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Abstract

Regression is the procedure that attempts to relate a p-dimensional vector of pre-

dictors X with a response variable Y . Frequently, we deal with regression problems

that have a large amount of predictors. In those cases, we try to reduce the dimen-

sion of our predictor vector. The reason we are trying to reduce the dimension, is

the necessity to find the predictors that will affect our response the most. One of

the most widely used methods is the Principal Components Analysis. With this

analysis, I try to find the first few d (� p) principal components, that are generally

believed to better describe the relationship between predictors X and response Y .

This procedure however has not been appropriately justified. In practice, it often

occurs that the first few principal components are more highly correlated with the

response variable, and better describe the relationship between the predictors and

the response variable than the other principal components. However, there seems

no logical reason for this tendency, and there are cases - albeit less often - where the

first few principal components have weaker correlation with the response. There

is a long standing debate on this issue among statisticians, and, todate, it has not

been adequately resolved.

In this thesis I ask, and attempt to answer, the following questions: Is there a

tendency for the first few principal components of the predictor to be more strongly

related with the response? If so, what is the reason behind this tendency? And

how strong is this tendency?

Key Words and Phrases Principal components; Regression; Correlation;

Eigenpairs; Orientationally Uniform distribution; Random Covariance Matrix;

Dimension Reduction.
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Chapter 1

Introduction

1.1 History of Principal Components

The main idea of principal component analysis is to reduce the dimension of data

sets that consist of many correlated variables. Usually, if we have n variables in

the original data set, our objective is to find a set of d(� n) new variables that

are independent and at the same time describe as much as possible the variation in

the original data set. These d new variables are linear combinations of the original

variables and are called the principal components (PC). The procedure to find

them is called Principal Component Analysis (PCA).

Most statisticians agree that the earliest descriptions of PCA were given by

Pearson (1901) and later by Hotelling (1933). Cook (2007) notes that there is an

indication of principal components in the work by Adcock (1878) who wrote about

the “principal axis” as the “most probable position of the straight line determined

by the measured coordinates, ..., of n points”. But Joliffe (2002) states, that “...
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Preisendorfer and Mobley (1988) go even earlier and say that Beltrami (1873)

and Jordan (1874) derived the singular value decomposition in a way that implies

PCA.” So, one can say that PCA was something people had been using, well before

it was justified.

The absence of computing power set aside the development and further use of

PCA for almost 30 years after Hotelling’s work. Indeed, as Pearson (1901) noted,

computation becomes difficult when the original data set consists of more than four

variables. Scientists became interested in PCA again around mid 1960’s when the

obstacles of computation were overcome. Some works, such as Rao (1964), made

important improvements in the PCA methods and motivated more researchers to

study PCA, its theory and applications.

In recent years, researchers try to expand principal components beyond the well

known applications that they have been used in, since they were first introduced.

For example, Jong and Kotz (1999) illustrate the relationship between the extra

sum of squares in regression and the eigenvalues that are related with principal

components. Tipping and Bishop (1999), present an EM algorithm that helps them

find the principal axis. Their study can be considered as an extension of the works

by Lawley (1953) and Anderson and Rubin (1956) where principal component

analysis is viewed as a maximum likelihood procedure on a probability density of

the observed data.

1.2 How Principal Component Analysis works

Principal component analysis is simple and easy to understand. Let X be a p-

dimensional vector which denotes the original variables in a data set. Let also Σ
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to denote the covariance matrix of X, that is Σ = cov(X).

To find the principal components of X one first finds the eigenvalues of Σ.

Denote those eigenvalues as λi, i = 1, ..., p and for simplicity (and without loss of

generality) assume λ1 ≥ λ2 ≥ ... ≥ λp. Then using the equation (Σ− λiI) v = 0 for

each eigenvalue λi, i = 1, ..., p separately, we can find the corresponding eigenvector

vi, i = 1, ..., p.

The ith principal component can be found by multiplying the eigenvector cor-

responding to λi (the largest eigenvalue) with the variable vector X. That is, the

first principal component is vT
1 X, the second principal component is vT

2 X and so

on. Since the eigenvalue λi is proportional to the length of the ith longest axis of

the p-dimensional ellipsoid represented by Σ, the first principal component explains

most of the variation in the data, and so on.

The first principal component is sometimes called “the principal compo-

nent”.

As mentioned earlier, the main use of principal components is to reduce the

dimension of X. This can be done by selecting the first d � p of the principal

components. There are many ways to determine d. Usually, one can choose to

keep only the principal components that account for a certain percentage (usually

80% to 90%) of the total variation, or to keep only the principal components that

correspond to the eigenvalues that are larger than a certain cutoff point (usually

1). There are many other subjective and inferential methods for determining d.

The reader is referred to Joliffe (2002) Chapter 6 for details. Whatever way the

principal components are selected, if d is not small enough, the reduction that is

achieved may not be very useful.
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1.3 Principal Components in Regression

Regression is the procedure we use in Statistics to find the relationship between a

set of variables, called the predictors, and a variable, called the response. Although

there can be a multivariate response, for the purpose of this thesis, I will focus my

analysis on univariate responses.

The use of principal components in regression is popular when we have a large

number of predictors that make the regression analysis and statistical inference on

the original predictors difficult. Moreover, if there is multicollinearity between the

original predictors, we prefer to use the principal components, since they are uncor-

related, and we can therefore avoid multicollinearity. (This causes other problems

such as biased estimators for the coefficients of the regression, but this is minimal

compared with the advantage we gain by avoiding multicollinearity).

Although not introducing his principal axis in terms of regression, Pearson

(1901) can be considered the first one who thought about principal components in

a regression context. In his work he mentioned the following property:

“The best-fitting straight line to a system of points coincides in direction

with the maximum axis of the correlation ellipsoid...”

Later, researchers discovered more properties of the principal components. The

principal components as we are using them today were introduced by Hotelling

(1933). In his work, Hotelling was interested in finding vectors a1, ...,ap so that,

aT
i X has maximum variance subject to the condition that cov

(
aT

i X,aT
j X

)
=

0, j = 1, ...i − 1. Also, Kendall (1957), explained why doing regression using the

principal components instead of the original predictors helps us towards a better

4



and easier interpretation of the effect of each principal component on the response,

since they are mutually independent. It is clear that adding more principal compo-

nents to our regression model the effect of each of the previous principal component

will stay unaffected, while in the original predictors the effect can vary dramati-

cally by adding a new variable, especially when there is multicollinearity among

the predictors. On the other hand, one can argue that in case the principal compo-

nents have no clear meaning the interpretation of the regression model can become

difficult.

The fact that the interpretation doesn’t change by adding principal components

is very important, since in the case of multicollinearities in the original predictor,

by deleting the principal components that explain a small amount of the variance

can give us better and more stable estimation for the coefficients. We can keep

in our model only those predictors that have variance larger than a cutoff point.

Another more sophisticated method of doing this is by using variance inflation

factors (VIF’s) for the p predictor variables. If VIF’s are close to 1, it means we

have a good model, if VIF’s are much larger than 1 then we delete the variables

that have large VIF. We subtract all those predictors that have VIF larger than a

cutoff point.

1.4 Historic Debate

In order for someone to completely understand the problem I address with this

work, I will present a small and interesting piece of the debate that is actually still

going on, between some scientists, mainly in Statistics. This debate was presented

in Cook (2007) in greater detail.
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The debate seems to begin from the practice of regressing Y on the first few

principal components of X, as suggested and advocated in Kendall (1957). This

idea is also supported by Mosteller and Tukey (1977) who while they identify the

flaw of the procedure they say that they believe that although:

“A malicious person who knew our x’s and the plan for them could

always invent a y to make our choices look horrible. But we do not

believe nature works that way...”

That is, they say that although there might be a problem on the way a malicious

person can choose the response variable, nature is not a malicious person and it is

more than fair in choosing the correct response for the predictors. Therefore, they

believe that in most of the cases, regressing on principal components analysis will

work fine. These ideas seems to be shared by others as well, like Hocking (1976)

and Scott (1992).

On the other hand there is Cox (1968) who clearly states that:

“A difficulty seems to be that there is no logical reason why the depen-

dent variable should not be closely tied to the least important principal

component.”

