection criteria. GIC is defined as

GICκn(λ) =
1

n
{G(y, β̂λ) + κndfλ}, (1.40)

where G(y, β̂λ) measures the goodness of fit of the model estimated by fixing λ.

For example, G(y, β̂λ) could be a log-likelihood. The number κn depends on n

and dfλ is the degrees of freedom of the model. When κn → 2, (1.40) is called

an AIC-type selector and when κn → ∞ and κn/
√
n → 0, it becomes a BIC-

type selector. When the true model is among the candidate models, a BIC-type

selector will choose the true model consistently while an AIC-type selector will

overfit the model. However, when the true model can only be approximated by

candidate models, an AIC-type selector is asymptotically loss-efficient while a BIC-

type selector is not. This agrees with the result by Wang et al. (2007), and again

verifies that GCV will overfit the model. So which tuning parameter criterion to

use is really depends on whether the true model is in the candidate model class or

can be approximated by a candidate model.

1.3 Survival Model and Variable Selection

Survival models have been used widely in many application areas, where the main

interest is to investigate the distribution of the time T to some event. This event is

usually related to death or cessation of a certain disease. Typically, the existence of

censoring makes it impossible to observe all events of interest for every individual.

We only know whether the event occurs prior to, after or within a certain period

of time, depending on which censoring scheme the data uses. So modeling survival

data requires novel models and techniques. In this section, the basic setting of

survival analysis will be introduced, followed by introduction and comparison of

two survival models and the corresponding variable selection literature.
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1.3.1 Survival Models

1.3.1.1 Data structure and Basic settings

Denoting by T the time to an event of interest, the distribution of T can be char-

acterized by any of the three functions, the cumulative distribution function, the

hazard function, or the survival function. The hazard function h(t) is the instan-

taneous risk of event at time t given that the event does not happen before time

t; the survivor function S(t) defines the probability of surviving longer than time

t. The above three functions can be converted from one to another, so modeling

any one of them is appropriate in survival analysis.

Observations in survival analysis may be censored or truncated. Possible cen-

soring schemes are: right censoring, in which event time is known to be after

some censoring time; left censoring, where what is known is only that the event

occurs prior to the study; and interval censoring, when events occur within some

time intervals (Klein and Moeschberger, 2003). The scheme considered in this dis-

sertation is right-censored data, where the observed data for each individual are

Y = min(T,C), the censoring indicator δ = I{T<C}, and the covariate vector X,

where C indicates the censoring time and we usually assume that given the covari-

ate, T and C are independent, an assumption called non-informative censoring.

Some of the many types of survival models used in the literature will be discussed

in the following section.

1.3.1.2 Proportional Hazard and Proportional Odds Models

In survival analysis, individuals’ survival behaviors might be affected by their own

characteristics. Motivated by this, Cox (1972) introduced the proportional haz-

ard model, which is a type of multiplicative hazard rate model. It models the

hazard function as a function of explanatory variables and corresponding coef-

ficients multiplied by some unknown baseline hazard function. Denote by h0

the baseline hazard function, and suppose that we have n i.i.d observations of

(Yi, δi,x(i)),x(i) ∈ Rp, i = 1, 2, 3..., n. Then Cox’s proportional odds model is

h(t) = h0(t) exp

(
p∑
j=1

βjxj

)
. (1.41)
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An important feature of this model is that for any two given sets of covariate

values x and x∗, the associated hazards are proportional for all time t, i.e.,

h(t|x)

h(t|x∗)
=
h0(t)e

∑p
i=1 βixi

h0(t)e
∑p
i=1 βix

∗
i

= exp

[
p∑
i=1

βi(xi − x∗i )

]
. (1.42)

Unlike for other models, construction of likelihood functions in survival anal-

ysis should consider censored data. Assuming noninformative censoring and right

censored data, the likelihood function is of the form

∏
i∈U

f(Yi)
∏
i∈C

{1− F (Yi)}, (1.43)

where U is the set of uncensored observations and C is the set of censored obser-

vations.

Model (1.41) is a semi-parametric model, in which β is the parametric part

and h0(t) is the nonparameteric part. Usually, the goal of investigation is to make

an inference about β in the global sense, or, more often than not, to make an

inference about a subset of β (Klein and Moeschberger, 2003). So, h0(t) is generally

considered a nuisance parameter. Hence, the model estimation or inference will

usually be based on so-called partial likelihood, which is only a function of β. The

partial likelihood is the product of the conditional probabilities of individual death

at ti given there is only one death at each ti. If t1 < t2 < ... < tJ are the ordered

observed event times, and R(tj) is the “at risk” set (set of individuals who have

not experienced an event) at time tj, then the partial likelihood has the following

expression

L(β) =
J∏
j=1

eβ
Txj∑

i∈R(tj)
eβTxj

(1.44)

It can be shown that the partial likelihood is the same as the profile likelihood

for Cox’s regression (Klein and Moeschberger, 2003). Therefore, maximizing the

partial likelihood will result in the same estimator of β as maximizing the full

likelihood function.

The Cox proportional hazard model has a closed form of the partial likelihood,

hence it is computationally easy to find estimates of β. However, it may not be
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suitable for modeling the case when the ratio of hazard function is changing over

time. Bennett (1983) proposed a proportional odds model in which the odds of

two groups are proportional. The usual odds ratio of two events is defined as

r =
p1/(1− p1)

p2/(1− p2)
. (1.45)

A generalization of the definition of odds to distribution functions gives the fol-

lowing odds ratio for two groups of subjects:

r =
F1(t)/{1− F1(t)}
F2(t)/{1− F2(t)}

. (1.46)

For more than two groups of individuals, each with covariate xi, Bennett (1983)

gave the proportional odds model as

F (t; ri)

1− F (t; ri)
=

F0(t)

1− F0(t)
ri, (1.47)

where
F0(t)

1− F0(t)
.
= H(t) is called the baseline odds and ri = βTxj. This is also a

semi-parametric model, with β the parametric part and F0(t) the nonparametric

part. Bennett (1983) also suggested in the two-group case that the ratio of the

hazard functions converges monotonically from r to 1, while the ratio of survival

functions diverges from 1 to r, as time tends to infinity. Hence, the model is

appropriate to show an effective cure.

Murphy, Rossini, and Van der Vaart (1997) reparameterized the model and

studied the maximum likelihood estimator. But unlike for the proportional hazard

model, there exists no partial likelihood function for the proportional odds model.

For the full likelihood function,

n∏
i=1

(
e−β

Txj

H(Yi) + e−βTxj

)(
∆H(Yi)

H(Yi) + e−βTxj

)δi
, (1.48)

the existence of the MLE has been verified and its consistency and asymptotic

normality are known. Another important result is that the MLE of H is a step

function with jumps ∆H(Yi) only at each uncensored time. Hence the maximum
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likelihood problem becomes a parametric model with H replaced by the jumps

hi = ∆H(Yi) at the uncensored event times. So the number of parameters in the

model is the number of covariates plus the number of the different uncensored

event times. Although it is a parametric model, the number of parameters is large.

Hunter and Lange (2002) reparametrized the likelihood function as in (1.48),

in order that the log-likelihood ibe concave. Suppose m different event times are

observed, which are sorted as U1 < U2 < .... < Um. Let γj = ln(hi), 1 < j < m,

and ωi = max{j : Uj ≤ Yj}. Now θ = (βt,γt) ∈ Rp+m, and the log-likelihood

function becomes

L(θ) =
n∑
i=1

−ztiβ − lnDi(θ) + δi{γωi − ln[Di(θ)− eγωi ]}, (1.49)

where Di(θ) = e−z
t
iβ +

ωi∑
j=1

eγj . They also proposed a minorization-maximization

(MM) algorithm to estimate β, which guarantees convergence to the maximum

likelihood estimator whenever it exists.

1.3.2 Variable Selection for Survival Models

The two models described in Section 1.3.1.2 depend on covariates through a linear

predictor. In the initial stage of the study, one would include many covariates

to reduce bias, then select the best subset among the large number of covariates.

Both models are semiparametric, but the model selection methodology discussed in

Section 2 is only applied for a parametric model or likelihood. Possible adjustments

here could be using partial likelihood or profile likelihood, as shown in the following

two papers.

The problem of variable selection for Cox’s model is considered by Fan and

Li (2002). Since there exists a partial likelihood for the Cox model, which is a

parametric function only depending on β, they used penalized partial likelihood

approaches to select and estimate variables simultaneously. Under several condi-

tions which guarantee the asymptotic normality of the maximum partial likelihood

estimates, they first proved existence of penalized partial likelihood estimates which

converge at rate Op(n
−1/2 +an), where an is as defined in Fan and Li (2001). Hence
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by properly choosing a penalty function, there exists a
√
n−consistent estimator.

Based upon this result, they showed further that these estimates possess oracle

properties, exactly as in Theorem 2 in Section 1.2.3.2 for parametric models. The

only difference is the modified proofs use the information corresponding to the par-

tial likelihood. These results imply if a penalty function and tuning parameter are

chosen properly, the penalized partial likelihood estimates will perform as well as

we know in advance β2 = 0. From this asymptotic normality result, one can derive

a formula for estimating the covariance matrix directly via a sandwich formula.

To compute the penalized partial likelihood estimates, Fan and Li (2002) sug-

gest using a Newton-Raphson algorithm. Starting from k = 1, suppose we already

obtained the estimate for kth step, βk. Then the (k + 1)th step estimate can be

obtained through the formula

βk+1 = βk − {∇2`(βk)− nΣλ(βk)}−1{∇`(βk)− nβkΣλ(βk)}, (1.50)

where `(βk) is the logarithm of partial likelihood and Σλ as defined in the first

section in this chapter. Since partial likelihood is the same as profile likelihood

for Cox’s model, all above results are actually properties of penalized likelihood

estimates.

As mentioned in previous section, no partial likelihood exists for proportional

odds model, and the profile likelihood for β does not have a closed form. Instead,

Lu and Zhang (2007) considered marginal likelihood, which is the integral of the

full likelihood function with respect to the nonparametric baseline odds function.

If we denote V(j) = H(T(j)), k = 1, ...J , where H(·) is the baseline odds function

and J is the number of distinct observed event times, the marginal likelihood is

Ln,M(β) =

∫
· · ·
∫

V(1)<···<V(J)

n∏
i=1

{h(V(ki)) + xTi β}δie−Λ(x(ki)
+ziβ)

J∏
j=1

dV(j). (1.51)

Since this integration does not have an analytical form, Lu and Zhang (2007)

use importance sampling to approximate it. Then they conduct variable selec-

tion by maximizing the penalized marginal likelihood. Motivated by the idea

of shrinkage, they use LASSO penalties and to reduce bias. To reduce the bias

brought by LASSO, they further used Adaptive LASSO, which is a scaled version
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of LASSO and will be discussed more in Chapter 3. The estimation is performed

by an iterative computation algorithm, iterating between maximized marginal like-

lihood and penalized least squares until convergence. The simulation results show

this approach performs well in identifying nonzero and zero coefficients separately.

However, use of this marginal likelihood function may lose information in the full

likelihood function and stochastic approximation of the marginal likelihood func-

tion may also influence the selection of variables. In addition, there is no theoretical

justification for properties of the resulting estimates.

Recently, Liu and Zeng (2013) studied the problem of variable selection for

linear transformation models, which include the proportional odds model as a

special case. In a linear transformation model setting, a proportional odds model

with time-varying covariates Z(·) can be written as

Λ(t|Z(·)) = G

[∫ t

0

exp{βTZ(s)}dΛ(s)

]
, (1.52)

where Λ(·) is the cumulate hazard function and G(x) = log(1 + x). Zeng and Lin

(2007) treat ζ as a nuisance variable with exponential(1) distribution and show

that the model (1.52) is equivalent to

Λ(t|Z(·), ζ) = ζ

∫ t

0

exp{βTZ(s)}dΛ(s). (1.53)

So given Z(·) and ζ, (1.52) can be treated as a proportional hazard model with

ζ missing. Thus one can work with the complete data including ζ and use an

EM algorithm to obtain the MLE. In terms of variable selection, Liu and Zeng

(2013) first profiled out ζ from the optimized likelihood function, then add penalty

function to find the sparse estimates. The resulting estimates are sparse, consistent

and has the oracle properties. Their approach avoids the ambiguity in concavity of

the full likelihood function, instead, maximize a surrogate function of the original

penalized likelihood function.

Different from the two approaches above, we propose a variable selection method

based on maximizing the penalized profile likelihood function. The profile likeli-

hood function is more general than the partial likelihood function, but it is still

a parametric function of the regression coefficients only. The major challenge in
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deriving some of the desired properties is that there is no closed form of the pro-

file likelihood function, hence one never knows whether it is differentiable or not.

Therefore, the proofs using the Taylor expansion cannot be used here. Instead,

we use the expansion derived for any profile likelihood function by Murphy and

Van der Vaart (2000). We also propose some combined algorithms for maximizing

the penalized profile likelihood function, which are under the framework of MM

algorithms. Hunter and Lange (2002) introduce an algorithm for calculating maxi-

mum likelihood estimators for the proportional odds model by iteratively updating

and maximizing a surrogate function of the likelihood function. We construct a

new surrogate function for the penalized likelihood function by plugging in this

surrogate function, thus creating a parametric problem. Some existing algorithms

are then applied for maximizing this new function: ICM by Zhang and Li (2009) ,

MIST by Schifano et al. (2010) and Coordinate Descent by Wu and Lange (2008).

We also compare our algorithms and approaches with those of Lu and Zhang (2007)

and Liu and Zeng (2013) in the same settings in their papers. The newly proposed

algorithms perform well and computationally fast. Detailed results can be found

in Chapter 2.

1.4 Social Network Models

Network data have attracted a lot of attention recently because of their wide

applications in a variety of disciplines, including biology, engineering, and social

science. In general and informally defined, networks may be thought of as “a

collection of interactive things” (Kolaczyk, 2009), and they can be represented

by a collection of nodes and directed or indirected edges between nodes. This

graphical representation is used in a formal manner for all kinds of networks.

In recent years, due to the development of data collection techniques, large and

time-varying networks have been studied more often. One area of research is using

survival model in dynamic network analysis. But unlike previous sections, the data

structure in a network setting is often dependent. Thus, regular survival models

cannot be applied directly. In this section, literature on network modeling-related

survival models will be reviewed. And the following Chapters 3 and 4 will be based

on some of these network models.
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1.4.1 Relational Events Model

The essence of the modeling approach introduced by Butts (2008) is the relational

event, which is defined as a directed action from a social actor (sender) to another

one (receiver). Each action can be characterized by

a = (i, j, k, t), i ∈ S, j ∈ R, k ∈ C and t ∈ R, (1.54)

where S is set of senders, R is set of receivers, k represents the action type, and t

is the time of the action. Butts’s approach is to model At, which is the set of all

actions occurring before time t. And he assumes that given this past history At,

all actions at t will arise independently. Therefore At is a stochastic process with

each event happening independently conditional on the past realization of events.

This assumption is used for modeling a Poisson process as a stochastic counting

process.

Suppose by time t, we have observed M events, as a1, a2, ..., aM , separately.

Further assume that they are sorted in ascending order of time. For each event

ai, conditional on its sender s(ai), receiver r(ai), action type c(ai), covariates Xai ,

and past history for previous events Aτ(ai−1) , their conditional joint distribution

is assumed to be independent, and these conditional hazard functions and survival

function are denoted by h(t|·), and S(t|·) respectively. If the support set of At is

defined as A(At) ⊂ S × R × C, all possible combinations of sender-receiver-type

given the realized history At, then the likelihood function of the relational event

history has the following form:

p(At) =

 M∏
i=1

 h(τ(ai)|s(ai), r(ai), c(ai),Xai ,Aτ(ai−1))×∏
a′∈A(Aτ(ai)

)

S(τ(ai)− τ(ai−1)|s(a′), r(a′), c(a′),Xa′ ,Aτ(ai−1))




×

 ∏
a′∈A(At)

S(t− τ(aM)|s(a′), r(a′), c(a′),Xa′ ,At)

 , (1.55)

where the part in the first line counts all probability associated with the events

happening prior to t, the second line indicates that between any two consecutive

events, no event has occurred, and the last line gives the probability that no event
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has happened yet since the most recent event until time t.

If the hazard function is specified, we may obtain a parametric form of this

likelihood function. Butts suggested using a piecewise constant hazard function,

which depends on some unknown parameter θ as follows:

λa,At,θ = λ(s(a), r(a), c(a),Xa,At, θ). (1.56)

He also gives a specification of a hazard function in an exponential form as follows:

λ(s(a), r(a), c(a),Xa,At, θ) = exp[λ0 + θTu(s(a), r(a), c(a),Xa,At)], (1.57)

where the function u(·) is a vector of covariates for the model and λ0 is some

constant. The choice of covariates decides dependency among system components,

which heavily rely on the properties of the network. Butts (2008) discusses several

covariates. One example could be persistence covariates, which measure the ten-

dency of past contacts to become future contacts. If d(i, j, Ak) is the accumulated

volume of communication from actor i to actor j by time k, this statistic is defined

as

uP (a,At, X) = d(s(a), r(a), At)/

|R|∑
j=1

d(i, j, Ak).

Other examples of covariates are the preferential attachment covariates, which

capture the phenomenon that previous contacts are more likely to be the target of

communication. Hence, they are the fraction of receiver’s communication volume

out of all communication for the actor, i.e.,

uPA(a,At, X) =
d+(r(a), At) + d−(r(a), At)∑|S|
j=1 d

+(j, Ak) +
∑|S|

j=1 d
−(j, Ak)

,

where d+(j, Ak) =

|R|∑
j=1

d(i, j, Ak) and d−(i, Ak) =

|S|∑
j=1

d(j, i, Ak). In the specific

setting of radio communication in disasters, Butts (2008) discusses several partic-

ipation shift covariates, which are all indicator functions. Based on this model,

Butts (2008) provides an application for relational event modeling on responder ra-

dio communication during the early hours of the World Trade Center Disaster. He
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specifies covariates in this situation and estimates the parameter θ by maximizing

the likelihood function through a Newton-Raphson algorithm.

1.4.2 Survival Models in Networks

The approach of Butts (2008) in the previous section utilizes the idea of stochastic

processes to model large dynamic networks. Another approach using this idea is

to apply the survival models mentioned in section 1.3 under the counting process

framework, which do not assume independence among observations. However, it

is not trivial to use the theoretical results from the counting process directly in

network settings. In this section, several network models in the literature using

the counting process approach will be reviewed, including some of the theoretical

justifications. First, the general counting process framework will also be briefly

reviewed.

1.4.2.1 Counting Processes in Survival Settings

In a survival model setting with multiple observations, (Yi,xi, δi), i = 1, 2, . . . , n,

the counting process for individual i is defined as

Ni(t) = I(Ti ≤ t, δi = 1), (1.58)

which turns to one from zero at the moment the ith individual dies. The sum of

all n counting processes is a new counting process,

N(t) =
n∑
i=1

Ni(t). (1.59)

Some prior knowledge before time t, including information about status (died or

censored) and characteristics of each individual, might be obtained. This knowl-

edge increases with time and the cumulative prior knowledge is called the history

or filtration of the counting process at time t, denoted by Ft. Mathematically, the

filtration at time t is the σ-algebra generated by N(s), 0 ≤ s ≤ t. If Yi(t) is defined

as the indicator for the ith individual dying at or after time t, then Y (t) =
n∑
i=1

Yi(t)
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number of individuals dying at or after time t. It can be verified that

E[dN(t)|Ft−] = Y (t)h(t)dt, (1.60)

where dN(t) is defined as the change of N(t) in the next dt time, and h(t) is

the hazard function in the survival models. The process λ(t) = Y (t)h(t) is called

the intensity process. Further, if we define the cumulative intensity process as

Λ(t) =

∫ t

0

λ(s)ds, the counting process N(t) can be decomposed by Doob-Meyer

decomposition (Klein and Moeschberger, 2003)

N(t) = Λ(t) +M(t), (1.61)

where M(t) is a martingale, which has the property that the best guess of M(t+s)

for all s > 0 when given Ft should be M(t), i.e.,

E[M(t+ s)|Ft] = M(t). (1.62)

Λ(t) is also called a compensator of the counting process. The decomposition

(1.61) can be understood to mean that the counting process consists two parts,

the smoothly varying compensator and random noise M(t) with expectation 0

(Klein and Moeschberger, 2003).

Large-sample theory is well developed for martingales. The counting process

approach can be used on estimation problems in nonparametric models for survival

analysis. For example, one can estimate coefficients in Cox’s proportional hazard

model with time-varying covarites, as well as asymptotic properties of these esti-

mates. Furthermore, there is no assumption about independence among observa-

tions. Some generalized versions can be used for network modeling, and this will

be elaborated in the next section.

1.4.2.2 Counting Process for Network Models

The idea of using survival models is to apply counting processes on nodes or on

edges in a dynamic network, depending on the feature of greatest interest in

the networks. Recently, several papers using the counting process approach for
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continuous-time longitudinal network data have been proposed. Depending on

where the counting process is defined, they have been termed as the relational

approach or the egocentric approach.

The relational approach defines counting processes on pairs of nodes, or more

simply, edges. There are two recent papers using this approach. The first paper (Vu

et al., 2011a) introduces a continuous regression modeling framework for network

event data and incorporation of time-varying regression coefficients. In a dynamic

network, nodes can enter the network over time and then edges are generated

between the existing nodes and the newly entered node at different event times.

For each pair of nodes (i, j), let Nij(t) be the counting process recording the

number of edges from i to j before time t. By the theory for counting processes,

the multivariate counting process N(t) = (Nij(t), i, j ∈ {1, 2, ..., n}, i 6= j) can

be decomposed into the sum of a cumulative intensive process and a martingale

residual,

N(t) =

∫ t

0

λ(s)ds+ M(t). (1.63)

Vu et al. (2011a) models the intensity process λij(t) given the event history Ft−
just before time t by two different models. One is Cox’s proportional hazard model

while the other is Aalen’s additive model. Both new models involve time-varying

covariates, and the additive model also includes time-varying coefficients. The

models are as follows:

λij(t|Ft−) = Yij(t)α0(t) exp[βT sij(t)], (1.64)

λij(t|Ft−) = Yij(t)[β0(t) + β(t)T sij(t)]. (1.65)

Recall from a previous section that Yij(t) is the at-risk indicator. The sij(t) vector

consists of various covariates on the network. In the first model, α0(t) is considered

to be a nuisance parameter and we can obtain the estimates of β through maxi-

mizing the partial likelihood of the Cox proportional hazard model. The second

model can be considered as a time-varying coefficient model; spline or kernel meth-

ods for estimation for Aalen models can be used to estimate β(t). Both models

include parts which are time dependent, and a main inference problem is to test

if these parts are changing over time. By properties which are decided empiri-
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cally, Vu et al. (2011a) discussed 8 covariates, including out-degree and in-degree

of both the senders and the receivers, reciprocity and transitivity, shared con-

tactees and contacters, and triangle closure. For example, the out-degree of sender

i is defined to be sout
ij (t) =

∑
h∈V,h 6=i

Nih(t
−) and the in-degree of sender i would be

sin
ij(t) =

∑
h∈V,h6=i

Nhi(t
−).

The other paper, by Perry and Wolfe (2013) investigates interaction networks

and also models the counting process Nij(t), the number of directed edges from

node i to j. This paper also uses the Cox’s proportional hazard model (1.64)

for the intensity process. Perry and Wolfe first consider estimations in a simpler

situation with only one sender im and a single receiver jm at each event time tm.

