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Abstract

New Modeling Procedures for Functional

Data in Computer Experiments

Along with the rapid development of computers, computer experiment be-

comes more and more important in all the scientific research area. However the com-

puter experiment usually takes long time to run for each case and requires heavy

computation. Hence for large, complex systems it is not feasible to get all the values

over the entire experimental space.

This thesis attempts to model the computer experiment with multivariate re-

sponse or functional output using multivariate kriging and (partial) functional linear

models. The whole purpose of the thesis is to propose some good interpolation mod-

els in computer experiments with multivariate or functional responses.

In chapter 3, we proposed a multivariate kriging model and multivariate

functional ANOVA decomposition for computer experiments with multivariate re-

sponses. The simulation results show that multivariate version can improve the pre-

diction up to 30%.

In chapter 4, we proposed a spatial-temporal model for the residual of func-

tional linear model and the corresponding functional ANOVA decomposition. This

model enable us to get a smooth surface which passes through each observation

point. The functional ANOVA decomposition part can answers questions such as

iii
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how a predictor affects the overall functional responses and how important it is. We

also performed a simulation to compare the multivariate kriging and kriging with

single response under this model frame. The simulation result shows that the multi-

variate version improves the prediction power for about 10%.

In chapter 5, we proposed a spatial-temporal model for the residual of partial

functional linear model. This chapter aims to reduce the complexity of the main effect

model and make it more parsimonious. We performed a simulation to compare the

multivariate kriging and kriging with single response under this model frame. We

observe the similar prediction power increase as in chapter 4.

Within each chapters, we applied the proposed models and estimation proce-

dures to some real case examples. Although these examples deal with engine simu-

lation, the proposed method can be applied to all computer experiments with multi-

variate or functional responses.

Key Word: computer experiment, multivariate kriging, functional ANOVA

decomposition, functional linear model, semi-varying coefficient model, back-fitting

algorithm
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Chapter 1

Introduction

Functional data are data collected over an interval of some index. For exam-

ple, suppose that data for each experimental unit were collected every minute over

a period of an hour, and we want to know how the factors affect the shape of the

resulting curves. Functional data can be in the form of 1-dimensional data such as a

curve or higher dimensional data such as a 2 or 3-dimensional image. With the ad-

vent of modern data collection devices and vast data storage space, functional data

are being collected more and more in many research areas, including medical studies,

substance use studies, automotive engineering, nano-scale material research and na-

tional security studies. Ramsay and Silverman (1997) present many interesting exam-

ples of functional data and introduce various statistical models to fit functional data.

There are a lot excellent work have been done in the past for computer experiments.

Although almost all the output of computer experiments are either multiple response

or functional response, researchers treated them as a single response and model each

component output one by one. This dissertation research tries to model computer ex-

periments by treating the output as either multiple response or functional response.

The work was motivated by two case studies of functional data collected at Ford mo-

tor company although the proposed models are widely suitable for all the computer

experiments with multiple or functional response. For computer experiments with

output has sparse sampling rate, our objective is to build a multivariate interpola-

1
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tion model which can consider correlation among both design variables and different

components. For the computer experiments with intensive sampling rate, the out-

put is functional response. Our objective is to build an interpolation model which

can consider the correlation among design variables and the smoothness along func-

tional direction.

With modern technology and efficient numerical methods, engineers and sci-

entists frequently use computer experiments to study actual or theoretical physical

systems in various research fields. To simulate a physical system, one needs to con-

struct mathematical models to represent physical process. The models are often very

complicated and have different levels of component such as a detailed physical model

as well as a more abstract and higher level model with less detailed representation.

A physics-based model may be represented by a set of equations including linear,

nonlinear, ordinary and partial differential equations. Because of the complexity of

real physical systems, there is usually no simple analytic formula to describe the phe-

nomena in every detail, hence interrogattion of the models are required. In this sit-

uation, it is often difficult and even impossible to study the behavior of a computer

model using traditional methods of experimentation. One approach to study com-

plex input-output relationships exhibited by the simulation model is to construct an

approximation model (also called metamodel in the literature) based on a set of lim-

ited observation data acquired by running the simulation model at carefully selected

design points. Fang, et al. (2005) systematically introduced space-filling designs for

computer experiments.

As modeling of computer experiments has become a popular topic in recent

years, hundreds of papers have been published both in the statistics and engineering

communities. Several comprehensive review papers emphasized the importance and

challenge of this relatively new area (see, for example, Koehler and Owen, 1996 and
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Simpson, et al. 2001). Most existing modeling procedures for computer experiments

in the literature can only deal with single response computer experiments. Many

interesting example of single response computer experiments can be found in the

literature. We next present an example of single response computer experiments, in

contrast to functional response computer experiments in Examples 1.2 and 1.3.

Example 1.1. (Robot arm, An and Owen (2001)) This example is adapted from An and

Owen (2001). Consider a robot arm with m segments. Suppose that the shoulder of

the arm is fixed at the origin in the (x, y)-plane, and the length of the j-th segment

of this arm is lj , for j = 1, · · · ,m. The angle between the first segment and y-axis is

denoted to be θ1. For k = 2, · · · ,m, the angle between the (k− 1)-th segment and the

k-th segment is θk. By some straightforward calculation, the coordinate of the end of

the robot arm in the (x, y)-plane is

x =
m∑

j=1

lj cos(
j∑

k=1

θk), andy =
m∑

j=1

lj sin(
j∑

k=1

θk),

and the response z is the distance z =
√

u2 + v2 from the end of the arm to the origin

expressed as a function of 2m variables θj ∈ [0, 2π] and lj ∈ [0, 1]. It is of interest

to construct an approximation model z = g(θ1, · · · , θm, l1, · · · , lm) for the robot arm

with m segments. The movement trajectory of a robot arm has been used as a classic

illustrative example in the literature of neural network.

1.1 Motivating Example

With the development of modern computer technology, outputs of computer

models are often presented as a higher dimensional image. Computer experiments

with functional responses have increased in complexity and resulted in today’s so-

phisticated three-dimensional computer models. However, there is little literature

on modeling of computer experiments with functional response, and modeling com-
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puter experiments is typically limited to point outputs. The work was motivated by

the following two examples, whose detailed description and brief analysis are given

in Fang, et al. (2005). In this dissertation research, our target is to provide a more

sophisticated approach to analyze functional responses.

(a) (b)

Figure 1.1. Engine models for Example 1.2: (a) engine system finite element model, and (b)
engine block finite element model.

Example 1.2. (Engine Noise, Vibration and Harshness) Computer models are frequently

utilized in the design of engine structure to reduce radiated noise. The model in-

cludes multi-body dynamic simulation to estimate acting mechanical forces during

engine operations from the cranktrain and valvetrain, as well as combustion forces.

Together with the finite element structural model of the engine component or system

(see Figure 1.1), this model is applied to evaluate structural response during operat-

ing conditions as a function of engine RPM and frequency. The vibro-acoustic rela-

tionship between the engine vibrations and the acoustic pressure field may then be

applied to calculate the radiated engine noise (see, for example, Gérard, et al. 2001).

To optimize the design of the cylinder block, 17 design variables (e.g., bulk-
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Table 1.1. Name of Design Variables

Var. Name Var. Name

x1 Bulkhead thickness x10 Side wall ribbing

x2 Oil pan rail thickness x11 RFOB ribbing

x3 Skirt wall thickness x12 FFOB ribbing

x4 Main cap thickness x13 Valley wall ribbing

x5 Liner thickness x14 Bearing beam

x6 Valley wall thickness x15 Dam with value 1

x7 Bore wall thickness x16 Dam with value 2

x8 Valley plate thickness x17 Den

x9 Skirt ribbing x18 Young modulus

head thickness, oil pan rail thickness, valley wall ribbing, etc.; a detailed list is given

in Table 1.1) were chosen. A uniform design with 30 runs (Fang, et al. (2005)) was

used for the experiment and is presented in Table 1.2. In this example, the selected

response variable is the structural response of the oil pan flange in terms of accel-

eration at various engine RPMs (e.g., 1000, 2000,..., 6000 rotation per minute(RPM)),

which directly influences the radiated noise through the vibro-acoustic relationship.

The outputs are presented in Table 1.4 and are depicted in Figure 1.2.

This is a typical example of functional response with a sparse sampling rate.

The output was collected over different RPMs, and there are only 6 outputs in total

collected for each design condition. This response is similar to that in a growth curve

model in statistical literature (See, for example, Pan and Fang, 2004). Although one

may view such output as multi-response, we refer to it as a functional response be-

cause the data could be collected over the whole interval of RPM, and the response is

several outputs of one variable rather than outputs of several variables.
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Table 1.2. Design of Engine Noise Vibration and Harshness

Run # x1 x2 x3 x4 x5 x6 x7 x8 x9

1 25.5 9 7.5 22.5 5.5 9 5.5 8.5 1

2 25.5 9 6.5 25.5 3.5 13 7 13 0

3 18.5 21 7.5 18.5 3.5 11 7 13 1

4 22.5 13 8.5 25.5 2 13 5.5 8.5 0

5 22.5 17 5 20.5 2 6 9 3.5 0

6 24.5 9 6.5 22.5 3.5 4 7 13 0

7 22.5 13 5 25.5 5.5 13 5.5 6 1

8 24.5 17 8.5 20.5 3.5 13 9 6 0

9 18.5 17 5 20.5 5.5 9 5.5 3.5 1

10 20.5 9 9 18.5 3.5 11 5.5 3.5 1

11 18.5 9 9 24.5 3.5 11 9 3.5 1

12 20.5 13 6.5 24.5 2 6 9 8.5 1

13 25.5 13 7.5 22.5 5.5 13 9 8.5 1

14 25.5 13 9 25.5 2 4 7 13 0

15 24.5 9 8.5 18.5 2 6 9 10 1

16 18.5 21 5 20.5 5.5 9 5.5 8.5 0

17 22.5 21 6.5 25.5 2 11 5.5 10 1

18 24.5 23 9 22.5 3.5 11 9 10 0

19 25.5 21 7.5 24.5 2 4 7 3.5 0

20 20.5 17 9 22.5 5.5 9 9 13 1

21 18.5 23 7.5 24.5 5.5 11 9 13 0

22 24.5 23 8.5 20.5 2 13 7 3.5 0

23 20.5 23 6.5 25.5 2 6 5.5 10 0

24 22.5 23 8.5 24.5 3.5 6 7 6 1

25 24.5 21 5 20.5 2 9 7 6 1

26 22.5 17 6.5 18.5 3.5 4 9 8.5 0

27 20.5 13 9 22.5 5.5 4 7 10 1

28 20.5 21 8.5 24.5 5.5 6 5.5 6 0

29 25.5 17 5 18.5 3.5 4 5.5 6 0

30 18.5 23 7.5 18.5 5.5 9 7 10 1
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Table 1.3. Design of Engine Noise Vibration and Harshness (continued)

Run # x10 x11 x12 x13 x14 {x15, x16} x17 x18

1 0 1 0 1 0 3 2.91 77.49

2 1 1 1 1 1 2 2.77 70.11

3 1 0 1 0 0 1 2.91 77.49

4 0 0 0 0 1 3 2.77 77.49

5 1 1 1 1 1 1 2.77 77.49

6 0 0 1 0 1 1 2.63 73.8

7 1 1 0 0 1 2 2.77 77.49

8 1 0 0 1 0 3 2.63 70.11

9 1 0 1 1 0 3 2.63 73.8

10 0 1 1 0 1 2 2.77 77.49

11 0 0 0 0 1 3 2.91 73.8

12 1 0 0 0 0 1 2.91 73.8

13 1 1 1 0 0 1 2.77 77.49

14 1 1 0 1 0 2 2.77 77.49

15 0 0 1 1 0 2 2.63 73.8

16 0 0 0 1 1 2 2.91 70.11

17 0 1 1 1 0 2 2.63 77.49

18 0 0 0 1 0 1 2.91 73.8

19 1 0 1 0 1 3 2.77 70.11

20 0 0 1 0 0 2 2.63 70.11

21 1 0 0 0 0 2 2.63 73.8

22 0 1 0 1 1 2 2.91 73.8

23 1 1 1 0 1 3 2.77 73.8

24 1 1 0 1 1 3 2.63 70.11

25 0 1 0 0 0 1 2.91 70.11

26 1 0 1 1 1 1 2.91 70.11

27 1 0 1 1 1 3 2.77 77.49

28 0 1 0 0 0 1 2.63 70.11

29 0 1 1 0 0 3 2.91 73.8

30 0 1 0 1 1 1 2.63 70.11
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Table 1.4. Response of Engine Noise Vibration and Harshness

Run # 1000 2000 3000 4000 5000 6000

1 0.09 0.39 1.01 2.84 8.51 14.73

2 0.11 0.46 1.23 3.46 9.39 18.32

3 0.09 0.38 1.03 3.15 8.76 14.89

4 0.10 0.42 1.11 3.35 9.09 14.76

5 0.12 0.49 1.27 3.95 10.76 18.16

6 0.11 0.46 1.20 3.72 11.08 17.17

7 0.10 0.42 1.14 3.28 8.95 14.73

8 0.09 0.41 1.07 3.16 9.02 15.92

9 0.09 0.39 1.01 3.09 8.42 13.20

10 0.10 0.42 1.12 3.52 9.76 16.02

11 0.10 0.41 1.10 3.41 7.92 14.89

12 0.11 0.44 1.19 3.81 9.60 17.33

13 0.10 0.41 1.13 3.10 8.62 13.83

14 0.10 0.43 1.17 3.46 9.76 17.37

15 0.10 0.45 1.15 3.48 9.39 16.54

16 0.10 0.43 1.14 3.67 8.17 14.63

17 0.09 0.38 1.01 3.17 8.31 12.32

18 0.09 0.40 1.05 3.09 8.95 14.77

19 0.10 0.42 1.10 3.70 9.06 18.14

20 0.10 0.42 1.17 3.19 9.46 17.35

21 0.09 0.40 1.06 3.13 8.52 14.09

22 0.10 0.44 1.16 3.41 8.92 16.99

23 0.09 0.39 1.02 3.16 8.77 14.81

24 0.09 0.39 1.04 3.24 8.54 15.47

25 0.11 0.44 1.20 4.04 10.30 19.03

26 0.11 0.48 1.27 4.33 9.72 18.48

27 0.09 0.39 1.07 3.15 8.74 14.71

28 0.10 0.46 1.23 3.46 9.62 19.06

29 0.10 0.40 1.13 3.63 9.79 18.72

30 0.10 0.41 1.14 3.50 10.01 17.42
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Figure 1.2. Plot of logarithm of response for Example 1.2:

Example 1.3. (Valvetrain) The valvetrain system is one of the most important elements

of internal combustion engines for the delivery of desired engine performance in

terms of horsepower/torque, noise and vibration, fuel economy, and emissions. De-

sign optimization is performed to maximize performance capability while maintain-

ing the durability of the system. During the optimization process, engineers synthe-

size the design of components in the valvetrain system (e.g., cam profile, spring, etc.)

to meet the intended performance target. To achieve such goals, various computer-

aided engineering models are simultaneously employed to achieve the best balance

of performance and durability attributes. Multi-body dynamic computer models are

commonly employed to optimize the dynamic behavior of a valvetrain, especially at

high engine speeds, where the spring behavior becomes highly nonlinear (see Fig-

ure 1.3 below) in an internal combustion engine (Philips, Schamel and Meyer (1989).