That is, he does not see why one can trust principal component analysis, if there is

nothing to ensure that it will give us the best linear combination of the predictors

in the end. The idea is shared by other scientists such as Hotelling (1957) and

Hawkins and Fatti (1984). Moreover, Joliffe (1982) and Hadi and Ling (1998),

showed by examples that deciding on the number of principal components solely

based on the variance they explain, can actually be flawed. That is, sometimes
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the components with smaller variances can be the ones that are highly correlated

with the response Y . In such case, dropping the principal components that have

small variances will result in dropping a predictor that is highly correlated with

the response. Although this has caused a growing debate over the years on the

appropriateness of the method and there were plenty of discussions on what might

be the phenomenon causing this to happen, it seems that there is not a satisfactory

answer on how to solve this problem, while still using this procedure. It is really

interesing that there is very little work done in identifying how often we get the

wrong answer.

The reason why this happens is clear to all scientists. The problem starts from

the way principal components are calculated. Principal components are calculated,

as explained earlier, using the covariance matrix of the predictors X. We first order

the eigenvalues and for each eigenvalue we calculate the respective eigenvector.

Finally, multiplying the ordered eigenvectors (which are ordered beginning from

the one corresponding to the largest eigenvalue) by the predictor vector X we get

the principal components. As one can easily recognize, the predictor Y has nothing

to do in a direct or indirect way in calculating the principal components. That’s

why, as Cox (1968) said it, there is no logical reason why the first few principal

components should be highly correlated with the response variable and the least

principal components should be less correlated with the predictor.

This question has received renewed interest recently due to the need for han-

dling regression problems with very high dimensional predictors but relatively few

observation units, as one encounters when analyzing microarray data, so that the

sample covariance matrix of X is singular and the usual regression techniques can-

not be directly applied. Under these circumstances regressing Y on the first few

principal components is a practical solution and often gives reasonable results. For
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example, Chiaromonte and Martinelli (2002), are presenting a dimension reduction

algorithm, which uses principal component analysis, to analyze gene expression

and Bura and Pfeiffer (2003) are using another algorithm for class prediction of

tumor status. Both works are dealing with microarray data and the algorithms

find linear combinations of genes, in order to minimize the dimension and achieve

the desired outcome.

In this thesis, I will try to show that, under mild assumptions, there is a higher

probability to get the principal components that are more highly correlated with

the response than the ones that are less correlated. Even though what I will prove is

not definite and specific, it will give partial justification that principal components

analysis can be used in a dimension reduction problem as a first step for further

and more careful analysis.

Already, many scientists are working towards other dimension reduction meth-

ods, that are based on finding the central dimension reduction subspace for the

regression of Y on X. These methods are much more effective and they perform

better in reducing the dimension of X using information of Y . Extensive research

in sufficient dimension reduction can be found in the works by Li (1991) and (1992),

Cook (1994) and (1996) and Li and Wang (2007) who present those methods in

detail.

Before continuing with the details, I will present in the next section a conjecture

by Li (2007) which incentivized me to work on this idea.
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1.5 Conjecture

Li (2007), in his comment on Cook (2007) made a conjecture in an attempt to

explain probabilistically why the response should be related to the leading principal

components of the predictors. It was stated roughly as follows:

If nature arbitrarily selects a covariance matrix Σ for X and coefficients

β for the regression of Y on X, then the principal components of X of

higher ranks tend to have stronger correlations with Y than do those

of lower ranks.

Li (2007) argued intuitively that if X is concentrated on a single direction,

then the only way for Y to be correlated with X at all is to be correlated with

its first principal component. Likewise if X has an elongated distribution the X

components in the longer axes should on average bear stronger correlations with Y .

Now if Σ is selected arbitrarily then X would have a large probability of having an

elongated distribution, and would therefore effects the similar probabilistic ordering

of correlations, even if the relation between Y and X is independent of the shape

of the distribution of X. He demonstrated this conjecture by several simulation

studies, which invariably supported it.

In this thesis I will present a precise formulation of the conjecture and a rigorous

proof that will show that the above conjecture holds under some mild assumptions.

In Chapter 2, I will demonstrate this phenomenon using examples. In Chapter 3,

I will present the formulation when we have 2 dimensional predictor vector X.

In Chapter 4, I will present the formulation for a general p dimensional predictor

vector X. In Chapter 5, I will relate the results to Stochastic ordering. Chapter 6

presents some conclusions.
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Chapter 2

Motivating examples

Before rigorously formulating and proving the conjecture I will present in this

chapter an example in which some randomly chosen data sets show the property

that the conjecture describes.

From a collection of 80 datasets, which can be found in Arc software database,

which can be found at http://www.stat.umn.edu/arc/software.html, I have chosen

33 datasets that satisfy the following conditions:

1. Have a univariate response variable Y ,

2. Have two or more predictors,

3. Do not have categorical response or predictors,

4. Are not simulated data.

Conditions 1 and 3 are to satisfy the assumptions in this work. Multivariate Y

can be explored in future research. Condition 2 is essential in order to have a
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principal component analysis and condition 4 is to ensure the data arise naturally

from practice.

The selected datasets have a variable number of predictors, ranging from 2 to

12. The procedure followed is described herewith: For each dataset, I have cal-

culated the eigenvalues and the corresponding eigenvectors. In each case I have

calculated the principal components using those eigenvectors and finally the square

correlation coefficient of each principal component with the response. I worked

with the square correlations coefficients to avoid any confusion from negative cor-

relation. For each case I found the principal component with the highest square

correlation coefficient. Not suprisingly, among the 33 datasets, in 24 cases the first

principal component is the one with the highest square correlation coefficient with

the response, that is a percentage which is close to 73%. In the remaining 9 sets,

there were 6 times that the second principal component had the highest square

correlation coefficient with the response, 2 times the third principal component is

the one with the highest square correlation coefficient and finally, in the last one

the fifth principal component had the highest correlation coefficient.

While the above results verify, at least, datawise, the conjecture by Li (2007),

there are obvious cases where the concerns of some researches are also verified.

That is, there are cases where the least principal components have higher square

correlation coefficient with the response than the square correlation coefficient of

the first principal component with the response.

In order to strengthen this, I am including Figure 2.1 in which I present the

squared correlation coefficient between the responses and the first principal com-

ponents of the predictors (left) and between the responses and the second principal

components of the predictors (right) for the 33 data sets, which does indicate the
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Figure 2.1: Box plots of the squared correlations between the response and the first
principal components and the response and the second principal component.

tendency for the response to have higher squared correlation with the first principal

component of the predictor. I am using only the first two principal component’s

correlation coefficients because not all the datasets had more than 2 predictors.

It is easy to see that tendency, since the quartiles of the distribution of the

squared correlation coefficient of the response with the first principal component,

are much higher than the respective quartiles of the distribution of the squared

correlation coefficient of the response with the second principal component.
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Chapter 3

Preliminary Results

In this chapter I will provide the proofs of some lemmas that will be helpful in

proving the conjecture. Those results will guide me through the required path of

finding the least possible assumptions required to prove our final theorem. They

are being given here to help the reader to better understand the details of the

problem and make an easy transition to the final version of our theorem.

I am also working with only 2 dimensional predictor vector, in order to explore

all the necessary conditions that I need for the conjecture to holds. Finally, working

in two dimensions will lead us into the complicate case where we have p dimensional

predictor vector X. The p dimensional case will be explored in the next Chapter.

3.1 Simplest case

The following lemma give us the case where we assume non-random covariance

matrix Σ and normally distributed regression coefficient β in a regression function

13



that does not include the error term.

Lemma 3.1.1 Let

Σ =

σ2
1 0

0 σ2
2

 ,

β ∼ N(0, I2) satisfying β X, and Y = βT X. Let

ρ1 (β) = corr2 (Y, X1|β) and ρ2 (β) = corr2 (Y, X2|β) .

Then P (ρ1 (β) > ρ2 (β)) > 1
2 when σ2

1/σ2
2 > 1.

Proof. By definition

ρi(β) =
cov2 (Y, Xi|β)

var (Y |β) var (Xi)
, i = 1, 2.

Hence

P (ρ1 (β) > ρ2 (β)) = P

(
cov2 (Y, X1|β)

var (Y |β) var (X1)
>

cov2 (Y, X2|β)
var (Y |β) var (X2)

)
. (3.1)

Because E(X1) = 0, we have cov (Y, X1|β) = E (Y X1|β) in the numerator of the

left fraction in (3.1). So

cov (Y, X1|β) =βT E (XX1|β)

=βT E


 X2

1

X1X2


∣∣∣∣∣∣∣β
 = βT

 E
(
X2

1 |β
)

E (X1X2|β)

 = βT

σ2
1

0

 = β1σ
2
1.

Similarly, in the numerator of the right fraction in (3.1), cov (Y, X2|β) = β2σ
2
2.
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In both denominators in (3.1) we have

var (Y |β) = var
(
βT X|β

)
= βTΣβ

which is a scalar and so we can cancel it from both sides of the inequality in (3.1).