If Jtm denotes all the nodes toward which node im could create an edge at time

tm, then the partial likelihood function can be written as

logPLt(β) =
∑
tm<t

β>simjm(t)− log

 ∑
j∈Jtm (im)

exp{β>simj(t)}

 . (1.66)

Estimation for β can be done by maximizing this partial likelihood function. Under

several regularity conditions, Perry and Wolfe (2013) prove that the maximum par-

tial likelihood estimator is consistent and has an asymptotic normal distribution.

These asymptotic results cannot be derived directly from the work of Andersen and

Gill (1982), because the data structure in a network is usually different from that

in a regular counting process setting. This is because the number of observations

as well as the range of observations will go to infinity at the same time. In proofs

for a fixed n, Perry and Wolfe (2013) rescale the observations to a finite interval

and then use a discretized version of the original score function to derive the final

results. Since an interaction network may have multiple events occurring at the

same time, Perry and Wolfe further study the case when there are one sender and

multiple receivers. The observations now are (im, Jm, tm),m = 1, 2, . . . , n, where

Jm is the set of receivers at time tm. The partial likelihood function becomes more
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complicated:

logPLt(β) =
∑
tm<t


∑
j∈Jm

β>ximj(tm)− log

 ∑
J ⊆ Jtm (im)
|J | = |Jm|

exp

{∑
j∈J

β>ximj(tm)

}
 .

(1.67)

Using this likelihood will increase the computational burden quickly as the size

of the network increases. Instead of maximizing this original likelihood function,

Perry and Wolfe (2013) use an approximation,

log P̃Lt(β) =
∑
tm<t

∑
j∈Jm

β>ximj(tm)− |Jm| log

 ∑
j∈Jtm (im)

exp
{
β>ximj(tm)

}
(1.68)

In addition, they show the difference in the first two derivatives between the original

(1.67) and the approximation one (1.68) will be bounded by how fast the receiver

set growth sequence Gn grows. In particular∥∥∥5[logPLtn(β)]−5[log P̃Ltn(β)]
∥∥∥ = OP (Gn). (1.69)∥∥∥52[logPLtn(β)]−52[log P̃Ltn(β)]
∥∥∥ = OP (Gn), (1.70)

where the receiver set growth sequence is defined as

Gn =
∑
tm≤tn

1{|Jm| > 1}
|Jtm(im)|

.

Therefore, if Gn is bounded by Op(
√
n), then the maximizer of the approximated

partial likelihood function will also be consistent and its proper scaled version con-

verges to a normal distribution. And since the partial likelihood function is twice

differentiable, algorithms like Newton-Raphson can be used to find the maximizer.

On the other hand, the above relational modeling procedure for edges is inap-

propriate in some network settings, for example, a citation network. Instead, an

egocentric framework can be used, which models the nodes by counting processes.

Vu et al. (2011b) focuses on citation network analysis, where each paper is treated

as a node and citations among papers are directed edges. Similarly to the previous
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paper, the approach depends on the decomposition of a multivariate counting pro-

cess N(t) = (Ni(t), i ∈ {1, 2, ..., n}) and model the corresponding intensity process

λi(t) by

λi(t|Ht−) = Yi(t)α0(t) exp[βT si(t)]. (1.71)

Since the model for the intensity process is the Cox proportional hazard model, the

coefficient β can be estimated by maximizing the partial likelihood function. To be

realistic, the authors considered the situation of multiple receivers as in Perry and

Wolfe (2013). A similar approximated partial likelihood function is maximized to

obtain the estimates of β. However, there are no theoretical properties derived for

the resulting maximizer. Since our variable selection will be based on this model,

in Chapter 3, we first derive some theory similar to that of Perry and Wolfe (2013)

in a egocentric framework.

Vu et al. (2011b) also discussed choice of the covariates including 8 predictors for

network structures and a fifty-dimensional LDA predictor vector. The 8 network

structure covariates include three preferential attachment covariates, three triangle

covariates, and two out-path covariates. As discussed by Butts (2008), preferential

attachments measures the tendency that past contacts lead to future contacts,

where the predictive contacts could be direct (first order) or indirect (second-

order). If Yij records the number of edges from node i to node j at time t, the first-

order and second-order preferential attachments covariates are defined respectively

as

sPA1
j (t) =

N∑
i=1

Yij(t), (1.72)

sPA2
j (t) =

∑
i 6=k

Yki(t)Yij(t). (1.73)

Also, they consider a Recency-based first-order PA

sRec−PA1
j (t) =

N∑
i=1

Yij(t)I(t− tarr
i < Tw), (1.74)

where Tw is a specific time window. The triangle covariates are based on the only

possible triangle configuration in citation networks: paper B joins the network and
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cites paper A, and then paper C joins the network and cites A and B. In this

situation, A is called the “seller”, B is called the “broker” and C is called the

“buyer” by Vu et al. (2011b). The three covariates associated with this triangle

relation are:

sseller
j (t) =

∑
i 6=k

Yki(t)Yij(t)Ykj(t), (1.75)

sbroker
j (t) =

∑
i 6=k

Ykj(t)Yji(t)Yki(t), (1.76)

sbuyer
j (t) =

∑
i 6=k

Yjk(t)Yki(t)Yji(t). (1.77)

Finally, the out-path covariates count the number of out-going citations:

sOD1
j (t) =

N∑
i=1

Yji(t),

sOD2
j (t) =

∑
i 6=k

Yjk(t)Yki(t). (1.78)

The fifty-dimensional statistic vector is based on a Latent Dirichlet Allocation

(LDA) model (Blei et al., 2003), which is a three-level hierarchical Bayesian model.

We assume that there is a pool of topics, then words in a document are generated

from this pool of topics. Each topic is characterized by a distribution over words.

In this model, documents are represented by random mixtures over latent topics,

yet the number of topics must be set a priori in a likelihood modeling framework.

So in a citation network, each paper is associated with a topic vector. The LDA

covariates are the coordinate-wise product of the two topic vectors of the two pa-

pers, and they measure the similarities on topics between two papers. Presumably,

the more similar the two papers are, the more likely that there will be a citation

event between them. In an egocentric framework, if the topic vector for a node

is denoted by θ, and the arrival time by tarr, then when node j arrives at the

network, for all the at-risk nodes i, the vector of LDA covariates can be calculated

by

sLDAi (tarrj ) = θi � θj (1.79)

In general, the total number of covariates can be large, especially for the LDA



38

covariates, since the number of topics is often taken to be quite large but arbitrary.

To reduce model complexity and determine which of the covariates are not useful

in predicting network behavior, variable selection techniques on survival models

can be generalized to this network model setting. In Chapter 3, we study the

variable selection problem by maximizing an approximated penalized likelihood

function. If the true β is sparse, then the estimator is shown to be consistent

with an asymptotic normal distribution. The so-called oracle property is also

established. Finally Chapter 4 will focus on the computational implementation of

this approach.

1.5 Organization of This Dissertation

In summary, the organization of this dissertation is as follows. In Chapter 2,

we study a novel penalized profile likelihood approach to variable selection for

the proportional odds model and derive asymptotic properties of the resulting

estimators. Additionally, some novel algorithms are proposed under the framework

of MM algorithms. Chapters 3 and 4 study the variable selection problem in a

dynamic model setting using a penalized partial likelihood approach. Specifically,

Chapter 3 focuses on the asymptotic properties of the estimates while Chapter 4 is

about computational challenges and algorithms. Finally, chapter 5 describe some

future work arising from this dissertation.



Chapter 2
Variable Selection for the

Proportional Odds model

2.1 Introduction

The proportional odds model for survival data is a popular alternative to the

well-known Cox proportional hazards model. Each of these models allows the

distribution of the survival time to depend on covariates in a prescribed way. A

key modeling task, particularly when the number of such covariates is large, is to

find a subset of variables that parsimoniously describes the survival distribution;

in particular, variables without important predictive power should be excluded if

possible.

Variable selection for Cox’s model has been extensively studied in the literature.

For example, Tibshirani et al. (1997) use a variation of the LASSO method to

shrink some coefficient estimates to zero. Fan and Li (2002) extend the SCAD

penalty, introduced by Fan and Li (2001) as an alternative to the LASSO approach,

to the Cox model. They demonstrate that, under certain regularity conditions,

the resulting estimates have the oracle property, which essentially means that

estimation behaves asymptotically as though the unimportant variables are known

a priori. Zhang and Lu (2007) improve the original LASSO estimator by the

adaptive LASSO for Cox’s model, so that the resulting estimates also have the

oracle property.
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In contrast, there is only a small literature about the theoretical properties of

variable selection techniques for the proportional odds model. One reason for this

difference is the lack of a closed-form partial likelihood function for this model. In

one of the few articles on this topic, Lu and Zhang (2007) propose to maximize

the penalized marginal likelihood function, which has no closed form, to select

variables. However, the marginal likelihood function can only be approximated by

stochastic algorithms and the theoretical properties of this method are unknown.

More recently, Liu and Zeng (2013) study the problem of variable selection for

linear transformation models, which include both the Cox proportional hazards

model and the proportional odds model as special cases. Their method introduces

a latent variable that leads, using familiar ideas related to EM algorithms, to a

replacement for the log-likelihood function. They derive asymptotic properties of

the penalized version of this new objective function, including consistency and

oracle properties, and also propose a new algorithm for the optimization.

Distinct from the two above approaches, this article proposes a variable selec-

tion method based on maximizing the penalized profile likelihood function. The

profile likelihood function is more general than the partial likelihood function, but

it is still a parametric function of the regression coefficients only. We prove con-

sistency, asymptotic normality, and an oracle property for the resulting estimators

under certain regularity conditions. We also discuss the similarities and differences

between our method and the methods above, particularly that of Liu and Zeng

(2013). Unlike the work of Fan and Li (2002) or Liu and Zeng (2013), our proofs

cannot rely on Taylor expansions/derivatics because the differentiability of the

profile likelihood cannot be established. Instead, we extend the work of Murphy

and Van der Vaart (2000) to prove our results. Because this work applies to semi-

parametric likelihoods more generally, our results should have broad applicability

beyond the case of proportional odds models. Finally, we develop several novel

algorithms to maximize the penalized likelihood function iteratively and discuss

their relative merits. Certain of these algorithms are shown to perform well in

simulations and in practice.

The remainder of this article is organized as follows: Section 2.2 describes

the proportional odds model, Section 2.3 demonstrates the application of penal-

ization methods to the proportional odds loglikelihood, Section 2.4 proves two
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theorems establishing results similar to those in the literature on penalized para-

metric likelihoods, Section 2.5 discusses algorithms for implementing our theory,

and Sections 2.6 and 2.7 test our algorithms on simulated and real datasets.

2.2 The Proportional Odds Model

In survival analysis, we are interested in modeling the distribution of event times

T , often as a function of covariates measured on a sample of individuals and based

on censored observations of T for those individuals. With right-censored data,

the observed data for each individual are Y = min(T,C), the censoring indicator

δ = I{T<C}, and the covariate vector x, where C indicates the censoring time. We

usually assume that given the covariate, T and C are independent, an assumption

called non-informative censoring. The distribution of T can be completely charac-

terized by either of two functions, the survival function S(t) = P (T > t) and the

hazard function h(t) = −(d/dt) logS(t).

A popular model in survival analysis is Cox’s proportional hazards model (Cox,

1972), so-called because its hazard function

h(t) = h0(t) exp{β>x} (2.1)

implies that the hazards for two different individuals are always in the same pro-

portion for all t:
h1(t)

h2(t)
= exp{β>(x1 − x2)}. (2.2)

The function h0(t) in Equation (2.1) is called the baseline hazard function and it

may be interpreted as the hazard function of an individual for whom x = 0.

In contrast to the proportional hazard assumption, the proportional odds model

assumes time-invariant ratios of odds between different individuals. It was first

introduced by McCullagh (1980) to analyze categorical data, then later Bennett

(1983) generalized the model to a medical context using the language of survival

analysis. The proportional odds model is defined as

F (t; xi)

1− F (t; xi)
=

F0(t)

1− F0(t)
exp{β>xi},
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where H0(t)
.
= F0(t)/[1− F0(t)] is called the baseline odds.

Unlike Cox’s model, the proportional odds model has the property that the ra-

tio of hazards converges to 1 as t tends to∞. This property makes the proportional

odds model an alternative to Cox’s model when the proportional hazards assump-

tion does not hold. Examples include situations when initial effects disappear over

time, as when a cure or treatment is effective (Bennett, 1983).

Both Cox’s model and the proportional odds model are semi-parametric models,

with β the parametric part and the baseline hazard/odds the nonparametric part.

Interest usually centers on how the covariates will influence the distribution of

time-to-event via β, so the baseline hazard/odds is treated as a nuisance parameter

(Oakes, 1981). Thus, modifications of the regular likelihood function are needed to

reduce the dimensionality of the “nuisance” nonparametric baseline function (Cox,

1975).

One such modification is the use of partial likelihoods (Cox, 1975). The tech-

nical definition of a partial likelihood is somewhat complicated, but any partial

likelihood is based on conditioning, and in fact any conditional likelihood is a spe-

cial case of a partial likelihood. In survival model settings, a partial likelihood

function is a product of conditional probabilities, each conditioning term encom-

passing all previous events (Oakes, 1981). When the data on which we condition

are the event times and censoring indicators, Cox’s proportional hazards model

results in the simple partial likelihood function

L(β) =
n∏
i=1

exp{β>xi}∑
j∈Ri exp{β>xj}

, (2.3)

where Ri is the “at-risk” set at event time i. This partial likelihood function is

completely free of the parameter h0 and thus leads to straightforward estimation.

In addition, the partial likelihood in the Cox model coincides with the profile

likelihood, max
h0

Lfull(β, h0), whose maximizer β̂ coincides with that of the full

likelihood. It is the convenience of these facts from a computational perspective

that is partly responsible for the widespread popularity of the proportional hazards

model in survival analysis.

In contrast, the proportional odds model admits no known simple partial likeli-

hood form, and even profile likelihood is somewhat complicated. However, Murphy
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et al. (1997) showed that the profile likelihood function may be studied because in

max
H0

Lfull(β, H0), the maximization may be taken over a smaller class than all pos-

sible baseline odds functions. They verified the existence of the MLE, derived its

consistency and asymptotic normality, and showed that the MLE of H0, the base-

line odds function, is a step function with jumps ∆H0(Yi) only at each observed

(i.e., uncensored) time. Therefore, they re-parameterized the nonparametric pa-

rameter H0 by jumps ∆H0(Yi) at the uncensored event times. We will discuss this

reparameterization in the next section after first describing penalization methods.

2.3 Variable Selection via Penalization of the Pro-

file Likelihood

Many settings in statistical modeling require selecting from a potentially large num-

ber of covariates those which are important. In recent years, variable selection via

penalized likelihood-based functions has attracted much attention. One advantage

of this approach is that it allows one to conduct variable selection and parameter

estimation simultaneously. A penalized likelihood function can be written as

`(β)− n
p∑
j=1

pλ(|βj|), (2.4)

where `(β) is the (log-)likelihood function and pλ(| · |) is the penalty function.

Commonly used penalty functions include the L1 or LASSO penalty (Tibshirani,

1996),

pλ(θ) = λ|θ|, (2.5)

and the smoothly clipped absolute deviation (SCAD) penalty (Fan, 1997), whose

derivative for θ > 0 is defined by

p
′

λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(λ > θ)

}
for some a > 2. (2.6)

If the penalty is chosen properly, maximization of the objective function (2.4)

can shrink some coefficients to zero, which is the reason this approach is suitable

for variable selection. If the likelihood function is concave and the penalty function
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convex and smooth, any method suitable for maximizing a concave smooth func-

tion can be employed to find the penalized likelihood estimator. However, neither

the SCAD penalty function nor the Lp penalty for p ≤ 1 is convex and smooth,

which can make the whole penalized likelihood function non-concave. To solve this

problem, Fan and Li (2001) studied variable selection via the nonconcave SCAD

penalty using local quadratic approximation (LQA) of the penalty term. But this

approach shares a drawback with stepwise variable selection: When a variable is

deleted at any iteration, it will be excluded from the final model. Hunter and Li

(2005) showed that LQA is a type of MM algorithm, as discussed in Section 2.5.1,

and introduced a method for remedying the flaw of LQA. However, this approach

requires introducing a slightly perturbed penalty function, thus slightly weakening

the theoretical properties of the resulting estimators. Zou and Li (2008) introduce

a different class of MM algorithm for variable selection, called local linear approxi-

mation (LLA) of the penalty function, which overcomes both drawbacks. In LLA,

the penalty function is approximated for θ ≈ θ(0) as

pλ(|θ|) ≈ pλ(|θ(0)|) + p
′

λ(|θ(0)|)(|θ| − |θ(0)|). (2.7)

Therefore, the penalty function is approximated by a convex function, and the

penalized likelihood is concave (though the concavity is strict only if the log-

likelihood is strictly concave). From the MM algorithm point of view, LLA actually

finds a so-called minorizing function for the penalty function, a fact that we exploit

in this article.

In variable selection for the proportional odds model, we only want to penalize

the coefficients of the covariates, not the baseline odds function. Murphy et al.

(1997) show that the full likelihood may be written as

n∏
i=1

(
e−x

>
i β

H0(Yi) + e−x
>
i β

)(
∆H0(Yi)

H0(Yi)−∆H0(Yi) + e−x
>
i β

)δi
(2.8)

without affecting its maximizer, since the best H0(t) is always a step function

with jumps ∆H0(Yi). Hunter and Lange (2002) prove the log-likelihood is concave

under a further reparameterization: If m is the number of distinct uncensored event

times, then for 1 ≤ j ≤ m we define γj to be the log of the jump in the baseline
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odds for the jth smallest uncensored event time. In other words, if the distinct

uncensored times are U1 < U2 < .... < Um, and if we let ωi = max{j : Uj ≤ Yi}
for all 1 ≤ i ≤ n, then γωi = log ∆H0(Yi). Under this reparameterization, the

log-likelihood function becomes

`(θ) = logLfull(θ) =
n∑
i=1

−z>i β − lnDi(θ) + δi{γωi − ln[Di(θ)− eγωi ]}, (2.9)

where θ = (β,γ) ∈ Rp+m and Di(θ) = e−z
>
i β+

ωi∑
j=1

eγj . Substituting Equation (2.9)

into Equation (2.4), the objective function to be maximized becomes

ξfull(θ) = `(θ)− n
p∑
i=1

p(|βi|, λin), λin > 0, (2.10)

where the notation ξfull(θ) indicates that full log-likelihood function is penalized.

In equation (2.10), we take λin = λn for all i for the sake of simplicity. The tuning

parameter λn is usually determined by a data-driven method that depends on the

sample size n.

Since a primary goal is to select variables, the baseline odds can be treated

as a nuisance parameter. One approach to handling semi-parametric models with

functional nuisance parameters is to use partial likelihood (Cox, 1975), though as

we point out in Section 2.2, this approach is intractable in the proportional odds

model. Lu and Zhang (2007) address this problem by penalizing the marginal

likelihood function, which is baseline-free but has no analytical form. They use

importance sampling to approximate the penalized marginal likelihood function.

Liu and Zeng (2013) use an alternative approach in which they apply an EM

algorithm to the unpenalized log-likelihood after embedding the proportional odds

model in a larger class of models that also includes Cox’s model, then penalize

a function related to the log-likelihood that is constructed as part of this EM

algorithm. We discuss their approach in more detail in Section 2.5.1.

Here, we adopt a profiling approach, where the profile log-likelihood is defined

as

p`(β) = max
γ∈Rm

` [(β,γ)] . (2.11)
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The profile likelihood function retains more complete information of the full like-

lihood function than the marginal likelihood function does, but generally it has

no closed form and it need not be differentiable. Murphy and Van der Vaart

(2000) study profile likelihood functions and derived an expansion of the profile

log-likelihood, akin to a Taylor expansion, using the so-called effective score and

effective in place of the usual derivatives. For any β̃
P→ β0, they show that

p`(β̃) = p`(β0) + (β̃ − β0)>
n∑
i=1

˜̀
0(xi)

−1

2
n(β̃ − β0)>Ĩ0(β̃ − β0) + oPβ0,h0 (

√
n‖β̃ − β0‖+ 1)2,

where the effective score function ˜̀
0 can be considered as the score of the full log-

likelihood function in the direction of the so-called “least favorable sub-models”,

and the effective information Ĩ0 is the covariance of the effective score function.

Similar to estimation in parametric models with nuisance parameters, the effective

score can be regarded as the orthogonal projection of the score function of β onto

the space spanned by the score of the nuisance parameter. Therefore, the effective

information is the maximum attainable information when estimating the parame-

ter of interest in the presence of the nuisance parameters (Severini and Wong, 1992;

van der Vaart, 2000; Murphy and Van Der Vaart, 1999). In addition, Murphy and

Van der Vaart (2000) give the form of the effective score and information for sev-

eral specific semi-parametric models, including the proportional odds model. This

motivates us to replace the penalized likelihood by the penalized profile likelihood

function for the proportional odds model,

ξprof(β) = p`(β)− n
p∑
j=1

pλn(|βj|), (2.12)

as the maximizers of the two functions are identical. Since the penalty term does

not involve the nuisance parameter that is being profiled out, ξprof(β) may be

viewed as either the penalized profile likelihood or the profile penalized likelihood.
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2.4 Asymptotic Results

In this section, we show that the maximizer of ξprof(β) is consistent and has an

oracle property under certain regularity conditions. Let us decompose the true

parameter vector β0 into a nonzero part and a zero part, i.e., β0 = (β10,β20),β10 ∈
Rs,β20 ∈ Rr, r + s = p, and β20 = 0. We first show that under certain regularity

conditions, there exists a penalized likelihood estimator that is consistent for β0.

Furthermore, the rate of convergence may be shown to be n−1/2 for certain choices

of penalty function, which parallels the consistency result for parametric models

of Fan and Li (2001).

Before stating the theorems, we introduce the following regularity conditions:

1. As n→∞,

an
def
= max

1≤j≤s
{p′λn(|β0

j |)} → 0

and

bn
def
= max

1≤j≤s
{p′′λn(|β0

j |)} → 0.

2. The sequence λn tends to zero in such a way that there exists 0 < δ <
1

2
such

that nδλn � 1, i.e., there exist 0 < m < M and N such that m < |nδλn| < M

for all n > N .

3. The penalty function pλn(x) is twice differentiable at all x > 0 and there

exist positive constants K and K ′ such that for all n = 1, 2, ... and for all

x > 0, p′′λn(x) exists, |p′′λn(x)| < K ′, and p′λn(0+)/λn > K.

4. There exists 0 < δ∗ ≤ 1 such that for any random sequence

θ̃n = (θ̃1n, θ̃2n)→ θ0 = (θ10,0),

we have

p`(θ̃n) = p`(θ0) + (θ̃n − θ0)>
n∑
i=1

˜̀
0(xi)−

1

2
n(θ̃n − θ0)>Ĩ0(θ̃n − θ0)

+oP (n‖θ̃1n − θ10‖2) + oP (n‖θ̃1n − θ10‖ · ‖θ̃2n‖)

+oP (n‖θ̃2n‖1+δ∗), (2.13)
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in which the oP (n‖θ̃1n − θ10‖2) remainder term does not depend on θ̃2n.

Theorem 1. Assume (Yi, δi,xi), i = 1, 2, ..., n, are independent and identically

distributed from a proportional odds model and p`(β) denotes the profile likelihood

function for β. Define ξprof(β) as in Equation (2.12).