The model can be used to study typical valvetrain system characteristics in terms of
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durability, noise, and valve sealing. Detailed three-dimensional geometric informa-

tion as well as other physical properties such as valve seat, spring (spring surge and

coil clash), camshaft torsional and bending, cam-follower hydrodynamic, and lash

adjuster dynamics are included in the models. The model is very crucial for guiding

valvetrain performance optimization while maintaining a stable valvetrain dynamic

behavior. One indicator of a stable valvetrain is that the valve movement must follow

a prescribed motion determined by the camshaft profile. At high speed valvetrain

operations, however, this may not be the case, as the effect of inertia on the dynamic

behavior becomes prominent. This phenomenum is especially crucial during valve

closing to minimize valve bounce. Figure 1.4 shows the motion errors of the valve

compared to the prescribed motion by the camshaft for the first four designs listed

in Table 1.5. A perfectly stable valve train should have a straight line or zero error

throughout the crank angles. From Figure 1.4, we can see that the variability of the

motion errors varies for different design configurations.

In this situation, engineers attempt to minimize motion errors by finding the

best level-combination of the factors, such as cylinder head stiffness, rocker arm stiff-

ness, hydraulic lash adjuster, spring, cam profile, etc. To achieve this goal, one is in-

terested in understanding the effects of each design variable on the motion errors. In

this case, the response variable (i.e., amount of motion error) is defined over a crank

angle range, instead of a single value; thus, it is considered a functional response.

Table 1.5 depicts an experimental matrix which was applied to the computer

model to minimize the motion error, particularly to minimize valve bounce during

valve closing. This is a typical example of functional response with intensively sam-

pling rate. To build up a parsimonious metamodel, nonparametric smoothing tech-

niques should be used to construct a good predictor for the functional response.
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Figure 1.3. Roller finger follower valvetrain system.

1.2 Contribution of this Dissertation

As mentioned before, there is few existing works on modeling functional re-

sponse computer experiments. Li, Sudjianto and Zhang (2005) have done pioneering

work on modeling computer experiment with a functional response by using func-

tional linear models. A general framework of modeling functional response com-

puter experiments is given in Chapter 7 of Fang, Li and Sudjianto (2005). In this

dissertation, we will develop new modeling procedures for functional response com-

puter experiments.

In Chapter 3, we will propose multivariate Gaussian kriging models for sparse

functional response computer experiments, of which Example 1.2 is a typical ex-

ample. The newly proposed multivariate Gaussian kriging models may be directly
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Figure 1.4. Valve motion errors of the first four valvetrain designs listed in Table 1.5.

applied for multiple response computer experiments. Using the theory of the ma-

trix normal distribution, we propose a new estimation procedure for the multivari-

ate Gaussian kriging models and derive the best linear unbiased prediction for the

sparse functional response computer experiments. We further proposed an algo-

rithm to maximize the likelihood function of multivariate Gaussian kriging mod-

els and discuss issues related to implementation the proposed algorithm. To inter-

pret the resulting models, we further extend the functional ANalysis Of VAariance

(ANOVA) decomposition to multivariate Guassian kriging models. To conduct func-

tional ANOVA decomposition, we derive the closed forms for the integrals involved

in the functional ANOVA decomposition. All proposed modeling procedures are

validated by a simulation study. We further compare the multivariate kriging model

with the existing univariate kriging model for single response computer experiments
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Table 1.5. Design for Valvetrain Experiment

Head RA Lash Cam Clearance Spring Ramp

Stiffness Stiffness Adjuster Phasing Height

1 1 1 1 1 1 1

2 1 1 1 1 2 3

1 2 1 1 2 1 3

2 2 1 1 2 2 1

1 1 2 1 2 2 2

2 1 2 1 2 1 2

1 2 2 1 1 2 2

2 2 2 1 1 1 2

1 1 1 2 2 2 2

2 1 1 2 2 1 2

1 2 1 2 1 2 2

2 2 1 2 1 1 2

1 1 2 2 1 1 3

2 1 2 2 1 2 1

1 2 2 2 2 1 1

2 2 2 2 2 2 3

by simulation studies. We found that the proposed multivariate kriging models out-

performs the univarate kriging models. For example, the multivariate kriging models

may reduce 30% prediction error when noise level is high. As an illustration, we give

a detailed analysis of data presented in Example 1.2 in this chapter.

Chapters 4 and 5 are devoted to developing new modeling procedures for

functional response computer experiments with high sampling rate. Example 1.3 is a

typical example of this kind of computer experiments. We propose spatial-temporal



14

model for functional response computer experiments. The proposed spatial-temporal

model is a natural extension of the Gaussian kriging model for functional response

computer experiments. We further propose functional linear models to represent the

overall trend in the spatial-temporal model in Chapter 4, while partially functional

linear models are used to estimate the overall trend in the spatial-temporal model in

Chapter 5. Due to the special data structure of functional response computer exper-

iments, we propose an estimation procedure for functional linear models in Chapter

4, and a back-fitting algorithm for partially functional linear models in Chapter 5.

The error process in the spatial-temporal model is assumed to be a Gaussian process

with both spatial and temporal indices. We extended the estimation procedure of

kriging models for the error Gaussian process, and derive the best linear unbiased

prediction. We further extended the functional ANOVA decomposition for the pro-

posed spatial-temporal models. A simulation study was conducted to validate the

proposed modeling procedure. Compared with the method proposed in Fang, Li

and Sudjianto (2005), our proposed method yields more accurate prediction. The

gain varies from 8% to 20%. A detailed analysis of Example 1.3 are used to illustrate

the proposed methodology.

1.3 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents

the literature review for existing modeling techniques for computer experiments.

Specifically, Section 2.2 presents existing models for computer experiments. Kernel

regression and local polynomial regression techniques are presented in Section 2.3,

The functional linear models are introduced in Section 2.4, and the partially func-

tional linear models are briefly described in Section 2.5. In Chapter 3, we propose a

model for functional response with a sparse sampling rate and develop an estima-
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tion procedure for the proposed model. In Chapter 4, we propose a modeling proce-

dure for computer experiments with functional response with an intensive sampling

rate. In Chapter 5, we propose a partially functional linear model and the associated

spatial-temporal model for computer experiments, which is a more parsimonious

model than the functional linear model. Chapter 6 presents a summary of this disser-

tation work, and propose some future research work.



Chapter 2

Literature Review

Similar to physical experiments, computer experiments are performed to study

a certain problem under a certain set of controlled experimental variables (input vari-

ables). Due to the rapid development of computer power at almost a fixed price,

researchers conduct more and more computer experiments. In the early stages of

product development, researchers prefer computer experiments over physical exper-

iments because it is less expensive and less time-consuming. At the middle stage of

product development, researchers conduct both computer experiments and physical

experiments. For example, when there are some variables which are beyond control

by the experiment, researchers want to use computer experiments to simulate the sit-

uation which is the same as the physical experiment and then to check if the computer

simulation result is the same or at least similar with the real experimental result. This

is called verification. Then researchers will vary the ‘out of control variables’ in the

code and conduct the computer experiment to examine the effect of those variables.

In various research areas, scientists rely on computer experiments. Typically,

in computer experiments, the same input yields the same output as there is no ran-

dom error involved in the experiments. If the model is not complicated or if the

problem is simple enough, then the computer experiments can be very fast.

The disadvantages for computer experiment include that it is not real in the

sense that we probably can never find the true mechanism in the real process. When

16
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we model it in the computer experiment, the accuracy of the model is the biggest

question. It is not real (or at least not as real as the real experiments) also because it

cannot take into account environmental factors as in a real experiment and it can not

take the variation of the value for the input variable into account.

To deal with the first problem, one needs better computer models and hence

models become more and more complicated. This results in the need for more com-

puter resources. In reality, one always pushes the model to the limit of the computer

resources, which results in the computation time remaining almost unchanged with

the rapid increase of CPU speed and capacity. Hence, to solve large and complicated

problems, the computation is always time-consuming. Usually one run on a super-

computer for a complicated problem takes weeks or a month. The benefit of this is

that the computational result is more accurate and realistic. But still the expense of

the computation eliminates the possibility of running it thousands of times in order

to explore in detail the importance of the input variables and to examine the model

better.

Statisticians may play important roles in dealing with these problems in com-

puter experiments because they can handle the uncertainty by using statistical meth-

ods. In a computer experiment, there are always some input variables and the ex-

periment result will have some output. Let X = (X1, X2, · · · , Xp) ∈ Rp denote the

input variable vector for the computer code, where Xj is the j-th component in the

input variable X. Let Y = (Y1, Y2, · · · , Yq) ∈ Rq denote the computer output and Yj

is the j-th component of the output. Let f(X) stand for the computer code with input

variable X, then the model for the computer experiment is

Y = f(X). (2.1)

Often we can normalize each of the components Xj in the input variable and



18

hence we can treat the input variable X ∈ [0, 1]p. The number of input variables, p, the

model function, f(X), and the time to compute the function f(X) are three important

factors in these computer experiments. Sometimes, p is very small; sometimes, there

are over fifty input variables for the code. The model function sometimes is very

simple: the code only consists of several lines. However, in general, there are tens of

thousands of lines of code which is a fairly complicated model. The computing time

ranges from several milliseconds on a PC to weeks of CPU hours on a parallel cluster

machine.

There is no random error associated with the model (2.1). So the same input

value X, the same computer experiment will give the same output Y. All the com-

puter experiments are deterministic for given input values. So can a statistician deal

with this kind of problem using statistical method? Where does the uncertainty come

in?

To answer these questions, we need to carefully consider the real meaning of

computer experiments. There are several types of the input variables. The most fre-

quently seen variables are control variables whose values can be set accurately by the

scientist to control the output of the process. The second type of input variables are

environmental variables which can not be set accurately in a physical experiment and

hence vary much more. For example, in the Computational Fluid Dynamics (CFD)

study of the flow through a pipe, the pipe’s diameter is a control variable because

it will not change during the experiment. On the other hand the flow velocity and

the flow flux are environmental variables because although they can be controlled

within a small range, they will not be constant throughout the entire real experiment.

So from a statistical point of view, these environment variables will be treated as ran-

dom variables with some distributions.
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2.1 Goals for computer experiment

There are many situations in which an accurate approximate model (also

known as metamodel) for computer experiments is required. For most situations,

the time and resources which are required by the computer simulation code (2.1) is

enormous and expensive. People cannot afford to run the code many times to get

the output at a dense of input variable points. And we need to do prediction, opti-

mization, robust design and sensitivity analysis. We need a metamodel which is easy

and quick to compute. Another situation in which we need metamodeling is when

the computer model f(X) is known but has a very complicated form, and we need to

understand this model in depth. Then, we can use metamodeling to fit the data from

easy to compute model g(X) and obtain a model with a simpler form. We usually

assume f(X) is a smooth function since it often simulates some physical process and

physical processes are generally smooth.

The quality of the model can be measured using various criteria, and one of

them is overall bias. Bias is defined to be the difference between the true model and

expectation of the metamodel. The overall bias can be defined on an Lp space, and

the most often used one is on L2 space, which is also called integrated square error

(ISE) ∫

χ
(f(x)− g(x))2w(x)dx, (2.2)

where χ is the region of input variables, w(x) is weighted function which defines the

relative importance of each point in the region χ. In computer experiments, since

there is no measurement random error, ISE is equivalent to the usual prediction er-

ror (PE). By minimizing ISE (PE in computer experiments), we can obtain the least

squares estimator for the metamodel (2.4) below.

Actually ISE is the square of the L2 distance between g(X) and f(X). Unfor-

tunately, we can not calculate ISE in most situations because it is too expensive to
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evaluate f(X) at all untried input value. Another measure is the mean integrated

square error (MISE)

MISE = E

∫

χ
(f(x)− g(x))2dx =

∫

χ
E(f(x)− g(x))2dx

=
∫

χ
(Eg(x)− f(x))2dx + Var{g(x)} (2.3)

= bias2{g(x)}dx + Var{g(x)},

where we assume the expectation and integration can be exchangeable. From this

formula, we can see the MISE consists of two parts, variance and bias. Generally, we

will not be able to minimize variance and bias simultaneously. Instead, the variance

will increase if we try to decrease the bias and vice verse. Hence, we need to find a

set of estimators which can minimize the total MISE.