Also we have that var (X1|β) = σ2
1 and var (X2|β) = σ2

2. So (3.1) becomes

P

(
β2

1σ4
1

σ2
1

>
β2

2σ4
2

σ2
2

)
= P

(
β2

1σ2
1 > β2

2σ2
2

)
= P

(
β2

1

β2
2

>
σ2

2

σ2
1

)
>

1
2

(3.2)

Because β1 and β2 are iid N(0, 1), the ratio β2
1/β2

2 is distributed as F(1,1). Hence

(3.2) holds when σ2
2

σ2
1

< median (F1,1) = 1.

By symmetry, P (ρ2 (β) > ρ1 (β)) > 1
2 holds when σ2

1

σ2
2

< median (F1,1) = 1. 2

The above Lemma gives the proof in a very simple case. There is an observation

though that will lead me to the next couple of lemmas. The distribution of the

coefficients β1 and β2 is not being used in the proof until after expression (3.2).

Actually, I can remove the distribution assumption on β and replace it with the

assumption that β2
1/β2

2 and β2
2/β2

1 have the distribution have the same distribution.

One extension is shown in the next Lemma, which is similar to Lemma (3.1.1). I

am just replacing the assumption on the distribution of β.

Lemma 3.1.2 Let

Σ =

σ2
1 0

0 σ2
2

 .

Let β be a 2-dimensional random vector satisfying β2
1/β2

2
D= β2

2/β2
1 , β X, and let

15



Y = βT X. Assume, furthermore, that the median of β2
1/β2

2 is unique. Let

ρ1 (β) = corr2 (Y, X1|β) and ρ2 (β) = corr2 (Y, X2|β) .

Then P (ρ1 (β) ≷ ρ2 (β)) > 1
2 whenever σ2

1 ≷ σ2
2.

In the above, D= means that the random variables have the same distribution.

The proof of this lemma is essentially the same as that of Lemma 3.1.1 since

in the proof of Lemma 3.1.1 we do not use the fact that β follows the normal

distribution before the line following expression (3.2). So the only thing we have

to change after this is the following.

Proof. Because β2
1/β2

2
D= β2

2/β2
1 , they have the same median. Let m be this

common median. Then

P (β2
1/β2

2 < m) = 1/2, P (β2
2/β2

1 < m) = 1/2 (because β2
1/β2

2
D= β2

2/β2
1).

At the same time, from the first equality,

P (β2
2/β2

1 > 1/m) = 1/2 ⇒ P (β2
2/β2

1 < 1/m) = 1/2.

Because the median is unique, we have m = 1/m. So m = 1. By the definition

of median, (3.2) holds whenever σ2
2/σ2

1 < median (D) = 1 where D denotes the

distribution of β2
1/β2

2 . This completes the proof. 2

The most important result that the above Lemmas present is that the larger

the ratio between the two eigenvalues the larger the probability is. That is, the

16



larger the ratio between the two eigenvalues the higher the probability the first

principal component will have higher correlation with the response variable than

the correlation of the second principal component with the response variable. This

means, the higher the probability the Principal Component Analysis will give you

the component with the highest correlation with the response variable. This is true

though only in case that we have, two independent predictors and a non-random

predictor vector X. We will see later than this is not true in the general case where

matrix Σ is considered a random matrix.

3.2 Including error into regression functions

As one can see from the Lemmas in the previous subsections I have assumed the

simplest form of regression form, that is one that includes no error term. This

leads to easier calculations, but it is actually not useful to work with a function

for the regression that does not include any error term. In this section I will show

that Lemma 3.1.2 holds if I have an additive error term in my regression function.

Lemma 3.2.1 Let

Σ =

σ2
1 0

0 σ2
2

 .

Let β be a 2-dimensional random vector satisfying β2
1/β2

2
D= β2

2/β2
1 , β X, and

let Y = βT X + δ, where δ (X,β,Σ). Assume, furthermore, that the median of

β2
1/β2

2 is unique. Let

ρ1 (β) = corr2 (Y, X1|β) and ρ2 (β) = corr2 (Y, X2|β) .

17



Then P (ρ1 (β) ≷ ρ2 (β)) > 1
2 whenever σ2

1 ≷ σ2
2.

Proof. By definition

ρi(β) =
cov2 (Y, Xi|β)

var (Y |β) var (Xi)
, i = 1, 2.

Hence

P (ρ1 (β) > ρ2 (β)) = P

(
cov2 (Y, X1|β)

var (Y |β) var (X1)
>

cov2 (Y, X2|β)
var (Y |β) var (X2)

)
. (3.3)

Because E(X1) = 0, we have cov (Y, X1|β) = E (Y X1|β) in the numerator of the

left fraction in (3.3). So

cov (Y, X1|β) =βT E (XX1|β) + E (δX1|β)

=βT E (XX1|β) + E (δX1)

=βT E (XX1|β) + E (δ) E (X1)

=βT E


 X2

1

X1X2


∣∣∣∣∣∣∣β
 = βT

 E
(
X2

1 |β
)

E (X1X2|β)

 = βT

σ2
1

0

 = β1σ
2
1.

Similarly, in the numerator of the right fraction in (3.3), cov (Y, X2|β) = β2σ
2
2.

In both denominators in (3.3) we have

var (Y |β) = var
(
βT X|β

)
+ var (δ|β) = βTΣβ + var (δ)
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which is a scalar and so we can cancel it from both sides of the inequality in (3.3).

Now we have that var (X1|β) = σ2
1 and var (X2|β) = σ2

2. So (3.3) becomes

P

(
β2

1σ4
1

σ2
1

>
β2

2σ4
2

σ2
2

)
= P

(
β2

1σ2
1 > β2

2σ2
2

)
= P

(
β2

1

β2
2

>
σ2

2

σ2
1

)
>

1
2

(3.4)

which is the same as (3.2) and so everything follows from the proofs of Lemmas

3.1.1 and 3.1.2. 2

The above lemma has non-random predictor covariance matrix Σ. But in the

conjecture of Chapter 1, we can see that Li (2007) assumes the covariance matrix

to be random. That’s another assumption I add in the lemma in the next section

in order to satisfy the assumptions on the conjecture.

3.3 Random predictor variances

In the Lemma that follows I am trying to add randomness on the way matrix Σ

is formed. I am not adding any specific distribution on the variances σ2
1 and σ2

2.

Mainly I am interested in introducing this distributional assumption, because in

the stated conjecture Li (2007) assumes a ranodm ovariance matrix. This result is

proven using a similar procedure as in the previous Lemmas of this Chapter. By

assuming that σ2
1 and σ2

2 are random the proof gets more complicated as you have

to condition on σ2
1 and σ2

2, in order to derive the desired outcome.
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Lemma 3.3.1 Let

Σ =

σ2
1 0

0 σ2
2

 ,

where σ2
1 and σ2

2 are iid G. Let β be a 2-dimensional random vector satisfying

β2
1/β2

2
D= β2

2/β2
1 , β (X,Σ). Let Y = βT X+δ, where δ (X,β,Σ). Furthermore,

assume that the median of β2
1/β2

2 is unique. Suppose that P (σ2
1 = σ2

2) = 0. Let

ρ1 (β) =


corr2 (Y, X1|β) if σ2

1 > σ2
2

corr2 (Y, X2|β) if σ2
1 ≤ σ2

2

and ρ2 (β) =


corr2 (Y, X1|β) if σ2

1 ≤ σ2
2

corr2 (Y, X2|β) if σ2
1 > σ2

2

.

Then

P (ρ1 (β) > ρ2 (β)) > P (ρ1 (β) < ρ2 (β)) . (3.5)

Proof. Let η =
(
β, σ2

1, σ
2
2

)
. By definition

ρi(β) =
cov2 (Y, Xi|β)

var (Y |β) var (Xi)
, i = 1, 2.

First, consider the case σ2
1 > σ2

2. We have

P
(
ρ1 (β) > ρ2 (β) |σ2

1, σ
2
2

)
=

P

(
cov2 (Y, X1|η)

var (Y |η) var (X1|η)
>

cov2 (Y, X2|η)
var (Y |η) var (X2|η)

∣∣∣∣σ2
1, σ

2
2

)
(3.6)
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Because E(X1|η) = 0, we have cov (Y, X1|η) = E (Y X1|η) in the numerator of the

left fraction in (3.6). So

cov (Y, X1|η) =βT E (XX1|η) + E (δX1|η)

=βT E (XX1|η) + E (δ|η) E (X1|η) (because δ X|η).

