A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

Open Access
Hanford, Scott David
Graduate Program:
Aerospace Engineering
Doctor of Philosophy
Document Type:
Date of Defense:
September 16, 2011
Committee Members:
  • Lyle Norman Long, Dissertation Advisor
  • Lyle Norman Long, Committee Chair
  • Victoria A Braithwaite, Committee Member
  • Richard Alan Carlson, Committee Member
  • Robert Graham Melton, Committee Member
  • cognitive robotics
  • Soar
  • cognitive architecture
  • intelligent mobile robot
Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the object of interest has been detected, the Soar agent uses the topological map to make decisions about how to efficiently return to the location where the mission began. Additionally, the CRS can send an email containing step-by-step directions using the intersections in the environment as landmarks that describe a direct path from the mission's start location to the object of interest. The CRS has displayed several characteristics of intelligent behavior, including reasoning, planning, learning, and communication of learned knowledge, while autonomously performing two missions. The CRS has also demonstrated how Soar can be integrated with common robotic motor and perceptual systems that complement the strengths of Soar for unmanned vehicles and is one of the few systems that use perceptual systems such as occupancy grid, computer vision, and fuzzy logic algorithms with cognitive architectures for robotics. The use of these perceptual systems to generate symbolic information about the environment during the indoor search mission allowed the CRS to use Soar's planning and learning mechanisms, which have rarely been used by agents to control mobile robots in real environments. Additionally, the system developed for the indoor search mission represents the first known use of a topological map with a cognitive architecture on a mobile robot. The ability to learn both a topological map and production rules allowed the Soar agent used during the indoor search mission to make intelligent decisions and behave more efficiently as it learned about its environment. While the CRS has been applied to two different missions, it has been developed with the intention that it be extended in the future so it can be used as a general system for mobile robot control. The CRS can be expanded through the addition of new sensors and sensor processing algorithms, development of Soar agents with more production rules, and the use of new architectural mechanisms in Soar.