We often want to find the global maximum/minimum for the computer model

(2.1). If the time and resources required by the computer code is fairly long and ex-

pensive, then we cannot afford to run the model (2.1) over a set of dense grid points

in order to find the maximum/minimum. As an alternative, we can search over all

the dense grid points using the metamodel which is easy and quick to compute. If

the bias and variance of the metamodel is small enough, then we can use the max-

imum/minimum of metamodel to approximate the corresponding extreme value of

the original computer model.

The optimization procedure involves multiple responses as the objective func-

tion to be maximized/minimized with some kind of constraints to be enforced. Meta-

modeling together with nonlinear iteration method can be utilized to solve this kind

of constrained optimization problem.

When input variables contain some environmental variables, we will need to

do sensitivity analysis to see whether the computer model is sensitive to the input
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values. In other words, how much variation will the response have if the input vari-

able changes a bit? This kind of analysis is one of the main interests in the decision

making process such as engineering design. The most often used measurement of

the proportion of variation of response y explained by variations of input variables x

(MacKay (1995)) is

CRi =
Var{E{y|xi}}

V ar{y}
for all the components of input variable x where CRi is called the correlation ratio.

This can be easily obtained by using the easy to compute metamodel. This is espe-

cially attractive when the computer code f(x) is expensive to run. Chapter 6 of Fang

etc (2005) gives a thorough discussion on sensitivity analysis.

2.2 Models for computer experiment with a single response

Once the computer experiment (computer simulation code) is fixed, the com-

puter model (2.1) is also fixed. By ’fixed’, we mean for the same input parameter X,

the model (2.1) will give out the same output Y. This is a deterministic model with-

out additive random error on the response. Typically, we approximate the computer

experiment model (2.1) by

f(X) ≈ g(X) + η(X) (2.4)

where g(X) is an approximation function whose expectation is equal to f(X). De-

pending on different approaches, η(X) have different meanings. One calls this kind

of model a ’model of the model’ or metamodel (Kleijnen (1987)).

In the regression approach, we will consider η(X) as the error between the

mean function g(X) and the computer model f(X). The easiest approach is linear

regression, in which one takes g(X) = Z(X)β. Then the least square estimator for the

coefficients β is

β̂LS = (
∫

Z(X)′Z(X)dF )−1

∫
Z(X)′YdF (2.5)
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where F is the distribution of X. Then

IMSE =
∫

(Y− Z(X)β)2dF

The integration in (2.5) can be estimated by using the usual average over the observed

data information. Then (2.5) can be written as

β̂LS = (
1
n

n∑

i=1

Z(xi)′Z(xi))−1 1
n

n∑

i=1

Z(xi)′Yi (2.6)

If the computer model f(X) is approximately linear in X, we can expect that

linear regression will perform well. Otherwise, linear regression will generate a large

bias. Polynomial regression, spline methods, local modeling, and neural networks

are all regression methods which attempt to improve this.

In the literature of modeling computer experiments, the most common method

is to interpolate the outputs over the design points. Therefore metamodels are often

referred to as surrogates, emulators, or low-fidelity models (as opposed to the high-

fidelity computer experiment model) (Bates et al. (2003)). It is well known in poly-

nomial series regression that when the number of predictors equals the number of

observations, then the mean function will pass through each observational point. A

kriging approach is another one of these models. Since in this thesis, I use the exten-

sion of single variable kriging model and local modeling technique, the next couple

sections introduce the background for these models in detail.

2.3 Kriging Model

The kriging model is an interpolation model which is widely used in many

areas (Journel and Huijbregts (1978), Ripley (1981)). It was originated in geostatis-

tics in the 1960’s by Georges Matheron in Paris who applied it to problems in the

mining industry(Matheron (1963)). Several empirical studies have proved its superi-

ority over other interpolating techniques such as splines (Laslett (1994)). Kriging is
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now widely used in many fields including spatial statistics (Cressie (1986), Cressie

(1993)) and computer experiments (Sacks et al. (1989b)). The kriging model interpo-

lates data at the observation point, and the variance becomes larger as the prediction

point moves away from the observation points. It can be interpreted from a Bayesian

point of view.

In kriging, the mean function f(X) in model (2.1) can be modeled as two parts

Y(x) = Z(x)β + Φ(x). (2.7)

The first part is the general linear model, Z(x) are known fixed basis functions, β

are unknown coefficients which we need to estimate. The second part Φ(x) is a sta-

tionary Gaussian random function which has multivariate normal distribution with

E[Φ(X)] = 0 and covariance

Cov(Φ(xi),Φ(xj)) = σ2R(‖xi − xj‖), (2.8)

where R(‖xi − xj‖) is the correlation coefficient between two points xi and xj .

Denote the computer output from (2.1) as (xi, yi), i = 1, · · · , n, let Y = (y1, · · · , yn)′

be a realization of the random variable. Let the (i, j)-th element of the matrix Σ as

Σij = σ2R(‖xi − xj‖),

then Σ is the variance-covariance matrix for y. Let R denote the matrix which com-

ponents are R(xi, xj), i, j = 1, · · · , n. Then

Y|x ∼ MV Nn(Z(x)β,Σ).

We can see under the kriging model the random vector Y has multivariate normal

distribution with mean vector determined by the part Z(x)β and variance-covariance

matrix Σ = σ2R where R satisfies a certain set of conditions in order for the Φ(x)
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process to be stationary. The linear mean part Z(x)β models the data trend and the

variance-covariance part controls the smoothness and other properties of the model.

In order to understand the kriging model, we need to employ standard mul-

tivariate normal theory to obtain various useful properties of the model.

Suppose that

Y =




Y0

Y1

Y2

...

Yn




∼ Nn+1(µ, Σ), µ =




µ0(x0)

µ1(x1)

µ2(x2)
...

µn(xn)




(2.9)

where Σ is the variance-covariance matrix of vector Y, the (i, j)-th element of the

matrix Σ is

(Σ)ij = Cov(Y (xi), Y (xj)) (2.10)

Partition Y, µ and Σ in the following way:

Y =


 Y1

Y2


 , µ =


 µ1

µ2


 , Σ =


 Σ11 Σ12

Σ21 Σ22


 (2.11)

Assume Y1 and µ1 are vectors with n1 elements, let n2 = n + 1− n1, then Y2 and µ2

are vectors with n2 elements. From the theory of the multivariate normal distribution

Arnold (1981) the following statements are valid:

• Yi ∼ Nni(µi, Σii).

• Y1 and Y2 are independent if and only if Σ12 = 0.

• Suppose Σjj > 0, then

Yi|Yj ∼ Nni(µi + ΣijΣ−1
jj (Yj − µj),Σii − ΣijΣ−1

jj Σji) (2.12)
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For the special case n1 = 1, we have the observations Y2 = (Y1(x1), Y2(x2), · · · , Yn(xn))′,

the conditional distribution of Y0(x0) given Y2 at x = x0 is

Y1|Y2 = Y0|Y2 ∼ N1(µ0 + Σ12Σ−1
22 (Y2 − µ2), Σ11 − Σ12Σ−1

22 Σ21). (2.13)

Partition Σ

Σ =


 Σ11 Σ12

Σ21 Σ22


 = σ2


 1 rT

0

r0 R


 (2.14)

where

R = (Rij)n×n, Rij = corr(Y (xi), Y (xj)) (2.15)

for i = 1, · · · , n and j = 1, · · · , n. Then the conditional distribution of equation (2.13)

can be written

Y0|Y2 ∼ N1(µ0 + rT
0 R−1(Y2 − µ2), σ

2(1− rT
0 R−1r0)). (2.16)

Using the above multivariate normal theorems for the mean function which

has the form of µ(x) = Z(x)β, where Z(x) is the basis matrix, it is straightforward

to show that the best linear unbiased predictor (BLUP) for Y (x0) at unobserved data

point x0 given the known data point Y = (Y (x1), · · · , Y (xn))′

Ŷ (x0) = E(Y (x0)|Y) = z′(x0)β̂ + r(x0)′R−1(Y− Zβ̂), (2.17)

where z(x0) = (z1(x0), · · · , zp(x0))′, σ2(R)ij = σ2R(xi, xj) = Cov(Φ(xi), Φ(xj)), σ2r(x0) =

(Cov(Φ(x0), Φ(x1)), · · · , Cov(Φ(x0), Φ(xn)))′, and β̂ is the weighted least square esti-

mator where β̂ = (Z′R−1Z)−1Z′R−1Y.

The variance for Ŷ (x0) is

V ar(Ŷ (x0)) = σ2 − (z′(x0), r′(x0))


 0 Z′

Z R



−1 

 z(x0)

r(x0)


 (2.18)

The first part of (2.17) is the generalized least squares prediction at point x0

given the variance-covariance matrix Σ = σ2R. The second part (correction term)
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forces the regression line to pass through the observation data. The behavior of the

“forcing” part is controlled by R. The prediction at points xi are exactly the corre-

sponding observation and hence the variance of prediction at this point is zero. As

the prediction point x0 moves away from the point xi, the second part of (2.17) goes

to zero, which result in the generalized least squares estimator in the area far away

from the observation.

To show this point, consider the correction term in (2.17) r(x0)′R−1(Y − Zβ̂),

which is a linear combination of the residuals Y − Zβ̂ according to the model (2.7)

with prediction point specific coefficients

r(x0)′R−1(Y− Zβ̂) =
n∑

i=1

ci(x0)(Y− Zβ̂)i

where ci(x0) is the ith element of vector R−1r(x0) and (Y − Zβ̂)i is the ith residual

based on the fitted model.

To see why this correction term forces the predictor to interpolate the obser-

vation data, suppose that x0 = xi for some fixed i, 1 ≤ i ≤ n, then z(x0) = z(xi),

σ2r(x0) = σ2r(xi) = (Cov(Φ(xi), Φ(x1)), · · · , Cov(Φ(xi), Φ(xn)))′ which is the ith col-

umn of R. Thus R−1r(x0) = (0, · · · , 0, 1, 0, · · · , 0)′ = ei, the ith unit vector, an n-

component vector with ith element as unit and rest of elements are zeroes. This is

because this product is the ith column of R−1R = In, the n×n identity matrix. Hence

r(x0)′R−1(Y− Zβ̂) = e′i(Y− Zβ̂) = Yi − z(xi)β̂

and hence

Ŷ (x0) = Ŷ (x1) = z′(xi)β̂ + Yi − z(xi)β̂ = Yi

when x0 = xi which shows the prediction interpolate the observational data.

In the kriging model, the bias part Φ(x) is treated as a Stationary Gaussian

Random Function with mean zero. Stationary means the distribution of Φ(x) does not

depend on the location x.
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We can see that the distribution of Φ(x) solely depends on its variance-covariance

matrix Σ or correlation matrix R. The selection of R plays a key role in the computer

experiment modeling and in the predictive process. Koehler and Owen (1996) and

Santner et al. (2004) summarize popular choices for R and their properties.

Basically, any positive definite matrix R can be used as a correlation matrix

function, but for simplicity, people usually restrict this function to a stationary func-

tion such that R(x1, x2) = R(x1 − x2) which only depends on the distance not on the

actual location. A further restriction makes the correlation function only depend on

the magnitude of the distance

R(x1, x2) = R(‖x1 − x2‖).

For multi-dimension problem, the correlation function will be simplified to

R(x1, x2) =
s∏

j=1

Rj(‖x1j − x2j‖).

Hence it’s a product of univariate correlation functions and only univariate correla-

tion function are of interested.

The choice of correlation function R is usually made based on considerations

of smoothness, where smoothness reflects the number of times the random function

Y is differentiable, There are several main types of univariate correlation functions.

The cubic correlation family is given by

R(d) = 1− 3(1− ρ)
2 + γ

d2 +
(1− ρ)(1− γ)

2 + γ
|d|3 (2.19)

where d ∈ [0, 1] is the normalized distance, ρ = corr(Y (0), Y (1)) ∈ [0, 1] is the corre-

lation between the end points observations, γ = corr(Y ′(0), Y ′(1)) is the correlation

between the end point derivatives. Various version of this type can be obtained by us-

ing correlations between end point second derivatives and mixed situations in order
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to control the predictor’s behavior on the boundaries. The prediction model in one

dimension based on this type of correlation functions is a cubic spline interpolator.

The exponential correlation function has the following form:

R(d) = exp(−θ|d|) (2.20)

for the normalized distance d and θ ∈ (0,∞). Processes with this type of correlation

functions are called Ornstein-Uhlenbeck processes. The predictors with this kind of

correlation functions are non-differentiable.

The above exponential correlation function can be generalized into the fol-

lowing form (Sacks et al. (1989b)):

R(d) = exp(−θ|d|q) (2.21)

where 0 < q ≤ 2 and θ ∈ (0,∞). When q = 1, this correlation function turns into

the exponential correlation function. As q increases, this function will result in a

smoother predictor. But as long as q < 2, these processes are not mean square dif-

ferentiable. The so-called Gaussian correlation function is the case when q = 2. The

corresponding processes are infinitely mean square differentiable.

Note that the cubic correlation function is twice differentiable, the exponential

and Gaussian family are zero and infinitely many mean square differentiable. The

Matern correlation function (Matern (1947); Yaglom (1987); Stein (1989)) is a more

flexible one through which the degree of smoothness can be controlled. It has the

following form:

R(d) =
(θ|d|)µ

Γ(µ)2µ−1
Kµ(θ|d|) (2.22)

where θ ∈ (0,∞) and µ ∈ (−1,∞). Kµ(.) is the modified Bessel function of order

µ. When µ > m, the associated process will be m times differentiable. The degree
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of differentiability can be controlled by parameter µ and θ controls the range of the

correlations.