=βT E


 X2

1

X1X2


∣∣∣∣∣∣∣η
 = βT

 E
(
X2

1 |η
)

E (X1X2|η)


=βT

σ2
1

0

 = β1σ
2
1.

Similarly, in the numerator of the right fraction in (3.6), cov (Y, X2|η) = β2σ
2
2.

In both denominators in (3.6) we have

var (Y |η) =var
(
βT X + δ|η

)
=βT var (X|η) + var (δ|η) + 2cov

(
βT Xδ|η

)
=βT var (X|η) + var (δ|η)

=βTΣβ + var (δ|η)

which is a scalar and so we can cancel it from both sides of the inequality in

(3.6). Also we have that var (X1|η) = σ2
1 and var (X2|η) = σ2

2. So the left side of

inequality (3.5) becomes

P

(
β2

1σ4
1

σ2
1

>
β2

2σ4
2

σ2
2

∣∣∣∣σ2
1, σ

2
2

)
= P

(
β2

1σ2
1 > β2

2σ2
2

∣∣σ2
1, σ

2
2

)
= P

(
β2

1

β2
2

>
σ2

2

σ2
1

∣∣∣∣σ2
1, σ

2
2

)
.
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Similarly the right side becomes

P

(
β2

1σ4
1

σ2
1

<
β2

2σ4
2

σ2
2

∣∣∣∣σ2
1, σ

2
2

)
= P

(
β2

1σ2
1 < β2

2σ2
2

∣∣σ2
1, σ

2
2

)
= P

(
β2

1

β2
2

<
σ2

2

σ2
1

∣∣∣∣σ2
1, σ

2
2

)
,

and so we have to prove the following inequality.

P

(
β2

1

β2
2

>
σ2

2

σ2
1

∣∣∣∣σ2
1, σ

2
2

)
> P

(
β2

1

β2
2

<
σ2

2

σ2
1

∣∣∣∣σ2
1, σ

2
2

)
(3.7)

.

Now we know from Lemma 3.1.2 that the median of the distribution of β2
1/β2

2 is

equal to 1. Also at the beginning of the proof we have assumed that σ2
1 > σ2

2 which

means σ2
2/σ2

1 < 1. By definition of the median the left hand side of inequality in

(3.7) is

P

(
β2

1

β2
2

>
σ2

2

σ2
1

∣∣∣∣σ2
1, σ

2
2

)
> 1/2

and the right side is

P

(
β2

1

β2
2

<
σ2

2

σ2
1

∣∣∣∣σ2
1, σ

2
2

)
< 1/2

. So we have that (3.7) holds. Similarly we can prove the case when σ2
1 < σ2

2 .

Since now we have proved the theorem conditioned on the values of σ2
1 and σ2

2 we

have that

E
(
P
(
ρ1 (β) > ρ2 (β)|σ2

1, σ
2
2

)
> P

(
ρ1 (β) < ρ2 (β)|σ2

1, σ
2
2

))
= P (ρ1 (β) > ρ2 (β)) > P (ρ1 (β) < ρ2 (β))
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which means expression (3.5) holds. 2

Until now I have assumed uncorrelated predictors. But this is not the case in

the majority of the experiment that have the need of using principal component

analysis. So in the next section I will add the last assumption needed to complete

the list of assumptions stated in the conjecture.

3.4 Correlated predictors

In this section I will present the final version of the theorem in the case of a 2-

dimensional predictor vector X. Until now I have shown that the conjecture holds

for the lemmas above which are using independent predictors X1 and X2. I will

show that the conjecture holds for the case where we have dependent predictors

X1 and X2. The appropriate randomness of the selection of dependent predictors

is introduced by rotating the random matrix Σ0 with another random matrix Γ.

Since this completes the list of assumptions in the conjecture by Li (2007) this is

the final result of this Chapter.

Theorem 3.4.1 Let

Σ0 =

σ2
1 0

0 σ2
2

 ,

where σ2
1 and σ2

2 are iid G. Let θ ∼ U(0, π). Let Γ be the random matrix

Γ =

cos θ − sin θ

sin θ cos θ
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Let Σ = ΓΣ0ΓT . Let v1 and v2 be the first and the second eigenvectors of Σ, in the

sense that v1 corresponds to the larger eigenvalue, and v2 corresponds to the smaller

eigenvalue. Let β be a 2-dimensional random vector satisfying
(
βT v1

)2
/
(
βT v2

)2 D=(
βT v2

)2
/
(
βT v1

)2
, β (X,Σ). Let Y = βT X + δ where δ (X,β,Σ). Further-

more, assume that the median of
(
βT v1

)2
/
(
βT v2

)2
is unique.

ρ1 (β,Σ) = corr2(Y, vT
1 X|β,Σ), ρ2 (β,Σ) = corr2(Y, vT

2 X|β,Σ).

Then

P (ρ1 (β,Σ) > ρ2 (β,Σ)) > P (ρ1 (β,Σ) < ρ2 (β,Σ)) . (3.8)

Proof. Let η =
(
β, σ2

1, σ
2
2

)
. Now assuming σ2

1 > σ2
2 then by definition we have

the following equations:

ρ1 (β,Σ|η) =
cov2

(
Y vT

1 X|η,Σ
)

var (Y |η,Σ) var
(
vT
1 X|η,Σ

)
where

var (Y |η,Σ) =var
(
βT X + δ|η,Σ

)
=var

(
βT X|η,Σ

)
+ var (δ|η,Σ) + 2cov

(
βT Xδ|η,Σ

)
=var

(
βT X|η,Σ

)
+ var (δ|η,Σ) = βTΣβ + var (δ|η,Σ)

and

var
(
vT
1 X|η,Σ

)
= vT

1 Σv1 = σ2
1
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Finally

cov
(
Y vT

1 X|η,Σ
)

=E
(
Y vT

1 X|η,Σ
)
− E (Y |η,Σ) E

(
vT
1 X|η,Σ

)
=E

(
βT XvT

1 X|η,Σ
)

+ E
(
δvT

1 X|η,Σ
)

= βT E
(
XXT |η,Σ

)
v1

=βTΣv1 = βT v1σ
2
1

Combining the four equations above we have that

ρ1 (β,Σ|η) =
σ2

1

(
βT v1

)2
βTΣβ + var (δ|η,Σ)

(3.9)

Similarly we have that:

ρ2 (β,Σ|η) =
σ2

2

(
βT v2

)2
βTΣβ + var (δ|η,Σ)

(3.10)

By replacing equations (3.9) and (3.10) into expression (3.8) and by canceling

from everywhere the denominator βTΣβ since it is a positive scalar, we have that

expression (3.8) simplifies to:

P
(

σ2
1

(
βT v1

)2
> σ2

2

(
βT v2

)2∣∣∣σ2
1, σ

2
2

)
> P

(
σ2

1

(
βT v1

)2
< σ2

2

(
βT v2

)2∣∣∣σ2
1, σ

2
2

)
P

( (
βT v1

)2(
βT v2

)2 >
σ2

2

σ2
1

∣∣∣∣∣σ2
1, σ

2
2

)
> P

( (
βT v1

)2(
βT v2

)2 <
σ2

2

σ2
1

∣∣∣∣∣σ2
1, σ

2
2

)
(3.11)

Now from the assumption that
(
βT v1

)2
/
(
βT v2

)2 D=
(
βT v2

)2
/
(
βT v1

)2
and

since the median of
(
βT v1

)2
/
(
βT v2

)2
must be unique we have that the median of(

βT v1

)2
/
(
βT v2

)2
= 1. This proves expression (3.11).
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The case where σ2
1 < σ2

2 is symmetric and proved in a similar way. With this,

expression (3.8) is proved. 2

This theorem is very important as it shows that in the general regression con-

text that has an additive error term, the probability, that the squared correlation

between the response variable and the first principal component is larger than the

squared correlation between the response variable and the second principal com-

ponent, is greater than 1/2. This result holds in very mild assumptions. This

important theorem gives us the proof that in the case of regression with two pre-

dictors and an additive error term, one can be confident that using the Principal

Components Analysis to reduce the dimension of the problem will get a meaning-

ful result. That is, the resulting first principal component has higher probability

of having higher squared correlation with the response, than the second principal

component.