(a) (
√
n consistency) Assume Condition 1 holds. Then there exists a local max-

imizer β̂ of ξprof(β), and hence a local maximizer of ξfull(β), such that

‖β̂ − β0‖ = Op(n
−1/2 + an).

(b) In addition, suppose Conditions 2 and 3 hold. Let β̂1n denote the first s

components of the
√
n−consistent estimator β̂ in (a). Then for c > 0,

β̂2n def
= arg max

‖β2n‖≤cn−1/2
ξprof{(β̂1n,β2n)} = oP (n−1+δ).

(c) (sparsity) Furthermore, if we assume that Condition 4 holds, λn is a sequence

satisfying Condition 2, and δ = δ∗/(1 + δ∗), then for any β1n satisfying

‖β1n − β10‖ = OP (n−1/2) and any constant c > 0,

P

(
ξprof{(β1n,0)} = max

‖β2n‖≤cn−1/2
ξprof{(β1n,β2n)}

)
→ 1 as n→ +∞.

That is, β̂2n = 0 with probability tending to one.

Theorem 1, whose proof is in the Appendix, has three parts, and each part gives

more advanced results than the previous one. Part (a) establishes the consistency

of the estimates, with the convergence rate depending on the form of penalty

functions. For the hard thresholding and SCAD penalty functions, if λn → 0 as

n → ∞, then an = 0 for n large enough. Therefore, in this case part (a) proves

that the estimator is
√
n-consistent. Part (b) shows that in fact β̂2n approaches its

true value of 0 faster than n−1/2, though this is still not as strong as the sparsity

condition, adopting the terminology of Fan and Li (2001), established by part

(c). Establishing these results is challenging in the current context because, unlike

in Fan and Li (2001), we cannot assume the differentiability of the profile log-

likelihood. Although our sufficient conditions in equation (2.13) are stronger than
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those of Murphy and Van der Vaart (2000), they are weaker than differentiability

and they are the weakest conditions for which we are currently able to establish

sparsity.

Theorem 2 establishes the asymptotic normality of the nonzero component β̂1n,

which can be proved even without sparsity condition of Theorem 1(c).

Theorem 2 (asymptotic normality). Suppose β10 = {β0
1 , β

0
2 , ..., β

0
s} and let

dn =


p
′

λn(|β0
1 |)sgn(β0

1)
...

p
′

λn(|β0
s |)sgn(β0

s )

 ,Σn =


p
′′

λn(|β0
1 |)sgn(β0

1) 0
. . .

0 p
′′

λn(|β0
s |)sgn(β0

s )

 .

Assume
√
ndn → 0 and Conditions 1, 2, and 3 hold. Then the

√
n-consistent local

maximizer of Theorem 1(a) must satisfy

√
n(Ĩ0

11 + Σn)){β̂1n − β10 + (Ĩ0
11 + Σn)−1dn}

L→ N(0, Ĩ0
11),

where Ĩ0
11 is the upper left s× s submatrix of Ĩ0.

The above theorems establish results analogous to those of Fan and Li (2001):

Under certain regularity conditions and with properly chosen penalty functions,

the maximizer of the penalized profile likelihood function will have desirable prop-

erties like consistency, sparsity and asymptotic normality. As a consequence, the

asymptotic variance is

1

n
(Ĩ0

11 + Σn)−1Ĩ0
11(Ĩ0

11 + Σn)−1,

which approaches (Ĩ0
11)−1 when λn → 0. As discussed at the end of Section 2.3, the

effective information is an upper bound on the information in a semiparametric

model. Therefore, the maximizer of the penalized profile likelihood function is

asymptotically efficient.

Our results, which are very similar to those derived for the estimator of Liu and

Zeng (2013), rely nevertheless on a different method of proof, since differentiability

of the penalized profile log-likelihood may not hold. In addition, Theorems 1 and 2

should extend to any semi-parametric model that allows for the expansion of the

profile log-likelihood function seen in Equation (2.13).
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2.5 Maximizing the Penalized Likelihood

Since there is no closed form of the profile likelihood function, optimization of

the penalized profile likelihood function cannot be done in a straightforward way.

The algorithm introduced in this section falls under the general framework of MM

algorithms. We will first describe this framework, then introduce the algorithm.

2.5.1 MM Algorithms

MM is not a specific algorithm, but a general principle for deriving algorithms to

solve optimization problems. It can often separate variables, making it suitable for

high-dimensional problems. Convexity is often crucial to establish the properties

of an MM algorithm, which is the reason for the reparametrization in the previous

section.

In maximization problems, a standard MM algorithm consists of alternations

between two steps. The first M stands for minorization and the second M is for

maximization. For a fixed θ(k), a function g(θ|θ(k)) is said to minorize another

function f(θ) at θ(k) if

g(θ|θ(k)) ≤ f(θ) for all θ; (2.14)

g(θ(k)|θ(k)) = f(θ(k)). (2.15)

At each iteration, given the value of the parameter θ(k), we will maximize the

minorizing function g(θ|θ(k)) in θ. Then the maximum point θ(k+1) will force the

value of the objective function f(θ) uphill in the sense that f(θ(k+1)) ≥ f(θ(k)) is

guaranteed. This is called the ascent property of an MM algorithm, which pro-

tects the algorithm from unpredictable behavior. The well-known class of EM

algorithms is a subset of the MM algorithms; in fact, the E-step of any EM algo-

rithm is actually a minorization step (Hunter and Lange, 2004). We shall revisit

EM algorithms below.

The key to an effective MM algorithm is to find a good minorizing function.

Hunter and Lange (2002) provide a minorizing function for the log-likelihood func-
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tion (2.9) of the proportional odds model:

Q(θ|θ(k)) =
n∑
i=1

Qβ
i (β|θ(k)) +

m∑
j=1

Qγ
j (γj|θ(k)), (2.16)

where

Qβ
i (β|θ(k)) = −z>i β − e−z

>
i β

[
1

Di(θ(k))
+

δi

Di(θ(k))− eγ
(k)
ωi

]
, (2.17)

Qγ
j (γj|θ(k)) = ujvj − eγj

[∑
i:ωi≥j

1

Di(θ(k))
+
∑
i:ωi>j

δi

Di(θ(k))− eγ
(k)
ωi

]
. (2.18)

The most important features of Q(θ|θ(k)) are that it separates the parameters into

γj and β, and both parts are twice differentiable. Also, Q(θ|θ(k)) itself is a concave

function of θ, with negative definite Hessian matrix with respect to β. Thus, we

can use Newton-Raphson in the maximization step for updating β. Also, for each

fixed θ(k), there is a closed form maximizer for γ, as we explain in Section 2.5.2.

Adding the penalty term, we obtain

Qpen(θ|θ(k)) = Q(θ|θ(k))− n
p∑
i=1

pλ(|βi|)

as a minorizing function of ξfull(θ) at the point θ(k). This minorizing function is

much easier to maximize than ξfull(θ) itself, and this fact leads to the iterative

algorithms of Section 2.5.2.

The idea of Liu and Zeng (2013) is similar but with a key difference. Their

modeling framework makes clever use of a latent (unobserved) variable and estab-

lishes the proportional odds model as a special case of a broader class of models

that also includes Cox’s model. To find the unpenalized MLE for the proportional

odds case, Liu and Zeng (2013) exploit the missing-data structure of their model-

ing framework and construct a standard EM algorithm. At each iteration of this

algorithm, the E-step constructs a minorizing function. When the maximizer is

achieved, their idea is to utilize the minorizing function at the MLE as an approx-

imation to the log-likelihood, and apply a penalty to this minorizer. They then

maximize this penalized approximate log-likelihood. By contrast, our method is
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to apply a penalty directly to the log-likelihood—though as explained above, we

also use a (different) MM algorithm to achieve the maximization. The distinction

is illustrated by Figure 2.1. The asymptotic results suggest no clear theoretical ad-

vantage of one method over the other, though our simulation studies in Section 2.6

suggest a small advantage for our approach for larger sample sizes.

Figure 2.1. Whereas our method applies a penalty function directly to the log-likelihood
`(θ), Liu and Zeng (2013) penalize a minorizer of `(θ) at the MLE θ̃, depicted here as
Q′(θ|θ̃).

2.5.2 Iterative Conditional Maximization

In order to maximize Qpen(θ|θ(k)), we still face problems of non-concavity and

lack of smoothness because of the penalty term. For penalized parametric likeli-

hoods, Zhang and Li (2009) propose an iterative conditional maximization (ICM)

algorithm to solve such problems. Throughout their paper, they assume that the

likelihood function follows the regularity conditions in Fan and Li (2001), in order

to guarantee that the log-likelihood function is at least twice differentiable and

locally concave at the true unknown parameter β0. This algorithm is simple and

enjoys a fast convergence rate.

For the proportional odds model, since Q(θ) can be separated into a function

of β and a function of γ, and we only penalize β, maximizing Qpen(θ) can be done



53

separately for β and γ. The optimal γj is the maximizer of Qγ
j (γj|θ(k)), which has

the closed form expression

γ(k+1) = log uj − log

[∑
i:ωi>j

1

D(θ(k))
+
∑
i:ωi>j

δi

D(θ(k))− eγ
(k)
ωi

]
(2.19)

given by Hunter and Lange (2002). For updating β, we need to maximize

Qβ−pen(β) =
n∑
i=1

Qβ
i (β|θ(k))− n

p∑
j=1

pλ(|βj|) = Qβ(β|θk)− n
p∑
j=1

pλ(|βj|). (2.20)

Although Qβ−pen(β) is not a penalized likelihood function, it may be treated

like one for the purpose of maximization by the ICM algorithm. Only cosmetic

changes to the proofs in Zhang and Li (2009) are necessary to validate all the

theoretical results in that paper as they apply to maximizing Qβ−pen(β). Now we

can combine the MM and ICM algorithms to get a new algorithm to solve the

variable selection problem for the proportional odds model.

The algorithm consists of two loops: the outer loop encompasses the MM

algorithm and the inner loop maximizes the Qβ−pen(β) as a “penalized likelihood

function” using the ICM algorithm. The steps of the algorithm are as follows:

1. Initialize θ(0) = (β(0),γ(0)); set k = 0.

2. Update γ(k) to γ(k+1) using equation (2.19).

3. Update β by maximizing Qβ−pen(β), as follows:

∆b(k) = −d2Qβ(β(k)|θ(k))−1dQβ(β(k)|θ(k))>,

α(k) = arg max
α∈[0,1]

Qβ(β(k) + α∆b(k)|θ(k)),

b(k) = β(k) + α(k)∆b(k).

Then use ICM to get β(k+1):

(a) Set β̃(0) = b(k),

compute m = (m1,m2...,mp), wheremj = min
θ>0
{θ+p

′

λ(θ)/Îjj}, and Îjj =

−d2f(b(k)|θ(k))/n.
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(b) Start from t = 1. Update

β̃
∗(t)
j = β̃

(t−1)
j −

p∑
k=1

Îjk

Îjj

(
β̃

(t−1)
k − β̃(0)

k

)
and

β̃
(t)
j =

[
β̃
∗(t)
j − 1

Îjj
p
′

λ(|β̃
(t−1)
j |)sgn(β̃

(t−1)
j )

]
I(|β̃∗(t)j | > mj)

for j = 1, 2, ..., p. Then t = t+ 1.

(c) Repeat (b) until convergence. Then

β(k+1) = β̃converge

4. Replace k by k+ 1 and return to step 2 until some convergence criterion has

been satisfied.

As in Zhang and Li (2009), one may update β one coordinate at a time in

step (b) above, that is, instead of (β̃
(t−1)
1 , ..., β̃

(t−1)
j , ..., β̃(t−1)

p ), update β̃
(t)
j using

(β̃
(t)
1 , ..., β̃

(t)
j−1, β̃

(t−1)
j , ..., β̃(t−1)

p ). Such coordinate updates typically speed conver-

gence, so we use them here. The stopping criterion is based on the squared Eu-

clidean distance between βk and βk+1.

2.5.3 Coordinate Descent

An alternative way to maximize Qβ−pen(β) in step 3 of our MM algorithm is the co-

ordinate descent algorithm, proposed by Wu and Lange (2008) for solving LASSO

penalized regression. This method calculates the directional derivatives for each

coordinate at the current estimate, and the objective function is maximized along

the coordinate with the “most negative” directional derivative. This procedure is

repeated until there are no negative directional derivatives. Although the LASSO

penalty is not differentiable at the origin, its directional derivative is always a con-

stant. Therefore, this algorithm is attractive in terms of computational simplicity.
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For a unit vector v, we define the directional derivative along v as

dvQ
β−pen(β) = lim

τ↓0

Qβ−pen(β + τv)−Qβ−pen(β)

τ
.

Letting ek denote the standard basis vector with 1 in the kth place, the two

directional derivatives along this coordinate direction are

dekQ
β−pen(β) =

∂

∂βk
Qβ(β) +


p′λ(|βk|) βk > 0,

p′λ(0+) βk = 0,

−p′λ(|βk|) βk < 0

and

d−ekQ
β−pen(β) = − ∂

∂βk
Qβ(β) +


−p′λ(|βk|), βk > 0,

p′λ(0+), βk = 0,

p′λ(|βk|), βk < 0.

Because here we don’t have a simple regression model, maximizing the surrogate

function along a certain coordinate does not have a closed form. However, this

one-dimensional optimization problem can be easily solved by the golden section

or bisection algorithms.

2.5.4 Minimization by Iterative Soft Thresholding

Yet another alternative to ICM in step 3 of our MM algorithm is the Minimization

by Iterative Soft Thresholding (MIST) method proposed by Schifano et al. (2010)

for optimizing penalized likelihood-based functions of the general form

ξ(β) = g(β) + λε‖β‖2 +

p∑
i=1

p(|βi|,λi), (2.21)

where ε ≥ 0 and each λi is possibly vector-valued with first component equal to

λ > 0. Because of the MIST requirement that p(|βi|,λi) be a concave function,

MIST cannot always be applied directly for certain types of penalty functions,

such as SCAD; however, it is possible to majorize such a penalty function using a

concave function via the LLA idea of Zou and Li (2008).
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The MIST algorithm is developed from solving optimization problems for the

sum of two functions and it has two stages. The first stage updates the unpenal-

ized likelihood-based function part and the second stage uses a soft-thresholding

operator to handle the penalty part. The algorithm iterates between these stages

until convergence. It is computationally simple since it avoids high-dimensional

matrix inversion. We find that the behavior of this algorithm is good in simulated

data sets, even outperforming the ICM-MM algorithm in some cases. However,

an important challenge of MIST is that one needs to identify a tuning parameter,

ω, for running the algorithm. Usually, if the objective function g(θ) is Lipschitz

continuous of order 1/L, then ω is chosen to be between 0 and L/2. This param-

eter is hard to identify if one doesn’t know the true underlying model (likelihood

function), resulting in difficulties of implementation in real data analysis, espe-

cially for the case of proportional odds models. So we omit the detailed algorithm

and corresponding results in the tests that follow. A related algorithm that avoids

choosing the tuning parameter is the fast iterative-thresholding algorithm (FISTA)

proposed by Beck and Teboulle (2009). The version that incorporates a backtrack-

ing stepsize rule could be applied for maximizing the objective function here, but

we do not discuss this algorithm in detail.

2.6 Simulation Studies

In this section, we evaluate the performance of different algorithms on simu-

lated data sets using the setting of Lu and Zhang (2007). The eight covari-

ates (Z1, Z2, ..., Z8) are generated from a multivariate normal distribution with

Corr(Zi, Zj) = ρ|i−j| for i 6= j and ρ = 0.2. The corresponding regression coef-

ficients are β = (−0.7, 0, 0,−0.7, 0, 0,−0.7, 0). We choose H(t) = 3 log(t) as the

baseline odds function. Two censoring settings, 25 and 40 percent, and two sample

size settings, n=100 and 400, are considered. We test both ICM and coordinate

descent as the inner loop algorithm in step 3 of the MM algorithm, and both adap-

tive LASSO and SCAD penalty functions are implemented. Since two algorithms

with the same penalty function produce very similar simulation results, Table 2.1

reports only the average results of the ICM and coordinate descent algorithms.

Table 1 also summarizes results produced by the algorithm of Liu and Zeng (2013)
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using code provided by the authors and reproduces results reported by Lu and

Zhang (2007) in the case n = 100. A more detailed version of the results is found

in the appendix.

There are several possible methods of choosing the tuning parameter λ. Liu

and Zeng (2013) and Lu and Zhang (2007) use generalized cross-validation (GCV)

for this purpose. Since the form of the true model is known, GCV is comparatively

conservative (Zhang et al., 2010). Instead, we use the consistent tuning parameter

selector BIC (Zhang et al., 2010). Specifically, the optimal λ is taken to be the

point in an equally spaced grid of points that minimizes

BIC(λ) =
−2`(θ̂) + dfλ log(n)

n
,

where `(θ̂) is the log-likelihood function evaluated at the estimates, dfλ is the

degrees of freedom of the model, always taken to be the number of nonzero com-

ponents for β for a fixed λ, and n is the number of observations.

There are several observations from the simulation results of Table 2.1. At the

smaller sample size (n = 100), we find that no algorithm is uniformly better than

the others at identifying the true zeros and non-zeros nor at minimizing MSE.

However, for the larger sample size (n = 400), the two MM algorithms, based

on penalizing the true log-likelihood, appear to outperform the algorithm of Liu

and Zeng (2013) that penalizes a minorizer of the log-likelihood at the MLE, both

in terms of variable selection and MSE. Comparing the SCAD penalty with the

adaptive LASSO penalty, it appears that SCAD usually (but not always) enjoys

an advantage in terms of MSE and that SCAD tends to declare more coefficients

to be zero, both correctly and incorrectly. However, we wish to emphasize that in

our experience, all of these results appear to be quite dependent on the choice of

tuning parameter.

2.7 Application to Real Data

We apply the algorithm to the Veteran’s Administration Lung Cancer Trial data,

a dataset on 97 males having lung cancer and no prior therapy that is used by

many authors as an example of data following the proportional odds model. The
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Table 2.1. Results for 1000 repetitions of the simulation study, where LZ 2013 is
the method of Liu and Zeng (2013) and LZ 2007 is the marginal likelihood method
of Lu and Zhang (2007). The “Correct” and “Incorrect” columns give the number of
parameters correctly and incorrectly set to zero. The mean squared error is given by
(β̂ − β)>Σ(β̂ − β).

censoring n Method Correct(5) Incorrect(0) Median MSE

25% 100 MM-aLASSO 4.1 0.1 0.207
MM-SCAD 4.7 0.3 0.173
LZ 2013 3.9 0.1 0.211
LZ 2007 4.6 0.1 0.229

400 MM-aLASSO 4.9 0 0.0342
MM-SCAD 4.9 0 0.0259
LZ 2013 4.3 0 0.0399

40% 100 MM-aLASSO 4.0 0.1 0.249
MM-SCAD 4.7 0.3 0.280
LZ 2013 3.8 0.1 0.241
LZ 2007 4.4 0.2 0.303

400 MM-aLASSO 4.9 0 0.0399
MM-SCAD 4.9 0 0.0290
LZ 2013 4.2 0 0.0443

subjects are randomly assigned to receive a standard treatment or chemotherapy.

Six covariates are measured: treatment (1=standard, 2=test), celltype (1=squa-

mous, 2=smallcell, 3=adeno, 4=large), karno (Karnofsky performance score, where

100=good), diagtime (months from diagnosis to randomization), age (in years),

and prior (prior therapy, where 0=no, 10=yes). Table 2.2 lists the estimates calcu-

lated using various methods, including our penalized profile log-likelihood method

using both SCAD and adaptive LASSO penalties, the adaptive LASSO-penalized

marginal likelihood method of Lu and Zhang (2007), the method of Liu and Zeng

(2013) that applies adaptive LASSO to the minorizer of the log-likelihood at the

MLE, and the unpenalized maximum likelihood estimator.
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Table 2.2. Coefficient estimates for different methods of fitting the proportional odds
model to the Veteran’s Administration dataset, where LZ 2013 is the method of Liu and
Zeng (2013) and LZ 2007 is the marginal likelihood method of Lu and Zhang (2007).

Covariate MM-SCAD MM-aLASSO LZ 2007 LZ 2013 MLE

trt 0.000 0.000 0.000 0.000 0.177
cell.ad 1.445 1.322 0.841 0.864 1.463
cell.sm 1.281 1.179 0.706 0.821 1.347
cell.sq 0.000 0.000 0.000 0.000 0.0012
prior 0.000 0.000 0.000 0.000 0.0195

diagtime 0.0005 0.000 0.000 0.000 0.0012
age 0.000 0.000 0.000 0.000 -0.0025

karno -0.056 -0.055 -0.053 -0.055 -0.0566

As pointed out at the end of Section 2.6, the choice of tuning parameter is highly

influential. For our methods, we use a BIC-type selector, a special case of the

generalized information criterion (GIC) in Zhang et al. (2010), and select tuning

parameters of 0.12 for MM-SCAD and 0.016 for MM-aLASSO. Comparing the

four variable selection methods, we find that the three methods that use adaptive

LASSO select the same set of variables, though the estimates are slightly different,

with those that use our method tending to be closer to the unpenalized MLE values.

The first method, using SCAD, allows for one additional nonzero coefficient.

2.8 Discussion

This article studies the problem of variable selection for the proportional odds

model through direct penalization of the (profile) log-likelihood function. We show

that the maximizer of this function is consistent and has an oracle property under

some regularity conditions. In particular, the estimates of the true zero coefficients

converge to 0 at a faster rate than
√
n and (under a slightly stronger regularity

condition) are exactly zero with probability approaching one, while the estimates

of the nonzero components are efficient and asymptotically normally distributed.

Proofs of these results rely on an expansion of the profile log-likelihood function

provided by Murphy and Van der Vaart (2000) together with some mild modified
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conditions that we introduce. Our results are therefore novel in the sense that they

do not depend on Taylor expansions, unlike most work on penalized likelihood

functions in the literature. Furthermore, our results should be generalizable to

other semi-parametric models that satisfy these regularity conditions, allowing for

the possibility of penalization in other situations when goodness-of-fit measures

are non-differentiable.

Ordinarily, working directly with the likelihood or profile likelihood in the pro-

portional odds model is difficult, but we overcome this difficulty by using MM

algorithms for purposes of maximization. MM algorithms operate by alternately

constructing a surrogate function for the penalized likelihood function given the

current estimates, then maximizing it. For the maximization step in our MM

algorithms, we test several different numerical methods, including an ICM algo-

rithm (Zhang and Li, 2009), a coordinate descent algorithm (Wu and Lange, 2008),

and a Minimization by Iterative Soft Thresholding, or MIST, algorithm (Schifano

et al., 2010). Our MM algorithms enjoy a fast convergence rate while maintaining

satisfactory performance. The simulation results demonstrate the efficacy of our

algorithms, which outperform existing algorithms particularly for larger samples.

On the other hand, we find that results are quite sensitive to tuning parameter

selection, which is therefore a topic for further study.

Our exploration of various optimization algorithms in the maximization step

of our MM algorithms did not identify a clear-cut winner, suggesting another

topic for further study. Complicating this question is the fact that different types

of penalty functions may require different optimization algorithms; for instance,

SCAD penalties make the profile likelihood possibly nonconcave, whereas LASSO

and adaptive LASSO do not share this challenge.