The distribution of the random vector Y depends solely on the coefficient vec-

tor β and the variance-covariance matrix Σ in the kriging model. Given Σ, the gen-

eral least squares estimator is the best linear unbiased estimator. But in practice, the

variance-covariance matrix is unknown to us. Except for the unknown parameter

σ2, in the various correlation functions aforementioned, there are either one or two

unknown parameters which will fully determine the corresponding correlation struc-

ture.

There exist several approach to estimating all these unknown parameters.

Lehman (2002) compared several methods to estimate the unknown parameters in

these models and recommended the maximum likelihood estimator (MLE) and re-

stricted maximum likelihood estimator (ReMLE). It is a widely known fact that MLE

is a biased estimator for σ2 while ReMLE is an unbiased estimator for σ2. But ReMLE

can not estimate the coefficient vector β (this is where the “restricted” comes from).

Both methods attempt to minimize likelihood related quantities. MLE works

on the original likelihood function and the MLE for β is the general least squares

estimator. The MLE for σ2 is

σ̂2 =
1
n

(Y− Zβ̂)′R−1(Y− Zβ̂). (2.23)

Both β̂ and σ̂2 are functions of R, which is either a function of parameter θ or θ and µ.

Unfortunately, the normal equations for θ and other unknown parameters in

correlation functions are generally complicated and do not yield any analytic solu-

tion. So numerical algorithm can be used to iteratively get the MLEs for β, σ2 and the

parameters in correlation functions simultaneously. See Mardia and Marshall (1984)

for an overview of the MLE procedure. The ReMLE is very similar to MLE except
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that it deals with only the part of likelihood function which is related to the unknown

parameters in the correlation function. It also needs an iterative approach to get the

estimator. When the sample size is small, the likelihood function becomes flat around

the maximizer which leads to the resulting kriging interpolation behaving erratically.

Li and Sudjianto (2005) proposed a penalized likelihood approach for the Gaussian

kriging model to deal with such an issue.

2.4 Local Polynomial Regression

The polynomial and spline regressions are examples of global approximations

in nonparametric smoothing methods. As we have seen, the linear regression and

polynomial regression will have a large bias because the degree of the polynomial re-

gression can not be controlled locally and continuously. At the same time, individual

observations can have a big influence on remote parts of the curve in a polynomial

model. Instead of considering the coefficients of the predictors as constants, local

polynomial regression makes these coefficients vary according to the predictor val-

ues and are determined only by the data which are near the current location. This is

where the word ’local’ comes from. Hence it aims to relax assumptions on the form

of regression function to let data search for a suitable form. It can be used in other

statistical problems such as goodness of fit tests. It can deal with functional data and

longitudinal data. It is very flexible, can reduce possible model bias, and can explore

fine structure relationship easily.

There are two main kinds of local modeling techniques, kernel and local poly-

nomial(including local linear) regression. One found that the smoothing splines are

asymptotically equivalent to kernel regression. Both smoothing splines and local lin-

ear regression are the most commonly used smoothing methods though the penalized

spline is the easiest to implement.
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Fan and Gijbels (1996) systematically summarized the theoretical properties

of local polynomial regression. It is proven to be the best linear estimator, the best

boundary correction method, and nearly the best among nonlinear estimators. Al-

though there is a lot of literature on this method, it has not been a popular approach

in modeling computer experiments. Hφst (1999) used the local polynomial regression

with kriging to model computer experiments. Tu and Jones (2003) present some stud-

ies on how to use local polynomial regression to fit computer experiment data. These

works show the possibility of local polynomial regression for computer experiments.

2.4.1 Kernel regression

Consider a one-dimensional non-parametric regression model. Suppose (xi, yi),

i = 1, · · · , n is a random sample from the following model:

Y = m(X) + ε (2.24)

where E(ε|X = x) = 0 and V ar(ε|X = x) = σ2(x). m(x) = E(Y |X = x) is called

the regression function. The goal of non-parametric regression is to estimate m(x)

without assuming any parametric form on the regression function. A naive way for

the estimating regression function is to use a local average. An improved version of

this is the locally weighted average

m̂(x) =
∑n

i=1 wi(x)yi∑n
i=1 wi(x)

, (2.25)

where wi(x), i = 1, · · · , n are weights. This estimator can also be interpreted as a

solution of a weighted least square problem

min
m(x)

n∑

i=1

(yi −m(x))2wi(x). (2.26)

A kernel function is used to obtain the weight function wi(x). Let K(x) be a kernel

function which satisfies
∫

K(x)dx = 1 and h is a positive number called the band-

width or smoothing parameter. Take the weight function wi(x) to be h−1K((xi −
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x)/h), denoted by Kh(xi − x). We want to use more information from the observa-

tions which are near the current location x so that at point x (or at origin of function

Kh), the kernel function should have the highest value, and we want the observations

which are far from the point x to have smaller influence on this point. Thus, when

the magnitude of xi − x is large, the kernel function should be very small. Then the

estimator (2.25) becomes

m̂h(x) =
∑n

i=1 Kh(xi − x)yi∑n
i=1 Kh(xi − x)

, (2.27)

which is referred to as NW-kernel estimator and was proposed independently by

Nadaraya (1964) and Watson (1963).

Another kind of kernel smoothing estimator is called GM estimator (Gasser

and Muller) in the following form

m̂h(x) =
n∑

i=1

∫ si

si−1

Kh(u− x)duyi, (2.28)

where si = (x(i) + x(i+1))/2, x(0) = −∞ and x(n+1) = +∞ and x(i) is the ith order

statistics.

2.4.2 Local polynomial(including local linear) regression

The NW-kernel estimator is actually a weighted least square estimator using

a local constant approximation. It can be directly extended to local polynomial re-

gression. Suppose m(x) is smooth, applying a Taylor expansion for m(x) in a neigh-

borhood of x (for example, for xi close to x)

m(xi) ≈
p∑

j=0

m(j)(x)
j!

(xi − x)j =
p∑

j=0

βj(xi − x)j = x′iβ, (2.29)

where xi = (1, (xi − x), · · · , (xi − x)p)′ and β = (β0, β1, · · · , βp), βj = m(j)(x)
j! . In-

tuitively, data points close to x will have more influence about m(x). This suggests
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Figure 2.1. Kernel functions

using a locally weighted polynomial regression

min
β

n∑

i=1

(yi − xiβ)2Kh(xi − x). (2.30)

Denote W = diag(Kh(x1−x), · · · , Kh(xn−x)), and the design matrix associated with

xi, i = 1, n as X, then the solution to locally weighted least squares (2.30) is

β̂(x) = (X′WX)−1X′WY, (2.31)

where Y = (y1, · · · , yn)′. The estimator for the regression function m(x) is

m̂(x) = β̂0(x).

Furthermore, an estimator for the ν-th order derivative of m(x) at x is

m̂ν(x) = ν!β̂ν(x).

The choice of kernel function is not sensitive to the estimation of m(x) (Mar-

ron and Nolan (1988)). The symmetric kernel function has many advantages over

asymmetric functions. The most significant one is that it will have better asymptotic

properties. The most commonly used kernel function is the Gaussian kernel function

K(x) =
1√
2π

exp(−x2/2). (2.32)
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Another popular choice for the kernel function is the symmetric beta family

K(x) =
1

Beta(1/2, γ + 1)
(1− x2)γ

+, γ = 0, 1, · · · (2.33)

The support of this kernel function is [-1,1] and Beta(., .) is the beta function. The cor-

responding kernel function when γ = 0, 1, 2 and 3 are the uniform, the Epanechnikov,

the biweight and the triweight kernel function (Fan and Gijebls, 1996). The optimal

kernel function is proved to be the Epanechnikov kernel Kopt = 0.75(1 − x2)+ but

other symmetric kernel functions have comparable performance. Figure 2.1 depicts

the commonly used kernel functions.

The smoothing parameter h controls the smoothness of regression function.

The choice of the bandwidth is of crucial importance. If h is too large, then the

smoothing result will miss the fine structure of the data. On the other hand, if h

is too small, then the noise will show up too prominently. Jones et al. (1996a) and

Jones et al. (1996b) gave a systematic review on bandwidth selection. In theory, one

can obtain the optimal bandwidth by minimizing the MISE which is a function of h.

In practice, data driven methods are utilized to choose the bandwidth by visualizing

the resulting estimated regression function.

The choice for the order of the local polynomial regression p is highly asso-

ciated with ν, the number of derivatives that the mean function m(x) attempts to

approximate. Asymptotic results show that in order to obtain higher order accuracy,

we need to choose p such that p = ν + 1 or p = ν + 3. So if estimating m(x) is our

purpose, then p needs to be 1 or 3. Hence we need to use local linear or local cubic

regression to estimate the mean function.

Since in many applications more than 50% of data points are near the bound-

ary, the boundary effect of the estimator is a very important problem. Most nonpara-

metric smoothers such as NW and GM estimators behave poorly near the boundary.
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Local polynomial regression performs well on this point. When p− ν is odd, the bias

and variance will change continuously from the interior to the boundary and hence

will best eliminate the boundary effect.

The asymptotic properties of the estimates using symmetric kernels is sum-

marized as follows:

Table 2.1. Leading terms in the asymptotic biases and variances

bn = 1
2

∫ +∞
−∞ u2K(u)duh2, Vn = σ2(x)

f(x)nh

∫ +∞
−∞ K2(u)du

Method Bias Variance

NW estimator m′′(x) + 2m′(x)f ′(x)
f(x) bn Vn

GM estimator m′′(x)bn 1.5Vn

Local linear m′′(x)bn Vn

Although the local polynomial regression was originally proposed for non-

parametric regression, it can be applied directly for modeling computer experiments

where there is no random error ε.

2.5 Functional Linear Model

In general, data collected over an interval of some index with an intensive

sampling rate are referred to as functional data. For example, data were collected

every 20 seconds over a period of three days; and image data can be viewed as func-

tional data collected over a 2-dimensional interval when a set of image samples are

available.

Unlike longitudinal data which are sparse and collected irregularly, func-

tional data are more dense and regular; hence, we can treat the response as a smooth

function. With the rapid development of computer technology and devices for col-

lecting data, people can easily collect and store functional data. Functional data

analysis is becoming popular in various research fields. Many techniques have been
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introduced for the analysis of functional data which allows the exploration of vari-

ability in sample of curves and allows for the research of common structures among

the curves or groups of them. A very interesting application consists of the possibility

of constructing regression models through which we describe the relation between a

real variable and an explanatory variable having a functional nature. Such a model is

termed a functional regression model.

Various interesting examples of functional linear models can be found in liter-

ature. Ramsay and Silverman (1997) present many interesting examples of functional

data and introduce various statistical models to fit the functional data. Hastie and

Mallows (1993) proposed some application to quantitative chemistry, and Marx and

Eilers (1996) illustrated a phonemes classification by means of the log-spectra of a

sequence of spoken syllables. Cardot et al. (1999) proposed a forecasting model in

order to explain winter wheat yield as a linear function of the duration of the crop

and climatic variations. Ferraty and Vieu (2002) illustrated the prevision of fat con-

tent in some meat samples from the respective spectrometric curves. Li et al. (2005)

studied the computer output of the functional motion error of the valvetrain system

under varies design cases. Zhang (2005) studied modeling computer experiments in

detail with functional responses using nonparametric and semi-parametric models.

The functional linear model originated from varying coefficient models which

were introduced in Hastie and Tibshrani (1993). In this model, suppose we have

a random variable Y whose distribution depends on η, and we also have predic-

tors X1, · · · , Xp and R1, · · · , Rp, then the varying coefficient model has the following

form:

η = β0 + X1β1(R1) + · · ·+ Xpβp(Rp), (2.34)

which says the coefficients β1, · · · , βp are functions of variables R1, · · · , Rp, and η =

g(µ) is the link function in the generalized linear models where µ = E(Y |X).
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For a special case of this model, the Rjs will often be the same variable, such

as time, angle, degree or distance. Suppose for predictors X1, · · · , Xp, we have dense

measurements Y each over times t = (t1, · · · , tm). Then we can model this as

η(t) = β0(t) + X1β1(t) + · · ·+ Xpβ1(t) (2.35)

This model is referred to time-varying coefficient model. Furthermore, in (2.35), if for

all observations, the measurements happens at the same time tj , j = 1, · · · ,m, then

this model is called a functional linear model. From this, we can see that for a given

time t, functional linear models are nothing more than merely an ordinary linear

model. As t changes, the relationship between the response Y with the predictors Xi

changes according to the relationship between t and βjs. From (2.35), we can see that

the functional linear model relaxes the assumption for the linear model, allowing the

variation of the coefficient with some variable hence increasing the flexibility of the

linear model which will greatly reduce the model bias.

Faraway (1997) applied smoothing splines to calculate the function Yi(t) in the

varying-coefficient model for each observation in the case where the measurements

occur at different time location. Then he used least squares to get the estimation for

βj at each time location. Hoover et al. (1998) proposed two nonparametric estimators

for the smoothed functions βj(t). One is by an orthogonal B-spline basis; another

is by local polynomial regression. They also proposed a cross-validation criterion

for selecting the corresponding smoothing parameter. Wu et al. (1998) studied the

asymptotic properties of the local polynomial regression estimator for βj(t). These

asymptotic results are used to construct the pointwise and simultaneous confidence

region for βj(t). In these approaches, the estimators for smooth functions βj(t) are

one-step estimators. These estimating procedures have several drawbacks, such as

the implicit assumption of all the functions βj(t), j = 0, · · · , p possessing the same
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degree of smoothness. In addition, the computation is not efficient, perhaps under-

smoothing some of the underlying coefficient functions when these functions have

different degrees of smoothness.