Of course, this theorem is almost useless, since the real reason one might need to

do dimension reduction using principal component analysis, is when the dimension

of the predictor vector is large. Reducing a two dimension vector to one, is desirable

in most cases, but the real issue is when you need to reduce a dimension in the

order of the tenths, hundreds or even thousands. This is the work presented in the

next Chapter of this thesis.
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Chapter 4

General Result for

p-dimensional vector X

Until now I have proved that the conjecture stated by Li B.(2007) can be proven for

a 2-dimensional predictor vector X. If all the regression problems in real life were

with only two predictors that will be great. First, the curse of dimensionality would

have been non-existent. Second, we wouldn’t have the need to use procedures that

reduce the dimension, thus, anything we have discussed until now would not have

been useful. Although everything that have been discussed before is important, as

they can be used as guiding results, they can be useless if they cannot get extended

to a general p-dimensional predictor vector X, since the larger the dimension of

our predictor vector, the larger the need to have a reliable procedure to reduce the

dimension. In this Chapter my main objective is to prove the conjecture stated by

Li B.(2007) for a p-dimensional predictor vector X.
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4.1 Orientationally uniform

One of the main assumptions of the theory I am describing in this work is that

the variance of the predictor vector X, which is the matrix Σ is uniformly dis-

tributed among all the possible positive definite pxp matrices. In this section we

give the definition of orientationally uniform matrix, that is, a matrix that makes

the random ellipsoid

{x : xTΣx ≤ c}

to have any orientation with equal probability.

Before giving the definition, I will define another term that we will see in the

definition later.

Definition 4.1.1 Let say v1, . . . ,vp, are p random elements. We say that they

are exchangeable if, for any permutation (i1, . . . , ip) of (1, . . . , p), we have

(vi1 , . . . ,vip)
D= (v1, . . . ,vp).

In other words they are exchangable if I can change their order and still get the

same distribution.

Now I have all the components needed to give a definition of what orientation-

ally uniform is.

Definition 4.1.2 We say that a p × p positive definite random matrix Σ has an
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orientationally uniform distribution if

Σ = σ2
1v1v

T
1 + · · ·+ σ2

pvpv
T
p ,

where each (σ2
i ,vi) is a pair of random elements in which σ2

i is a positive random

variable and vi is a p-dimensional random vector, such that

1. (σ2
1, . . . , σ

2
p) are exchangeable, and its distribution is dominated by the Lebesgue

measure,

2. (v1, . . . ,vp) are exchangeable, and {v1, . . . ,vp} is an orthonormal set,

3. (σ2
1, . . . , σ

2
p) and (v1, . . . ,vp) are independent.

4.2 Preliminary result

Before I present the main result of this Chapter I need to prove a lemma that will

be helpful. Like in the previous Chapter, we need to see under which conditions the

distribution of (βT v2)2/(βT v1)2 has unique median that is equal to 1. Next lemma

will show that under mild conditions this is satisfied for p-dimensional vectors β

and v1,v2 under mild conditions.

Lemma 4.2.1 Suppose β and v1,v2 are p-dimensional random vectors such that

1. β (v1,v2);

2. P (β ∈ G) > 0 for any nonempty open set G.

3. v1 and v2 are linearly independent and exchangeable.
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Then (βT v2)2/(βT v1)2 has a unique median, which equals 1.

Proof. First, we shown that 1 is a median of (βT v2)2/(βT v1)2; that is,

P ((βT v2)2/(βT v1)2 < 1) ≤ 1/2 ≤ P ((βT v2)2/(βT v1)2 ≤ 1). (4.1)

Because (v1,v2) are exchangeable and β (v1,v2), the random variables (βT v1)2

and (βT v2)2 are exchangeable. Hence

P ((βT v2)2/(βT v1)2 ≤ 1) =P ((βT v1)2/(βT v2)2 ≤ 1)

=1− P ((βT v2)2/(βT v1)2 < 1).

So

P ((βT v2)2/(βT v1)2 < 1) ≤ 1− P ((βT v2)2/(βT v1)2 < 1),

P ((βT v2)2/(βT v1)2 ≤ 1) ≥ 1− P ((βT v2)2/(βT v1)2 ≤ 1),

which imply (4.1).

Now we need to show that 1 is the unique median. That is, (4.1) is satisfied by

no other numbers. In other words, for any 0 < c1 < 1 and c2 > 1 we have

P ((βT v2)2/(βT v1)2 ≤ c1) < 1/2 and P ((βT v2)2/(βT v1)2 < c2) > 1/2.

We will only show the first inequality; the second can be shown similarly. Since

P ((βT v2)2/(βT v1)2 ≤ c1) = E[P ((βT v2)2/(βT v1)2 ≤ c1|v1,v2)],
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it suffices to show that for any nonrandom, linearly independent a, b ∈ Rp, we have

P ((βT v2)2/(βT v1)2 ≤ c1|(v1,v2) = (a, b)) < 1/2.

However, because (v1,v2) β, the above inequality is equivalent to

P ((βT b)2/(βT a)2 ≤ c1) < 1/2. (4.2)

Let c3 ∈ (c1, 1). Since (a, b) has full column rank, the following system of

equations


βT b =

√
c3

βT a = 1

has a solution, say β0. Note that (βT
0 b)2/(βT

0 a)2 = c3 ∈ (c1, 1). Because β 7→

(βT b)2/(βT a)2 is continuous there is a neighborhood of β0, say G, such that

β ∈ G ⇒ (βT b)2/(βT a)2 ∈ (c1, 1).

By the assumption 2, P (β ∈ G) > 0. Therefore

P ((βT b)2/(βT a)2 ∈ (c1, 1)) > 0,

which, combined with (4.1), implies (4.2). 2

The above result might not be clear why is useful, but reading the main theorem

of this Chapter that follows in the next section, the reader should understand why
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we need the median to be unique.

4.3 Main theorem

Until now, we have shown all the useful tools that we need in order to state and

proof the main theorem of this work. In this section, I am going to precisely state

and rigorously proof the theorem that has been the main objective of this work.

Theorem 4.3.1 Suppose

1. Σ is a p× p orientationally uniform random matrix,

2. X is a p-dimensional random vector with E(X|Σ) = 0 and var(X|Σ) = Σ,

3. Y = βT X + δ, where β is a p-dimensional random vector and δ is a random

variable such that β (X,Σ), δ (X,β,Σ), E(δ) = 0 and var(δ) < ∞.

4. P (β ∈ G) > 0 for any nonempty open set G ∈ Rp.

Let w1, . . . , wp be the 1st, . . . , pth principal components of X, and let ρi = ρi(β,Σ) =

corr2(Y, wi|β,Σ). Then, whenever i < j, P (ρi ≥ ρj) > 1/2.

Proof. Let τ2 denote var(δ). Let (σ2
(1),v(1)), . . . , (σ2

(p),v(p)) be the reordered

version of (σ2
1,v1), . . . , (σ2

p,vp) such that σ2
(1) ≥ · · · ≥ σ2

(p). First, we derive an

explicit expression for ρi. Note that

cov(Y, vT
(i)X|β,Σ) =cov(βT X + δ,vT

(i)X|β,Σ)

=βTΣv(i) + cov(δ,vT
(i)X|β,Σ). (4.3)
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Because δ (Σ,X,β), we have δ (vT
(i)X,β,Σ). This implies δ vT

(i)X|(β,Σ),

and hence that the second term in (4.3) is zero. Because (σ2
(i),v(i)) is an eigen pair

of Σ, we have Σv(i) = σ2
(i)v(i). Hence

cov2(Y, vT
(i)X|β,Σ) = σ4

(i)(β
T v(i))

2. (4.4)

In the meantime

var(Y |β,Σ) = var(βT X|β,Σ) + 2cov(βT X, δ|β,Σ) + var(δ|β,Σ).

Because δ (β,Σ), the last term on the right is simply τ2. Because δ (β,Σ,X),

we have δ βT X|(β,Σ). So the second term on the right is 0. Hence

var(Y |β,Σ) = βTΣβ + τ2. (4.5)

Moreover,

var(vT
(i)X|β,Σ) = vT

(i)Σv(i) = σ2
(i). (4.6)

Now combine (4.4), (4.5), and (4.6) to obtain

ρi = corr(Y, vT
(i)X) =

σ2
(i)(β

T v(i))2

βTΣβ + τ2
. (4.7)

Let i < j. Then, using (4.7),

P (ρi ≥ ρj) = P

(
σ2

(i)(β
T v(i))2

βTΣβ + τ2
≥

σ2
(j)(β

T v(j))2

βTΣβ + τ2

)
= P

(
(βT v(i))2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

)
.
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The right hand side can be written as

∑
k 6=l

P

(
(βT v(i))2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

∣∣∣∣∣σ2
(i) = σ2

k, σ
2
(j) = σ2

`

)
P
(
σ2

(i) = σ2
k, σ

2
(j) = σ2

`

)
.