Yet another topic for further research is the question of improving the asymp-

totic results, for instance, to allow for the number of parameters to grow with

the sample size. In recent years, problems with large numbers of parameters have

attracted more attention due to the development of technology. For example, Cai

et al. (2005) proposed to maximize the penalized pseudo-partial likelihood func-

tion to select variables for multivariate failure time data. They assumed that the

number of parameters in the model grows in a rate slower than sample size, and

obtained estimates which are consistent, and asymptotically normally distributed
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and also possess an oracle property in the sense of Fan and Li (2001). Yet the rate

of convergence in β is no longer
√
n, but involves the increasing rate of the number

of parameters in the model. Such issues might also be of interest in our setting

of the proportional odds model, yet for the present, it appears that adapting the

asymptotic framework we use here to the case of increasing numbers of parameters

is a nontrivial modification.

All in all, we believe that this article’s combination of theoretical results for

penalization of a non-differentiable objective function, together with techniques

like MM for aiding the numerical optimization of complicated objective functions,

has the potential to open new avenues for the use of penalization in the context of

model selection.

Appendix A: Detailed Simulation Output

Table 2.3 gives detailed results of our simulation studies in Section 2.6. Unlike

in Table 2.1, the results using the coordinate descent (CD) algorithm of Wu and

Lange (2008) are separated from those that use the ICM algorithm of Zhang and Li

(2009). Furthermore, one additional sample size (n = 200) is included. All results

of Zhang and Li (2009) are based on code provided by the authors. Table 2.4 lists

the proportion of times that each of the eight variables is included in the final

model, though this information is not available for the method of Lu and Zhang

(2007).
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Table 2.3. Results for 1000 repetitions of the simulation study, where LZ 2013 is the
method of Liu and Zeng (2013). The “Correct” and “Incorrect” columns give the number
of parameters correctly and incorrectly set to zero. The mean squared error is given by
(β̂ − β)>Σ(β̂ − β).

censoring n Method Correct(5) Incorrect(0) Median MSE
25% 100 CD-aLASSO 4.098 0.067 0.2087

ICM-aLASSO 4.108 0.069 0.2062
CD-SCAD 4.733 0.265 0.1738
ICM-SCAD 4.738 0.264 0.1728
LZ 2013 3.956 0.052 0.2113

200 CD-aLASSO 4.691 0.005 0.08389
ICM-aLASSO 4.698 0.005 0.08452
CD-SCAD 4.881 0.012 0.05939
ICM-SCAD 4.883 0.011 0.06008
LZ 2013 4.157 0 0.08541

400 CD-aLASSO 4.875 0 0.03437
ICM-aLASSO 4.879 0 0.03405
CD-SCAD 4.931 0 0.02584
ICM-SCAD 4.931 0 0.02596
LZ 2013 4.252 0 0.03994

40% 100 CD-aLASSO 4.016 0.102 0.2495
ICM-aLASSO 4.039 0.106 0.2493
CD-SCAD 4.707 0.363 0.2850
ICM-SCAD 4.702 0.353 0.2759
LZ 2013 3.839 0.075 0.2414

200 CD-aLASSO 4.677 0.014 0.09656
ICM-aLASSO 4.686 0.014 0.09490
CD-SCAD 4.888 0.030 0.06808
ICM-SCAD 4.874 0.028 0.06914
LZ 2013 4.041 0.002 0.1022

400 CD-aLASSO 4.854 0 0.04008
ICM-aLASSO 4.856 0 0.03974
CD-SCAD 4.933 0 0.02917
ICM-SCAD 4.933 0 0.02873
LZ 2013 4.162 0 0.04428
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Table 2.4. Results for 1000 repetitions of the simulation study, where LZ 2013 is the
method of Liu and Zeng (2013). The proportions give the fraction of time that each of
the eight variables was included in the model; variables 1, 4, and 7, shown in bold, are
in the true model, whereas the others are absent.

censoring n Method Proportions
25% 100 CD-aLASSO 0.974 0.181 0.180 0.984 0.184 0.174 0.975 0.183

ICM-aLASSO 0.974 0.182 0.176 0.983 0.180 0.171 0.974 0.183
CD-SCAD 0.914 0.056 0.050 0.918 0.050 0.054 0.903 0.057
ICM-SCAD 0.911 0.059 0.046 0.918 0.048 0.049 0.907 0.060

LZ 2013 0.980 0.215 0.206 0.989 0.206 0.202 0.979 0.215

200 CD-aLASSO 0.996 0.058 0.046 1.000 0.071 0.072 0.999 0.062
ICM-aLASSO 0.996 0.054 0.045 1.000 0.069 0.068 0.999 0.066

CD-SCAD 0.995 0.020 0.012 0.997 0.031 0.032 0.996 0.024
ICM-SCAD 0.995 0.021 0.012 0.997 0.031 0.034 0.996 0.026

LZ 2013 1.000 0.168 0.162 1.000 0.170 0.174 1.000 0.169

400 CD-aLASSO 1.000 0.022 0.025 1.000 0.021 0.031 1.000 0.026
ICM-aLASSO 1.000 0.022 0.025 1.000 0.018 0.031 1.000 0.025

CD-SCAD 1.000 0.013 0.018 1.000 0.011 0.017 1.000 0.010
ICM-SCAD 1.000 0.013 0.018 1.000 0.011 0.017 1.000 0.010

LZ 2013 1.000 0.023 0.029 1.000 0.026 0.028 1.000 0.025

40% 100 CD-aLASSO 0.963 0.211 0.182 0.972 0.195 0.189 0.963 0.207
ICM-aLASSO 0.963 0.208 0.177 0.971 0.190 0.187 0.960 0.199

CD-SCAD 0.871 0.065 0.063 0.890 0.052 0.059 0.876 0.054
ICM-SCAD 0.876 0.064 0.064 0.893 0.052 0.062 0.878 0.056

LZ 2013 0.972 0.249 0.220 0.981 0.232 0.221 0.972 0.239

200 CD-aLASSO 0.990 0.061 0.043 0.998 0.070 0.075 0.998 0.065
ICM-aLASSO 0.990 0.062 0.045 0.998 0.070 0.078 0.998 0.068

CD-SCAD 0.986 0.024 0.014 0.995 0.023 0.032 0.989 0.019
ICM-SCAD 0.985 0.023 0.017 0.995 0.023 0.031 0.990 0.018

LZ 2013 0.998 0.182 0.185 1.000 0.193 0.210 1.000 0.189

400 CD-aLASSO 1.000 0.030 0.029 1.000 0.024 0.039 1.000 0.024
ICM-aLASSO 1.000 0.027 0.027 1.000 0.024 0.035 1.000 0.022

CD-SCAD 1.000 0.014 0.015 1.000 0.008 0.018 1.000 0.012
ICM-SCAD 1.000 0.015 0.017 1.000 0.007 0.017 1.000 0.011

LZ 2013 1.000 0.167 0.169 1.000 0.155 0.175 1.000 0.172
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Appendix B: Proofs of Theoretical Results

Recall that the penalized profile likelihood function is

ξprof(β) = p`(β, x)− n
n∑
j=1

pλn(|βj|)

and

an = max
1≤j≤p

{p′λn(|β0
j |) : β0

j 6= 0},

bn = max
1≤j≤p

{p′′λn(|β0
j |) : β0

j 6= 0}.

Proof of theorem 1: Let αn = n−1/2 + an. It is sufficient to show that for

any ε > 0, there exist positive constants C and N such that

P

(
sup
‖u‖=C

ξprof(αnu + β0) < ξprof(β0)

)
≥ 1− ε for all n > N.

Let Dn(u) = ξprof(αnu+ β0)− ξprof(β0). Then

Dn(u) = p`(β0 + αnu)− p`(β0)− n
p∑
j=1

pλn(|β0
j + αnuj|) + n

p∑
j=1

pλn(|β0
j |)

≤ p`(β0 + αnu)− p`(β0)︸ ︷︷ ︸
(I)

−n
s∑
j=1

[
pλn(|β0

j + αnuj|)− pλn(|β0
j |)
]

︸ ︷︷ ︸
(II)

.

We consider (I) and (II) separately. Theorem 1 in Murphy and Van der Vaart

(2000) shows that for any sequence β̃n
P→ β0, we have the expansion

p`(β̃) = p`(β0) + (β̃n − β0)>
n∑
i=1

˜̀
0(xi)−

n

2
(β̃n − β0)>Ĩ0(β̃n − β0)

+oP (
√
n‖β̃n − β0‖+ 1)2, (2.22)

where ˜̀
0(x) and Ĩ0 are called the effective (or efficient) score vector and information

matrix, respectively. The effective information is the covariance matrix of the

effective score; more details on the effective score may be found in Murphy and
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Van Der Vaart (1999).

Writing β̃n = β0 + αnu, we obtain

(I) = αnu
>

n∑
i=1

˜̀
0(xi)−

nα2
n

2
u>Ĩ0u+ oP (

√
nαn‖u‖+ 1)2.

≤ κn

[
1√
n

u>

‖u‖

n∑
i=1

˜̀
0(xi)−

κnλmin

2
+ oP

(
κn +

1

κn

)]
, (2.23)

where κn =
√
nαn‖u‖ and λmin is the smallest eigenvalue of Ĩ0.

We now argue that C may be chosen large enough so that for any ‖u‖ = C,

the right side of (3.24) is strictly negative with probability close to one. First,

the ˜̀
0(xi) are independent and identically distributed with mean 0, so the Central

Limit Theorem implies that

1√
n

u>

‖u‖

n∑
i=1

˜̀
0(xi)

is bounded in probability. Furthermore, since
√
nαn > 1, we get κn > 1 whenever

C > 1. Therefore, C > 1 implies that oP (κn + κ−1
n ) = oP (κn). Since Ĩ0 is positive

definite, λmin > 0, and we conclude that −κnλmin/2 + oP (κn) can be made strictly

negative for large n with probability arbitrarily close to one by choosing C large

enough.

Next, consider

(II) = n
s∑
j=1

∣∣αnp′λn(|β0
j |)uj + α2

np
′′
λn(|β0

j |)u2
j(1 + op(1))

∣∣
≤
√
snαnan‖u‖+ nα2

nbn‖u‖2(1 + op(1))

= nα2
n(
√
s · an

αn
‖u‖) + nα2

n‖u‖2bn(1 + op(1))

= nα2
n

[√
s · an

αn
‖u‖+ ‖u‖2bn + op(1)

]
.

Since an → 0 and bn → 0, (II) is also dominated by the second term in (I). So

Dn(u) < 0, which concludes the proof. �

Lemma A Assume that regularity conditions 1, 2, and 3 are satisfied and that

β̂1n denotes the first s components of the
√
n−consistent estimator obtained in
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Theorem 1. Then with probability tending to 1,

β̂2n = arg max
‖β2n‖≤cn−1/2

ξprof{(β̂1n,β2n)} = oP (n−1+δ). (2.24)

Proof of Lemma A: To prove the above result, we only need to prove that

for any β1n satisfying

‖β1n − β10‖ = OP (n−1/2),

with probability tending to 1 as n→∞, for any c > 0,

ξprof{(β1n,0)} > sup
cn−1+δ≤‖β2n‖≤cn−1/2

ξprof{(β1n,β2n)}. (2.25)

To see why inequality (2.25) implies equation (3.37): β̂1n is
√
n−consistent, so if

it satisfies equation (2.25) for any c > 0,

P

(
ξprof{(β̂1n,0)} > sup

cn−1+δ≤‖β2n‖≤cn−1/2

ξprof{(β̂1n,β2n)}

)
→ 1

⇒ P (‖ arg max
‖β2n‖≤cn−1/2

ξprof{(β̂1n,β2n)}‖ < cn−1+δ)→ 1

⇒ P
(
‖β̂2n‖ < cn−1+δ

)
→ 1

⇒ P
(
n1−δ‖β̂2n‖ < c

)
→ 1

⇒ β̂2n = oP (n−1+δ).

Now let us prove (2.25). Let ˜̀
10(X) and ˜̀

20(X) denote the first s and last r

dimensions of ˜̀
0(X), respectively. Furthermore, let

Ĩ0 =

(
Ĩ0

11 Ĩ0
12

Ĩ0
21 Ĩ0

22

)
.

The above inequality is equivalent to

sup
cn−1+δ≤‖β2n‖≤cn−1/2

ξprof{(β1n,β2n)} − ξprof{(β1n,0)} < 0. (2.26)
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According to the expansion in equation (2.22)

ξprof{(β1n,β2n)} − ξprof{(β1n,0)}

= p`(β1n,β2n)− n
p∑
j=1

pλn(|βj|)− p`(β1n,0) + n
s∑
j=1

pλn(|βj|)

= p`(β1n,β2n)− p`(β1n, 0)− n
p∑

j=s+1

pλn(|βj|)

= (β2n)>
n∑
i=1

˜̀
20(xi)−

1

2
n(β2n)>Ĩ0

22β
2n + oP (

√
n‖β2n‖+ 1)2 − n

p∑
j=s+1

pλn(|βj|).

(2.27)

Since β2n = OP (
1√
n

) by Theorem 1 and
n∑
j=1

˜̀
20(xi) = OP (

√
n),

(β2n)>
n∑
i=1

˜̀
20(xi) + oP (

√
n‖β2n‖+ 1)2

= n‖β2n‖OP (
1√
n

) + oP (1)

= n‖β2n‖oP (
1

nδ
). (2.28)

The last equation is because ‖β2n‖ ≥ cn−1+δ ⇒ 1

n‖β2n‖
≤ 1

cnδ
, so

oP (1) = n‖β2n‖oP
(

1

n‖β2n‖

)
= n‖β2n‖oP

(
1

cnδ

)
= n‖β2n‖oP

(
1

nδ

)
.

So the left hand side of equation (2.26) becomes

LHS ≤ sup
cn−1+δ≤‖β2n‖≤cn−1/2

n‖β2n‖oP (
1

nδ
)− n

p∑
j=s+1

pλn(|βj|). (2.29)

For the penalty term, by condition 2, for any x > 0, λn > 0, there exists 0 < x∗ < x

such that

pλn(x) = xp′λn(0+) +
x2

2
p′′λn(x∗)
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≥ xp′λn(0+) +
x2

2
M. (2.30)

Therefore,

sup
cn−1+δ≤‖β2n‖≤cn−1/2

n

p∑
j=s+1

pλn(|βj|) ≥ sup
cn−1+δ≤‖β2n‖≤cn−1/2

n

p∑
j=s+1

{
p′λn(0+)|βj|+ ‖βj‖2M

}
= sup

cn−1+δ≤‖β2n‖≤cn−1/2

np′λn(0+)

p∑
j=s+1

|βj|+ n‖β2n‖2M

≥ sup
cn−1+δ≤‖β2n‖≤cn−1/2

np′λn(0+)‖β2n‖2

So now as with equation (8), we get

sup
cn−1+δ≤‖β2n‖≤cn−1/2

n‖β2n‖oP (
1

nδ
)− n

p∑
j=s+1

pλn(|βj|)

≤ sup
cn−1+δ≤‖β2n‖≤cn−1/2

n‖β2n‖
[
oP (

1

nδ
)− p′λn(0+)

]
= sup

cn−1+δ≤‖β2n‖≤cn−1/2

nλn‖β2n‖
[
oP (

1

nδλn
)− p′λn(0+)/λn

]
< 0

with probability going to 1. �

Lemma B Assume regularity condition 2 holds. In addition, we assume that

there exits 0 < δ∗ ≤ 1 such that for any random sequence θ̃n = (θ̃1n, θ̃2n)→ θ0 =

(θ10,0),

p`n(θ̃n) = p`n(θ0) + (θ̃n − θ0)>
n∑
i=1

˜̀
0(xi)−

1

2
n(θ̃n − θ0)>Ĩ0(θ̃n − θ0)

+oP (n‖θ̃1n − θ10‖2) + oP (n‖θ̃1n − θ10‖ · ‖θ̃2n‖) + oP (n‖θ̃2n‖1+δ∗),

(2.31)

in which the first reminder term only depends on ‖θ̃1n − θ10‖. Now take λn to be

a sequence satisfying regularity condition 2 with δ = δ∗/(1 + δ∗). Then for any
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β1n satisfying ‖β1n − β10‖ = OP (n−1/2) and any constant c > 0,

P

(
ξprof{(β1n,0)} = max

‖β2n‖≤cn−1/2
ξprof{(β1n,β2n)}

)
→ 1

as n→ +∞.

Proof of Lemma B: We only need to prove that for any (β1n,β2n) satisfying

β1n − β10 = OP (n−1/2), ‖β2n‖ ≤ cn−1/2,β2n 6= 0

with probability tending to 1 as n→∞,

ξprof{(β1n,β2n)} − ξprof{(β1n,0)} < 0. (2.32)

Replace (2.22) with our slightly stronger condition (2.31). The same argument as

in Lemma A shows that the left hand side of (2.32) is bounded above by

(β2n)>
n∑
i=1

˜̀
20(xi) + oP (n‖β2n‖1+δ∗) + oP (n‖β1n − β10‖ · ‖β2n‖)

−n
p∑

j=s+1

pλn(|βj|). (2.33)

We may apply the same discussion for the first and last terms as in Lemma A, and

also for any
√
n−consistent β̃1n, to obtain

oP (n‖β2n‖1+δ∗) + oP (n‖β1n − β10‖ · ‖β2n‖)

= n‖β2n‖oP (‖β2n‖δ/(1−δ)) + n‖β2n‖oP (1/
√
n). (2.34)

So now expression (2.33) becomes

n‖β2n‖
[
OP (

1√
n

) + oP (‖β2n‖δ/(1−δ))− p′λn(0+)

]
= nλn‖β2n‖

[
oP (

1

nδλn
) + oP (‖β2n‖δ/(1−δ)/λn)− p′λn(0+)/λn

]
. (2.35)

In Lemma A we already proved that β̂2n = oP (n−1+δ); here we can limit ‖β2n‖ =

oP (n−1+δ). Therefore, it can be easily verified that the last term still dominates
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the remaining terms. So with probability going to 1, the desired inequality holds.

�

Proof of Theorem 2:

We first derive the following result for penalty function:

ξprof{β̂} = p`(β̂)− n
p∑
j=1

p(|β̂j|)

= p`(β̂)− n
s∑
j=1

p(|β̂j|) + oP (1).

The second equality holds because for δ specified for λ, we already proved that

β̂2n = oP (n−1+δ) in Lemma A. Since the SCAD penalty function is a linear function

with slope λn at a neighborhood of zero,

n

p∑
j=s+1

p(|β̂j|) ≤ nλn max
s+1≤j≤p

|β̂j| · r

≤ nλnoP (n−1+δ)

= oP (nδλn) = oP (1).

Therefore, the expansion of ξprof{β̂} is as follows:

ξprof{β̂} = p`(β0)

+(β̂1n − β10)>

[
n∑
i=1

˜̀
10(xi)− ndn

]
+ (β̂2n − β20)>

n∑
i=1

˜̀
20(xi)

−n
2

(β̂1n − β10)>
[
Ĩ0

11 + Σn

]
(β̂1n − β10)− n

2
(β̂2n − β20)>Ĩ0

22(β̂2n − β20)

−n
2

(β̂1n − β10)>Ĩ0
12(β̂2n − β20)− n

2
(β̂2n − β20)>Ĩ0

21(β̂1n − β10)

+oP (
√
n‖β̂ − β0‖+ 1)2 + oP (

√
n‖β̂1n − β0

1‖)2, (2.36)

where we recall that ˜̀
10(X) and ˜̀

20(X) denote the first s and last r dimensions

of ˜̀
0(X) separately and

Ĩ0 =

(
Ĩ0

11 Ĩ0
12

Ĩ0
21 Ĩ0

22

)
.
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Since β̂1n − β10 = OP (n−1/2) and β̂2n − β20 = β̂2n = oP (n−1+δ) for some

0 < δ < 1/2, we can rewrite Equation (2.36) only in terms of β̂1n and β10.

• Since
n∑
j=1

˜̀
20(xi) = OP (

√
n), we get

(β̂2n − β20)>
n∑
i=1

˜̀
20(xi) = oP (n−1+δ+1/2) = oP (1).

• Since Ĩ0
22 = OP (1),

−n
2

(β̂2n − β20)>Ĩ0
22(β̂2n − β20) = oP (n−2+2δ+1) = oP (n−1+2δ) = oP (1).

• Since Ĩ0
12 = (Ĩ0

21)> = OP (1),

−n
2

(β̂1n − β10)>Ĩ0
12(β̂2n − β20) = −n

2
(β̂2n − β20)>Ĩ0

21(β̂1n − β10)

= oP (n1−1+δ−1/2)

= oP (n−1/2+δ) = oP (1). (2.37)

Therefore,

ξprof{β̂} = p`(β0) + (β̂1n − β10)>

[
n∑
i=1

˜̀
10(xi)− ndn

]
−n

2
(β̂1n − β10)>

[
Ĩ0

11 + Σn

]
(β̂1n − β10)

+oP (
√
n‖β̂ − β0‖+ 1)2 + oP (

√
n‖β̂1n − β0

1‖)2.

Actually, the term oP (
√
n‖β̂−β0‖+1)2 = oP (

√
n‖β̂1n−β0

1‖+1)2. This is because

‖β̂ − β0‖ is the same order as ‖β̂1n − β0
1‖ + ‖β̂2n − β0

2‖ (which can be verified

using the inequality (a + b)/
√

2 ≤
√
a2 + b2 ≤ a + b for all positive a, b) and

‖β̂2n − β0
2‖ = oP (n−1+δ). After these simplifications, we get

ξprof{β̂} = p`(β0) + (β̂1n − β10)>

[
n∑
i=1

˜̀
10(xi)− ndn

]
−n

2
(β̂1n − β10)>

[
Ĩ0

11 + Σn

]
(β̂1n − β10)
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+oP (
√
n‖β̂1n − β0

1‖+ 1)2. (2.38)

On the other hand, let β̃ = (β̃1n,0), giving

β̃1n = β10 +
1

n
(Ĩ0

11 + Σn)−1

(
n∑
i=1

˜̀
10(xi)− ndn

)
.

Since β̃1n P→ β10, by the same procedure as above, we get

ξprof{β̃} = p`(β0) +
1

n

[
n∑
i=1

˜̀
10(xi)− ndn

]>
(Ĩ0

11 + Σn)−1

[
n∑
i=1

˜̀
10(xi)− ndn

]

− 1

2n

[
n∑
i=1

˜̀
10(xi)− ndn

]>
(Ĩ0

11 + Σn)−1

[
n∑
i=1

˜̀
10(xi)− ndn

]
+oP (

√
n‖β̃1n − β10‖+ 1)2

= p`(β0) +
1

2n

[
n∑
i=1

˜̀
10(xi)− ndn

]>
(Ĩ0

11 + Σn)−1

[
n∑
i=1

˜̀
10(xi)− ndn

]
+oP (

√
n‖β̃1n − β10‖+ 1)2. (2.39)

Since
√
n(β̃1n − β10) = (Ĩ0

11 + Σn)−1

(
1√
n

n∑
i=1

˜̀
10(xi)−

√
ndn

)
,

n−1/2

n∑
i=1

˜̀
10(xi) = OP (1), and

√
ndn → 0 as n→∞,

ξprof{β̃} = p`(β0)

+
1

2n

[
n∑
i=1

˜̀
10(xi)− ndn

]>
(Ĩ0

11 + Σn)−1

[
n∑
i=1

˜̀
10(xi)− ndn

]
+oP (1).