Fan and Zhang (1999) addressed the first drawback of the one-step estima-

tor and proposed a two-step estimation procedure. They take the one-step estima-

tion result as their first step result, then treat the predictors with different degrees of

smoothness, and augment the optimality of the estimator in their second step estima-

tion.

Another two-step estimation procedure which was proposed by Fan and Zhang

(2000) overcomes the drawback of the inefficiency and computational expense of the

one-step estimator. For simplicity of description, assume that all the data is observed

at the same time and at dense points tj , j = 1, · · · ,m. This can be achieved by binning

the functional data with respect to observed times tij if necessary. They suggested

that in the first step, we estimate β(tj) by linear regression using n data points col-

lected at time tj . They use the local polynomial regression to smooth (tj , β(tj)), j =

1, · · · ,m componentwisely, having estimated β(t) over t1, · · · , tm in the second step.

This procedure can be easily implemented and allows different coefficients to have

different degrees of smoothness. Li, Sudjianto and Zhang (2005) applied the two-step

estimation procedure to a functional linear model with time-invariant covariate and

use penalized splines in the second step.

2.6 Partial Functional Linear Model

In most situations, we will find that the smoothed functional coefficients have

different levels of dependency on the index variable t. Some of them strongly depend

on t while others depend on it weakly. Partial functional linear models deal with this
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situation and incorporate these two kinds of coefficients as:

y = xT α(t) + zT β + ε (2.36)

where both x and z are covariate vectors, α(t) consists of p unknown smooth func-

tions, β is a q-dimensional unknown parameter vector, and E(ε|x, z) = 0.

Partially functional linear models are a natural extension of partially linear

models which are defined as:

y = α(t) + xT β + ε, (2.37)

where α(t) is a smooth function of t, β is an unknown regression coefficient vector

and ε is a random error with E(ε|t, x) = 0. Zeger and Diggle (1994) suggested using

a backfitting algorithm to find an estimate for α(t) and β. Specifically, starting with

an initial value of β, denoted by β(0), we smooth the residual yi(tij) − xT
i β(0) over

tij to estimate α(t). Having an estimate for α(t), denoted by α̂(t), we conduct linear

regression of yi(tij)− α̂(tij) on xi(tij). Iterate this procedure until it converges. This is

basically the same as the Gauss-Seidal algorithm to compute the profile least squares

estimate. Moyeed and Diggle (1994) proposed an improved version of the backfitting

algorithm based on a partial residual approach.

Lin and Ying (2001) introduced the counting process technique to the esti-

mation scheme for the partially linear model. Fan and Li (2004) proposed two esti-

mators: a difference-based estimator(DBE) and a profile least squares estimator. In

DBE, rewrite the observed data {(tij , x(tij), y(tij)), j = 1, · · · , Ji, i = 1, · · · , n} as

{(ti, x(ti), y(ti)), i = 1, · · · , n∗} where n∗ =
∑n

i=1 Ji. Then model (2.37) turns into:

yi = α(ti) + xT
i β + εi (2.38)

Take the difference between i + 1 and i, we have:

yi+1 − yi = α(ti+1)− α(ti) + βT (xi+1 − xi) + ei (2.39)
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where ei = εi+1 − εi. Under some mild conditions, the spacing between ti and ti+1

is of order O(1/n). Hence, the term α(ti+1) − α(ti) is negligible. The least-squares

approach can be employed to estimate the parameter . The method can be further

improved by fitting the following linear model:

yi+1 − yi = α0 + α1(ti+1 − ti) + βT (xi+1 − xi) + ei (2.40)

Again, a least square approach can be utilized to get the estimation for β.

In the profile least squares approach, Fan and Li (2004) rewrite model (2.37)

as:

y∗(t) = y(t)− xT β = α(t) + ε (2.41)

and use local linear regression to get α̂(t) the approximation for α(t). It is well known

that the local linear fit is linear in y∗(t) (Fan and Gijbels, 1996). Thus, the estimate of

α(t) is linear in y(t) − xT β. Hence, the estimate for the vector α can be expressed

as α̂ = S(y − Xβ). The matrix S is usually called a smoothing matrix of the local

linear smoother. It depends only on the observation times {tij} and the amount of

smoothing h. Substituting b into (3.13), we get:

(I− S)y = (I− S)Xβ + ε (2.42)

where I is the identity matrix with order n∗ =
∑n

i=1 Ji. The weighted least square

estimation of β for above model is:

β̂ = {XT (I− S)T W(I− S)X}−1XT (I− S)T W(I− S)y (2.43)

where W is the weight matrix in the general least-squares, which can incorporate

the within subject correlation. The above estimator is called the profile least-squares

estimator. The profile least-squares estimator for the nonparametric component is

simply α(t : β̂).
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Martinussen and Scheike (1999) proposed an estimation procedure for the

model (2.36) using the notion of a counting process. Sun and Wu (2005) extended the

estimation procedure of Lin and Ying for partially linear models to model (2.36). Fan,

Huang and Li (2005) extended the profile least squares approach for model (2.36),

and further proposed semi-parametric modeling strategy for the covariance function

of random error process ε(t).



Chapter 3

Modeling Computer Experiments with Multiple Responses

The goal of this chapter is to develop models and procedures for computer

experiments with sparse functional response. In this chapter, we view the sparse

functional response as a multiple response. It has been commonly known that one

may collect multiple responses from a physical or computer experiment. However,

to the best of our knowledge, there is little work to model computer experiments

with multiple responses. In this chapter, we propose a modeling procedure for such

computer experiments by using a multivariate kriging model, a natural extension to

the ordinary kriging model. We further extend functional ANOVA of single response

to multiple responses and apply it to analyzing the effect of each design variable.

The proposed methodology is demonstrated by an analysis of Example 1.1 in the

introduction chapter, whose data is collected from a case study concerned with the

design of the engine structure to minimize the radiated noise.

The structure for this chapter is organized as follows. In Section 3.1, we re-

view the theory of matrix normal distributions. Section 3.2 presents a Gaussian Krig-

ing model for computer experiments with multiple responses. Section 3.3 gives an

estimation procedure for the Gaussian Kriging model. In a practical implementation,

one needs a numerical method to estimate the parameters in the Gaussian Kriging

model, and the first and second derivatives of the matrix. We also include these

derivatives in Section 3.3. We introduce the multivariate functional ANOVA in Sec-

42
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tion 3.4 in order to study the effect of each variables. We conduct and describe some

empirical justification by Monte Carlo simulation in Section 3.5. Finally, we conduct

a detailed analysis of Example 1.1 from Chapter 1 in Section 3.6.

3.1 Theory of Matrix Normal Distribution

Suppose Z is a (n + 1) × (s + 1) random matrix with the (i, j)-th element of

matrix Z having a standard normal distribution

Zij ∼ N1(0, 1), (3.1)

where i = 0, 1, · · · , n and j = 0, 1, · · · , s. Let Σ ≥ 0 and Ψ ≥ 0 be a (n + 1) × (n + 1)

and a (s + 1) × (s + 1) symmetric matrix respectively and let µ be (n + 1) × (s + 1)

matrix. Define

Y = Σ
1
2 ZΨ

1
2 + µ, (3.2)

then Y has a matrix normal distribution with mean matrix µ and covariance matrices

Σ and Ψ. Write

Y ∼ Nn+1,s+1(µ, Σ, Ψ). (3.3)

Express Y in column format to be Y = (Y0, Y1, · · · , Ys). Define

vec(Y) =
(
Y′0, Y′1, Y′2, · · · , Y′s

)
, (3.4)

and the Kronecker product of Σ and Ψ to be

Σ⊗Ψ =




Σ00Ψ · · · Σ0nΨ

Σ10Ψ · · · Σ1nΨ
...

. . .
...

Σn0Ψ · · · ΣnnΨ




(3.5)

Then the distribution of random matrix Y can be written as the usual matrix normal

vec(Y) ∼ N(n+1)(s+1)(vec(µ), Σ⊗Ψ) (3.6)
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It is worth noting that Σ is the variance-covariance matrix between the rows of the

random matrix Y, while Ψ is the variance-covariance matrix between the columns

of the random matrix Y. When the number of columns is one (s = 0), Ψ becomes a

positive number, denoted by σ2, from the definition (3.2), we can see in this special

case (s = 0),

Y ∼ Nn(µ, σ2Σ). (3.7)

One may partition the observation matrix Y into two parts in two different

ways. The first way is to partition it by columns, the second way is by rows. Partition

Y, µ and Ψ to be

Y = (Y0, Y1, · · · , Ys) = (Ỹ 1, Ỹ 2),

µ = (µ0, µ1, · · · , µs) = (µ̃1, µ̃2), (3.8)

Ψ =


 Ψ11 Ψ12

Ψ21 Ψ22,




where Ỹ 1 and µ̃1 are (n + 1) × s1 matrix, let s2 = s + 1 − s1, then Ỹ 2 and µ̃2 are

(n+1)× s2 matrix. As natural extensions of the multivariate normal distribution, the

following statements hold:

(1) Ỹ i ∼ Nn,si(µ̃i, Σ, Ψii)

(2) Ỹ 1 and Ỹ 2 are independent iff Ψ12 = 0

(3) Suppose Ψjj > 0, then

Ỹ i|Ỹ j ∼ Nn,si(µ̃i + (Ỹ j − µ̃j)Ψ
−1
jj Ψij ,Σ, Ψii −ΨijΨ−1

jj Ψji) (3.9)

Proof Note that

vec(Y) =


 vec(Ỹ 1)

vec(Ỹ 2)


 ∼ N(n+1)(s+1)(


 vec(µ̃1)

vec(µ̃2)


 ,


 Σ⊗Ψ11 Σ⊗Ψ12

Σ⊗Ψ21 Σ⊗Ψ22


)

(3.10)
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From the vector normal distribution result (2.12), we have

vec(Ỹ i)|vec(Ỹ j)

∼ N(n+1)si
(vec(µ̃i) + (Σ⊗Ψij)(Σ⊗Ψjj)−1(vec(Ỹ j)− vec(µ̃j)),

Σ⊗Ψii − (Σ⊗Ψij)(Σ⊗Ψjj)−1(Σ⊗Ψji))

= N(n+1)si
(vec(µ̃i) + [I(n+1)(n+1) ⊗ (ΨijΨjj)−1]vec(Ỹ j − µ̃j),

Σ⊗Ψii − Σ⊗ (ΨijΨ−1
jj Ψji))

= N(n+1)si
(vec(µ̃i + (Ỹ j − µ̃j)Ψ

−1
jj Ψji),Σ⊗ (Ψii −ΨijΨ−1

jj Ψji)) (3.11)

Hence,

Ỹ i|Ỹ j ∼ Nn+1,si(µ̃i + (Ỹ j − µ̃j)Ψ
−1
jj Ψji, Σ,Ψii −ΨijΨ−1

jj Ψji) (3.12)

We next partition Y, µ and Σ to be

Y =




Y0

Y1

Y2

...

Yn




=


 Ỹ 1

Ỹ 2


 ,

µ =




µ0

µ1

µ2

...

µn




=


 µ̃1

µ̃2


 , Σ =


 Σ11 Σ12

Σ21 Σ22


 , (3.13)

where Ỹ 1 and µ̃1 are n1 × (s + 1) matrix, let n2 = n + 1 − n1, then Ỹ 2 and µ̃2 are

n2 × (s + 1) matrix. The following statements are direct extension of multivariate

normal distribution.
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(1) Ỹ i ∼ Nni,s(µ̃i, Σii, Ψ)

(2) Ỹ 1 and Ỹ 2 are independent iff Σ12 = 0

(3) Suppose Σjj > 0, then

Ỹ i|Ỹ j ∼ Nni,s(µ̃i + ΣijΣ−1
jj (Ỹ j − µ̃j),Σii − ΣijΣ−1

jj Σji, Ψ) (3.14)

Proof It is known that if Y ∼ Nn+1,s+1(µ, Σ,Ψ), then

YT ∼ Ns+1,n+1(µT ,Ψ,Σ) (3.15)

and

YT = (Ỹ
T
1 , Ỹ

T
2 ) ∼ Ns+1,n+1((µ̃T

1 , µ̃T
2 ),Ψ,


 Σ11 Σ12

Σ21 Σ22


). (3.16)

From the results of partition Y by columns, it follows that

vec(Ỹ
T
i )|vec(Ỹ

T
j )

∼ N(s+1)ni
(vec(µ̃T

i + (Ỹ
T
j − µ̃T

j )Σ−1
jj Σji), Ψ⊗ (Σii − ΣijΣ−1

jj Σji)). (3.17)

Hence,

Ỹ
T
i |Ỹ

T
j ∼ Ns+1,ni(µ̃

T
i + (Ỹ

T
j − µ̃T

j )Σ−1
jj Σji, Ψ, Σii − ΣijΣ−1

jj Σji), (3.18)

and finally,

Ỹ i|Ỹ j ∼ Nni,s+1(µ̃i + ΣijΣ−1
jj (Ỹ j − µ̃j), Σii − ΣijΣ−1

jj Σji, Ψ). (3.19)

We next discuss some special cases. When n1 = 1, Ỹ 1 = Y0 and µ̃1 = µ0. Σ11

becomes a positive number, denoted by σ2
r , where subscript r denotes the row split

case. Similar to the case in vector normal (equation (2.14)), write Σ22 as Rr and write

Σ as

Σ = σ2
r


 1 rT

0,r

r0,r Rr

.


