Aerodynamic Experiments on a Ducted Fan in Hover and Edgewise Flight

Open Access
Myers, Leighton Montgomery
Graduate Program:
Aerospace Engineering
Master of Science
Document Type:
Master Thesis
Date of Defense:
Committee Members:
  • Dennis K Mc Laughlin, Thesis Advisor
  • Experimental Aerodynamics
  • Ducted Fan
Ducted fans and ducted rotors have been integrated into a wide range of aerospace vehicles, including manned and unmanned systems. Ducted fans offer many potential advantages, the most important of which is an ability to operate safely in confined spaces. There is also the potential for lower environmental noise and increased safety in shipboard operations (due to the shrouded blades). However, ducted lift fans in edgewise forward flight are extremely complicated devices and are not well understood. Future development of air vehicles that use ducted fans for lift (and some portion of forward propulsion) is currently handicapped by some fundamental aerodynamic issues. These issues influence the thrust performance, the unsteadiness leading to vehicle instabilities and control, and aerodynamically generated noise. Less than optimum performance in any of these areas can result in the vehicle using the ducted fan remaining a research idea instead of one in active service. The Penn State Department of Aerospace Engineering initiated an experimental program two years ago to study the aerodynamics of ducted lift fans. The focus of this program from its initiation was to study a single lift fan subject to an edgewise mean flow. Of particular concern was the transitional flow regime from hover to a relatively high forward speed in which a major portion of the vehicle lift is produced by the aerodynamic forces on the body. We refer to this as ducted fan edgewise flow. There are four obvious consequences of operating a ducted lift fan in edgewise (forward) flow. First, separations off the leading portion of the duct can reduce the inflow and thus the thrust of the fan. Second, the separated flow will lead to unsteadiness which will undoubtedly decrease the control authority of the vehicle. Thirdly, the outer surface of the fan shroud is likely to be fairly blunt. This body shape, together with the strong momentum drag of the lift fan outflow, produce excessive drag forces that increase the requirements of the propulsion devices. Finally, increased turbulence of the inflow will also result in increased production of aerodynamic noise. The goals of this project are to conduct detailed experiments on several configurations of ducted lift fans in hover and edgewise flow. Single ducted lift fan configurations involve different shrouded duct shapes and rotor shapes. Rotors are tested with a range of solidities and tip clearances. Including inlet duct vents over the forward portion of the duct shroud, has the potential of reducing the problem of separated flow over the forward portion of the duct inlet, and potentially reducing the drag of the vehicle in forward flight.