Quantum Transport in 2 and 3 Dimensional Topological Insulators
Open Access
- Author:
- Xiao, Di
- Graduate Program:
- Physics
- Degree:
- Doctor of Philosophy
- Document Type:
- Dissertation
- Date of Defense:
- September 13, 2019
- Committee Members:
- Nitin Samarth, Dissertation Advisor/Co-Advisor
Nitin Samarth, Committee Chair/Co-Chair
Jun Zhu, Committee Member
Chaoxing Liu, Committee Member
Joshua Alexander Robinson, Outside Member
Nitin Samarth, Program Head/Chair - Keywords:
- Topological Insulators
Quantum Transport
InAs/GaSb
Axion Insulator
Quantum Spin Hall
Quantum Anomalous Hall
Molecular Beam Epitaxy - Abstract:
- Topological insulators are materials that are insulating in the bulk but that conduct via topologically protected states on the boundary. The concept of topology in condensed matter physics was first introduced to explain the integer quantum Hall (IQH) effect. The perfect quantization of these topologically protected edge states, insensitive to sample geometry and disorder, stimulated an extensive search for many exciting new topological materials. One of the milestones along the journey was the theoretical prediction and experimental discovery of Z2 topological insulators. The first class of Z2 topological insulators discovered was the 2-dimensional topological insulator (2D TI), also known as the quantum spin Hall (QSH) insulator. The 2D TI can be viewed as a variation of the IQH system but with time-reversal-symmetry (TRS). The topological invariant for a 2D TI is the Z2 number, defined by its nontrivial band structure instead of the Chern number in the IQH case. Generalizing this idea to 3 dimensions led to the discovery of the 3D TI with four Z2 invariants. Both the 2D and 3D TIs are of interest as model platforms for testing theoretical problems of fundamental interest. For instance, they allow us to realize artificial condensed matter analogs of fundamental particles such as Majorana fermions and axions that have yet to be observed in nature. They are also of interest for potential technological applications, principally spintronics and quantum computing. This dissertation focuses on the synthesis, characterization, and transport properties of both 2D and 3D TIs. We first discuss the 2D TI candidate material system, type II InAs/GaSb quantum wells, which exhibits a rich topological phase diagram that can be tuned by several parameters such as sample geometry or electrostatic gating. By changing the thicknesses of relevant layers, we are able to enter a new insulating regime where unexpected high-density quantum oscillations are observed. We elucidate this phenomenon through theoretical calculation and through control experiments. The seemingly controversial coexistence of high density states and the insulating regime can be explained by the effect of the attractive Coulomb interaction, which was not considered in earlier theories. The second topic we address is quantum transport in 3D TI systems. Breaking the TRS of the 3D TI surface states leads to many exotic phenomena, including the quantum anomalous Hall (QAH) effect and the axion insulator state. By constructing a sandwich heterostructure that has different magnetic coercive fields in the top and bottom magnetic layers, while keeping the center layer free from magnetic impurities, both the QAH and the axion insulator state can be observed in low-temperature transport measurements, when the magnetization alignment of the top and bottom layers is parallel and antiparallel, respectively. We also discuss the scaling behavior of the topological quantum phase transition between these two states.