To simply further, denote

∆n =
1√
n

(
n∑
i=1

˜̀
10(xi)− ndn

)
, ĥ =

√
n(β̂1n − β10).
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We get

ξprof{β̂} = p`(β0) + ĥ>∆n −
1

2
ĥ>
[
Ĩ0

11 + Σn

]
ĥ+ oP (‖ĥ‖+ 1)2,

ξprof{β̃} = p`(β0) +
1

2
∆>n (Ĩ0

11 + Σn)−1∆>n + oP (1).

We proved in Theorem 1 that β̂ is the maximizer of ξprof and β̃1n − β10 =

OP (n−1/2), so

ĥ>∆n −
1

2
ĥ>
[
Ĩ0

11 + Σn

]
ĥ− 1

2
∆>n (Ĩ0

11 + Σn)−1∆>n ≥ −oP (‖ĥ‖+ 1)2.

On the other hand, the left hand side can be rewritten as

−1

2

[
ĥ− (Ĩ0

11 + Σn)−1∆n

]>
(Ĩ0

11 + Σn)
[
ĥ− (Ĩ0

11 + Σn)−1∆n

]
≤ −c‖ĥ− (Ĩ0

11 + Σn)−1∆n‖2

for a positive constant c, by the non-singularity of Ĩ0
11 + Σn. Theorem 1 implies

that ‖ĥ‖ = OP (1) and therefore ‖ĥ − (Ĩ0
11 + Σn)−1∆n‖ = oP (1). Together, these

imply

ĥ = (Ĩ0
11 + Σn)−1∆n + op(1).

Equivalently,

√
n(β̂1n − β10) = (Ĩ0

11 + Σn)−1 1√
n

[
n∑
i=1

˜̀
10(xi)− ndn

]
+ op(1),

which yields

√
n(Ĩ0

11 + Σn)
{
β̂1n − β10 + (Ĩ0

11 + Σn)−1dn

}
=

1√
n

n∑
i=1

˜̀
10(xi) + op(1)

L→ N(0, Ĩ0
11)

by the Central Limit Theorem and Slutsky’s Theorem. �



Chapter 3
Variable Selection for Dynamic

Networks

3.1 Introduction

Section 1.4.2.2 reviewed several counting process approaches for dynamic networks.

In these models, the occurrences of edges depend on various network covariates

through some survival models. These covariates help characterize the tendency of

having future edges in the network, so more of them can lead to better charac-

terizations. However, the tradeoff is that estimation in these models can become

complicated and computationally intensive if too many covariates are included in

the model. This motivates us to find proper approaches to simplify the model

while keeping the accuracy of the model estimation or prediction.

There exists some literature on variable selection for network models. For ex-

ample, the work of Fan et al. (2009) about variable selection in graphical models

is a bridge between network data analysis and model selection methodology. How-

ever, these authors only consider static graphic models. In Chapters 3 and 4, we

aim to build suitable survival models for large time-varying networks and apply

model selection techniques on these models.

In Chapter 1, two approaches using counting processes are introduced, namely,

the egocentric approach and the relational approach. The edges in these approaches

are assumed to be instantaneous, and the main interests are on the number of times
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a certain edge appears. But if the interest also involves how long the edges last,

then the current approaches are not suffice. One needs to consider more compli-

cated process structures, for example, pairs of counting processes for beginning

and ending separately. But in this dissertation, we only consider instantaneous

edges. Both of the egocentric approach and the relational approach model the

intensity process of the corresponding counting process by the Cox model. The

partial likelihood function or its approximation is then maximized to estimate the

coefficients of the covariates. The maximum partial likelihood estimates are usu-

ally not sparse, therefore, to select variables, penalty functions need to be added.

As in Fan and Li (2001), if the true model is sparse, good estimates will be consis-

tent and have the oracle property. In this chapter, we extend the work of Fan and

Li (2001) to a network setting and show that under certain regularity conditions,

the maximum of the penalized partial likelihood function will have these desired

properties.

The theory presented in this section demonstrates that the maximizer of the

penalized partial likelihood function is sparse and has the oracle property. There-

fore it can be used to select sufficient statistic in network models. Although the

statements and the proofs of the theorems are similar to those in Fan and Li (2001,

2002), they are derived here for different data structures. In dynamic networks,

the observations are not independent and may not be restricted to a bounded time

interval. The counting process approach allows observations to be dependent and

the corresponding partial likelihood function coincides with the one in the inde-

pendent survival time setting. Moreover, the properties studied in Perry and Wolfe

(2013) for maximum partial likelihood estimators enlighten us in deriving similar

results for the egocentric situations, which further provides a bridge to connect

Fan and Li (2001, 2002) to sufficient statistic selection for networks. This work

represents the first time when covariates are selected via penalization for dynamic

network models of the type studied here.

The majority of the following sections focus on an egocentric approach, though,

it can be generalized to a relational approach setting very easily, as discussed in

Section 3.4. In Section 3.2, we first provide some properties of the partial likeli-

hood function and of its approximations, which prepares the following Section 3.3

for penalized partial likelihood functions. The consistency and oracle properties
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are established for a directed network under both single and multiple receivers

scenarios.

3.2 Properties of the Partial Likelihood Function

and its Approximation

The theorems presented in this section can be derived in a similar way to those

of Perry and Wolfe (2013), so we omit certain details of the proofs. We present

these theorems here as theoretical justifications for Vu et al. (2011b). In addition,

some of these results will be used directly to derive properties of our estimator for

variable selection in the egocentric model approach.

3.2.1 Properties of the Partial Likelihood Function

As described in Chapter 1, the general setting for an egocentric approach (Vu

et al., 2011b) in a dynamic network is to construct a counting process Ni(t) for

each node i, counting the number of edges directed to it or from it, depending

on the context. Denote all nodes that are in the network during the observation

period as the receiver set J (or sender set I if the counting process is counting

the edges from a node). Nodes are allowed to enter and leave the network during

the observation time. The multivariate counting process N (t) = (Nj(t), j ∈ J )

can be decomposed into a cumulative hazard Λ(t) and martingale M (t) as

N (t) =

∫ t

0

λ(s)ds+M(t). (3.1)

Then the Cox model is used to model each intensity process as

λj(t) = Yi(t)λ0(t) exp{β>sj(t)}, (3.2)

where Yj(t) is the at-risk indicator and sj(t) is the vector of the covariates just

prior to time t.

Suppose for a directed dynamic network that one can observe all the time

stamps when edges are established, as well as their corresponding senders and
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receivers (although in an egocentric approach, knowing the receiver is sufficient,

in most networks, one can observe both senders and receivers). Assume that only

one edge can be established at each time point, and the covariates for all the at-

risk nodes can be evaluated just prior to the event time. Denote observations by

(im, jm, tm),m = 1, 2, ..., n, where im is the sender, jm is the receiver, and tm is

the time stamp. The covariates for all possible receivers j ∈ Jtm , calculated just

prior to time tm, are denoted by si(t). Then the partial likelihood process can be

written as

logPLt(β) =
∑
tm<t

β>sjm(tm)− log

 ∑
j∈Jtm

exp{β>sj(tm)}

 , (3.3)

where Jt = {j ∈ J | s.t. Yj(t) = 1} is called the at-risk set at time t. These

notations are similar those of Perry and Wolfe (2013), where the covariates and

at-risk set depend on both sender and receiver. Here, in an egocentric approach,

we only define counting process on the receivers.

Perry and Wolfe (2013) study the properties of the partial likelihood function

logPLt(β) (see equation (1.66)) as well as the maximum partial likelihood es-

timator in the relational approach. They also verify that the maximum partial

likelihood estimator is consistent and has an asymptotic normal distribution with

covariance matrix [Σ1(β0)]−1, where the inverse Hessian of − logPLt(·) is a good

estimate of [Σ1(β0)]−1. These results are not a direct application of the asymptotic

results found in Andersen and Gill (1982), since the data structure of a network is

different from that in the regular counting process approach for survival models.

To increase the number of observations, one has to expand the observation time

interval, so the asymptotic theory cannot be derived for a bounded time interval.

Thus, Perry and Wolfe (2013) rescale the time interval for each fixed n and de-

rive properties of the maximum partial likelihood estimator through a discretized

version of the score function.

In an egocentric approach, we can derive parallel results following very similar

arguments to those of Perry and Wolfe (2013). In the rest of this subsection, we

will present these results in theorems with outlines of proofs. To simplify some of
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the regularity conditions, we define the notations

wt(β, j) = exp
{
β>sj(t)

}
Yj(t), (3.4)

Wt(β) =
∑
j∈Jt

wt(β, j), (3.5)

Et(β) =
1

Wt(β)

∑
j∈Jt

wt(β, j)sj(t), (3.6)

Vt(β) =
1

Wt(β)

∑
j∈Jt

wt(β, j){sj(t)− Et(β)}
⊗

2, (3.7)

where a
⊗

2 means aa> for a column vector a. Using this notation, the log-partial

likelihood function (3.3) given data up to time t can be written as

logPLt(β) =
∑
tm<t

{
β>sjm(tm)− logWtm(β)

}
(3.8)

and the corresponding gradient and negative hessian are

Ut(β) = ∇ logPLt(β) =
∑
tm<t

{sjm(tm)− Etm(β)}, (3.9)

It(β) = −∇2 logPLt(β) =
∑
tm<t

Vtm(β). (3.10)

Following Perry and Wolfe (2013), we establish the following regularity conditions

for proving the asymptotic properties.

(C1) The covariates are uniformly square-integrable, i.e.,

E

[
sup
j,t
||sj(t)||2

]
<∞

(C2) For any β in a neighborhood of the true parameter value β0, and any α ∈
[0, 1], as n → +∞, then there exists a positive semi-definite matrix Σα(β)

such that,
1

n

∫ tbαnc

0

Vs(β)Ws(β)λ0(s)ds
P→ Σα(β).

(C3) For each n, P (tn <∞) = 1
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(C4) {Vtn(·)} is an equicontinuous family of functions.

These conditions are egocentric version of conditions (A1) to (A4) in Perry and

Wolfe (2013). They allow us to extend Theorems 3.1 and 3.2 of Perry and Wolfe

(2013) to the case of egocentric network models, as follows.

Theorem 3.2.1. Suppose the multivariate counting process N for nodes has an

intensity process (3.2). If the above (C1) to (C4) hold, then as n→ +∞,

(a)
1√
n
Utbαnc(β0) converges weakly to a Gaussian process on [0, 1] with covari-

ance function Σα(β0).

(b) For any consistent estimator β̂n of β0, then

sup
α∈[0,1]

∥∥∥∥ 1

n
Itbαnc(β̂n)− Σα(β0)

∥∥∥∥ P→ 0.

A sketch of the proofs is as follows:

According to the Doob-Meyer decomposition, Nj(t) = Λj(t)+Mj(t), where Λj(t) =∫ s

0

λj(s)ds is the compensator. So the score function (3.9) at β0 can be rewritten

as

Ut(β0) =
∑
j∈J

∫ t

0

{sj(s)− Es(β0)} dNj(s) =
∑
j∈J

∫ t

0

{sj(s)− Es(β0)} dMj(s),

where the second equality is because
∑
j∈J

∫ t

0

{sj(s)− Es(β0)} dΛj(s) = 0. It

can be verified that Ut(β0) is locally square integrable with predictable variation∫ t

0

Vs(β0)dΛ(s). For each n, define a rescaled score for α ∈ [0, 1] by

Ũ (n)
α (β0) = Utbαnc(β0). (3.11)

This rescaled score is a square-integrable martingale adapted to Ftbαnc . Therefore

by assumption (A.2) and the Martingale Central Limit Theorem in Rellbolledo

(1980) (the Lindeberg condition can be verified), part (a) is proved.
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For part (b),

Itbαnc(β0) =

∫ tbαnc

0

Vs(β0)dN(s)

=

∫ tbαnc

0

Vs(β0)dΛ(s) +

∫ tbαnc

0

Vs(β0)dM(s), (3.12)

which implies∥∥∥∥ 1

n
Itbαnc(β̂n)− Σα(β0)

∥∥∥∥ ≤ ∥∥∥∥ 1

n

∫ tbαnc

0

Vs(β0)dM(s)

∥∥∥∥+

∥∥∥∥ 1

n

∫ tbαnc

0

Vs(β0)dΛ(s)− Σα(β0)

∥∥∥∥
+

∥∥∥∥ 1

n

∫ tbαnc

0

[
Vs(β̂n)− Vs(β0)

]
dΛ(s)

∥∥∥∥ . (3.13)

The second and third terms converge to 0 in probability by assumptions (C4)

and (C2). By condition (C3), Lenglart’s Inequality (Corollary 3.4.1 in Fleming

and Harrington (2011)) can be applied. So the first term follows the following

inequality, for any positive ε and δ,

P

{
sup
t∈[0,tn]

∥∥∥∥ 1

n

∫ t

0

Vs(β0)dM(s)

∥∥∥∥ > ε

}
≤ δ

ε2
+ P

{
1

n2

∫ tn

0

‖Vs(β0)‖2 dΛ(s) ≥ δ

}

The second term on right hand side is bounded by
1

n2
16(sup

j,t
sj(t))

4Λ(tn). By

assumption (C1), (sup
j,t
sj(t))

4/n
P→ 0. Also E[Λ(tn)] = n and ε is arbitrary, so the

left hand side also converges to zero.

The result of (b) is weaker than convergence for all time points. However, we

will only need to use the results when α = 1 in the next theorem as well as some

later theorems in Section 3.3. The following theorem establishes consistency and

asymptotic normality of the maximum partial likelihood estimator.

Theorem 3.2.2. Suppose the conditions in Theorem 1 hold, and Itn(β)
P→ Σ1(β)

for β in a neighborhood of β0, where Σ1(·) is locally Lipschitz and the smallest

eigenvalue is bounded away from zero in that neighborhood. As n → +∞, if the

maximum partial likelihood estimator is β̂n, then

(a) β̂n is consistent.
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(b)
√
n(β̂n − β0)

L→ N(0, [Σ1(β0)]−1)

A sketch of the proof is as follows:

Since It(β) is positive semi-definite, logPLt(·) is concave. Also by assumption

that the smallest eigenvalue of Σ1(·) is bounded away from zero in a neighborhood

of true parameter value β0, there exists a local maximum for logPLt(·) in that

neighborhood when n is sufficiently large. Denote the local maximum as β̂n, which

should also be the global maximum.

Define Zn =

[
1

n
Itn(β0)

]−1 [
1

n
Utn(β0)

]
, By Theorem 3.2.1 and Slutsky’s the-

orem,
√
nZn

L→ N(0, [Σ1(β0)]−1) and Zn
P→ 0. Therefore, the one-step Newton

estimator

β1,n = β0 − Zn

will have the properties in (a) and (b). In addition, in a neighborhood of β0,

by assumption Σ1(·) is locally Lipschitz,

∥∥∥∥ 1

n
[Itn(β0)]−1

∥∥∥∥ is bounded, and Zn =

OP (n−1/2), which implies that for sufficiently large n,

‖β̂n − β0‖ ≤ 2‖Zn‖
P→ 0

by the weaker version of the Kantorovich Theorem (Lemma B.4 in Perry and

Wolfe (2013)). Also, by the same theorem, for large enough n, there exists a large

constant K such that,

√
n‖β̂n − β1,n‖ ≤ 2

√
nK‖Zn‖2 P→ 0.

which concludes the proof.

The above two theorems are derived under the assumptions that only a single

receiver and a single receiver are allowed at each event time. However, this may

not always be the case, especially for interaction networks or citation networks. In

the next section, estimates for networks with a single sender and multiple receivers

will be considered, and similar results can be established under further regularity

conditions.



82

3.2.2 Approximations of the Partial Likelihood Function

In some dynamic networks, at each event time a single sender may send edges

towards multiple receivers. In this scenario, the partial likelihood function will

have a more complicated form than (3.3), namely,

logPLt(β) =
∑
tm<t

∑
j∈Jm

β>sj(tm)− log

 ∑
J⊆Jtm ,|J |=|Jm|

exp

{∑
j∈J

β>sj(tm)

} ,

(3.14)

where Jm is the receiver set for the sender im at time tm and Jtm is still the at-

risk set at time tm. To calculate this partial likelihood function, one has to do

calculation over all the subsets of the at-risk set that have the same size as the

receiver set. The computational cost increases rapidly when Jtm grows fast with

tm. To avoid this computational complexity, both Vu et al. (2011b) and Perry and

Wolfe (2013) considered the so-called Breslow Approximation, by which (3.14) can

be approximated by

log P̃Lt(β) =
∑
tm<t

∑
j∈Jm

β>sj(tm)− |Jm| log

 ∑
j∈Jtm

exp{β>sj(tm)}

 . (3.15)

How good the approximation is relates to the growth rates of the at-risk set Jtm
and Jm. As in Perry and Wolfe (2013), we define the receiver set growth sequence

as

Gn =
∑
tm≤tn

1{|Jm| > 1}
|Jtm|

. (3.16)

Then the approximation errors in the gradient and Hessian are bounded by Gn as

in the following theorem.

Theorem 3.2.3. Assume that regularity condition (C1) holds and sup
m
|Jm| is

bounded in probability. Then for β in a neighborhood of the true parameter value

β0,

‖ 5 [logPLtn(β)]−5[log P̃Ltn(β)]‖ = OP (Gn), (3.17)

‖ 52 [logPLtn(β)]−52[log P̃Ltn(β)]‖ = OP (Gn). (3.18)
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A sketch of the proof is as follows:

Equations (3.14) and (3.15) differ only in the summation over the at-risk set. In

particular,

logPLtn(β)− log P̃Ltn(β) =
∑
tm<t

{
W̃tm(β, |Jm|)− W̃tm(β, |Jm|)

}
,

where

Wtm(β, L) = log
∑

J⊆Jtm ,|J |=L

{∏
j∈J

wtm(β, j)

}
,

W̃tm(β, L) = L log

 ∑
j∈Jtm

wtm(β, j)

 .

Differentiating with respect to β gives

5Wtm(β, L) =

∑
J⊆Jtm ,|J |=L

{∏
j∈J wtm(β, j)

∑
j∈J sj(tm)

}
∑

J⊆Jtm ,|J |=L

{∏
j∈J wtm(β, j)

} ,

5W̃tm(β, L) = L

∑
j∈Jtm

wtm(β, j)sj(tm)∑
j∈Jtm

wtm(β, j)
.

Consider experiments of randomly drawing L nodes {j1, j2, . . . , jL} using weights

wj(β, tm) at each tm. The above two equations can be considered as the expected

sum of covariates values for these L nodes. The second one is drawing i.i.d samples,

and the first one is the second one conditional on the L nodes are all different.

Suppose the two probability laws are denote by P̃tm,β;L and Ptm,β;L. For any

joint distribution P ∗tm,β;L of drawing {j1, j2, . . . , jL} and {j̃1, j̃2, . . . , j̃L}, which has

associate marginally distribution Ptm,β;L and P̃tm,β;L, the following inequality holds.

‖ 5Wtm(β, L)−5W̃tm(β, L)‖

≤ E∗tm,β;L

[
2L

{
sup
j,t
‖sj(t)‖

}
I
{

(j1, j2, . . . , jL) 6= (j̃1, j̃2, . . . , j̃L)
}]

= 2L

[
sup
j,t
‖sj(t)‖

]
P ∗tm,β;L

{
(j1, j2, . . . , jL) 6= (j̃1, j̃2, . . . , j̃L)

}
(3.19)
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Perry and Wolfe (2013) construct a joint distribution P ∗tm,β;L satisfying the condi-

tion, and also the probability on the right hand side is the smallest. The sampling

is as follows,

• Draw (j̃1, j̃2, . . . , j̃L) according to P̃tm,β;L

• if (j̃1, j̃2, . . . , j̃L) are all different, set (j1, j2, . . . , jL) = (j̃1, j̃2, . . . , j̃L). Other-

wise, draw (j1, j2, . . . , jL) by Ptm,β;L

In this sampling scheme, the probability in the last equation is bounded by the

probability that (j̃1, j̃2, . . . , j̃L) is not all different, which is then bounded by

∑
k<l

P̃tm,β;L

{
j̃l = j̃k

}
=

(
L

2

) ∑
j∈Jtm

[
wtm(β, j)∑

j∈Jtm
wtm(β, j)

]2

≤
(
L

2

)
exp{4K‖β‖}
|Jtm|

(3.20)

where K = sup
j∈Jt,t

‖sj(t)‖. Therefore, the difference in equation (3.19) is bounded

by K exp{4K‖β‖}L
2(L− 1)

|Jtm|
. Since K is bounded in probability, so the difference

in the gradient is bounded in probability by sum of these orders, i.e.

∑
tm<tn

|Jm|2(|Jm| − 1)

|Jtm|

Since sup
m
|Jm| is bounded, it is of the same order of Gn. Similar proofs can be used

for the Hessian.

These boundaries can help to evaluate the differences between the maximum

β̃n of the approximated partial likelihood function (3.15) and the real MLE β̂n:

Theorem 3.2.4. Under the assumption of Theorem 3.2.3, denote the maximizer

of log P̃Ltn(·) as β̃n and the maximizer of logPLtn(·) as β̂n. Assume for all n

that
1

n
52 [log P̃Ltn(·)] is uniformly locally Lipschitz and the smallest eigenvalue is

bounded away from zero in a neighborhood of β̂n. Then if Gn/n
P→ 0.

‖β̃n − β̂n‖ = OP (Gn/n).
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A sketch of the proof is as follows:

Let β̂n be the initial value to maximize log P̃Ltn(·). Then as in the proofs of

Theorem 3.2.2, by the Kantorovich Theorem, ‖β̃n − β̂n‖ is bounded above by{
52

[
1

n
log P̃Ltn(β̂)

]}−1

5
[

1

n
log P̃Ltn(β̂)

]
= OP (Gn/n)

Therefore, if Jtm grows fast enough and Gn = O(
√
n), then β̃n is still consis-

tent and
√
n(β̃n−β0) still has an asymptotic normal distribution with the variance

[Σ1(β0)]−1. For example, if Jtm = O(m), then the maximum approximated par-

tial likelihood estimate still enjoys the nice properties of the maximum partial

likelihood estimate.

3.3 Variable Selection via Penalized Partial Like-

lihood

In this section, we will consider the problem of sufficient statistic selection for dy-

namic networks with the egocentric approach described in previous section. Using

the idea of penalization, we will maximize the penalized partial likelihood function

to get a sparse estimate of β, thus attain the goal of sufficient statistic selection. As

in other literature for variable selection via penalization, we will derive asymptotic

properties of the resulting estimates including consistency and the oracle property.

Since we want to consider a broader range of dynamic networks, we will introduce

results for both single-receiver and multiple-receivers scenarios in two consecutive

subsections.

3.3.1 Network with Single Sender and Single Receiver

Recall with a single receiver, the observations are (im, jm, tm), and under the

regularity conditions (C1)-(C4), we have

n−1/25 [logPLtn(β0)]
L→ N(0,Σ1(β0) as n→ +∞, (3.21)



86

−n−152 [logPLtn(β0))]
P→ Σ1(β0) as n→ +∞, (3.22)

where β0 is the true value of parameter β, and Σ1(β0) is the covariance matrix of

β evaluated at β0.

Suppose the true model is sparse, which means the true parameter vector can

be decomposed into a nonzero part and a zero part, i.e., β0 = (β10,β20),β10 ∈
Rs,β20 ∈ Rr, r + s = p, and β20 = 0. We first show that under further regularity

conditions, there exists a penalized likelihood estimator that is consistent for β0.

Furthermore, the rate of convergence may be shown to be n−1/2 for certain choices

of penalty function, which parallels the consistency result for any parametric model

(Fan and Li, 2001). The proofs follow the theorems.

