Computation and Analysis of Cavitating Flow in Francis-class Hydraulic Turbines

Open Access
Author:
Leonard, Daniel Joseph
Graduate Program:
Engineering Science and Mechanics
Degree:
Doctor of Philosophy
Document Type:
Dissertation
Date of Defense:
February 06, 2015
Committee Members:
  • Scott Miller, Dissertation Advisor
  • Scott Miller, Committee Chair
  • Jules Washington Lindau V, Special Member
  • Francesco Costanzo, Committee Member
  • Jonathan S Pitt, Committee Member
  • John Michael Cimbala, Committee Member
  • Brent A Craven, Committee Member
Keywords:
  • CFD
  • Computational Fluid Dynamics
  • Multiphase
  • Cavitation
  • Hydroturbine
  • RANS
  • DES
  • Performance Breakdown
  • Francis turbine
Abstract:
Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new phenomena which are currently unknown.