Because σ2
1, . . . , σ

2
p are exchangeable, (σ2

(i), σ
2
(j)) has equal probability to be any

pair (σ2
k, σ

2
` ) for any k 6= `, and that probability is

(
p
2

)
. Hence the above reduces to

(
p

2

)−1∑
k 6=l

P

(
(βT v(i))2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

∣∣∣∣∣σ2
(i) = σ2

k, σ
2
(j) = σ2

`

)

=
(

p

2

)−1∑
k 6=l

P

(
(βT vk)2

(βT v`)2
≥

σ2
`

σ2
k

∣∣∣∣σ2
(i) = σ2

k, σ
2
(j) = σ2

`

)
, (4.8)

where the equality follows from the fact that, conditioning on the event (σ2
(i), σ

2
(j)) =

(σ2
k, σ

2
` ), one has (v2

(i),v
2
(j)) = (v2

k,v
2
`).

Reexpress each term in the summation in (4.8) as

E

[
P

(
(βT vk)2

(βT v`)2
≥

σ2
`

σ2
k

∣∣∣∣σ2
(i) = σ2

k, σ
2
(j) = σ2

` , σ
2
k, σ

2
`

)∣∣∣∣σ2
(i) = σ2

k, σ
2
(j) = σ2

`

]
. (4.9)

By part 3 of Definition 4.1.2 we have

(vk,v`) (σ2
1, . . . , σ

2
p) ⇒(vk,v`) (σ2

1, . . . , σ
2
p;σ

2
(1), . . . , σ

2
(p))

⇒(vk,v`) (σ2
k, σ

2
` , σ

2
(i), σ

2
(j))

⇒(vk,v`) (σ2
(i), σ

2
(j))|(σ

2
k, σ

2
` ).

So the event {σ2
k = σ2

(i), σ
2
` = σ2

(j)} can be removed from the conditional probability

inside the conditional expectation (4.9), which then reduces to

E

[
P

(
(βT vk)2

(βT v`)2
≥

σ2
`

σ2
k

∣∣∣∣σ2
k, σ

2
`

)∣∣∣∣σ2
(i) = σ2

k, σ
2
(j) = σ2

`

]
. (4.10)
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Because (β,vk,v`) (σ2
k, σ

2
` ), for each fixed 0 < s < t,

P

(
(βT vk)2

(βT v`)2
≥ s

t

∣∣∣∣σ2
k = t, σ2

` = s

)
= P

(
(βT vk)2

(βT v`)2
≥ s

t

)
> 1/2

where the inequality follows from Lemma 4.2.1. By part 1 of Definition 4.1.2, the

event {σ2
k = σ2

` } has probability 0. It follows that

P

(
(βT vk)2

(βT v`)2
≥

σ2
`

σ2
k

∣∣∣∣σ2
k, σ

2
`

)
> 1/2

almost surely on the event {σ2
(i) = σ2

k, σ
2
(j) = σ2

` }. Therefore (4.10), and hence

(4.8), are strictly greater than 1/2. 2

The proof of the theorem above, completes the objective of proving the con-

jecture stated by Li (2007). It proves that the Principal Component Analysis can

be used to reduce the number of predictors of the regression model. Although,

it doesn’t prove that PCA is always effective on finding the most correlated prin-

cipal components with the response, it is proving that, the probability that we

will get the principal components that are more correlated with the responce vari-

able, is greater than the probability to get the principal components that are less

correlated.

In other words this result is proving the conjecture by assuming that you have

an orientationally uniform distribution for Σ = var(X|Σ) and a unique median for

(βT v2)2/(βT v1)2 in the usual regression context where Y = βT X + δ, where β is

a p-dimensional random vector and δ is a random variable such that β (X,Σ),

δ (X,β,Σ), E(δ) = 0 and var(δ) < ∞. Satisfying those assumptions we have

proved that the probability the principal component analysis will give you the
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highest correlated principal components with the response variable is greater than

the probability it will give you the less correlated principal components with the

response. This probability comparing any two principal component is always in

favor of the principal component that corresponds to the higher eigenvalue.

The theorem is a very useful tool, that provides at least enough evidence why

the principal components that can be found by principal component analysis are

probabilistically more correlated with the response. But since this, is only based

on probability it gives us an answer, as to why (quoted by Mosteller and Tukey

(1977))

“A malicious person who knew our x’s and our plan for them could

always invent a y to make our choices look horrible”

and why Jolliffe (1982) and Hadi and Ling (1998) were able to find examples where

the last few principal components are more correlated with the response. On the

other hand, the chances are still in favor of the fact that the nature is fair. So

although risky, we have proved that one can confidently use principal component

analysis to find the principal components and being confident he will get the mostly

correlated principal components with the response.

Since this is a procedure that people have been using for a long time, although

this problem was well known and the reasons behind it were well understood, this

is not something that will change how people already use this procedure in their

work. The proof, is based on probabilities, so the ones that were critical against the

use of principal component analysis, will probably continue to be thinking critically

against it. On the other hand, those that are in favor of the principal component

analysis, they now have a rigorous proof that the probability they will get the
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desired results is higher than the probability to get the wrong result.
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Chapter 5

Stochastic ordering

In this Chapter, I will present my work, that tries to connect the inequality in

the conjecture with stochastic ordering. People are usually more familiar with

stochasting ordering that the inequality in Theorem 4.3.1, so I make a try to find

a relation between the two.

Generally, I believe that stochasting ordering is neither stronger or weaker than

the inequality we have proved in Theorem 4.3.1 . I will show that there are some

cases were stochasting ordering is stronger under certain assumptions.

5.1 Definition

In the work by Li, Zha, and Chiaromonte, (2005) we can find the definition of

stochastic ordering.

Definition 5.1.1 If A and B are two random variables, and for any real number

c, P (A ≤ c) ≥ P (B ≤ c) then A is said to be stochastically less than or equal to B,
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and is denoted with A
D
≤ B. If the inequality is strict on a subset of the real line

with positive Lebesque measure then A is said to be stochastically strictly less than

B, and is denoted with A
D
< B.

In this Chapter I will try to explore the sufficient conditions necessary where

stochastic ordering implies

P (ρ1 (β,Σ) > ρ2 (β,Σ)) > P (ρ1 (β,Σ) < ρ2 (β,Σ)) (5.1)

5.2 Results under the regression context

At first, I will prove a Lemma that assumes uncorrelated predictors with non-

random covariance matrix Σ in a regression context without error term. Later,

I will show a much simpler proof for the same result, which is based on the fact

that ρ1 (β,Σ) + ρ2 (β,Σ) = 1, and also I will generalize it for the case where

ρ1 (β,Σ) + ρ2 (β,Σ) = k, for any real number k.

Lemma 5.2.1 Suppose that X|Σ ∼ N(0,Σ), and that

Σ =

σ2
1 0

0 σ2
2

 ,

where σ2
1 and σ2

2 are iid G with P (σ2
1 = σ2

2) = 0. Let β (X,Σ) and Y = βT X.

Let

ρ1 (β) =


corr2 (Y, X1|β) if σ2

1 > σ2
2

corr2 (Y, X2|β) if σ2
1 ≤ σ2

2

and ρ2 (β) =


corr2 (Y, X1|β) if σ2

1 ≤ σ2
2

corr2 (Y, X2|β) if σ2
1 > σ2

2

.
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If

ρ1(β,Σ)
D
> ρ2(β,Σ) (5.2)

then

P (ρ1 (β,Σ) > ρ2 (β,Σ)) > P (ρ1 (β,Σ) < ρ2 (β,Σ)) . (5.3)

Proof. By definition of stochastic ordering, expression (5.2) implies

P (ρ2(β,Σ) ≤ r) ≥ P (ρ1(β,Σ) ≤ r) (5.4)

for any real number r, with strict inequality on a subset of the real line with positive

Lebesque measure. The above expression is meaningful when r is in the interval

(0, 1), since ρ1(β,Σ) and ρ2(β,Σ) can take values only in that interval. The above

expression can be re-written as

P (ρ2 (β,Σ) ≤ r|σ1 > σ2) P (σ1 > σ2) + P (ρ2 (β,Σ) ≤ r|σ2 ≥ σ1) P (σ2 ≥ σ1) ≥

P (ρ1 (β,Σ) ≤ r|σ1 > σ2) P (σ1 > σ2) + P (ρ1 (β,Σ) ≤ r|σ2 ≥ σ1) P (σ2 ≥ σ1) .

