Catalytic Systems used for Polymerization, Biomass Conversion, and Enhancing Diffusion

Open Access
Pong, Frances Ying
Graduate Program:
Doctor of Philosophy
Document Type:
Date of Defense:
December 08, 2015
Committee Members:
  • Ayusman Sen, Dissertation Advisor
  • Alexander Thomas Radosevich, Committee Member
  • T C Mike Chung, Committee Member
  • Benjamin James Lear, Committee Member
  • Organometallic
  • Diffusion
  • Catalyst
  • NMR
  • Polymer
A significant amount of research has been dedicated towards the study and improvement of catalysts. A better understanding of how catalysts work can lead to developing more cost-efficient catalytic systems for a variety of applications. My research is focuses on catalytic systems used in three different fields, which are (i) organometallic polymerization catalysts, (ii) molecular motors and (iii) biomass conversion. Researchers have long studied and modified organometallic catalysts for use in the direct co- and homopolymerization of monomers with polar functional groups. The ability to add polar moieties to polymers, which can potentially yield materials with a wider range of physical properties, is highly desirable. In this study (i), a series of naphthoxyimine palladium(II) catalysts – in which the naphthyl backbone had been functionalized with different moieties – were synthesized and systematically studied to determine the ligand structure’s impact on catalytic activity. The study showed that slight modifications of the naphthyl backbone led to significant changes in the polymer’s molecular weight and polydispersity index. The catalysts were also displayed some ability to co-polymerize ethylene and functionalized norbornene. These positive results suggest that further exploration of naphthoxyimine palladium (II) catalysts may be fundamentally interesting. The effect of active, motile particles at the nanoscale has been vigorously researched during the past decade. By understanding how such active suspensions behave, researchers can gain new insights which can potentially provide new applications in many fields. Here (ii) the momentum transfer of active catalysts (Grubbs’ 2nd generation catalyst with a hydrodynamic radius of 6Å) to their immediate surroundings is observed in an organic suspension. This phenomenon, which has been coined “enhanced diffusion,” has not been well studied at the angström scale until now. Diffusion-NMR spectroscopy surprisingly revealed that these angström sized catalysts nearly double the speed of diffusion of passive molecular tracers in their immediate surroundings. This result is particularly intriguing because in this size regime, the viscosity of the surroundings is expected to completely overcome the inertial forces of these catalysts. This study has prompted further diffusion-NMR studies of molecular catalysts and enzymes as molecular motors. Catalytic systems play a crucial role in the conversion of renewable biomasses into energy and useful materials. This field of research has become increasingly important and lucrative as fossil fuel sources continue to decline/destabilize in the face of increased worldwide demand for more resources. In this work (iii), the efficacy of a hydrogen-pressurized, biphasic catalytic system to convert linear sugar polyols to iodoalkanes was examined. These iodoalkanes can easily be converted to 1-alkenes which can then be used for the synthesis of low density polyethylene. The results indicated that the system products were relatively pure and that the catalytic layer had a degree of recyclability, hinting that such a system may be viable for industrial use.