Investigations into the Formation of Nanocrystalline Quantum Dot Thin Films by Mist Deposition Process

Open Access
Kshirsagar, Aditya
Graduate Program:
Electrical Engineering
Doctor of Philosophy
Document Type:
Date of Defense:
July 30, 2012
Committee Members:
  • Jerzy Ruzyllo, Dissertation Advisor
  • Suman Datta, Committee Member
  • Osama O Awadelkarim, Committee Member
  • Jian Xu, Special Member
  • Mist Deposition
  • Thin Films
  • Quantum Dots
  • Cadmium Selenide
  • Nanotechnology
Semiconductor nanocrystalline quantum dots (NQDs) have material properties remarkably different compared to bulk semiconductors with the same material composition. These NQDs have various novel applications in the electronic and photonic industry, such as light emitting diodes (LEDs) and flat-panel displays. In these applications, ultra-thin films of NQDs in the monolayer regime are needed to ensure optimal current transport properties and device efficiency. There is ongoing search to find a suitable method to deposit and pattern such ultra-thin films of quantum dots with few monolayer thicknesses. Several competing approaches are available, each with its pros and cons. This study explores mist deposition as the technique to fill this void. In this study, ultra-thin films of quantum dots are deposited on diverse substrates and are characterized to understand the mechanics of mist deposition. Various applications of blanket deposited and patterned quantum dot films are studied. The results discussed here include atomic force microscopy analysis of the films to study surface morphology, fluorescence microscopy to study light emission and optical microscope images to study patterning techniques. These results demonstrate the ability of mist deposition to form 1-4 monolayers thick, uniform, defect-free patterned films with root mean square (RMS) surface roughness less than 2 nm. LEDs fabricated using mist deposition show a peak luminescence greater than 500 cd/m2 for matched red, yellow and green devices using Alq3 as the electron transport layer, and over 9000 cd/m2 for red devices using ZnO as the electron transport layer, respectively. In addition to the experimental approach to study the process and explore potential applications, simulation and modeling are carried out to understand the various aspects of mist deposition. A mathematical model is presented which discusses the atomization process of the precursor solution, the physics involved during the deposition process, and the mechanics of film formation. Results of film morphology simulation using Monte Carlo techniques and process simulation using multi-physics approach are discussed. Problems in pattern transfer due to electrostatic effects when using shadow masks are presented in a separate chapter.