Embedding Electromagnetic Components in CubeSat Structures Using Additive Manufacturing

Open Access
Arenson, Rebecca Ann
Graduate Program:
Electrical Engineering
Master of Science
Document Type:
Master Thesis
Date of Defense:
August 03, 2017
Committee Members:
  • Sven G Bilen, Thesis Advisor
  • Timothy Joseph Kane, Committee Member
  • Nicholas Alexander Meisel, Committee Member
  • Additive Manufacturing
  • Electromagnetics
  • 3D printing
  • Antennas
  • CubeSats
Grant funding and National Aeronautics and Space Administration launch initiatives for CubeSats make research using satellites research available to universities and projects with relatively low budgets. The small scale of CubeSats—only 10 cm × 10 cm × 10 cm per 1U (one unit) cube—requires efficient use of spacecraft volume. Many CubeSats employ measuring-tape dipole antennas that provide only low directionality, or patch antennas that take away surface area needed for solar panels. Additive manufacturing has also become an important topic of research as 3-dimensional printing techniques improve. This work explores techniques for using additive manufacturing to save space on small satellites by embedding electromagnetic components, such as antennas, into the structural elements of a CubeSat. Two primary methods are analyzed, one using finite deposition modeling printing and one using stereolithography. These two types of printers were selected because they are easily accessible and affordable. The filaments for the finite deposition modeling method proved insufficient for this application at this time. However, the stereolithography method successfully produced conductive components embedded within structural elements, including an antenna embedded in a CubeSat cross-brace.