Data-driven Modeling, Analysis, and Optimization of Sensor-integrated Complex Systems - Healthcare and Virtual Reality Applications

Restricted (Penn State Only)
- Author:
- Zhu, Rui
- Graduate Program:
- Industrial Engineering (PHD)
- Degree:
- Doctor of Philosophy
- Document Type:
- Dissertation
- Date of Defense:
- June 15, 2021
- Committee Members:
- Soundar Kumara, Major Field Member
Eunhye Song, Major Field Member
Hui Yang, Chair & Dissertation Advisor
Prasenjit Mitra, Outside Unit & Field Member
Steven Landry, Program Head/Chair
Faisal Aqlan, Special Member - Keywords:
- Data-driven modeling
Sensor-integrated complex systems
Healthcare
Virtual Reality
Cardiovascular systems
Engineering problem solving - Abstract:
- Advanced sensing is increasingly integrated with complex systems for system informatics and optimization. Rapid advancement of sensing technology brings the data proliferation and provides unprecedented opportunities for data-driven modeling, analysis, and optimization of sensor-integrated complex systems. However, complex-structured sensing data pose significant challenges in data analysis. Realizing full potentials of sensing data depends to a great extent on developing novel analytical methods and tools to address the challenges. The objective of this dissertation is to develop innovative sensor-based methodologies for modeling, analysis, and optimization of complex healthcare and virtual reality (VR) systems. This research will enable and assist in 1) handling high-dimensional spatiotemporal data; 2) extracting pertinent information about system dynamics; 3) exploiting acquired knowledge for system optimization for the cardiovascular system and the human behavior in VR environment. My research accomplishments include: Optimal sensing strategy for the design of electrocardiogram imaging (ECGi) system: In Chapter 2, a new optimal sensor placement strategy is developed for the design of ECGi systems to capture a complete picture of spatiotemporal dynamics in cardiac electrical activity. This investigation provides a viable solution that uses a sparse set of ECG sensors to realize high-resolution ECGi systems. Sensor-based survival analysis of cardiac risks: In Chapter 3, a data-driven survival model is developed to predict the probability that cardiac events occur at a certain time point by integrating variable data, attribute data, with sensor-based ECG data. This research is conducive to improve the early detection of life-threatening cardiac events, thereby reducing the recurrences of cardiac events and improving lifestyle modifications of cardiac patients. Joint SDT-C&E model for quantifying problem-solving skills in sensor-based VR: In Chapter 4, a data-driven model that integrates signal detection theory (SDT) with conflict & error (C&E) is developed to quantify engineering problem-solving skills. The proposed model can be generalized to quantify problem-solving skills in many other disciplines such as healthcare, psychology, and cognitive sciences, by comparing one's problem-solving actions with actions of a subject matter expert. Eye-tracking sensing and modeling in VR: In Chapter 5, a VR learning factory is developed to mimic physical learning factories. Further, data-driven models are integrated with eye-tracking sensing to evaluate and reinforce problem-solving skills of engineering students in a VR learning factory. The VR learning factory and aggregative quantifier developed in this chapter have strong potentials to be incorporated into laboratory demonstration and engineering examinations of manufacturing curriculums.