New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared

Open Access
Terrien, Ryan Carl
Graduate Program:
Astronomy and Astrophysics
Doctor of Philosophy
Document Type:
Date of Defense:
October 15, 2015
Committee Members:
  • Suvrath Mahadevan, Dissertation Advisor
  • James Kasting, Committee Member
  • Lawrence William Ramsey, Committee Member
  • Abraham David Falcone, Committee Member
  • Jason Thomas Wright, Committee Member
  • astronomy
  • m dwarfs
  • near-infrared spectroscopy
  • stellar abundances
  • radial velocity
  • exoplanets
M dwarfs are the least massive and most common stars in the Galaxy. Due to their prevalence and long lifetimes, these diminutive stars play an outsize role in several fields of astronomical study. In particular, it is now known that they commonly host planetary systems, and may be the most common hosts of Earth-size, rocky planets in the habitable zone. A comprehensive understanding of M dwarfs is crucial for understanding the origins and conditions of their planetary systems, including their potential habitability. Such an understanding depends on methods for precisely and accurately measuring their properties. These tools have broader applicability as well, underlying the use of M dwarfs as fossils of Galactic evolution, and helping to constrain the structures and interiors of these stars. The measurement of the fundamental parameters of M dwarfs is encumbered by their spectral complexity. Unlike stars of spectral type F, G, or K that are similar to our G type Sun, whose spectra are dominated by continuum emission and atomic features, the cool atmospheres of M dwarfs are dominated by complex molecular absorption. Another challenge for studies of M dwarfs is that these stars are optically faint, emitting much of their radiation in the near-infrared (NIR). The availability and performance of NIR spectrographs have lagged behind those of optical spectrographs due to the challenges of producing low-noise, high-sensitivity NIR detector arrays, which have only recently become available. This thesis discusses two related lines of work that address these challenges, motivated by the development of the Habitable Zone Planet Finder (HPF), a NIR radial velocity (RV) spectrograph under development at Penn State that will search for and confirm planets around nearby M dwarfs. This work includes the development and application of new NIR spectroscopic techniques for characterizing M dwarfs, and the development and optimization of new NIR instrumentation for HPF. The first line of work is centered on a large NIR spectroscopic survey of nearby M dwarfs, undertaken to characterize potential targets for HPF. This survey, and new techniques for measuring M dwarf metallicity, are the subject of Chapter 2. These data will provide crucial information to assess planetary composition, and the stellar metallicities will help us understand the process of planet formation around M dwarfs. These techniques have also enabled strong tests of low-mass stellar models in the benchmark eclipsing binary system CM Draconis, and have helped identify potential directions for improvement in the models, as presented in Chapter 3. The development of new spectroscopic indices for measuring M dwarf luminosity, radius, and potentially α-element abundance is discussed in Chapter 4. Finally, Chapter 5 presents a synthesis of these M dwarf characterization techniques and radial velocity (RV) measurements from the SDSS-III APOGEE spectrograph, which we applied to confirm and characterize the first M dwarfs in the nearby Coma Berenices cluster. The second line of work relates to the optimization of HPF. By targeting M dwarfs, HPF will take advantage of the large signal induced by an Earth-mass planet orbiting an M dwarf compared to the same planet orbiting an FGK star. Chapter 6 discusses a number of design trades and parameter optimizations undertaken in order to ensure the best sensitivity to Earth-mass planets. These subtopics include the optimization of the HPF resolution, bandpass, operating temperature, and vacuum phase holographic cross-disperser, as well as prediction of anticipated HPF performance, and the development of an HPF software simulator tool. In carrying out NIR detector tests for HPF, we have also tested an optical filter that selectively blocks long-wavelength thermal background radiation. This type of contamination is a perennial source of noise for NIR instruments, and typically forces these instruments to operate fully cryogenically. The complexity and cost of this approach may be avoided: for instruments operating in the H-band or bluer, the thermal background can be optically filtered, freeing the instrument to operate at warmer temperatures. Chapter 7 details our characterization and application of an interference filter that effectively blocks thermal background when used with a 1.7μm-cutoff HAWAII-2RG NIR detector array. By effectively filtering the thermal background with a single coated optic, this filter offers the potential for simple, cost-effective, warm-pupil NIR astronomical instruments, which can take advantage of the increasing availability of low-noise, high-efficiency NIR detectors.