Open Access
Kuppa, Vikram Krishna
Graduate Program:
Materials Science and Engineering
Doctor of Philosophy
Document Type:
Date of Defense:
October 09, 2003
Committee Members:
  • Evangelos Manias, Committee Chair
  • Ralph H Colby, Committee Member
  • Janna Kay Maranas, Committee Member
  • James Patrick Runt, Committee Member
  • polymer science
  • polymer physics
  • nanotechnology
  • polymer nanocomposites
  • computer simulations
  • molecular dynamics
  • behavior in extremen confinements
Molecular Dynamics computer simulations are used to investigate the structure and dynamics of nanoscopically confined polymers intercalated in layered-inorganic hosts to form nanocomposites. The focus of this research is on understanding how the nature of the organic film is influenced not only by the severe confinement, but also by the interactions of the organic film with lithium counterions present in the slit pore. Molecular Dynamics simulations are performed using atomistically detailed models for interactions between various species in the system ; the simulation setup and potentials used mimic the experimental system of poly(ethylene oxide) confined between mica-type montmorillonite clays, i:e: 2:1 aluminosilicates. The force fields employed were well tested in earlier simulations of Li+/PEO interactions, and in studies of PEO/Montmorillonite nanocomposites. Simulations were also performed on bulk polymer to comparatively contrast the differences in behavior between bulk and confined PEO. For the bulk Li+/PEO system, it is seen that there is a drastic change in the structure as explored by three different order parameters, at a temperature close to the melting point of bulk PEO. In sharp contrast, the structure of confined PEO exhibits no dramatic qualitative change with temperature. Instead there is only a gradual quantitative difference in the structural ordering, which reveals that the confined organic film exists in the same amorphous state throughout the temperature range of study. In addition to the structure, the dynamics of the confined systems are markedly di®erent from what one would normally expect for a regular composite. Unlike the bulk system, which exhibits clear solid-like and liquid-like polymer motion below and above the experimental melting point of PEO, there seems to be no distinct change in dynamics of the confined polymer as probed experimentally by 2H NMR. This anomalous behavior was reproduced in our simulations, and the coexistence of fast and slow relaxation times for C-H bond reorientations was attributed to the presence of adjacent Li+, density inhomogeneities that were stabilized in the confinement, and enhanced translational motion at all temperatures. Finally, the temperature dependence of Li+ diffusion in bulk PEO shows two distinct mechanisms of motion, for regions below and above the melting point of the polymer. For the nanocomposite, a single mechanism for lithium ion transport at all temperatures was identified. It is revealed that enhanced polymer dynamics in the confinement are responsible for the higher di®usion coe±cient coefficient for Li+ in PEO/MMT compared to bulk PEO, at lower temperatures.