Progression Towards Optimization Of Viscosity Of Highly Concentrated Carbonaceous Solid-water Slurries By Incorporating And Modifying Surface Chemistry Parameters With And Without Additives

Open Access
- Author:
- Mukherjee, Amrita
- Graduate Program:
- Energy and Mineral Engineering
- Degree:
- Doctor of Philosophy
- Document Type:
- Dissertation
- Date of Defense:
- April 04, 2016
- Committee Members:
- Sarma V Pisupati, Dissertation Advisor/Co-Advisor
Sarma V Pisupati, Committee Chair/Co-Chair
Mark Stephen Klima, Committee Member
Jonathan P Mathews, Committee Member
Darrell Velegol, Committee Member - Keywords:
- petcoke
coal
slurry
viscosity
interfacial interactions
aggregation networks
free water
bound water - Abstract:
- Carbonaceous solid-water slurries (CSWS) are concentrated suspensions of coal, petcoke bitumen, pitch etc. in water which are used as feedstock for gasifiers. The high solid loading (60−75 wt.%) in the slurry increases CSWS viscosity. For easier handling and pumping of these highly loaded mixtures, low viscosities are desirable. Depending on the nature of the carbonaceous solid, solids loading in the slurry and the particle size distribution, viscosity of a slurry can vary significantly. Ability to accurately predict the viscosity of a slurry will provide a better control over the design of slurry transport system and for viscosity optimization. The existing viscosity prediction models were originally developed for hard-sphere suspensions and therefore do not take into account surface chemistry. As a result, the viscosity predictions using these models for CSWS are not very accurate. Additives are commonly added to decrease viscosity of the CSWS by altering the surface chemistry. Since additives are specific to CSWS, selection of appropriate additives is crucial. The goal of this research was to aid in optimization of CSWS viscosity through improved prediction and selection of appropriate additive. To incorporate effect of surface chemistry in the models predicting suspension viscosity, the effect of the different interfacial interactions caused by different surface chemistries has to be accounted for. Slurries of five carbonaceous solids with varying O/C ratio (to represent different surface chemistry parameters) were used for the study. To determine the inter-particle interactions of the carbonaceous solids in water, interfacial energies were calculated on the basis of surface chemistries, characterized by contact angles and zeta potential measurements. The carbonaceous solid particles in the slurries were assumed to be spherical. Polar interaction energy (hydrophobic/hydrophilic interaction energy), which was observed to be 5-6 orders of magnitude higher than the electrostatic interaction energy, and the van der Waals interaction energy, was clearly the dominant interaction energy for such a system. Hydrophobic interactions lead to the formation of aggregation networks of solids in the suspensions, entrapping a part of the bulk water, whereas hydrophilic interactions result in the formation of hydration layers around carbonaceous solids. Both of these phenomena cause a loss of bulk water from the slurry and increase the effective solid volume fraction, resulting in an increase in slurry viscosity. The water in the bulk of the slurry, responsible for the fluidity of the slurry is called free water. The amount of free water was determined using thermogravimetric analysis and was observed to increase with an increase in the O/C ratio of a carbonaceous solid (up to ~20%). The free water to total water ratio was observed to be constant for the slurry of a particular carbonaceous solid for various loadings of solids (44 wt.% to 67 wt.%). The increase in the effective solid volume fractions of slurries was determined using viscosity measurements. A relationship between the effective solid volume fraction and the O/C ratio of the carbonaceous solid was developed. This correlation was then incorporated into the existing equation for viscosity prediction (developed based on particle size distribution and solid volume fraction), to account for the surface chemistry of the carbonaceous solid and hence improve the predictive capabilities. This modified equation was validated using three concentrated carbonaceous slurries with different particle size distributions and was observed to significantly improve accuracy of prediction (deviation of predicted results decreased from up to 96% to 25%). The validation was performed with a lignite, bituminous coal and a petcoke-all with low ash yield. Additives modify the surface chemistry of the carbonaceous solids, thereby affecting the interfacial interactions. Through this research, the effects of additives on the interfacial interactions and hence on slurry viscosity were determined. Since the additives used are specific to the surface chemistry of the solids in the slurry, this knowledge aids in the selection of the appropriate additive. The study was conducted using three carbonaceous solids with different O/C ratios and an anionic and a non-ionic additive. The adsorption of the additives on the carbonaceous solids, the change in the zeta potential and hydrophobicity/hydrophilicity of the solids and the change in the free water content of the slurries were determined. The adsorption of the additives increased with an increase in the mineral matter content of the carbonaceous solids. There was also an increase in the zeta potential of the carbonaceous solids in water upon the addition of the anionic additive (up to ~30%). However, the calculated resultant electrostatic repulsion energy upon the addition of the anionic additive was 5-6 orders of magnitude lower than the polar interaction energy of the carbonaceous solids in water. Contact angle measurements indicated that both additives changed the hydrophobicity/hydrophilicity of the solid surface (by up to 70°). This resulted in the release of bound water into the bulk slurries (up to 6%), resulting in greater fluidity. The increase in free water content of the slurries with additives was confirmed by thermogravimetric analysis (TGA). A correlation predicting the slurry viscosity on the basis of the weight fraction of free water in the slurries with additives was also developed.