 (3.20)
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From the proof of the conditional distribution for partitioning by row (equa-

tion (3.18)), we can see for n1 = 1 case, Σ11−Σ12Σ−1
22 Σji will degenerate into a number

σ2
r (1 − rT

0,rR−1
r r0,r), and equation (3.18) (the conditional distribution) will turns into

the usual vector normal,

YT
0 |Ỹ

T
2 ∼ Ns+1(µT

0 + (Ỹ
T
2 − µ̃T

2 )R−1
r r0,r, σ

2
r (1− rT

0,rR−1
r r0,r)Ψ). (3.21)

To partition by column, when s1 = 1, Ỹ 1 = Y0 and µ̃1 = µ0, Ψ11 becomes a

positive number, denoted by σ2
c , where subscript c denotes the column partition case.

Similar to above, write Ψ22 as Rc and write Ψ as

Ψ = σ2
c


 1 rT

0,c

r0,c Rc


 . (3.22)

From the conclusion of the conditional distribution for the column partition

case (equation (3.9)), we can see for s1 = 1 case, Ψ11 − Ψ12Ψ−1
22 Ψ21 becomes to one

positive number σ2
c (1 − rT

0,cR−1
c r0,c), and equation (3.9) (the conditional distribution)

will turns into the usual vector normal

Y0|Ỹ 2 ∼ Nn+1(µ0 + (Ỹ 2 − µ̃2)R
−1
c r0,c, σ

2
c (1− rT

0,cR−1
c r0,c)Σ). (3.23)

3.2 Multivariate Gaussian Kriging Models

In this section, we first propose multivariate Gaussian kriging model. We

will then derive the best linear unbiased prediction (BLUP) from the multivariate

Gaussian kriging model.

3.2.1 Motivation

Let yj(x) be the j-th response at x for j = 1, · · · , s. The ordinary Gaussian

kriging model for yj(x) is defined to be

yj(x) = µj + zj(x),
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where µj is the unknown mean, and zj(x) is a random error. The Gaussian krig-

ing model assumes that zj(x) is a Gaussian process with zero mean and covariance

function

Cov(zj(s), zj(t)) = σ2r(θ; s, t)

for some correlation function r(θ; s, t). For example,

r(θ; s, t) = exp{−
s∑

k=1

θk(sk − tk)2}

and θ = (θ1, · · · , θs)T .

Now we generalize the univariate Gaussian kriging model for multiple re-

sponse. Let y(x) = (y1(x), · · · , ys(x)), µ = (µ1, · · · , µs) and z(x) = (z1(x), · · · , zs(x)).

Thus,

y(x) = µ + z(x). (3.24)

In this paper, we assume that z(x) is an s-dimensional Gaussian process indexed by

x. Specifically, for a given x in the experiment domain, z(x) follows Ns(0,Ψ), and for

any s and t, it is assumed that

Cov(z(s), z(t)) = r(θ; s, t)Ψ. (3.25)

for some correlation function r(θ; s, t). We call model (3.24) with the covariance func-

tion (3.25) to be multivariate Gaussian kriging model.

3.2.2 Prediction

Suppose that we collect data at x1, · · · , xn. Let Y and Z be n×s matrices whose

i-th rows are y(xi)T and z(xi)T , respectively. Then,

Y = 1nµT + Z.
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More generally, we may replace 1nµT by XB to model the overall trend, where B is

a p × s constant matrix and X, an n × p matrix, consists of some basis functions that

are used to capture overall trend. Thus,

Y = XB + Z. (3.26)

By the assumption on the covariance function of multivariate Gaussian kriging model,

it follows that

Z ∼ Nn,s(0, R, Ψ), (3.27)

where Nn,s(0, R,Ψ) stands for a matrix normal distribution, and R is an s× s matrix

with (i, j)-element being r(θ; xi, xj). The model (3.26) can be rewritten as

Y ∼ Nn,s(XB, R, Ψ). (3.28)

Using the matrix normal distribution theory (Muirhead, 1982), the conditional

distribution of y0 = y(x0) at untried point x0 given the information from Y is multi-

variate normal distribution with conditional mean

E(y0|Y) = x∗B + rT
0 R−1(Y− XB), (3.29)

where x∗ is a p-dimensional row vector corresponding the X-basis evaluated at x0

and r0 = (r(θ; x1, x0), · · · , r(θ, xn, x0))T , and conditional variance as

Var(y0|Y) = (1− rT
0 R−1r0)Ψ. (3.30)

In the multivariate Gaussian kriging model, we predict y(x0) using the conditional

mean E(y0|Y). From the multivariate normal distribution theory, we know that the

prediction from the multivariate Gaussian kriging model has the following proper-

ties:

1. The prediction (3.29) is the best linear unbiased predictor (BLUP) under the

assumption of normality;
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2. Gaussian kriging prediction (3.29) interpolates the observed data.

Since B, Ψ and θ are unknown, we substitute the unknown parameters with

their maximum likelihood estimate derived in Section 3.3. Thus, the prediction (3.29)

will be

ŷ0 = x∗B̂ + rT
0 (θ̂)R−1(θ̂)(Y− XB̂), (3.31)

and the corresponding variance-covariance matrix for the prediction is

Var(ŷ0|Y) = {1− rT
0 (θ̂)R−1(θ̂)r0(θ̂)}Ψ̂. (3.32)

3.3 Estimation of parameters in the matrix case

In this section, we will present the parameter estimation procedure for multi-

variate Gaussian kriging model. We will first present the MLE (and penalized MLE),

and followed by cross-validation method.

3.3.1 Maximum Likelihood Estimator

In this part, we extend maximum likelihood estimation for Gaussian kriging

models to the case of multiple response. Since in computer experiment, we usually

don’t have enough observation to estimate all the parameters separately, we assume

R and Ψ have the following relationship:

Ψ =
1
n

ET R−1E, (3.33)

where E = Y− XB.

We first derive the likelihood function for the observations Y. Rewrite the

model (3.28) in vector form

vec(Y) ∼ Nns(vec(XB), R⊗Ψ). (3.34)
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The likelihood function for vec(Y) is

L(B, R, Ψ)

= (2π)
ns
2 |R⊗Ψ|− 1

2 exp(−1
2
(vecY− vec(XB))T (R⊗Ψ)−1(vecY− vec(XB)))

= (2π)
ns
2 |R|− s

2 |Ψ|−n
2 exp(−1

2
[vec(Y− XB)]T [R−1 ⊗Ψ−1][vec(Y− XB)])

= (2π)
ns
2 |R|− s

2 |Ψ|−n
2 exp(−1

2
tr((Y− XB)T R−1(Y− XB)Ψ−1)). (3.35)

After dropping some constants, the log-likelihood becomes

l(B, R, Ψ) = − s
2 log |R| − n

2 log|Ψ| − 1
2 tr((Y− XB)T R−1(Y− XB)Ψ−1) (3.36)

The MLE to maximize the above likelihood function for the coefficient matrix B is

B̂ = (XT R−1X)−1XT R−1Y, (3.37)

which can be derived from the following arguments

(Y− XB)T R−1(Y− XB)Ψ−1

= (Y− XB̂ + XB̂ − XB)T R−1(Y− XB̂ + XB̂ − XB)Ψ−1

= (Y− XB̂)T R−1(Y− XB̂)Ψ−1 + (XB̂ − XB)T R−1(XB̂ − XB)Ψ−1

+(Y− XB̂)T R−1(XB̂ − XB)Ψ−1 + (XB̂ − XB)T R−1(Y− XB̂)Ψ−1.

After plugging B̂ in (3.37) into the last two terms in the above expression, we can

easily found that these two terms are zero. Then the last term in equation (3.36) turns

into

1
2

tr((Y−XB)T R−1
(Y−XB)Ψ−1)

2

= 1
2

tr((Y−XB̂)T R−1
(Y−XB̂)Ψ−1)

2 + 1
2

tr((XB̂−XB)T R−1
(XB̂−XB)Ψ−1)

2

= 1
2

tr((Y−XB̂)T R−1
(Y−XB̂)Ψ−1)

2 + 1
2

[vec(XB̂−XB)]T [R⊗Ψ]−1[vec(XB̂−XB)]
2 .

(3.38)
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Since the variance-covariance matrix R and Ψ are symmetric and we assume R > 0

and Ψ > 0, all the eigenvalues for these two matrix are positive. But the eigenvalues

for R ⊗ Ψ is the product of the eigenvalues of these two matrix, hence R ⊗ Ψ > 0

hence [R⊗Ψ]−1 > 0. Then the last term in the above equation is always greater than

or equal to zero. It is equal to zero for any matrix X if and only if B = B̂. So the

likelihood function achieves its maximum at B = B̂. This proves the MLE for the

coefficient matrix B is B̂ in (3.37).

The MLE for θ does not have a closed form. We will need to use Newton-

Raphson algorithm to estimate it. At the MLE θ = θ̂, we have

∂l

∂θ
|ˆθ = 0. (3.39)

For any estimation θ(0) which is close to the MLE θ̂, we can use Taylor’s expansion

∂l

∂θ
|ˆθ =

∂l

∂θ
|
θ(0) +

∂2l

∂θ∂θT
(θ̂ − θ(0)) + op(‖(θ̂ − θ(0)}). (3.40)

Hence the updated estimation is

θ(1) = θ(0) − (
∂2l

∂θ∂θT
)−1 ∂l

∂θ
|
θ(0) . (3.41)

Similar to the estimating procedure in the vector case, the following estimat-

ing procedures can be employed to get the estimated coefficient matrix and all the

parameters in the variance-covariance matrix:

Step 1 Set the initial value of B to be (XT X)−1XT Y, the ordinary least square esti-

mates of B in model (3.26);

Step 2 For a given B, update θ using (3.39);

Step 3 For given θ, update B using (3.37);

Step 4 Iterate step 2 and step 3 until it converges.
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3.3.2 First and second derivatives of the likelihood function with respect to the
parameters in covariance matrix

In order to use the Fisher scoring algorithm to get the MLE for B and θ, we

need to calculate the first and second derivatives of the likelihood function. The

following matrix calculation will be utilized to get these derivatives.

For a matrix A which is a matrix function of vector θ, we are interested in

calculating ∂A−1
(θ)

∂θj
and ∂log|A(θ)|

∂θj
. We know that

A−1(θ)A(θ) = I.

Taking the derivative for both sides with respect to each component of θ, we have

∂A−1(θ)
∂θj

A(θ) + A−1(θ)
∂A(θ)
∂θj

= 0.

Thus,
∂A−1(θ)

∂θj
= −A−1(θ)

∂A(θ)
∂θj

A−1(θ). (3.42)

Next, we derive ∂log|A(θ)|
∂θj

:

∂log|A(θ)|
∂θj

=
1

|A(θ)| tr(
∂|A(θ)|
∂A(θ)

∂A(θ)
∂θj

) (3.43)

=
1

|A(θ)| tr(|A(θ)|A−1(θ)
∂A(θ)
∂θj

) = tr(A−1(θ)
∂A(θ)
∂θj

).

To calculate the derivatives of the log-likelihood function, we rewrite (3.36) at

B = B̂

l(B, θ)|B=B̂ = −s

2
log|R(θ)| − n

2
log|Ψ| − tr((Y− XB̂)T R−1(Y− XB̂)Ψ−1)

2
.(3.44)

Denote

E = Y− XB̂

as the residual matrix for a given estimator of the coefficient matrix B̂, and substitute

(3.33) into the above formula, then the log-likelihood function will become

l(B, θ)|B=B̂ = −s

2
log|R| − n

2
log|Ψ| − s

2
. (3.45)
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Denote j and k as the component index for vector θ, l̇j = ∂l
∂θj

, l̈jk = ∂2l
∂θj∂θk

,

Ṙj = ∂R
∂θj

, R̈jk = ∂2R
∂θj∂θk

, employ equations (3.42) and (3.43), it follows that

l̇j = − s
2 tr(R−1Ṙj)− n

2 tr(Ψ−1Ψ̇j)

= 1
2 tr(Ψ−1ET R−1ṘjR−1E)− s

2 tr(R−1Ṙj)

= 1
2 tr(Ψ−1ET R−1ṘjR−1E− sR−1Ṙj)

= 1
2 tr(R−1(EΨ−1ET − sR)R−1Ṙj).

Denote φ = EΨ−1ET , η = R−1φR−1, then

l̇j =
1
2
tr((η − sR−1)Ṙj).

The second derivative of the log-likelihood function is

l̈jk = −1
2 tr(R−1ṘkηṘj)− 1

2 tr(R−1EΨ−1Ψ̇Ψ−1ET R−1Ṙj)

−1
2 tr(ηṘkR−1Ṙj) + 1

2 tr(ηR̈jk) + s
2 tr(R−1ṘkR−1Ṙj)− s

2 tr(R−1R̈jk)

= 1
2 tr(η(R̈jk +

˙Rkη
˙Rj

n − ṘjR−1Ṙk − ṘkR−1Ṙj))

+ s
2 tr(R−1(ṘkR−1Ṙj − R̈jk)).

In summary, we have

l̇j =
1
2
tr((η − sR−1)Ṙj), (3.46)

and

l̈jk = 1
2 tr(η(R̈jk +

˙Rkη
˙Rj

n − ṘjR−1Ṙk − ṘkR−1Ṙj))

+ s
2 tr(R−1(ṘkR−1Ṙj − R̈jk)).

(3.47)

Apparently, all the cross-second-derivative have expectation zero for B and

θ. Hence we can use iteration algorithm to get the MLE for all these parameters. Let

l̇r = (l̇j), I = −(l̈jk), then the iteration algorithm is given below

Step 1 Set initial value of B to be B̂(0) = (XT X)−1XT Y, the ordinary least square

estimates of B in model (3.26), set some initial values for θ̂
(0)

;
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Step 2 Calculate E(0) = Y− XB̂(0).

Step 3 Update θ̂
(1)

= θ̂
(0)

+ I−1l̇

Step 4 Update R = R(θ̂
(1)

)

Step 5 Update B̂(1) = (XT R−1X)−1XT R−1Y

Step 6 Check convergence. If not, go to step 2 and repeat.