Since P (σ2 ≥ σ1) = P (σ1 > σ2), the above simplifies to

P (ρ2 (β,Σ) ≤ r|σ1 > σ2) + P (ρ2 (β,Σ) ≤ r|σ2 ≥ σ1) ≥

P (ρ1 (β,Σ) ≤ r|σ1 > σ2) + P (ρ1 (β,Σ) ≤ r|σ2 ≥ σ1) . (5.5)
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Now by definition, for i = 1, 2,

corr2 (Y, Xi|β) =
cov2 (Y, Xi|β)

var (Y |β) var (Xi)
=

E2 (Y Xi|β)
σ2

i β
TΣβ

=
β2

i σ4
i

σ2
i β

TΣβ
=

β2
i σ2

i

βTΣβ

where βTΣβ = β2
1σ2

1 + β2
2σ2

2. Substituting this into (5.5) to obtain

P

(
β2

2σ2
2

βTΣβ
≤ r|σ1 > σ2

)
+ P

(
β2

1σ2
1

βTΣβ
≤ r|σ2 ≥ σ1

)
≥

P

(
β2

1σ2
1

βTΣβ
≤ r|σ1 > σ2

)
+ P

(
β2

2σ2
2

βTΣβ
≤ r|σ2 ≥ σ1

)
⇒

P
(
β2

2σ2
2 ≤ r

(
β2

1σ2
1 + β2

2σ2
2

)
|σ1 > σ2

)
+ P

(
β2

1σ2
1 ≤ r

(
β2

1σ2
1 + β2

2σ2
2

)
|σ2 ≥ σ1

)
≥

P
(
β2

1σ2
1 ≤ r

(
β2

1σ2
1 + β2

2σ2
2

)
|σ1 > σ2

)
+ P

(
β2

2σ2
2 ≤ r

(
β2

1σ2
1 + β2

2σ2
2

)
|σ2 ≥ σ1

)
⇒

P
(
(1− r) β2

2σ2
2 ≤ rβ2

1σ2
1|σ1 > σ2

)
+ P

(
(1− r) β2

1σ2
1 ≤ rβ2

2σ2
2|σ2 ≥ σ1

)
≥

P
(
(1− r) β2

1σ2
1 ≤ rβ2

2σ2
2|σ1 > σ2

)
+ P

(
(1− r) β2

2σ2
2 ≤ rβ2

1σ2
1|σ2 ≥ σ1

)
Now since (5.4) is true for everyvalue of r, that means it is true for r = 1/2. So by

replacing r in the above expression we have that

P

(
1
2
β2

2σ2
2 ≤

1
2
β2

1σ2
1|σ1 > σ2

)
+ P

(
1
2
β2

1σ2
1 ≤

1
2
β2

2σ2
2|σ2 ≥ σ1

)
≥

P

(
1
2
β2

1σ2
1 ≤

1
2
β2

2σ2
2|σ1 > σ2

)
+ P

(
1
2
β2

2σ2
2 ≤

1
2
β2

1σ2
1|σ2 ≥ σ1

)
⇒

P
(
β2

2σ2
2 ≤ β2

1σ2
1|σ1 > σ2

)
+ P

(
β2

1σ2
1 ≤ β2

2σ2
2|σ2 ≥ σ1

)
≥

P
(
β2

1σ2
1 ≤ β2

2σ2
2|σ1 > σ2

)
+ P

(
β2

2σ2
2 ≤ β2

1σ2
1|σ2 ≥ σ1

)
(5.6)
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Next, re-express inequality (5.3) as

P (ρ1 (β,Σ) > ρ2 (β,Σ) |σ1 > σ2) P (σ1 > σ2) + P (ρ1 (β,Σ) > ρ2 (β,Σ) |σ2 ≥ σ1) P (σ2 ≥ σ1) >

P (ρ1 (β,Σ) < ρ2 (β,Σ) |σ1 > σ2) P (σ1 > σ2) + P (ρ1 (β,Σ) < ρ2 (β,Σ) |σ2 ≥ σ1) P (σ2 ≥ σ1) ⇒

P (ρ1 (β,Σ) > ρ2 (β,Σ) |σ1 > σ2) + P (ρ1 (β,Σ) > ρ2 (β,Σ) |σ2 ≥ σ1) >

P (ρ1 (β,Σ) < ρ2 (β,Σ) |σ1 > σ2) + P (ρ1 (β,Σ) < ρ2 (β,Σ) |σ2 ≥ σ1) ⇒

P

(
β2

1σ2
1

βTΣβ
>

β2
2σ2

2

βTΣβ

∣∣∣∣σ1 > σ2

)
+ P

(
β2

2σ2
2

βTΣβ
>

β2
1σ2

1

βTΣβ

∣∣∣∣σ2 ≥ σ1

)
>

P

(
β2

1σ2
1

βTΣβ
<

β2
2σ2

2

βTΣβ

∣∣∣∣σ1 > σ2

)
+ P

(
β2

2σ2
2

βTΣβ
<

β2
1σ2

1

βTΣβ

∣∣∣∣σ2 ≥ σ1

)
⇒

P
(
β2

1σ2
1 > β2

2σ2
2

∣∣σ1 > σ2

)
+ P

(
β2

2σ2
2 > β2

1σ2
1

∣∣σ2 ≥ σ1

)
>

P
(
β2

1σ2
1 < β2

2σ2
2

∣∣σ1 > σ2

)
+ P

(
β2

2σ2
2 < β2

1σ2
1

∣∣σ2 ≥ σ1

)
which is the same as expression (5.6). This completes our proof. 2

This proof it is complete, but I figured out that there is an easier way to prove

the same results and it us based on the fact that the sum of the two squared

correlations is known to be equal to 1, that is, ρ1 (β,Σ) + ρ2 (β,Σ) = 1. This is

how one can prove the above result much more easier.

Lemma 5.2.2 If ρ1 and ρ2 are random variables such that ρ1 + ρ2 = 1, then

ρ1

D
≥ ρ2 implies P (ρ1 ≥ ρ2) ≥ P (ρ1 ≤ ρ2).
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Proof. Because ρ1

D
≥ ρ2, we have

P (ρ2 ≤ 1/2) ≥ P (ρ1 ≤ 1/2). (5.7)

But because ρ1 + ρ2 = 1, we have

P (ρ2 ≤ 1/2) = P (ρ2 ≤ (ρ1 + ρ2)/2) = P (ρ2 ≤ ρ1).

Similarly, P (ρ1 ≤ 1/2) = P (ρ1 ≤ ρ2). Substitute these into (5.7) to complete the

proof. 2

Now in the case of Lemma 5.2.1 it is easy to check that ρ1(β,Σ)+ρ2(β,Σ) = 1

for all β and Σ. So Lemma 5.2.1 follows from Lemma 5.2.2 much more easier than

the way it was proven above.

But again the Lemma 5.2.2 is a special case of the Theorem that assumes

ρ1(β,Σ) + ρ2(β,Σ) = k where k is any real number. The proof of the Theorem

that generalizes Lemma 5.2.2 is as follows.

Lemma 5.2.3 If ρ1 and ρ2 are random variables such that ρ1 + ρ2 = k, then

ρ1

D
≥ ρ2 implies P (ρ1 ≥ ρ2) ≥ P (ρ1 ≤ ρ2).

Proof. Because ρ1

D
≥ ρ2, we have

P (ρ2 ≤ k/2) ≥ P (ρ1 ≤ k/2). (5.8)
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But because ρ1 + ρ2 = k, we have

P (ρ2 ≤ k/2) = P (ρ2 ≤ (ρ1 + ρ2)/2) = P (ρ2 ≤ ρ1).

Similarly, P (ρ1 ≤ k/2) = P (ρ1 ≤ ρ2). Substitute these into (5.8) to complete the

proof. 2

In the context of the previous Chapters this is how far one can connect stochas-

tic ordering with the Inequality in Theorem 4.3.1. In the next section I will give a

result in a more general measure theoretic context.

5.3 Results in more general context

Also, there is a more general case that this is true and it will be proved in this

section as a proposition. Let me first describe the notation I will use in this section.

For i = 1, 2, let Fi be the distribution of Ui and fi be the density of Ui with

respect to µ; that is fi = dFi/dµ. We say that U1 and U2 have a common support

if {f1 > 0} = {f2 > 0}. It is easy to see that if U1
D
< U2 and U1 and U2 have a

common support, then

F1({c : F1(c) > F2(c)}) > 0, F2({c : F1(c) > F2(c)}) > 0. (5.9)

The following proposition gives a sufficient condition for U1
D
< U2 to imply P (U1 ≤

U2) > 1/2.

Proposition 5.3.1 Suppose U1 and U2 are random variables whose distributions
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are dominated by a common measure µ; U1
D
< U2; U1 U2; and U1 and U2 have a

common support. Then P (U1 ≤ U2) > 1/2.