We need further regularity conditions in addition to (C1)-(C4):

(C5) As n→∞,

an
def
= max

1≤j≤s
{p′λn(|β0

j |)} → 0

and

bn
def
= max

1≤j≤s
{p′′λn(|β0

j |)} → 0.

(C6) The penalty function pλn(x) is twice differentiable at all x > 0 and there

exist positive constants K and M such that for all λn > 0 and x > 0, p′′λn(x)

exists, |p′′λn(x)| < M , and p′λn(0+)/λn > K.

(C7) As n→ +∞, λn → 0 and
√
nλn → +∞.

(C8) There exist an open subset ω which contains the true parameter point β0 such

that the partial likelihood function admits all third derivatives. Furthermore,

the third-order derivatives are bounded in probability.

1

n

∣∣∣∣∂3 logPLtn(β)

∂βi∂βj∂βk

∣∣∣∣ = Op(1), i, j, k ∈ {1, 2, ..., p}.

We must first derive a form of expansion of the log partial likelihood function.

For β in a neighborhood of true parameter β0, the Taylor expansion of the log

partial likelihood function logPLtn(β) around β0 is

logPLtn(β) = logPLtn(β0) + (β − β0)T 5 [logPLtn(β0)]
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+
1

2
(β − β0)T 52 [logPLtn(β0)](β − β0)

+

p∑
i=1

p∑
j=1

p∑
k=1

∂3 logPLtn(β∗)

∂βi∂βj∂βk
(β∗i − β0

i )(β
∗
j − β0

j )(β
∗
k − β0

k)

= logPLtn(β0) + (β − β0)T 5 [logPLtn(β0)]

+
1

2
(β − β0)T 52 [logPLtn(β0)](β − β0)

+OP (n‖β∗ − β0‖3).

where β∗ is between β0 and β.

Theorem 3.3.1. (Consistency) Assume we have observed n interactions

{(im, jm, tm),m = 1, ..., n.} from a network. And PLtn(β) denotes the partial like-

lihood function given the observations. Define

ξ(β) = logPLtn(β)− n
p∑
j=1

pλn(|βj|) (3.23)

as the penalized partial likelihood function. Let an and bn be defined in the regular-

ity conditions and assume regularity condition (C1)-(C8) hold, and the minimum

eigenvalue for Σ1(β), λmin, is bounded away from zero. Then there exists a local

maximizer β̂ of ξ(β), such that ‖β̂ − β0‖ = Op(n
−1/2 + an).

Proof. Let αn = n−1/2 + an. It is sufficient to show that for any ε > 0, there exists

a large constant C such that

lim
n→∞

P

(
sup
‖u‖=C

ξ(αnu + β0) < ξ(β0)

)
≥ 1− ε.

Let Dn(u) = ξ(αnu+ β0)− ξ(β0). Then

Dn(u) = logPLtn(β0 + αnu)− logPLtn(β0)− n
p∑
j=1

pλn(|β0
j + αnuj|) + n

p∑
j=1

pλn(|β0
j |)

≤ logPLtn(β0 + αnu)− logPLtn(β0)︸ ︷︷ ︸
A

−n
s∑
j=1

[
pλn(|β0

j + αnuj|)− pλn(|β0
j |)
]

︸ ︷︷ ︸
B

.
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We first consider A and B separately. For any sequence β̃n
P→ β0, we have the

Taylor expansion (β̃∗n is between β̃n and β0),

logPLtn(β̃) = logPLtn(β0) + (β̃n − β0)T 5 [logPLtn(β0)]

+
1

2
(β̃n − β0)T 52 [logPLtn(β0)](β̃n − β0) +OP (n‖β̃∗n − β0‖3)

Then for β̃n = β0 + αnu, we obtain

A = αnu
T 5 [logPLtn(β0)] +

α2
n

2
uT 52 [logPLtn(β0)]u+OP (nα3

n‖u‖3)

=
√
nαnu

T

{
1√
n
5 [logPLtn(β0)]

}
− nα2

n

2
uT
{
− 1

n
52 [logPLtn(β0)]

}
u

+OP (nα3
n)

=
√
nαnu

T

{
1√
n
5 [logPLtn(β0)]

}
− nα2

n

2
uT
{

Σ1(β0) + oP (1)
}
u

+OP (nα3
n)

≤
√
nαn‖uT‖Zn −

nα2
n

2
‖u‖2

{
λmin + oP (1)

}
+OP (nα3

n) (3.24)

where Zn = ‖ 1√
n
5 [logPLtn(β0)]‖ The last equation is because of (3.22).

Next, consider

B = n
s∑
j=1

∣∣αnp′λn(|β0
j |)uj + α2

np
′′
λn(|β0

j |)u2
j(1 + op(1))

∣∣
≤
√
snαnan‖u‖+ nα2

nbn‖u‖2(1 + op(1)) (3.25)

Therefore,

sup
‖u‖=C

Dn(u) = sup
‖u‖=C

{A−B} ≤ sup
‖u‖=C

A+ sup
‖u‖=C

|B|

=
√
nαnCZn −

nα2
n

2
C2
{
λmin + oP (1)

}
+OP (nα3

n)

+
√
snαnanC + nα2

nbnC
2(1 + op(1))

= nα2
n{C

Zn√
nαn

− C2

2

[
λmin + oP (1)

]
+OP (αn)

+
√
sC

an
αn

+ bnC
2 [1 + oP (1)]}
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bn=oP (1)
= nα2

n

{
C

[
Zn√
nαn

+
√
s
an
αn

]
− C2

2

[
λmin + oP (1)

]
+ oP (1)

}
(3.26)

If denote Dn =
Zn√
nαn

+
√
s
an
αn

, then

CDn −
C2

2

[
λmin + oP (1)

]
+ oP (1) < 0

⇔ Dn + oP <
C

2
λmin (3.27)

According to (3.21),

1√
n
5 [logPLtn(β0)] is bounded in probability. (3.28)

So Zn = OP (1), and Dn + oP (1) = OP (1) Therefore, for any ε, there exists a large

number C, such that

lim
n→∞

P

(
|Dn + oP (1)| < C

2
λmin

)
≥ 1− ε

so,

lim
n→∞

P

(
sup
‖u‖=C

Dn(u) < 0

)
≥ 1− ε

Remark: If an → 0 at least as fast as n−1/2, then β̂ in Theorem 1 is
√
n-

consistent. For the hard thresholding and SCAD penalty functions, if λn → 0 as

n → ∞, then an = 0 for n large enough. Therefore, Theorem 1 implies that the

penalized likelihood estimator is
√
n-consistent in this case.

Before we derive the oracle property, we will first derive the following lem-

mas, which give the consistency and convergence rate of the estimator of β under

different assumptions.

Lemma 3.3.2. (Sparsity) Assume that regularity conditions (C1)-(C8) are sat-

isfied and β̂1n is the first s-components of the
√
n−consistent estimator obtained



90

in Theorem 1. Then with probability tending to 1,

β̂2n = arg max
‖β2n‖≤cn−1/2

ξ{(β̂1n,β2n)} = 0. (3.29)

Proof. It is sufficient to show that with probability tending to 1 as n → +∞, for

any β1n satisfying β1n − β10 = OP (n−1/2) and for some small εn = Cn−1/2 and

j = s+ 1, ..., p,

∂ξ(β)

∂βj
< 0 for 0 < βj < εn,

∂ξ(β)

∂βj
> 0 for −εn < βj < 0.

(3.30)

Take j ∈ {1, . . . , s}. βj ∈ (−εj, εj), βj! = 0, Taylor expansion gives

∂ξ(β)

∂βj
=

∂ logLPtn(β)

∂βj
− np′λn(βj)sgn(βj)

= 5[logPLtn(β0)]j + (β̂ − β0)>52 [logPLtn(β0)]·j

+

p∑
l=1

p∑
k=1

∂3logPLtn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − βkl )

−np′λn(βj)sgn(βj), (3.31)

where β∗ is between β and β0, [logPLtn(β0)]j is the jth element of logPLtn(β0),

and [logPLtn(β0)]·j is the jth column of logPLtn(β0). According to (3.21), the

first term is of order OP (
√
n). Similarly, by (3.22) and regularity condition (C4),

(β − β0)>52 [logPLtn(β0)] = (β − β0)>n
{

Σ(β0) + oP (1)
}

= OP (
√
n)

p∑
l=1

p∑
k=1

∂3 logPLtn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − βkl ) = OP (n‖β∗ − β0‖2) = OP (1)

So combining the first three terms, we can rewrite (3.31) as

OP (
√
n)− np′λn(βj)sgn(βj) = nλn

{
OP (

1√
nλn

)− 1

λn
p
′

λn(βj)sgn(βj)

}
(3.32)

Since
√
nλn → +∞ as n→ +∞, and p

′

λn(0+)/λn > 0, the second term will domi-
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nate the first term. Therefore
∂ξ(β)

∂βj
is of opposite sign from βj, which concludes

the proof.

Theorem 3.3.3. (Oracle Property) Suppose β10 = {β0
1 , β

0
2 , ..., β

0
s} and let

dn =


p
′

λn(|β0
1 |) sgn(β0

1)
...

p
′

λn(|β0
s |) sgn(β0

s )

 ,ΣP
n =


p
′′

λn(|β0
1 |) sgn(β0

1) 0
. . .

0 p
′′

λn(|β0
s |) sgn(β0

s )

 .

Assume
√
ndn → 0, each element of ΣP

n is O1 and regularity conditions (C1)-(C8)

hold. Then the
√
n consistent local maximizer β̂ = (β̂1n, β̂2n)T in Theorem 1 must

satisfy:

(a) Sparisty: β̂2n = 0 with probability tending to one

(b) Asymptotic normality:

√
n(Σ1(β0) + ΣP

n )){β̂1n − β10 + (Σ1(β0) + ΣP
n )−1dn}

L→ N(0,Σ1(β0)),

where Σ1(β0) is the upper s× s submatrix of Σ1(β0).

Proof. Part (a) follows directly from the Lemma 3.3.2. By Theorem 3.3.1, there

exists a
√
n consistent local maximizer β̂1n of ξ{(β1,0)>}, which will satisfy:

∂ξ(β)

∂βj

∣∣∣∣
β=(β̂1n,0)>

= 0, for j = 1, ..., s. (3.33)

As in Equation (3.31),

∂ξ(β)

∂βj

∣∣∣∣
β=(β̂1n,0)>

=
∂ logLPtn(β)

∂βj

∣∣∣∣
β=(β̂1n,0)>

− np′λn(βj)sgn(βj)

= 5[logPLtn(β0)]j + (β̂1n − β10)>52 [logPLtn(β0)]·j

+

p∑
l=1

p∑
k=1

∂3 logPLtn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − β0

k)

−
[
np
′

λn(β0
j )sgn(βj) + {p′′λn(β0

j ) + oP (1)}(β̂j − β0
j )
]

=
√
n

{
1√
n
5 [logPLtn(β0)]j

}
+ (β̂1n − β10)>n

{
[Σ1(β0)]·j + oP (1)

}
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−
[
np
′

λn(β0
j )sgn(βj) + {p′′λn(β0

j ) + oP (1)}(β̂j − β0
j )
]
. (3.34)

By (3.21) and Slutsky’s theorem, we obtain

√
n(Σ1(β0) + ΣP

n )){β̂1n − β10 + (Σ1(β0) + ΣP
n )−1dn}

L→ N(0,Σ1(β0)).

3.3.2 Network with Single Sender and Multiple Receivers

Recall that if there is a single sender and multiple receivers at each event time,

the observations will be {(im, tm, Jm),m = 1, ..., n.}, where Jm is the receiver set.

As discussed in previous sections, the original partial likelihood function will be

difficult to implement. Therefore, the approximated version will be used. For

sufficient statistic selection, a penalized approximated partial likelihood function

is maximized. We will use the results of Section 3.2.2 to get the desired properties

of the estimator obtained in this way.

Suppose all the assumptions and regularity conditions are the same as in single

receiver situation. Assume additionally

(C9) There exists an open subset ω which contains the true parameter point β0

such that the partial likelihood function admits all third derivatives. Fur-

thermore, the third-order derivative is bounded in probability:

1

n

∣∣∣∣∣∂3 log P̃Ltn(β)

∂βi∂βj∂βk

∣∣∣∣∣ = Op(1), i, j, k ∈ {1, 2, ..., p}

Similarly, we first derive a form of expansion of the approximated log partial like-

lihood function. For β in a neighborhood of the true parameter β0, the Taylor

expansion of the log partial likelihood function log P̃Ltn(β) around β0 is

log P̃Ltn(β) = log P̃Ltn(β0) + (β − β0)T 5 [log P̃Ltn(β0)]

+
1

2
(β − β0)T 52 [log P̃Ltn(β0)](β − β0)

+

p∑
i=1

p∑
j=1

p∑
k=1

∂3 log P̃Ltn(β∗)

∂βi∂βj∂βk
(β∗i − β0

i )(β
∗
j − β0

j )(β
∗
k − β0

k)
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= log P̃Ltn(β0) + (β − β0)T 5 [log P̃Ltn(β0)]

+
1

2
(β − β0)T 52 [log P̃Ltn(β0)](β − β0)

+OP (n‖β∗ − β0‖3),

where β∗ is between β0 and β. The following two theorems are extensions of

Theorem 3.3.1 and Theorem 3.3.3 to the multiple receivers scenario.

Theorem 3.3.4. (Consistency) Assume we have observed n interactions

{(im, tm, Jm),m = 1, ..., n.} from a network and P̃Ltn(β) denotes the approximated

partial likelihood function given the observations. Define

ξ(β) = log P̃Ltn(β)− n
p∑
j=1

pλn(|βj|) (3.35)

as the penalized partial likelihood function. Let an and bn be defined as in condition

(C5). Assume regularity conditions (C1)-(C9) hold and the minimum eigenvalue

for Σ1(β), λmin is bounded away from zero. Finally, assume the receiver growth

sequence defined in equation (3.16) satisfies Gn = O(
√
n). Then there exists a

local maximizer β̂ of ξ(β) such that ‖β̂ − β0‖ = Op(n
−1/2 + an).

Proof. Let αn = n−1/2 + an. It is sufficient to show that for any ε > 0, there exist

a large constants C such that

lim
n→∞

P

(
sup
‖u‖=C

ξ(αnu + β0) < ξ(β0)

)
≥ 1− ε for all n > N.

Let Dn(u) = ξ(αnu+ β0)− ξ(β0). Then

Dn(u) = log P̃Ltn(β0 + αnu)− log P̃Ltn(β0)− n
p∑
j=1

pλn(|β0
j + αnuj|) + n

p∑
j=1

pλn(|β0
j |)

≤ log P̃Ltn(β0 + αnu)− log P̃Ltn(β0)︸ ︷︷ ︸
A

−n
s∑
j=1

[
pλn(|β0

j + αnuj|)− pλn(|β0
j |)
]

︸ ︷︷ ︸
B

.

We consider A and B separately. For any sequence β̃n
P→ β0, we have the
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Taylor expansion (β̃∗n is between β̃n and β0),

log P̃Ltn(β̃) = log P̃Ltn(β0) + (β̃n − β0)T 5 [log P̃Ltn(β0)]

+
1

2
(β̃n − β0)T 52 [log P̃Ltn(β0)](β̃n − β0) +OP (n‖β̃∗n − β0‖3)

Then for β̃n = β0 + αnu, we obtain

A = αnu
T 5 [log P̃Ltn(β0)] +

α2
n

2
uT 52 [log P̃Ltn(β0)]u+OP (nα3

n‖u‖3)

= αnu
T [5 logPLtn(β0) +OP (

√
n)] +

α2
n

2
uT [52 logPLtn(β0) +OP (

√
n)]u+OP (nα3

n‖u‖3)

=
√
nαnu

T

{
1√
n
5 [logPLtn(β0)] +OP (1)

}
− nα2

n

2
uT
{
− 1

n
52 [logPLtn(β0)] + oP (1)

}
u

+OP (nα3
n)

=
√
nαnu

T

{
1√
n
5 [logPLtn(β0)] +OP (1)

}
− nα2

n

2
uT
{

Σ(β0) + oP (1)
}
u

+OP (nα3
n)

≤
√
nαn‖u‖Zn −

nα2
n

2
‖u‖2

{
λmin + oP (1)

}
+OP (nα3

n) (3.36)

where Zn = ‖ 5 [logPLtn(β0)] + OP (1)‖ = OP (1). The Part B is the same as in

(3.25). Therefore, similarly as in (3.26)

sup
‖u‖=C

Dn(u) = sup
‖u‖=C

{A−B} ≤ sup
‖u‖=C

A+ sup
‖u‖=C

|B|

= nα2
n

{
C

[
Zn√
nαn

+
√
s
an
αn

]
− C2

2

[
λmin + oP (1)

]
+ oP (1)

}
Similarly, as proved in Theorem 3.3.1, Dn + oP (1) = OP (1) will leads to the

conclusion that there exists a large number C, such that

lim
n→∞

P ( sup
‖u‖=C

Dn(u) < 0) ≥ 1− ε

Lemma 3.3.5. (Sparsity) Assume that regularity conditions (C1)-(C9) are sat-

isfied and β̂1n is the first s components of the
√
n−consistent estimator obtained



95

in Theorem 1. Then with probability tending to 1,

β̂2n = arg max
‖β2n‖≤cn−1/2

ξ{(β̂1n,β2n)} = 0. (3.37)

Proof. It is sufficient to show that with probability tending to 1 as n → +∞, for

any β1n satisfying β1n − β10 = OP (n−1/2) and for some small εn = Cn−1/2 and

j = s+ 1, ..., p

∂ξ(β)

∂βj
< 0 for 0 < βj < εn,

∂ξ(β)

∂βj
> 0 for −εn < βj < 0.

(3.38)

Take j ∈ {1, . . . , s}. For βj ∈ (−εn, εn), βj! = 0, Taylor expansion gives

∂ξ(β)

∂βj
=

∂ log L̃P tn(β)

∂βj
− np′λn(βj) sgn(βj)

= 5[log L̃P tn(β0)]j + (β̂ − β0)>52 [log L̃P tn(β0)]·j

+

p∑
l=1

p∑
k=1

∂3 log L̃P tn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − βkl )

−np′λn(βj) sgn(βj)

= {5[logLPtn(β0)]j +OP (
√
n)}+ (β̂ − β0)>{52[logLPtn(β0)]·j +OP (

√
n)}

+

p∑
l=1

p∑
k=1

∂3 log L̃P tn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − βkl )

−np′λn(βj) sgn(βj), (3.39)

where β∗ is between β and β0, [logPLtn(β0)]j is the jth element of logPLtn(β0),

and [logPLtn(β0)]·j is the jth column of logPLtn(β0). According to the con-

vergence of the score function, the first term is of order OP (
√
n). Similarly, by

regularity condition (C4),

(β − β0)>{52[logPLtn(β0)] +OP (
√
n)} = (β − β0)>n

{
Σ(β0) + oP (1)

}
= OP (

√
n),

p∑
l=1

p∑
k=1

∂3logP̃Ltn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − βkl ) = OP (n‖β∗ − β0‖2) = OP (1).
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Combining the first three terms, we can rewrite (3.39) as

OP (
√
n)− np′λn(βj)sgn(βj) = nλn

{
OP (

1√
nλn

)− 1

λn
p
′

λn(βj)sgn(βj)

}
(3.40)

Since
√
nλn → +∞ as n→ +∞ and p

′

λn(0+)/λn > 0, the second term will domi-

nate the first term. Therefore
∂ξ(β)

∂βj
is of opposite sign from βj, which concludes

the proof.

Theorem 3.3.6. (Oracle Property) Suppose β10 = {β0
1 , β

0
2 , ..., β

0
s} and let

dn =


p
′

λn(|β0
1 |) sgn(β0

1)
...

p
′

λn(|β0
s |) sgn(β0

s )

 ,ΣP
n =


p
′′

λn(|β0
1 |) sgn(β0

1) 0
. . .

0 p
′′

λn(|β0
s |) sgn(β0

s )

 .

Assume
√
ndn → 0, each element of ΣP

n = is O(1), regularity conditions (C1)-(C9)

hold, and

Gn = OP (
√
n)

Then the
√
n consistent local maximizer β̂ = (β̂1n, β̂2n)T in Theorem 1 must sat-

isfy:

(a) Sparisty: β̂2n = 0 with probability tending to one

(b) Asymptotic normality:

√
n(Σ1(β0) + ΣP

n )){β̂1n − β10 + (Σ1(β0) + ΣP
n )−1dn}

L→ N(0,Σ1(β0)),

where Σ1(β0) is the upper s× s submatrix of Σ1(β0).

Proof. Part (a) follows directly from the Lemma 3.3.5. Now we start to prove

part (b). By Theorem 3.3.4, there exist a
√
n consistent local maximizer β̂1n of

ξ{(β1,0)>}, which will satisfy:

∂ξ(β)

∂βj

∣∣∣∣
β=(β̂1n,0)>

= 0, for j = 1, ..., s. (3.41)
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If Gn = OP (n1/2), then

1√
n
5 [log L̃P tn(β0)] =

1√
n
5 [logLP tn(β0)] + oP (1) (3.42)

Again, by (3.42) and Taylor expansion,

∂ξ(β)

∂βj

∣∣∣∣
β=(β̂1n,0)>

=
∂ log L̃P tn(β)

∂βj

∣∣∣∣
β=(β̂1n,0)>

− np′λn(βj) sgn(βj)

= 5[log L̃P tn(β0)]j + (β̂1n − β10)>52 [log L̃P tn(β0)]·j

+

p∑
l=1

p∑
k=1

∂3 log L̃P tn(β∗)

∂βj∂βj∂βk
× (β∗l − β0

l )(β
∗
k − β0

k)

−
[
np
′

λn(β0
j ) sgn(βj) + {p′′λn(β0

j ) + oP (1)}(β̂j − β0
j )
]

=
√
n

{
1√
n
5 [logPLtn(β0)]j + oP (1)

}
+ (β̂1n − β10)>n

{
[Σ1(β0)]·j + oP (1)

}
−
[
np
′

λn(β0
j ) sgn(βj) + {p′′λn(β0

j ) + oP (1)}(β̂j − β0
j )
]

(3.43)

Finally, by Slutsky’s theorem, we obtain

√
n(Σ1(β0) + ΣP

n )){β̂1n − β10 + (Σ1(β0) + ΣP
n )−1dn}

L→ N(0,Σ1(β0)).

3.4 Discussion and Extension

In this chapter, we first discuss properties of the maximum partial likelihood es-

timators in an egocentric approach of Vu et al. (2011b) for networks with no tied

event. We also consider approximation in the likelihood function to derive esti-

mates in networks with tied events. These results are not limited to egocentric

setting only. One generalization of the covariates selection work would be to the

relational model in Perry and Wolfe (2013) since the partial likelihood and its ap-

proximation have been well-studied in Perry and Wolfe (2013) and our proofs for

the penalized version do not rely on anything specific to the egocentric approach.

The major differences will lie in the computational implementation part. There are
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also many possibilities to extend the proofs here since they do not use the specific

form of the partial likelihood function. However, there might be different compu-

tational challenges associated with different models. Some of these challenges will

be discussed later in Chapter 5 when we consider future works. In addition, reg-

ularity conditions for theories of penalized estimates includes convergence rate for

the tuning parameter λ. And ones used in this chapter are suitable for SCAD and

other similar penalty functions, but not the adaptive LASSO penalty. However,

slightly modification of these regularity conditions may yield the same properties of

the penalized estimates. And this won’t impact the computation implementation

in the next chapter for these theories.