3.3.3 MLE by Penalized Likelihood with L2 Penalty

When the likelihood function does not has any mode, the MLE is difficult

to get. For the case that the likelihood function will increase with the increase of

the parameters, the MLE from penalized likelihood is an option. Here, we will use

an L2 penalty because of the simplicity and the straightforward usage. See Li and

Sudjianto (2005) for detailed illustrations on penalized Guassian kriging model with

other penalties.

To penalize the effect of the increasing parameters, the L2 norm of the para-

meters will be subtracted from the original log-likelihood equation (3.45)

l(B, θ)|B=B̂ = −s

2
log|R| − n

2
log|Ψ| − s

2
− ‖θ‖2

√
n log n

. (3.48)

The first and second derivative of the penalized loglikelihood function turn into:

l̇j =
1
2
tr((η − sR−1)Ṙj)− 2θj√

n log n
, (3.49)

and

l̈jk = 1
2 tr(η(R̈jk +

˙Rkη
˙Rj

n − ṘjR−1Ṙk − ṘkR−1Ṙj))

+ s
2 tr(R−1(ṘkR−1Ṙj − R̈jk))− 2δjk√

n log n
,

(3.50)

where δjk =





1 if j = k

0 o.w.
.
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3.3.4 Estimator by Cross-Validation

Although MLE has many good properties over other estimators, the imple-

ment in the real case data may have some severe problems. First of all, due to the data

itself, the Hessian matrix required in the Fisher scoring algorithm will sometimes be

singular or close to singular. The condition number for this matrix will become fairly

large hence the computation result will be unstable. Secondly, if the likelihood func-

tion is not unimodal, it is very hard to find MLE. It is especially difficult for the like-

lihood function that will flatten out on the tail and does not have a maximum point.

For the single parameter case, it will be easier to use other data-driven methods such

as cross-validation to estimate the parameters.

Consider the single parameter case for variable θ. If the number of observa-

tions is small, then we will use leave-one-out cross validation. Suppose we have n

observations, for a given value of θ, we sequentially hide one of them (leave one out),

and use the rest n − 1 observations to construct the kriging model. Then the kriging

model will pass through every point of these n− 1 observations and will not agree at

the one we hide. Denote the prediction at the ith point for leaving the ith observation

point out from the Kriging model as Y−i
i , then we accumulate this disagreement by

adding the square of the residual Yi − Y−i
i as the CV (cross validation) score

CV =
n∑

i=1

(Yi − Y−i
i )(Yi − Y−i

i )T . (3.51)

This CV score actually measures the prediction ability under the current parameter

value. We will pick the parameter value which corresponding to the smallest CV

score.
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3.4 Functional ANOVA

From (3.31), we obtain a metamodel

g(x0)=̂ŷ(x0) = x∗B̂ + rT
0 (B̂))R−1(θ̂)(Y− XB), (3.52)

where g(x) = (g(1)(x), · · · , g(s)(x)) is a s-dimensional function. Let M = R̂
−1

(Y −
XB̂) = (MT

1 , · · · , MT
n )T where M is an n by s matrix and Mis are 1 by s vectors. Then

the final kriging model becomes

Ŷ(x) = g(x) = x∗B̂ +
n∑

i=1

ri(x)Mi, (3.53)

where

ri(x) = exp(−
d∑

j=1

θ̂j(xj −Xi,j)2). (3.54)

As discussed in Chapter 2, we know that the kriging model (3.52) smoothly

passes through each observation point. Now we want to know how and how much

each variable affects the response. This is very similar to the decomposition of sum

of squares in ANOVA. Here, we use Functional ANOVA to decompose this function

(3.52) onto each variable direction.

Suppose a single value function g(x) is integrable, it can be shown (Sobol’

(1993), Sobol’ (2001) and Sobol’ (2003)) that this function can be decomposed into

g(x) = g0 +
d∑

i=1

gi(xi) +
∑

i<j

gij(xi, xj) + · · ·+ g1···d(x1, · · · , xd), (3.55)

where ∫
gi1···it(xi1 , · · · , xit)dxk = 0, k = i1, · · · , it, (3.56)

and all the summands are orthogonal.

Since g is a integrable function in kriging model (3.52), it is straight forward to

show that the multivariate function g can also be decomposed into the similar form:

g(x) = g0 +
d∑

i=1

gi(xi) +
∑

i<j

gij(xi, xj) + · · ·+ g1···s(x1, · · · , xs), (3.57)
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where g0 = (g(1)
0 , · · · , g

(s)
0 ), gi(xi) = (g(1)

i (xi), · · · , g
(s)
i (xi)), etc. And

∫
gi1···it(xi1 , · · · , xit)dxk = 0, k = i1, · · · , it, (3.58)

and all the summands are orthogonal in the sense that
∫

g
(l)
i1···iug

(l)
j1···jv

dx = 0, l = 1, · · · , s, (3.59)

where (i1, · · · , iu) 6= (j1, · · · , jv).

Integrating (3.57) and using the above properties, we have

Eg =
∫

g(x)dx = g0,

Eg(X|Xi = xi) =
∫

g(x)Πk 6=idxk = g0 + gi(xi),

and so on, where g0 is a constant 1 by s vector and gis are 1 by s functional vectors.

In this functional ANOVA decomposition, g0 can be viewed as the overall effect, and

gis can be viewed as the main effect for each variable xi. In this case, we only analyze

the data up to the main effect. The result shows that this main effect account for 96%

of the total variance.

It can be easily seen that g(x) is also square integrable. Due to the orthogonal-

ity of the decomposition in (3.57), for each component of g, we have

E[g(l)]2 =
∫

g(l)2dx = g
(l)
0

2
+

∑d
i=1

∫
g
(l)
i

2
(xi)dxi +

∑
i<j

∫
g
(l)
ij

2
(xi, xj)dxidxj

+ · · ·+ ∫
g
(l)
1···d

2
(x1, · · · , xd)dxi · · · dxd.

for l = 1, · · · , s.

Define the componentwise total variance and the total variance by

D(l) = Varg(l) =
∫

g(l)2(x)dx− g
(l)
0

2
(3.60)

and

D =
s∑

l=1

Varg(l) =
s∑

l=1

D(l). (3.61)
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Also define the componentwise partial variances and partial variances by

D
(l)
i1···it = Varg(l)

i1···it =
∫

g(l)2

i1···it(xi1 , · · · , xit)dxi1 · · · dxit , (3.62)

and

Di1···it =
s∑

l=1

D
(l)
i1···it . (3.63)

Note that

D(l) =
d∑

k=1

∑

i1<···<ik

D
(l)
i1···ik

and

D =
d∑

k=1

∑

i1<···<ik

Di1···ik

respectively, which is similar to the decomposition in traditional ANOVA.

We extend the Sobol’ indices to componentwise Sobol’ indices and overall

Sobol’ indices as

S
(l)
i1···ik =

D
(l)
i1···ik
D(l)

,

and

Si1···ik =
Di1···ik

D
.

These indices reflect how much does each variable affect the response.

In order to calculate the various Sobol’ indices, we need to integrate the krig-

ing model (3.52). We illustrate this integration as follows. Let Φ(·) be the cumulative

distribution function of N(0, 1). For normalized predictor variables x1, · · · , x18 ∈
(0, 1)d, we have

∫
x∈[0,1]d ridx =

∫
x∈[0,1]d exp(−∑d

k=1 θ̂k(xk −Xi,k)2)dx1 · · · dxd

=
∫
x∈[0,1]d Πd

k=1exp(−θ̂k(xk −Xi,k)2)dx1 · · · dxd

= Πd
k=1

∫ 1
0 exp(−θ̂k(xk −Xi,k)2)dxk

= Πd
j=1

π
θ̂j

∫ (1−Xi,j)
√

2θ̂j

−Xi,j

√
2θ̂j

1
2πexp(−x2)dx

= Πd
j=1

π
θ̂j

(Φ((1−Xi,j)
√

2θ̂j)− Φ(−Xi,j

√
2θ̂j)),

(3.64)
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rirj = exp(−∑d
k=1 θ̂k(xk −Xi,k)2)exp(−∑d

k=1 θ̂k(xk −Xj,k)2)

= Πd
k=1exp(−θ̂k((xk −Xi,k)2 + (xk −Xj,k)2)

= Πd
k=1exp(−2θ̂k[(xk − Xi,k+Xj,k

2 )2 + (Xi,k−Xj,k

2 )2)

= exp(−1
2

∑d
k=1 θ̂k(Xi,k −Xj,k)2)Πd

k=1exp(− (xk−
Xi,k+Xj,k

2
)2

2 1

4θ̂k

),

(3.65)

∫
x∈[0,1]d rirjdx = exp(−1

2

∑d
k=1 θ̂k(Xi,k −Xj,k)2)

Πd
k=1

∫ 1
0 exp(− (xk−

Xi,k+Xj,k
2

)2

2 1

4θ̂k

)dxk

= exp(−1
2

∑d
k=1 θ̂k(Xi,k −Xj,k)2)

Πd
k=1

√
π

2θ̂k

∫ 2(1−Xi,k+Xj,k
2

)
√

θ̂k

−(Xi,k+Xj,k)
√

θ̂k

1√
2π

exp(−x2

2 )dx

= Πd
k=1

π
2θ̂k

[Φ(2(1− Xi,k+Xj,k

2 )
√

θ̂k)− Φ(−(Xi,k + Xj,k)
√

θ̂k)]

exp(−1
2

∑d
k=1 θ̂k(Xi,k −Xj,k)2),

(3.66)

g0 = Eg0 =
∫
x∈[0,1]d gdx

= β̂0 +
∫
x∈[0,1]d

∑d
i=1 xiβ̂idx +

∑n
i=1

∫
x∈[0,1]d riMidx

= β̂0 + 1
2

∑d
i=1 β̂i +

∑n
i=1

∫
x∈[0,1]d riMidx,

(3.67)

g2 = β̂
2

0 + 2β̂0

∑d
i=1 xiβ̂i +

∑d
i=1

∑d
j=1 xixjβ̂iβ̂j

+2(β̂0 +
∑d

j=1 xjβ̂j)
∑n

i=1 Miri +
∑n

i=1

∑n
j=1 rirjMiMj ,

(3.68)

Eg2 =
∫
x∈[0,1]d g2dx

= β̂
2

0 + β̂0

∑d
i=1 β̂i + 1

3

∑d
i=1 β̂i + 1

2

∑
i>j

∑
β̂iβ̂j

+2β̂0

∑d
i=1 Mi

∫
x∈[0,1]d ridx +

∑n
i=1

∑n
j=1 MiMj

∫
x∈[0,1]d rirjdx

+2
∑d

j=1 β̂j

∑n
i=1 Mi

∫
x∈[0,1]d xjridx.

(3.69)

Except for the last integration term in (3.69), we can get the analytical result

for all of these terms. We use Monte-Carlo simulation to get the last integration in
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(3.69). Finally, the ith decomposed linear term is

gi(xi) =
∫

gdx1 · · · dxi−1dxi+1 · · · dxd −Eg

= (xi − 1
2)βi +

∑n
k=1 Mi

∫
rkdx1 · · · dxk−1dxk+1 · · · dxd −

∑n
k=1 Mi

∫
rkdx

(3.70)

3.5 Simulation Study

To validate our code, we perform the following simulation. We take the de-

sign matrix X the same as the one which is corresponding to the 30 design cases in

Example 1.1. The coefficient matrix β is listed in table 3.1. The error term needs to be

a smooth surface, which is taken to be

εij = c[sin(2kπtj) + cos(2kπtj)]exp(−1
2

xiAjx′i), (3.71)

where i = 1, 2, · · · , 30, tj ∈ (0.3, 0.7) for j = 1, 2, 3, 4, 5, and Aj is a square matrix

with off diagonal elements equal to tj , and diagonal element equal to unit. Aj can

be viewed as the correlation matrix for xi corresponding to the jth response. In this

simulation study, we take k = 12. c controls the error-signal ratio. In order to see

the effect of the error level to our code result, c is taken to be the following values:

0.01,0.1,0.5,1,2,5,10. The true model for this simulation is

yij = xiβj + εij . (3.72)

After the response is generated according to model (3.72), we use Fisher scor-

ing algorithm which is discussed in Section 3.3 & 3.4 to get the estimation for the

parameters in Gaussian kriging model. In order to measure the code quality under

different noise level, we define the mean-square-error (MSE) for individual vector co-

efficient βi as: MSEi = 1
5

∑5
j=1(βij − β̂ij)2. Table 3.2 gives this MSE result. We can

see that with the increase of the error level c, the MSE is increasing. The MSE cannot

give us a whole picture of the accuracy of the model. Table 3.3 gives the error per-

centage for individual coefficient elements for the largest noise level case c = 10. We
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Table 3.1. Coefficient matrix for simulation of multivariate kriging model

1 2 3 4 5

β0 1.4548 0.9415 1.2267 0.9575 0.6039

β1 -0.0444 0.0611 -0.0241 0.4092 -0.0361

β2 0.0730 0.1179 0.2787 -0.0320 -0.3914

β3 0.5460 0.0477 -0.4631 0.3292 0.7299

β4 -0.0953 -0.0612 -0.3454 -0.5185 -0.0385

β5 0.1371 0.1864 -0.7279 0.2930 0.0342

β6 0.0180 -0.0905 -0.5183 0.3362 -0.4861

β7 -0.3240 0.0952 -0.2514 -0.0288 0.0293

β8 -0.1657 0.2368 -0.1679 0.7931 -0.4628

β9 -0.2953 0.1356 0.2902 -0.2124 -0.2170

β10 0.1645 0.0130 0.0367 -0.1024 0.2975

β11 -0.1824 0.2022 -0.4056 0.4536 0.4061

β12 -0.0551 0.0064 -0.1109 -0.1231 -0.0221

β13 0.2487 -0.2126 -0.0937 -0.1759 -0.2054

β14 -0.2071 0.0343 0.2623 -0.1968 -0.1943

β15 0.0751 -0.0719 0.0333 -0.1157 -0.1177

β16 0.1388 0.0003 0.0750 -0.5790 0.2801

β17 -0.1569 0.1728 0.1653 -0.9211 0.9221

β18 -0.0235 -0.0812 -0.2445 0.7464 -1.4481
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can see from these two tables that the model estimation will generally give accurate

results for the mean function even with relative large noise level. But for the very big

noise-signal ratio, the estimates will have a large difference from the true value, such

as the 2nd element for β16 in this simulation example.