Proof. By independence of U1 and U2 and by Fubini’s theorem,

P (U1 ≤ U2) =
∫

R

[∫
u1≤u2

f1(u1)µ(du1)
]

f2(u2)µ(du2)

=
∫

R
F1(u2)f2(u2)µ(du2) =

∫
R

F1(u2)dF2(u2).

By the second inequality in (5.9) the right hand side above is (strictly) greater than

∫
R

F2(u2)dF2(u2) =
[
F 2

2 (u2)/2
]∞
−∞ = 1/2,

which completes the proof. 2

So overall, in this Chapter I have presented some cases where the inequality in

the in Theorem 4.3.1 is weaker than sochasting ordering. I believe that generally

neither is weaker or stronger than the other, but in some special cases we can see

that stochasting ordering is stronger.

Although, one may expand this section further and find other cases that stochas-

tic ordering is stronger, it was not clear to me if we can find more general cases

than the ones described above. Also, I believe it will not offer anything more in the

main objective of this work, that was the proof of the conjecture as it was stated

in Li (2007).
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Chapter 6

Conclusion

In this thesis I have presented a probabilistic explanation as to why in the regression

setting the response variable often tends to have stronger correlation with the first

few principal components of the predictor.

This provides an answer to a historical debate among statisticians. Scientists

were able to understand in general why this phenomenon emerges. They were also

able to understand why there are cases where the least principal components are

more correlated with the response than the primary principal components. The

problem is that they couldn’t predict when and under which conditions this event

would happen. In this thesis, my main objective was to show that the response is

more likely to have stronger correlation with the leading principal components than

with the least principal components. This, however, doesn’t answer under which

assumptions principal component cnalysis might fail to give us the correct results.

Moreover, this can be used as a satisfying condition from both groups of researchers.

Those in favor of using PCA, can argue that since the probability of getting the

correct principal components is higher than the probability of getting the wrong
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ones using PCA, then PCA can be used effectively to reduce the dimension of a

problem. On the other hand, those against the use of PCA, can argue that I have

also shown that there is an unmeasurable risk in this procedure to get the wrong

principal components. I need to emphasize, that the importance of the proof is

exactly the fact that the probability of getting the wrong results is less than the

probability of getting the correct results.

Also, this work provides an answer, by formulating and rigorously proving, a

theorem that explains nothing more than a natural phenomenon. It proves that

nature is fair in choosing the response variable for a set of predictors, as Mosteller

and Tukey (1977) thought it is. Again, it is fair, but it is not always fair as there

are cases where this might not work. This natural tendency is neither definite

nor particularly strong. The inequality P (ρi ≥ ρj) > 1/2 says nothing more than

that it is more likely for ρi to be greater than ρj than to be less than ρj . In

fact, Proposition 5.3.1 indicates that the inequality is weaker than the commonly

used stochastic ordering in a special case. While this tendency does imply that

performing principal component analysis on X produces a viable predictor of Y , it

is much more effective to reduce the dimension of X using the information of Y , for

which the extensive research in sufficient dimension reduction (see, for example, Li,

1991, 1992; Cook, 1994, 1996: Li and Wang, 2007) has provided ample evidence.

6.1 Future work

There are many ways that this work may extend. In this section I will list some

of the proposals I have although future research may not be limited to only these

ideas.
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First of all, one can extend the results in the multivariate setting for the re-

sponce variable Y . It is important that many experiments today involve multi-

variate responses and the correlation of each predictor might be different for each

component of the response variable. There is a possibility that this may make the

analysis more complicated.

Secondly, this work can extend in other type of regression functions. Here we

have assumed the normal model for the regression function with an additive error

term that follows normal distribution. This is the simplest form of the regression

and one might extend this work to more complicated functions of regressing the

predictors to the response variable. There is a portion of experiments today that

do not use this simple form of regression that I have used.

Finally, one may extend this research to the cases where we have categorical

predictors, or a mixture of categorical and continuous predictors. Categorical pre-

dictors, might lead to complicated situations where under one value of the predictor

the principal component analysis gives us the principal components that are higlhy

correlated with the response and under another value of the predictor it gives us

principal components that are least correlated with the response.

48



BIBLIOGRAPHY

Adcock, R. J. (1878). A problem in least squares. The Analyst, 5, 53–54.

Alter, O., Brown, P. and Botstein, D. (2000). Singular value decomposition for

gene-wide expression data processing and modelling. Proceedings of the Na-

tional Academy of Science, 97, 10101–10106.

Anderson, T. W. and Rubin H. (1956). Statistical inference in fector analysis. In

J. Neyman (Ed.) Proceedings of the Third Berkeley Symposium on Mathe-

matical Statistics and Probability, Volume V, U. Cal, Berkley, 111–150

Bura, E. and Pfeiffer, R. M. (2003). Graphical methods for class prediction using

dimension reduction techniques on DNA microarray data. Bioinformatics,

19, 1252–1258.

Chiaromonte, F. and Martinelli, J. (2002). Dimension reduction strategies for

analyzing global gene expression data with a response. Math. Biosci., 176,

123–144.

Cook, R.D. (1994). Using dimension-reduction subspaces to identify important

inputs in models of physical systems. In 1994 Proceedings of the Section

on Physical and Engineering Sciences, Alexandria, VA: American Statistical

Association, 18–25.

Cook, R. D. (1996). Graphics for regressions with a binary response.Journal of

the American Statistical Association, 91, 983–992.

Cook, R. D. (2007). Fisher Lecture: Dimension Reduction in Regression. Statis-

tical Science, 22, 1–40.

49



Cook, R. D., Li, B. and Chiaromonte F. (2007). Dimension reduction without

matrix inversion. Biometrika, 94, 569–584.

Cox, D. R. (1968).Notes on some aspects of regression analysis. Journal of the

Royal Statistical Society, Ser. A, 131, 265–279.

Hadi, A. S. and Ling, R. F. (1998). Some cautionalry notes on the use pf principal

components in regression. The American Statistician, 52, 15–19.

Hawkins, D. M. and Fatti, L. P. (1984). Exploring multivariate data using the

minor principal components. The Statistician, 33, 325–338.

Hocking, R. R. (1976). The analysis and selection of variables in linear regression.

Biometrics, 32, 1–49.

Hotelling, H. (1933). Analysis of a complex statistical variable into its principal

components Journal of Educational Psychology, 24, 417–441.

Hotelling, H. (1957). The relationship of the newer multivariate statistical meth-

ods to factor analysis. British Journal of Statistical Psychology, 10, 69–79.

Joliffe, I. T. (1982). A note on the use of principal components in regression.

Applied Statistics, 31, 300–303.

Joliffe, I. T. (2002). Principsl Component Analysis, 2nd edition. New York:

Springer.

Jong, J. and Kotz, S. (1999). On a relation between principal components and

regression analysis. The American Statistician, 53, 349–352.

Kendall, M. G. (1957). A course in Multivariate Analysis. London: Griffin.

Lawley, D. N. (1953). A modified method of estimation in factor analysis and some

large sample results. Uppsala Symposium on Psychological Fector Analysis,

50



Number 3 in Nordisk Psykologi Monograph Series, 35–42. Uppsala: Almqvist

and Wiksell.

Li, B. (2007). Comment: Fisher Lecture: Dimension Reduction in Regression.

Statistical Science, 22, 32–35.

Li, B., Zha, H., and Chiaromonte, F. (2005). Contour regression: a general

approach to dimension reduction. The Annals of Statistics. 33, 1580-1616.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction.

Journal of American Statistical Association, 102, 997–1008.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the

American Statistical Association, 86, 316–342.

Li, K. C. (1992). On principal Hessian directions for data visualization and di-

mension reduction: another application of Stein’s Lemma. Journal of the

American Statistical Association, 87, 1025–1039.

Li, L. and Li, H. (2004). Dimension reduction methods for microarrays with

application to censored survival data. Bioinformatics, 20, 3406–3412.

Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression. Reading,

Massachusetts: Addison-Wesley.

Pearson, K (1901). On lines and planes of closest fit to a system of points in

space. Philosophical Magazine (6), 2, 559–572.

Preisendorfer, R. W. and Mobley C. D. (188). Principal Components Analysis in

Meteorology and Oceanography. Amsterdam: Elsevier.

Rao, C. R. (1964). The use and interpretation of principal component analysis in

applied research. Sankhya A, 26, 329–358.

51



Scott, D. (1992). Multivariate Density Estimation. New York: Wiley.

Tipping M. E. and Bishop, C. M. (1999). Probabilistic principal components.

Journal of the Royal Statistical Society, Series B, 61, 611–622.

52


