Observation of Molecular Level Behavior in Molecular Electronic Junction Device

Open Access
- Author:
- Maitani, Masato
- Graduate Program:
- Materials Science and Engineering
- Degree:
- Doctor of Philosophy
- Document Type:
- Dissertation
- Date of Defense:
- September 29, 2009
- Committee Members:
- David Lawrence Allara, Dissertation Advisor/Co-Advisor
David Lawrence Allara, Committee Chair/Co-Chair
Theresa Stellwag Mayer, Committee Member
Qing Wang, Committee Member
Nicholas Winograd, Committee Member - Keywords:
- SAM
Raman
cp-AFM
Molecular Electronics
Molecular Junction - Abstract:
- In this thesis, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this thesis, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto –COOH terminated SAMs utilized with strong surface dipole-dipole intermolecular interaction based on hydrogen bonding and ionic bonding potentially preventing the metal penetration. The observed results are discussed with kinetic paths of metal atoms on each SAM including temporal vacancies controlled by the intermolecular interactions in SAM upon the comparison with the spectroscopic results previously reported. The results in chapter 2 and 3 strongly suggests that AFM based characterization technique is powerful tool especially for detecting molecular-size local phenomena in vapor phase metal deposition process, especially, the electric short-circuit filaments growing through SAMs, which may induce critical misinterpretation of M3 junction device properties. In chapter Chapter 4, an altered metal deposition process on inert SAM with using a buffer layer is performed to diminish the kinetic energy of impinging metal atoms. SPM characterization reveals an abrupt metal-SAM interface without any metal penetration. Examined electric characteristics also revealed typical non-resonant tunneling characteristics of long chain alkane thiolate SAMs. In chapter 5, the buffer layer assisted growth process is used to prepare a nano particles-SAM pristine interface on SAMs to control the metal-SAM interaction in order to study the fundamental issue of chemical enhancement mechanism of SERS. Identical Au nanoparticles-SAM-Au M3 structures with different Au-SAM interactions reveal a large discrepancy of enhancement factors of ~100 attributed to the chemical interaction. In chapter 6, Raman spectroscopy of M3 junction is applied to the characterization of molecular electronics devices. A crossed nanowire junction (X-nWJ) device is employed for in-situ electronic-spectroscopic simultaneous characterization using Raman spectroscopy. A detailed study reveals the multi-probe capability of X-nWJ for in-situ Raman and in-elastic electron tunneling spectroscopy (IETS) as vibrational spectroscopies to diagnose molecular electronic devices. In chapter 7, aniline oligomer (OAn) based redox SAMs are characterized by spectroscopic and microscopic methods under different chemical redox states by reflection absorption infrared spectroscopy (RAIRS), Raman, x-ray photoelectron spectroscopy (XPS), and AFM in order to elucidate the mechanism of electric switching molecular junctions previously reported. Obtained results are discussed in terms of the chemical and geometrical conformations of molecules in closely packed SAM domains. In chapter 8, in-situ Raman spectroscopy and cp-AFM microscopic techniques are applied to study the electric switching characteristics of X-nWJ incorporating OAn based SAM. The results of tunneling current and in-situ Raman spectroscopy are discussed with the conformational change of OAn component. The conductance switching mechanism associated with domain conformation change of OAn SAM is proposed and evaluated based on the results.