In the next chapter, we work on computational implementations of the theo-

ries described here in a specific citation network (Vu et al., 2011b). The covariates

include 7 network structure covariates and a 50-dimensional LDA covariates (see

Chapter 1). The theory requires that the covariates are uniformly square inte-

grable (Condition (C1)). We now argue that it actually impose the sparsity on the

network. Since the LDA structure covariates are bounded, so the restriction only

applies on the network structure covariates. We assume that each paper can only

cite a limit number of other papers. Therefore, all the out-degrees are bounded.

Assuming in-degree related covariates square integrable restricts the probability

that it goes to infinity, and can be think as a way to assume that the network

is sparse. In Chapter 4, the effectiveness of the case control approximation also

depends on this sparsity. In addition, we also investigate the sparsity in the co-

efficients of the covariates. So, in next Chapter, we will study the computation

implementation of these two types of sparsities, and use them to reduce the com-

putational complexity in finite sample predictions.



Chapter 4
Implementation of Variable Selection

for Dynamic Network Models

4.1 Introduction

In this chapter, we will discuss several issues related to implementing computa-

tional algorithms for the egocentric dynamic network models described in Chap-

ter 3, including parameter estimation and variable selection. We will focus a data

set for a citation network, which is called “arXiv-TH” in Vu et al. (2011b). The

data set records the citation network of arXiv high energy physics theory articles

spanning from January 1993 to April 2003. It contains 29,557 papers (nodes) and

352,807 citation events (edges). The time stamps when papers join the network are

also recorded: these time stamps are also treated as the times when the citation

events happen. In addition, a fifty-dimensional topic vector is extracted from each

paper using the Latent Dirichlet Model (Blei et al., 2003), and these vectors are

used to construct the LDA covariates.

In a citation network, multiple citation events (edges) may be established si-

multaneously. To relieve the computational burden of working with the exact

partial likelihood when multiple tied event times are present, in all of the following

estimations, we will use approximation (3.15) of the partial likelihood function. Vu

et al. (2011b) have developed a C++ program to calculate the maximum approx-

imated partial likelihood estimator. Here, we first create an R package wrapper
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for the C++ program to improve its usability. Then similar calculations are re-

implemented in R to prepare further extension of these ideas as in Chapter 3.

In this framework, we are interested not only in parameter estimation but also

in how well our fitted model predicts new edges in the network. The dynamic

setting makes it possible to test prediction by splitting data into separate training

and testing phases, as we describe below in more detail. The covariates consid-

ered in this chapter include not only several network structure variables, but also

the LDA-based topic-similarity variables, which can improve the prediction per-

formance effectively. However, the computational cost for the model including the

LDA topic covariates increases fast as the size of the network grows. Therefore, we

further consider a case-control approximation of the partial likelihood function to

reduce the computation complexity. In the second half of this chapter,, we apply

variable selection algorithms to select covariables for this network and evaluate the

prediction performance of models before and after variable selection.

4.2 Partial Likelihood Approximation and Esti-

mation

This section describes the computational aspects of approximating and maximizing

the partial likelihood (3.15) corresponding to model for a dataset with multiple tied

edge times.

4.2.1 R Package “ego” for the Maximum Partial Likeli-

hood Estimates

In Vu et al. (2011b), the maximum partial likelihood estimator is calculated by

a C++ program using part or all of the citation network. The inputs include

two time points, in between which are the citation network observations used for

estimation. The outputs are the maximum partial likelihood estimates for the

coefficients of the time-varying covariates and their estimated covariance matrix.

To avoid repeatedly calculating parts of the partial likelihood function, Vu et al.

propose the idea of “caching”, which will be discussed later in this section. The

Newton-Raphson algorithm is used for the optimization. To make this program
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available for R users, we first incorporate this codes in an R package named “ego”,

which can call the C++ program and return the output to R.

The main challenge is that the C++ program calls an external “boost” library

for matrix calculation, and we need to indicate where to locate this library in the

configure file when we install the R package. With the uncompiled source code,

one can run the following to install the package “ego.tar.gz”:

R CMD INSTALL

--configure-args="--with-boost-include=/where/is/the/boost/library"

ego.tar.gz

Alternatively, from within R one may use

install.packages("ego",configure.args="--with-boost-include

=/where/is/your/boost/library")

to obtain parameter estimates in R, one needs the arXiv-TH dataset. This dataset

is saved in a text file in the following format

...

540 62

548 392 417

549 392 477 519

...

The first number in each row is the label of the sender (citer), and each label

following the first is cited by the sender. The senders are labeled in increasing order

of the time they join the network; thus, in principle all receivers of citations should

have smaller numerical labels than the senders. However, this rule is sometimes

violated in practice, though in the arXiv-TH dataset the only violation is a single

article that cites only itself (which we omit from the analysis). Besides, another

file associated with the network records the time when each paper are published.

The part related to above segment of the network is as follows,

...

540 8203.99042824074 708824773.000 17-Jun-1992 19:46:13

541 8204.406226851852 708860698.000 18-Jun-1992 05:44:58
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542 8204.766354166666 708891813.000 18-Jun-1992 14:23:33

...

The first column is the node labels. The rest columns are time in different format,

the second is the time in days and the third in seconds. In the C++ program, only

the second column is used as the time.

In R, from the directory where the dataset is located, parameter estimates may

obtained by typing

library(ego)

egonet(type-of-model, start-time, end-time, signature)

The “type-of-model” can be 0 to 5, indicating which covariates to include in the

model. For example, 0 uses the preferential attachments covariates sPA1(t) (see

Chapter 1 equation (1.72)) only; 1 uses all the network structure covariates except

for the Recency-based first-order PA sRec−PA1(t) and LDA (see Chapter 1 equation

(1.74)); 2 uses all the network structure covariates except for the LDA; 3 uses the

LDA and all other covariates except for sRec−PA1(t); 4 uses LDA covariates only;

5 uses the LDA and all other covariates. The “start-time” and “end-time” will

locate the citation events to use in the model estimation, as in the file above. And

“signature” gives a signature for the output file in the original C++ program,

which will not be useful in R. For example,

egonet(0, 11464, 11585, 1000)

will construct a network model with only the preferential attachment covariates,

and use citation events between time 11464 and 11585. The output in R looks like

----------------FINAL RESULT----------------

Time of Newton-Raphson with LBF: 0.014326 seconds

Computing training log-likelihood

Time of training log-likelihood computation with LBF: 0.001656 seconds

training logLLH = -178738.260085

Beta Estimates:

0.00380700474465828741
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Beta Covariance:

0.00000000051143505007

Despite the multiple models implemented by the C++ code and its efficient im-

plementation resulting in fast computational speed, we find that it is easier to

re-implement these models in R in order to allow for flexibility we need in order to

extend the capabilities of the code. Therefore we describe implementation of the

same algorithm using R in the next subsection.

4.2.2 Calculating the Maximum Partial Likelihood Esti-

mates in R

Here, we discuss computation implementation in R of the models with network

structure covariates and the LDA covariates. We first consider the network struc-

ture covariates. Network structure covariates take only integer values and accumu-

late with time, so they are nondecreasing. If we assume the receiver is bounded,

they are still bounded, though. Yet, this assumption is not very practical for

citation networks, and we will discuss more about it in Chapter 5.

We fist discuss how to store the network efficiently. One possibility is to store

the network as a lower triangular matrix, in which (i, j)-th element equal to one

means that there is an edge from node i to node j when node i enter the network

(i > j). However, this usually requires a very large memory space and it is not

affordable for large networks. To track change of the time-varying covariates at

each unique event time, another possibility is to read the network file line by line

and store the updates of the covariates values at each unique event time. This

idea is workable, yet to update some of the network structure covariates it is not

efficient because it may involves previous events as well. For example, to update

the second order out-degree sPA2
k (t) for a node k, we need to go back and track the

number of receivers (citations) for all the receivers of k (papers cited by k). This

requires going back and forth between previous rows and the current row of node

k. To avoid this inefficiency, we can store the network in some edgelist structure,

then use these edgelists to update the values of the network structure covariates.

The edgelist structure consists of four parts, which help to quickly locate a cer-

tain node in the original network list. The four parts are “out.edgelist”, “out.node”,
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“in.edgelist”, and “in.node”. The “out.edgelist” stacks the senders and receivers

of all the citation events, where the first column are the senders and the second

column are the receivers. If there are multiple receivers at the same unique event

time, they will be listed in increasing order of the receivers’ labels. The “out.node”

tells in which row a certain sender starts in the out.edgelist. For example, the fol-

lowing are the corresponding parts of “out.edgelist” and “out.node” for the part of

network in the previous section. Node 540 starts from row 40 in the “out.edgelist”,

so in the “out.node” list, the number in the second column for 540 is 40.

$out.edgelist $out.node

... ...

[40,] 540 62 [33,] 540 40

[41,] 548 392 [34,] 548 41

[42,] 548 417 [35,] 549 43

[43,] 549 392 ...

[44,] 549 477

[45,] 549 519

...

Similarly, the “in.edgelist” and the “in.node” store the same information for re-

ceivers. The first column in “in.edgelist” are receivers, and the second column

are the corresponding senders. A node may be a receiver for different senders at

different event times, and these events are listed in the increasing order of the

senders’ labels. For example, node 62 is a receiver for nodes 526, 540, and 559, so

they are listed by the sender order in the “in.edgelist”. Similarly to “out.node”,

the “in.node” helps to locate row indices of the receivers in the “in.edgelist”. If

using the network example in the previous section, part of the “in.edgelist” and

“in.node” are as follows:

$in.edgelist $in.node

... ...

[51,] 62 526 [19,] 62 51

[52,] 62 540 ...

[53,] 62 559 [57,] 392 121

... ...



105

[121,] 392 477

[122,] 392 519

[123,] 392 538

[124,] 392 548

...

To work with some part of the network, one only needs to construct these edgelist

structures, and all the later estimation can be based on these edgelists solely.

They also benefit the process of tracking the updates of the network structure

covariates. For example, suppose the current node is 540. If we want to know

the update of the second-order out-degree for node 540 after it comes in, we can

use the “out.edgelist” and “out.node”. From the out.edgelist, we know that 540

has an edge to node 62. Then we can locate node 62 in the out.node list, and

quickly figure how many edges it sends, which is the increase of the second-order

out-degree for node 540. Similarly, the “in.edgelist” and the “in.node” are useful

for updating the in-degree covariates. And all of them are used to update the

triangular effect covariates.

To optimize the approximated partial log-likelihood function using a Newton-

Raphson algorithm, we need to evaluate the partial log-likelihood function (3.15),

along with its gradient and Hessian matrix. These calculations, according to Equa-

tions (3.8), (3.9) and (3.10), require that the following terms be evaluated at each

unique event time tm:

S0(β, tm) =
∑
j∈Jtm

exp{β>sj(tm)}, (4.1)

S1(β, tm) =
∑
j∈Jtm

exp{β>sj(tm)}sj(tm), (4.2)

S2(β, tm) =
∑
j∈Jtm

exp{β>sj(tm)}s
⊗

2
j (tm). (4.3)

There are two potential problems when these terms are calculated. First, the at-

risk set Jtm can become large as tm increases, since we assume all nodes entered

prior to tm are at risk at tm. Therefore, the number of calculations for the summa-

tion over Jtm can also be large. However, at each unique event time, the network

structure covariates will change only for a small number of nodes. So adopting
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the “caching” technique in Vu et al. (2011b) can save a lot of computational time

compared to direct calculation. To implement caching, we first generate a list

called “stat.update”, which stacks all the changes on the covariates and their cor-

responding nodes’ labels at each event time. The following is an example of such

a list. The first column is the time, second column tells which node has changed,

the third column tells which covariates has a change, and the last columns gives

the amount of the change.

time node stat change

...

33 540 3 1

33 62 1 1

34 548 3 2

34 392 1 1

34 417 1 1

...

Using these technique, we only need to update the terms which have a change

in the covariates in S0(β, tm), S1(β, tm), and S2(β, tm) at a given event time tm.

Taking the update of S0(β, tm) as an example, the formula is

S0(β, tm+1) =
∑
j∈Jtm

exp{β>sj(tm)}+
∑

j∈Jtm+1/Jtm

exp{β>sj(tm+1)}

+
∑
j∈Ctm

[
exp{β>sj(tm+1)} − exp{β>sj(tm)}

]
(4.4)

Vu et al. (2011b), where Ctm includes all nodes whose network covariates have

changes in the interval [tm, tm+1). Similar update equations can be used for

S1(β, tm) and S2(β, tm).

The second potential problem arises when the covariates are accumulated for a

long time and yield a large value. Then the exp{β>sj(tm)} values may exceed the

upper (or lower) bound that R can handle, so the computer will recognize then as

infinity (or zero) during calculation. This can be resolved by adding one step after

obtaining all the covariates update. We search the maximum value of covariates at

each unique event time and then re-scale all the covariates to sj(tm)− smax(tm).
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This gives non-positive values for the covariates and makes the exponent bounded

by 1. After all these preconditioning and simplifying techniques, we implement the

Newton-Raphson algorithm to obtain the maximum partial likelihood estimate in

R. To summarize, the general procedure is “create edgelist structure → find

covariates update → find maximum covariates → calculate the MLE”.

To evaluate the prediction performance of these estimates, we divide the data

into three parts: the building period, the training period, and the testing pe-

riod. The building period is for accumulating the network structure covariates and

avoiding the period of dramatic changes in the network covariates. The citation

events in the training period are used for estimating the coefficients of the covari-

ates, and then the predictive performance of the fitted model will be evaluated

in the testing period. The number of unique event times for building is 2000, for

training is 100, and for testing is 1000. We find that 2000 is sufficient for building

since different training sizes produce very similar results. The evaluation during

the testing period is based on the ranks of the partial likelihood function values of

the actual citation events among all possible citation events using the estimated

coefficient values. If there are multiple citation events in the actual network, we

calculate the average of the ranks for these citations. The normalized ranks are

ranks normalized to [0, 1], so the closer to 1, the better the performances are. Fig-

ure 4.1 shows the normalized ranks for the first 100 nodes. The red reference line
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Figure 4.1. First 100 ranks for actual events for netstat Model
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is 0.50, which is the average normalized rank for random guessing. It can be seen

from the Figure 4.1 that there is a lot of variation among the ranks, but 90% of

the ranks are above the line, which means the network structure covariates help

predicting the citation events, but there might be other characteristics which also

help explain which edge to be established in the network.

The average ranks for the first 100 nodes is 0.712. If we average the ranks for

every 100 nodes, we can get the following Figure 4.2. There is a slightly decreasing
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Figure 4.2. Average ranks over different node batches for netstat model

trend. In Vu et al. (2011b), a similar decreasing pattern is also observed for a

longer building period. This fact indicates that the predictive power of the model

degrades over time if the coefficients are held constant.

The implementations introduced above are mostly designed for models with

network structure covariates, like sPA1(t), sPA2(t),.... Yet, in a citation network,

similarity on topic between papers is also an important feature to be considered

for citation events. One way to quantify similarity is by using the LDA covariates

calculated on the arXiv-TH paper abstracts using topic vectors of length 50. Recall

that the LDA covariates for node i when node j joins the network are defined

through

sLDAi (tarrj ) = θi � θj, (4.5)

which is the coordinate-wise product of the topic vector of node i and that of
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the node that joins the network most recently. Therefore, the LDA covariates for

all the at-risk nodes must completely recalculated whenever a new node joins the

network, and they do not depend on their previous values. So the caching technique

is not helpful and we need to consider a direct implementations. However, there

are potential computational issues for direct implementation. The LDA covariate

is 50-dimensional and, as pointed out earlier, calculating S0, S1 and S2 involves

summation over the entire at-risk set. So if the network has a large number of

nodes, then the number of at-risk nodes can be large at each event time. The

computation speed will be very slow. In the next section, we consider a case-

control approximation of the partial likelihood function to reduce the computation

cost. But in the rest of this subsection, we will consider direct implementation.

Using the same set of nodes for training and testing, the first 100 ranks using

the model with LDA covariates only are compared with that using the model with

network structure covariates only in Figures 4.3. It can be seen that the model

with the LDA covariates has higher ranks (the average is 0.891) for the actual

citation events, as well as less variation ( standard deviation is 0.13, comparing to

0.22 for network covariates). Only 3 points fall below 0.5 and most of them are

very close to 1. The average ranks for 10 different node batches are also compared

in Figure 4.4. The average ranks for model with LDA is better than those for
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Figure 4.3. Comparing first 100 ranks between netstat model and LDA model

model with the network covariates. The curve for LDA in Figure 4.4 does not have



110

●

●

●

●

● ●

● ●
● ●

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

average ranks for every 100 nodes

node batches

av
er

ag
e 

ra
nk

● netstat
LDA

Figure 4.4. Comparing average ranks over different paper batches between netstat
model and LDA model

the decreasing trend, which validates the constant effect for the LDA covariates

over time. Both curves are above 0.5. This suggests that both types of covariates

might be important in predicting future citation events. Therefore, we will consider

a model to include both of them. Since the “cache” is not useable for LDA,

we need to use direct implementation for both network covariates and the LDA

covariates. This will substantially slow down the computation speed. We combine

the maximum partial likelihood estimates found for LDA and networks structure

covariates and treat it as the initial value for the optimization. The following

Figure 4.5 compares the average ranks among all three models. And Figure 4.6

compares the percentage of the true citation events included in the top-K elements

of the sorted partial likelihood list among the three models. And the percentages

are averaged over all the 1000 testing set. From these two figures, we can see that

the model with both LDA and network structure covariates behaviors similarly to

the model with only the LDA covariates. And both of them out-perform the model

with only the network structure covariates.

To further compare prediction the performance between the model with only

LDA and the model with both LDA and network covariates, we compare the 1000

ranks of the testing nodes for two models using the paired Wilcoxon signed-rank

test. The p-value of the test is 0.07393, suggesting that there is no significant
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Figure 4.6. Comparing percent of actual event in the top-K recommendation list among
LDA model, netstat model and LDA+netstat model

difference between the two rank vectors. In addition, if we treat the model with

only LDA covariates as a reduced model, and the model with both LDA and

network structure covariates as the full model, we may compare the BIC criterion

(see equation (1.13)) for them. The BIC for the reduced model is 168.3 and for

the full model is 202.8913. Therefore the reduced model is preferred as a simpler

model.
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The computation speed for models discussed above is slow, so it is not efficient

to be used for large networks. This is primly because of the computation complex-

ity brought by LDA covariates. So in the next section, we get back to the model

with LDA covariates only and propose an approximation method to reduce the

computational cost.

4.2.3 Case Control Approximation with LDA Covariates

The idea is to “shrink” the at-risk set by case-control sampling. The nested case-

control is usually used in survival analysis when the event of interest is rare or

it is expensive to collect covariates information for the entire cohort (Langholz,

2005). There are different types of case-control sampling methods, and the common

feature of them is that only a smaller proportion of the none-event group (or the

at-risk set excluding the event group) is sampled to be used in estimations. And

this smaller set is called the “control” set. The simplest way is to pick “controls”

by simple random sampling in the “control pool”. An improved version could be

dividing the full cohort into several strata based on some criterion, then collect

random samples in each stratum. In this way, the likelihood function can be

approximated even better. Raftery et al. (2012) consider applying the idea of

case-control to likelihood approximation for latent space network models. In their

work, observations are dyadic, indicating whether there is directed edges between

pair of nodes, so presence of an edge is regarded as having the event of interests,

or the “case”. To use the case control approximation, they sample a few pairs of

nodes among all pairs which do not have an edge connecting them, and use them

as the “controls”. The likelihood function is calculated by using the “case” and

the sampled “controls”. It is also properly scaled so that it becomes an unbiased

estimate of the original likelihood function. This approximation saves a lot of

computation time when the total number of nodes in the network is large and the

performance of correctly predicting edges is also satisfactory.

As discussed in the end of Chapter 3, the theory applies on the sparse networks,

where the occurrences of edges are rare comparing to the number of nodes in the

network. The Citation networks we work on can be considered as a sparse network,

since the number of citations at each event time is much smaller than the number
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of papers in the network. Figure 4.7 gives the histogram of numbers of citations

among papers in this network. So we will also apply this case-control idea to the
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Figure 4.7. Histogram of numbers of citations for papers in the arXiv-TH network

approximated partial likelihood function (3.15) in our model setting. Similarly

as in Raftery et al. (2012), the event of interest relates the presences of edges.

Specifically in an egocentric approach, node i has the event means that there is an

edges directed towards it. Therefore, at each event time, all nodes which receive an

edge is the “cases”, and all nodes which do not receive any edges are the “control

pool”, where the “controls” are going to sampled. We use simple random sampling

to sample “controls” at each event time. If denote the sampled “control” at time

tm as Cm, then the case-control partial likelihood function for this sampling scheme

is

logPLcc
t (β) =

∑
tm<t

∑
j∈Jm

β>sj(tm)− |Jm| log

 ∑
j∈Jm

⋃
Cm

exp
{
β>sj(tm)

} .

(4.6)

The only difference between this partial likelihood function and the one in (3.15)

is the second logarithm term: this likelihood (4.6) sums fewer terms, and the

covariates only need to be evaluated for this smaller set. So the computation is

simplified in this way.

We consider different sizes of “control” set, specifically, different proportions
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of the full control pool to be sampled. For a fixed β, there is no doubt that the

time to evaluate the partial likelihood function, its gradient and hessian is less if

using a smaller proportion of the data. We compare the computation time to get

the maximum case-control partial likelihood estimates using different control sizes.

Specifically, we compare estimations using different proportions of the control-pool,

namely, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each proportion,

we calculate the maximum case-control partial likelihood estimates 10 times using

different sampled controls. Figure 4.8 summarizes the computing times for these

calculations. The left plot gives the actual computing times for all samples in each

proportion and the right one describes the trend of the average computing times

when the control proportion increases, where the blue line is the computing time

for estimation using the full control pool. It can be seen from these figures that the
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Figure 4.8. Computation times for calculating the maximum partial likelihood esti-
mates in LDA model using case-control approximations with different sampled control
proportions

less “control” one use in estimation, the less computation time it costs to maximize

the case-control partial likelihood function. And the time reduction is dramatic

for smaller proportions.

By applying the case-control approximation, the computation speed is fast. On

the other hand, we don’t want to sacrifice the good prediction performance. To

see how much difference there is in the prediction among models using different
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control sizes, we compare three different aspects of the ranks for the actual event

produced by models using the 10 different control proportions. It turns out that all

comparisons suggest that the ranks in these case-control approximation models are

all very close to the original model using all the controls. First, Figure 4.9 describe

the relation between the ranks using estimates from the case-control approximation

and ranks using the original model, for control proportion 10%, 50% and 90%.

It can be seen from the figure that the ranks from model using smaller control

proportions vary more around the ranks from the original model than that with

higher proportions. But the correlations are all very high for all three comparisons.

Second, we can also compare the effects along with time by plotting the average
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Figure 4.9. Relations of ranks between LDA model using all data and LDA models
using different case-control approximations. Compared with different control proportion:
10%, 50% and 90%

ranks curves produced by these models. The comparisons are shown in Figure 4.10.

