The growth of strontium titanate and lutetium ferrite thin films by molecular-beam epitaxy

Open Access
Brooks, Charles M
Graduate Program:
Materials Science and Engineering
Doctor of Philosophy
Document Type:
Date of Defense:
August 29, 2012
Committee Members:
  • Long Qing Chen, Dissertation Advisor
  • Long Qing Chen, Committee Chair
  • Venkatraman Gopalan, Committee Member
  • Zi Kui Liu, Committee Member
  • Raymond Edward Schaak, Committee Member
  • Darrell Schlom, Special Member
  • oxide
  • thin film
  • MBE
  • epitaxy
  • SrTiO3
  • LuFe2O4
  • molecular-beam epitaxy
  • strontium titanate
  • lutetium ferrite
Included in this work is a range of studies on films of homoeptaxial and heteroepitaxial films of SrTiO3 and the first reported phase-pure films of LuFe2O4. We report the structural properties of homoepitaxial (100) SrTiO3 films grown by reactive molecular-beam epitaxy (MBE). The lattice spacing and x-ray diffraction (XRD) rocking curves of stoichiometric MBE- grown SrTiO3 films are indistinguishable from the underlying SrTiO3 substrates. The effect of off-stoichiometry for both strontium-rich and strontium-poor compositions results in lattice expansion with significant changes to the shuttered reflection high-energy electron diffraction oscillations, XRD, film microstructure, and thermal conductivity. Up to an 80% reduction in Sr(1+x)TiO3 film thermal conductivity is measured for x = -0.1 to 0.5. Significant reduction, from 11.5 to ~2 W⋅m-1K-1, occurs through the formation of Ruddlesden-Popper planar faults. The ability to deposit films with a reduction in thermal conductivity is applicable to thermal barrier coatings and thermoelectrics. Scanning transmission electron microscopy is used to examine the formation of Ruddlesden-Popper planar faults in films with strontium excess. We also show that the band gap of SrTiO3 can be altered by >10% (0.3 eV) by using experimentally realizable biaxial strains providing a new means to accomplish band gap engineering of SrTiO3 and related perovskites. Such band gap manipulation is relevant to applications in solar cells water splitting, transparent conducting oxides, superconductivity, two-dimensional electron liquids, and other emerging oxide electronics. This work also presents the adsorption-controlled growth of single-phase (0001)-oriented epitaxial films of charge ordered multiferroic, LuFe2O4, on (111) MgAl2O4, (111) MgO, and (0001) 6H-SiC substrates in an iron-rich environment at pressures and temperatures where excess iron desorbs from the film surface during growth. Scanning transmission electron microscopy reveals reaction-free film-substrate interfaces. The magnetization increases rapidly below 240 K, consistent with the paramagnetic-to-ferrimagnetic phase transition of bulk LuFe2O4.