To make the differences clearer, the curves are shown with a zoomed-in y axis, so

they appear to change dramatically over time, which is not true in a regular plot

as in Figure 4.4. But even in this zoom-in plot, the differences in the average ranks

are not very significant. Last, the curves in Figure 4.11 compares the proportion

of the actual events included in the top-K list of sorted partial likelihood values

among these models. The left plot is for cut point up to 2000, and the right one

is the zoomed-in for cut point up to 200 to show the differences. The differences
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Figure 4.10. Comparisons of average ranks among LDA model using all data and LDA
models using different case-control approximations. Compared with different control
proportion: 10%, 50% and 90%

in patterns among these curves are small. From these three perspectives, we show

that using the case-control approximation will not sacrifice much prediction power

of the model, while it indeed gains efficiency in the computation speed.

Since there is randomness in the sampled control set, we also compare the re-

sults among models with the same control proportion and different control samples.

For each control proportion, we consider 100 different samples, and estimate the

coefficients by the case-control approximation. Figure 4.12 describes the variation

among the estimated coefficients for 3 different components of LDA covariates (the

results are omitted for the rest, since the patterns are similar). The red reference

line is the corresponding estimate using the full control pool. These plots show

that there are a lot of variation among the estimates from different samples of the

same proportion, and the variation decreases when more controls are used in the

model. Since the smaller proportion of the control pool is sampled, the more vari-

ation there is in the sampled control set, and more variation in the estimates. We

also compare the prediction performance of models using 10 different case control

samples all with sampled control proportion 10%. The ranks on the test set are

a lot similar among these 10 models. Figure 4.13 and Figure 4.14 summarized

the comparison among these samples. We calculate the standard deviation of the
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Figure 4.11. Comparisons of percent of the actual events included in the sorted partial
likelihood list among LDA model using all data and LDA models using different case-
control approximations. Compared with different control proportion: 10%, 50% and
90%
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Figure 4.12. Variation in estimates by using different control samples

ranks among 10 models using different control samples for every testing node. And

Figure 4.13 shows the plot and histogram for the 1000 standard deviations for all

1000 testing nodes. From these plots, we can see that most of the standard de-

viations are very small and do not show a pattern by time, suggesting that the

variation among ranks from the 10 models is small. The Figure 4.16 shows the
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the trend of average ranks over node batches, in which different colored curves

represents models using different control samples. The average rank curves are

also almost identical. Therefore, although using different control samples pro-
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Figure 4.13. Plot and histogram of standard deviations of ranks among 10 LDA models
with different control samples and 10% control proportion
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Figure 4.14. Comparisons of average ranks among 10 LDA models with different control
samples and 10% control proportion

duces very different estimates in the coefficients, the prediction performances are

very similar for models using these estimates. Overall, the case-control approxi-
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mation method reduces the computation cost greatly and preserves the good and

consistent performance in prediction.

We can apply the case control approximation to models with both the net-

work covariates and LDA covariates. However, the prediction performance of case-

control approximation on this bigger model is not as good as the one with only

the LDA covariates. The average ranks using models with difference control pro-

portions are summarized in Figure 4.15. Comparing to Figure 4.10, the pattern

that using a smaller control size results in worse prediction performance is clearer.

Similarly, in order to capture the variation among models with the same control
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Figure 4.15. Comparisons of average ranks among models using different control pro-
portions for LDA+netstat model

proportion but different control samples, Figure 4.16 show plots of average ranks

for 10 models using 10% controls but different control samples. The black dashed

line is the average ranks for model without case control approximation, and rest

10 colored lines represent average ranks for 10 models with different control sam-

ples. From these two figures, we observe that using the case-control sampling with

the network structure covariates can magnify the inconsistency and variation in

results brought by approximation. Combing this with the observations in Figure

4.5 and 4.6, we will consider model with only the LDA covariates in the rest of the

Chapter.

To summarize, using case-control approximation on the partial likelihood and
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Figure 4.16. Comparisons of average ranks among 10 models with different control
samples and 10% proportion for LDA+netstat model. The black dashed line is the one
with model using all controls.

maximize it to estimate the coefficients of covariates will gain a lot of efficiency

in computation speed. And it still reserve good performance in prediction future

edges. This is one way to reduce the intensive computation for model using LDA

covariates on large network data. Another way to speed up the estimation and

simplify the calculation is to reduce the number of LDA covariates used in the

model. We will implement this by variable selection for LDA covariates in the

next section.

4.3 Algorithms for Variable Selection via Penal-

ization

4.3.1 Introduction

In previous section, we study estimations of coefficients of LDA covariates using

direct implementation and case-control approximation. As discussed in last chap-

ter, we also want to select LDA covariates in order to have a parsimonious model

without loosing consistency in estimation. In Chapter 3, we have showed that

asymptotically maximizing the penalized approximated partial likelihood function
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yields a sparse and efficient estimator. In this section, we will apply a algorithm to

implement this optimization and study the finite sample performance of it. Recall

the objective function is

− log P̃Ltn(β) +

p∑
j=1

pλ(|βj|) (4.7)

And we will consider the adaptive LASSO as the penalty function with weight β̃

pλ(|β|) = λ
|β|
|β̃|

(4.8)

The goal is to minimize equation (4.7).

There are many literatures on computing algorithms for optimizing the pe-

nalized likelihood function in the generalize linear model setting and the survival

model setting. To use for variable selection for networks, the algorithm should

be able to deal with time-varying covariates and may also take the advantages

of available un-penalized estimates. Considering these aspects, we can use the

computation routine proposed by Zhang and Lu (2007), which is also used by Liu

and Zeng (2013). The idea is to initialize the algorithm by the maximum partial

likelihood estimates, and transform the original partial likelihood function into a

pseudo least square, then apply the modified shooting algorithm in Fu (1998) to

get the sparse estimates. In our setting, suppose β̃ is the maximizer of the approx-

imated partial likelihood function log P̃Lt(β). For any β in a neighborhood of β̃,

we have

∇ log P̃Lt(β) ≈ −
{
∇2 log P̃Lt(β)

}
(β − β̃)> (4.9)

And also, the second order Taylor expansion of log P̃Lt(β) gives,

log P̃Lt(β̃) ≈ log P̃Lt(β)+(β−β̃)>∇ log P̃Lt(β)+
1

2
(β−β̃)>∇2 log P̃Lt(β)(β−β̃)

(4.10)

Substituting equation (4.9) into (4.10) gives,

log P̃Lt(β̃) ≈ log P̃Lt(β)− 1

2
∇ log P̃Lt(β)>

{
∇2 log P̃Lt(β)

}−1

∇ log P̃Lt(β)

(4.11)
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Therefore, maximizing the (4.7) is equivalent as maximizing

−1

2
∇ log P̃Lt(β)>

{
∇2 log P̃Lt(β)

}−1

∇ log P̃Lt(β) +

p∑
j=1

pλ(|βj|)

=
1

2
(Y −Xβ)>(Y −Xβ) +

p∑
j=1

pλ(|βj|) (4.12)

where

X s.t. −∇2 log P̃Lt(β) = X>X (4.13)

Y = (X>)−1{−∇2 log P̃Lt(β)β +∇ log P̃Lt(β)} (4.14)

And the modified shooting algorithm can be used to minimize (4.12)

The complete algorithm is as follows (Zhang and Lu, 2007; Liu and Zeng, 2013),

1. Set initial value as the maximizer β̃ of the approximated partial likelihood

function.

2. Calculate ∇2 log P̃Lt(β), ∇ log P̃Lt(β) at current estimates. Also get X, Y

by (4.13) and (4.14)

3. Using the modified shooting algorithm to optimize (4.12)

4. Iterate between 2 and 3 until converges.

The tuning parameter λ can be selected by minimizing the GCV criterion (Zhang

and Lu, 2007; Liu and Zeng, 2013).

Using this algorithm, we select LDA covariates in the next subsection. And in

the subsection after, we study the maximizer of the penalized case-control partial

likelihood function, in order to reduce the computational complexity.

4.3.2 Variable Selection for LDA Covariates

Using the same sizes of building, training and testing as before, the algorithm in

the last subsection is applied for model with all 50 LDA covariates. We select

9 components out of 50. The estimates are listed in the following Table 4.1.

By theory in Chapter 3, asymptotically, the estimates are consistent when the
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Table 4.1. Nonzero estimates for coefficients of LDA covariates
β5 β7 β12 β17 β24 β29 β36 β44 β49

4.02 13.50 13.12 4.04 27.99 8.73 14.09 18.32 11.12

true model is sparse. Since we don’t know the true model, we will compare the

prediction performance between the penalized and unpenalized LDA models using

the ranks for the 1000 testing nodes calculated by these two models. The two

rank vectors are very similar to each other from Figure 4.17. The left one is the

plot of ranks from the penalized model versus ranks from the unpenalized model.

The right one shows the histogram of the differences between these ranks (ranks

by the unpenalized model subtrates ranks by the penalized model). It is slightly

right-skewed, suggesting that the unpenalized model provides slightly higher ranks

for the actual citation events. But the maximum difference is only 0.005, and the

skewness is not severer. We still consider the ranks for the penalized model is quite

close to the ranks for the unpenalized model. The average ranks over paper batches
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Figure 4.17. Relation of ranks using penalized and unpenalized LDA models. The
difference in the right plot is ranks of the unpenalized model minus the ranks of the
penalized model

are also compared in Figure 4.18. From the Figure, the average ranks for models

before and after variable selection are quite similar. Figure 4.19 further compares

the percents of actual citations in the sorted partial likelihood list between the

penalized and unpenalized models. The left one considers up to top 2000 of the
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Figure 4.18. Comparisons of average ranks between penalized and unpenalized LDA
models

list, which does not suggests any significant differences between the two curves.

The right one is for the top 200 list, and this zoom-in plot shows that after variable

selection, the percent is just a slightly worse than the original model. This suggests
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Figure 4.19. Comparisons of percents of the actual event in the top K sorted partial
likelihood list between penalize and unpenalized LDA models

that the model after variable selection does not perform worse than the original

model. But on the other hand, it indeed simplifies and reduces the computation

with a much parsimonious model.
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As most of other algorithms for maximizing the penalized likelihood function,

the above algorithms works the best when the computational costs for evaluat-

ing the likelihood function, its gradient and Hessian are cheap. However, in a

model with a 50-dimensional LDA covariates, the computational costs to evalu-

ate them directly are really high, so it is very slow to maximize the penalized

partial likelihood function in this setting. In the next section, we consider using

case-control approximations of the penalized partial likelihood function to reduce

computational cost.

4.3.3 Variable Selection Using Case Control

The implementation of case-control approximation for variable selection follows

directly by replacing log P̃Lt(β) in (4.7) by the case-control partial likelihood

logPLcc
t (β) in (4.6). The algorithm is the same as described in Section 4.3.1. The

LDA covariates selected using models with different proportions of control sam-

ples are not significantly different from each other. For each control proportion,

we maximize the penalized partial likelihood function using 10 different samples.

Table 4.2 summarizes aspects of the estimated nonzero coefficients by these 10

different samples in each control proportion. The covariates selected among these

samples restrict to a set contains only 10 variables: the β5, β7, β12, β17, β24, β29,

β36, β42, β44 and β49 components of the LDA covariates. For each proportion, the

results contains 3 rows. The first row is the average of the estimated coefficients,

the second row is the corresponding standard deviation among the 10 samples, and

the third row is the proportion of nonzero estimates among these samples. From

the table, we can observe several things. First, using the case-control approxima-

tion is more likely to miss important variables instead of including unimportant

variables in the model, assuming the penalized estimates without case control ap-

proximation identifies the true model. Second, if the penalized estimates is large,

then the corresponding penalized case-control estimates are usually nonzero, and

the variation among estimates is also small. For example, β7, β12 and β44. Also,

the variation among estimates generally decreases when more controls are used

in the estimation. In general, the average estimates are close to the penalized

estimates without using case control samples. And comparing to the unpenalized
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case-control estimates in section 4.2.3, the variation among estimates using the

same proportion but different samples is smaller.

Table 4.2. Penalized Estimates from different case control samples
p β5 β7 β12 β17 β24 β29 β36 β42 β44 β49

10% 6.87 18.58 9.17 0.96 19.55 8.34 13.43 0 13.86 3.78
(4.70) (5.96) (0.42) (2.21) (8.37) (3.31) (1.17) 0 (0.84) (1.28)
[0.8] [1] [1] [0.2] [1] [1] [1] [0] [1] [1]

20% 5.72 15.24 10.55 0.57 19.22 6.67 12.36 0 15.74 6.06
(3.58) (5.27) (0.37) (1.31) (9.08) (3.59) (3.09) 0 (0.74) (0.96)
[0.9] [1] [1] [0.2] [1] [0.9] [1] [0] [1] [1]

30% 6.68 13.53 11.24 2.32 20.57 7.57 13.94 0.052 16.56 7.81
(4.40) (3.24) (0.44) (3.76) (7.42) (2.73) (0.57) (0.17) (0.67) (0.65)
[0.8] [1] [1] [0.4] [1] [1] [1] [0.1] [1] [1]

40% 4.97 13.47 11.83 1.31 24.23 8.03 14.00 0 17.05 8.72
(4.95) (2.04) (0.39) (2.26) (1.67) (1.33) (0.55) (0) (0.38) (0.20)
[0.6] [1] [1] [0.4] [1] [1] [1] [0] [1] [1]

50% 4.58 12.08 11.97 0.86 21.00 6.82 13.58 0 17.25 8.78
(4.52) (2.37) (0.27) (1.71) (8.86) (2.92) (0.71) (0) (0.42) (1.11)
[0.6] [1] [1] [0.4] [1] [0.9] [1] [0] [1] [1]

60% 4.25 12.49 12.27 1.70 20.49 6.37 13.51 0 17.51 9.10
(4.41) (1.94) (0.37) (2.77) (10.02) (3.73) (1.11) (0) (0.55) (1.54)
[0.7] [1] [1] [0.4] [1] [0.8] [1] [0] [1] [1]

70% 2.28 10.65 12.35 1.28 16.18 4.64 13.14 0 17.53 9.03
(2.85) (2.74) (0.19) (2.16) (10.99) (3.49) (1.08) (0) (0.59) (1.46)
[0.6] [1] [1] [0.3] [0.9] [0.7] [1] [0] [1] [1]

80% 3.17 11.83 12.68 1.70 20.80 6.32 13.67 0 17.89 10.00
(2.81) (2.31) (0.26) (1.89) (8.46) (2.69) (0.81) (0) (0.55) (0.86)
[0.7] [1] [1] [0.5] [1] [0.9] [1] [0] [1] [1]

90% 3.03 12.49 12.89 2.92 24.59 7.45 13.82 0 18.12 10.57
(1.67) (1.93) (0.14) (1.61) (7.11) (2.64) (0.61) (0) (0.39) (0.76)
[0.8] [1] [1] [0.8] [1] [0.9] [1] [0] [1] [1]

all 4.02 13.50 13.12 4.04 27.99 8.73 14.09 0 18.32 11.12

We also compare the prediction performance between the penalized case-control

estimates and the original penalized estimates. Figure 4.20 compares the ranks

of the 1000 testing nodes using the original penalized estimates and ranks using

case-control estimates. Control proportions 10%, 50% and 90% are compared sep-

arately. All points are very close to the 45-degree line in each plot, and there is no

apparent difference among the three plots. In addition, the average rank curves

and the plots of the percent of actual citations included in the top-K recommenda-

tion lists are indistinguishable among penalized models using different proportion

of the controls, according to Figure 4.21.
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Figure 4.20. Relations of ranks between the penalized LDA model using all data
and penalized LDA models using different case-control approximations. Compared with
different control proportion: 10%, 50% and 90%

Similarly as in Section 4.2.3, we also want to evaluate the variation of the ranks

among penalized models using the same control proportion but different control

samples. For each of the control proportion 10%, 50%, and 90%, we calculate ranks

of the testing nodes for 10 models using different control samples. Then for each

of the testing node, we compare the 10 ranks using models with 10 different sam-

ples, and calculate the sample standard deviation of the 10 ranks. The following

Figure 4.22, Figure 4.23 and 4.24 show the plots and histograms of these standard

deviations for control proportion 10%, 50% and 90% separately. The first plots in

these figures suggests that there is no pattern in variation among ranks by different

samples along with time for all three control proportions. Though the histograms

show that the range of the standard deviations shrinks when the control proportion

increases, for all three control proportions, the standard deviations of the ranks

are very small. This suggests that there is only very small variations among the

ranks using models with different control samples.

To conclude all the observations above, using the case control approximation to

derive estimates in variable selection may reduce the computation time, while still

maintains very similar and stable prediction performance as the estimates from

model without using case control approximation.
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Figure 4.22. Plot and Histogram of standard deviations of ranks among 10 LDA models
using different case control samples (10% control proportion)
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Figure 4.23. Plot and Histogram of standard deviations of ranks among 10 LDA models
using different case control samples (50% control proportion)
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Figure 4.24. Plot and Histogram of standard deviations of ranks among 10 LDA models
using different case control samples (90% control proportion)



Chapter 5
Future Work

In this chapter, we will discuss several possible future extensions of the work in

this dissertation.

5.1 Variable Selection for Both Network Struc-

ture and LDA Covariates

In Chapter 4, we apply penalization to select the LDA covariates. The models

before and after variable selection have good and similar prediction performance.

We then apply the case-control approximation on the penalized partial likelihood to

simplify the computation. The resulting sparse model with only 9 LDA covariates

has a similar prediction performance to the model with both 7 network structure

covariates and 50 LDA covariates. Therefore, the model after LDA covariates

selection is sufficient to predict future edges.

Variable selection can also be applied on the model with only the network

structure covariates. Suppose the LDA information for nodes is not available for

some networks. Applied on the citation network data, the only network structure

covariate selected is sPA1(·). This agrees with the results reported by Vu et al.

(2011b), in which the performance of the model with only sPA1(·) and that of the

model with all network structure covariates are shown to be very similar. Figure

5.1 compares the average predicted ranks over paper batches for models before and

after variable selection. The two curves have similar locations and trends. The
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difference in the standardized ranks of 1000 testing events has mean 0.0008596 and

standard deviation 0.1053. So the two models perform similarly. Yet the model
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Figure 5.1. Comparisons of average ranks for model before and after selection

after variable selection only uses sPA1(·), which is easy to obtain. Therefore, future

prediction using this reduced model is sufficient and fast.

We also apply the variable selection for the model with both the network struc-

ture covariates and LDA covariates. The covariates selected are sPA1(·) and sPA2(·)
for the network structure covariates , and components 7, 12, 24, 29, 36, 42 and

49 for the LDA covariates. The performance of this estimate is not as good as

the one with only the selected LDA covariates. Figure 5.2 compares the average

ranks among penalized models with network structure covariates only, with LDA

covariates only, and with both. The ranks for the penalized model with both types

of covariates are significantly smaller than for the model before penalization, and

also demonstrate a decreasing trend with time. This deceasing trend is similar

to that of the model with only the network structure covariates. And it seems

that the ranks are much smaller than the ranks by the model with only the LDA

and network structure covariates. This suggests that the reduced model (with

both types of covariates after penalization) is not compatible with the full model

(with both types of covariates) in prediction performance, or some of the impor-

tant sufficient covariates (especially for the LDA covariates) are not being selected

in the reduced model. This might be caused by selecting the tuning parameter
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Figure 5.2. Comparisons of average ranks for penalized model with different covariates

improperly. According to the definition, network structure covariates and LDA

covariates are not on the same scale. Network structure covariates are generally

large positive integer values and LDA covariates are bounded by 1. This might

result in dramatic differences in the Hessian matrix elements, which further affects

the approximated degree of freedom p(λ) in GCV. (This doesn’t affect our variable

selection for model with only LDA though, since all the covariates are of the same

scale). Literature using GCV as a tuning parameter selection criterion usually

standardizes the covariates. However, in a dynamic network with time-varying

covariates, standardizing the covariates needs to be done over all event times for

all nodes. This is not attractive computationally. Thus, developing/searching for

a new tuning parameter selection techniques and/or variable selection criterion

suitable for models with variables on different scales is of interest.

5.2 Extension on Theory and Implementations

for the Citation Network

In Chapters 3 and 4, we discuss the theory for the unpenalized/penalized approxi-

mated partial likelihood estimators and implement variable selection for a citation

network. Several aspects of this theory and implementations can be studied fur-
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ther.

First, in Chapter 4, the prediction performance is evaluated by the rank in

partial likelihood of the actual citation events among all possible citations using

the estimated coefficients. Since we can obtain the negative Hessian matrix at

each estimate, the inverse of it can be used an estimate of covariance matrix for

the estimators. If standard errors of these ranks can be written as a function of

standard errors of the estimators, then we can provide interval estimates for the

predicted ranks.

Second, in Chapter 4, a case-control approximation for the partial likelihood

function is introduced for the LDA covariates and the performance of the approx-

imation is evaluated on the prediction performance of future edges. The case-

control approximation is further implemented in variable selection to reduce the

computational complexity. However, none of the asymptotic properties for these

estimators are considered. Goldstein et al. (1992) study the asymptotic theory

for nested case-control sampling in Cox’s model. They prove the consistency and

asymptotic normality of the maximizer of the case-control partial likelihood func-

tion with i.i.d. observations within a bounded observation time interval. We might

extend the theory to network settings using the same rescaling technique in Perry

and Wolfe (2013). Then we want to justify the order of the difference between the

original log-partial likelihood function and the case-control log partial likelihood

function. In Chapter 4, Figure 4.12 shows the convergence pattern for case-control

estimates for different control sizes. The plots suggest a pattern similar to
√
n. If

the theoretical justification indicates an order smaller than
√
n, then the theory for

variable selection also holds for models using case-control partial likelihood func-

tion. If not, we may apply the similar idea of counter-matching for Cox’s model,

in which we divide the control pool into several strata using some of the covariate

information or other nodal properties, then sample controls from each stratum. In

this way, the approximation in the log-partial likelihood can be improved.

Third, the implementation in Chapter 4 is based on the LDA vectors for each

paper provided by Vu et al. (2011b). If we can implement the LDA model to

extract topic vectors from papers, we can apply our implementations to other

citation networks, or networks whose nodes have text and that is important for

the establishment of the edges. Further, a joint model with both LDA and the
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network structure covariates can be available.

Fourth, in this dissertation, we obtain the learned LDA topic-vectors provided

by Vu et al. (2011b), and use them directly to construct the LDA covariates. In this

way, the measurement errors for the LDA covariates are not accounted for, which

may cause attenuation in the estimated coefficients. One way to avoid this is to

use a joint model for LDA and the egocentric models. The idea was first proposed

by Vu and Hunter in a MURI project (2011). The model is more complicated than

the current egocentric model and has hieratical structure. The estimation might

be achieved by using a variational EM algorithm. We may also consider estimation

involving the penalty functions.

Last but not the least, we observe a decreasing trend in the prediction perfor-

mance for the model with only the network structure covariates, but not with the

LDA model. One possible reason is that there might be some time-varying effects

in the network structure covariates. We can test for the time-varying effects or

build models with both time-varying covariates and time-varying coefficients. The

next section considers one such model.

5.3 Aalen’s Additive model

In addition to Cox’s model with time-varying covarites, an alternative to the pro-

portional hazard assumption is Aalen’s additive hazard model, which allows time-

varying covariates and time-varying coefficients. The model is defined as

h(t) = β0(t) +

p∑
j=1

βj(t)xj(t). (5.1)

Two other versions assume that βj(t), j = 1, 2, ..., p, do not depend on t (Lin and

Ying, 1994) or that βj(t) = α(t), j = 0, 1, 2, ..., p (Aalen, 1980). Vu et al. (2011b)

also use model (5.1) as an alternative for the relational approach for networks. The

model can be employed in an egocentric model framework. One can also apply

variable selection techniques to models with time-varying covariates.
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