Table 3.2. MSE ∗ 103 of coefficient matrix estimation for simulation of multivariate kriging
model

c = 0.01 c = 0.1 c = 0.5 c = 1 c = 2 c = 5 c = 10

β0 0.0007 0.0072 0.0232 0.0374 0.0242 0.5675 0.3166

β1 0.0000 0.0002 0.0016 0.0013 0.0001 0.0352 0.0460

β2 0.0000 0.0002 0.0007 0.0014 0.0033 0.0095 0.0250

β3 0.0002 0.0018 0.0069 0.0101 0.0113 0.1609 0.1210

β4 0.0003 0.0023 0.0089 0.0146 0.0123 0.1853 0.1275

β5 0.0001 0.0011 0.0047 0.0086 0.0058 0.1079 0.0909

β6 0.0002 0.0021 0.0080 0.0138 0.0089 0.1525 0.1362

β7 0.0001 0.0007 0.0035 0.0050 0.0097 0.0685 0.0777

β8 0.0000 0.0003 0.0013 0.0017 0.0060 0.0174 0.0134

β9 0.0002 0.0023 0.0079 0.0137 0.0093 0.1864 0.1273

β10 0.0002 0.0015 0.0054 0.0086 0.0085 0.1368 0.0866

β11 0.0002 0.0019 0.0074 0.0125 0.0121 0.1594 0.1025

β12 0.0000 0.0005 0.0019 0.0031 0.0041 0.0345 0.0390

β13 0.0002 0.0019 0.0069 0.0111 0.0082 0.1478 0.1010

β14 0.0002 0.0018 0.0062 0.0115 0.0072 0.1444 0.0858

β15 0.0004 0.0035 0.0133 0.0221 0.0234 0.2810 0.2158

β16 0.0002 0.0022 0.0077 0.0119 0.0122 0.1734 0.1123

β17 0.0001 0.0008 0.0033 0.0066 0.0066 0.0404 0.0441

β18 0.0000 0.0002 0.0011 0.0021 0.0021 0.0137 0.0384

Since the true model is known, we can easily decompose it using functional
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Table 3.3. Error percentage of coefficient matrix estimation for simulation of multivariate
kriging model for c = 10

1 2 3 4 5

β0 0.0268 0.0316 0.0367 0.0247 0.0073

β1 0.1222 0.0712 0.2744 0.0089 0.0188

β2 0.0385 0.0201 0.0131 0.0652 0.0010

β3 0.0263 0.2394 0.0375 0.0287 0.0024

β4 0.1597 0.1964 0.0530 0.0191 0.0480

β5 0.0802 0.0460 0.0179 0.0237 0.0379

β6 0.9123 0.1418 0.0376 0.0311 0.0040

β7 0.0276 0.0773 0.0448 0.2198 0.0403

β8 0.0076 0.0054 0.0119 0.0016 0.0005

β9 0.0528 0.0884 0.0625 0.0450 0.0082

β10 0.0635 0.6281 0.3370 0.0648 0.0042

β11 0.0672 0.0478 0.0362 0.0175 0.0036

β12 0.0850 0.5792 0.0504 0.0244 0.0253

β13 0.0490 0.0448 0.1542 0.0439 0.0070

β14 0.0509 0.2357 0.0466 0.0326 0.0062

β15 0.3427 0.2832 0.9302 0.1451 0.0266

β16 0.0976 33.4259 0.2141 0.0149 0.0057

β17 0.0328 0.0241 0.0385 0.0038 0.0007

β18 0.1904 0.0446 0.0226 0.0041 0.0004
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ANOVA. For example, the total variance for the jth component is

Dj = Vargj = 1
12

∑18
i=1 βij + a2

jc
2{∫ exp(−xAjx′)dx− [

∫
exp(−1

2xAjx′)dx]2}
+2ajc{

∫
β.jxexp(−1

2xAjx′)dx− (β0j + 1
2

∑18
i=1 βij)exp(−1

2xAjx′)dx},
(3.73)

where aj = sin(2kπtj) + cos(2kπtj). Using Monte-Carlo integration, the calculation

for these decomposed items are straightforward. Then we calculate the functional

ANOVA decomposition by modeling it using Gaussian kriging model. The true over-

all variance and the difference from the simulation result for the case c = 10 is given in

table 3.4. We can see the calculation for the overall variance is accurate. The true value

of Var(gj
i ) (the variance of linear effect terms, where i = 1, · · · , 18 and j = 1, · · · , 5)

for c = 5 are given in table 3.5. The corresponding simulation error rate is given in

table 3.6. We can see from these tables that the simulation result for these variance of

functional ANOVA decomposed linear effect terms is accurate even for small value

of variance terms.

Table 3.4. Total variance and its estimate difference for functional ANOVA decomposition by
multivariate kriging model for c = 10

D1 D2 D3 D4 D5

True 0.06421 0.02331 0.14464 0.28954 0.38014

Difference*104 -0.7614 0.5309 0.3288 -0.2864 0.0378

Table 3.7 gives the error rate for the variance of decomposed linear terms for

c = 10. For this noise level, we can see the error rate for smaller value of variance

term is large.

Finally, the sum of Sobol’s indices for linear effect term is calculated and com-

pared with the simulation result. For the ith decomposed linear term in the jth com-

ponent, gj
i , where i = 1, · · · , 18, and j = 1, · · · , 5, the Sobol’s indices is:

sj
i =

Vargj
i

Vargj
. (3.74)
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Table 3.5. True variance of linear effect terms for functional ANOVA decomposition by mul-
tivariate kriging model for c = 5

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.0002 0.0003 0.0000 0.0138 0.0001

i = 2 0.0004 0.0011 0.0064 0.0001 0.0126

i = 3 0.0246 0.0002 0.0177 0.0089 0.0440

i = 4 0.0008 0.0003 0.0098 0.0222 0.0001

i = 5 0.0015 0.0029 0.0437 0.0071 0.0001

i = 6 0.0000 0.0007 0.0222 0.0093 0.0195

i = 7 0.0087 0.0007 0.0052 0.0001 0.0001

i = 8 0.0023 0.0046 0.0023 0.0519 0.0177

i = 9 0.0072 0.0015 0.0070 0.0037 0.0039

i = 10 0.0022 0.0000 0.0001 0.0009 0.0073

i = 11 0.0027 0.0034 0.0136 0.0170 0.0136

i = 12 0.0003 0.0000 0.0010 0.0012 0.0000

i = 13 0.0051 0.0037 0.0007 0.0026 0.0035

i = 14 0.0035 0.0001 0.0057 0.0032 0.0031

i = 15 0.0005 0.0004 0.0001 0.0011 0.0011

i = 16 0.0016 0.0000 0.0005 0.0277 0.0065

i = 17 0.0020 0.0025 0.0023 0.0700 0.0702

i = 18 0.0000 0.0005 0.0049 0.0460 0.1730
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Table 3.6. Error rate for linear term variance for functional ANOVA decomposition by multi-
variate kriging model for c = 5

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.0257 0.0088 0.0080 0.0100 0.0098

i = 2 0.0168 0.0087 0.0105 0.0080 0.0098

i = 3 0.0094 0.0120 0.0099 0.0097 0.0098

i = 4 0.0140 0.0075 0.0100 0.0099 0.0098

i = 5 0.0163 0.0083 0.0094 0.0101 0.0097

i = 6 0.0147 0.0087 0.0097 0.0097 0.0098

i = 7 0.0078 0.0070 0.0088 0.0066 0.0097

i = 8 0.0071 0.0091 0.0087 0.0099 0.0098

i = 9 0.0109 0.0107 0.0097 0.0099 0.0098

i = 10 0.0093 0.0168 0.0097 0.0099 0.0098

i = 11 0.0039 0.0079 0.0090 0.0101 0.0098

i = 12 0.0036 0.0199 0.0080 0.0093 0.0099

i = 13 0.0091 0.0094 0.0098 0.0099 0.0098

i = 14 0.0108 0.0114 0.0100 0.0098 0.0098

i = 15 0.0006 0.0058 0.0052 0.0104 0.0098

i = 16 0.0080 0.7914 0.0094 0.0098 0.0098

i = 17 0.0063 0.0087 0.0110 0.0097 0.0098

i = 18 0.0072 0.0118 0.0091 0.0099 0.0098
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Table 3.7. Error rate for linear term variance for functional ANOVA decomposition by multi-
variate kriging model for c = 10

j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.6187 0.3499 0.8862 0.0170 0.0415

i = 2 0.1451 0.0461 0.0229 0.2531 0.0097

i = 3 0.0099 0.0248 0.0100 0.0101 0.0098

i = 4 0.0889 0.1186 0.0184 0.0108 0.0167

i = 5 0.0175 0.0133 0.0107 0.0093 0.0125

i = 6 0.6369 0.0484 0.0122 0.0119 0.0098

i = 7 0.0120 0.0360 0.0191 0.1610 0.0170

i = 8 0.0116 0.0116 0.0158 0.0097 0.0097

i = 9 0.0121 0.0150 0.0131 0.0110 0.0099

i = 10 0.0171 0.4113 0.1685 0.0162 0.0098

i = 11 0.0073 0.0118 0.0110 0.0092 0.0099

i = 12 0.3291 0.9591 0.1561 0.0494 0.0493

i = 13 0.0108 0.0105 0.0190 0.0106 0.0098

i = 14 0.0119 0.0578 0.0119 0.0107 0.0098

i = 15 0.0111 0.0154 0.0520 0.0093 0.0101

i = 16 0.0276 0.9998 0.0788 0.0104 0.0100

i = 17 0.0246 0.0201 0.0291 0.0102 0.0099

i = 18 0.1818 0.0179 0.0143 0.0096 0.0098
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The sum of these Sobol’s indices is

sj =
18∑

i=1

sj
i =

∑18
i=1 Vargj

i

Vargj
. (3.75)

Table 3.8 shows the true and simulated result comparison for sj for c = 10. From

this table, we can see the simulation result is very close to the true value, and the

decomposed linear term explains more than 99 percent of the total variance for each

component. From these simulation result, our simulation code is proven to be accu-

rate and trustable.

Table 3.8. Sum of Sobol’s indices for linear terms of functional ANOVA decomposition by
multivariate kriging model for c = 10

s1 s2 s3 s4 s5

True 0.9902 0.9903 0.9902 0.9902 0.9902

Simulation 0.9914 0.9880 0.9899 0.9903 0.9902

3.6 Comparison: Multivariate Kriging v.s. Kriging with single variate re-
sponse

In this section, we compare the two kriging models: multivariate kriging

which is proposed in previous sections, and kriging with single variate response.

We use the same simulation data set which is generated in section 3.5. To

compare these two versions of kriging models, we use leave-one-out cross validation

method to calculate the prediction error for each model. In the simulation formula

(3.72), the predictor variables are xi,k, where i = 1, 2, · · · , 30, k = 1, 2, · · · , 18. The

response variable is yi,j , where i = 1, 2, · · · , 30, j = 1, 2, 3, 4, 5.

For leave-one-out prediction, we remove each of 30 design cases from both
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design matrix and response variables in sequence. Denote

Y(−i) =




y1,1 y1,2 · · · y1,5

y2,1 y2,2 · · · y2,5

...
...

...
...

yi−1,1 yi−1,2 · · · yi−1,5

yi+1,1 yi+1,2 · · · yi+1,5

...
...

...
...

y30,1 y30,2 · · · y30,5

,




y(−i)
j = (y1,j , y2,j , · · · , yi−1,j , yi+1,j , · · · , y30,j)T ,

yi = (yi,1, yi,2, · · · , yi,5),

X(−i) =




x1,1 x1,2 · · · x1,18

x2,1 x2,2 · · · x2,18

...
...

...
...

xi−1,1 xi−1,2 · · · xi−1,18

xi+1,1 xi+1,2 · · · xi+1,18

...
...

...
...

x30,1 x30,2 · · · x30,18

,




xi = (xi,1, xi,2, · · · , xi,18).

And

P.E.1 =
30∑

i=1

(yi − ŷi)2

for prediction error for multivariate kriging model, where ŷi is the prediction from

multivariate kriging model for leave the ith observation out at x = xi;

P.E.2 =
5∑

j=1

30∑

i=1

(yi
j − ŷi

j)
2

for prediction error from kriging model with single response, where ŷi
j is the predic-

tion for leave the ith observation out at x = xi for the jth component.
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Table 3.9 shows the average of prediction error for 5000 simulation using for-

mula (3.72), where gain is defined as the ratio of the difference of two prediction error

and the prediction error of the kriging with single response. From it, we can see that

both kriging model did good job. For the data which is generated with small noise

level, the two model can not make any difference from the prediction error point of

view. But when the noise level becomes larger, multivariate kriging model become

more and more powerful than the kriging model with single response. From this

simulation study, we can see the advantages of multivariate kriging model over the

naive way.

Table 3.9. Prediction error comparison for multivariate kriging model and kriging with single
response

0.5 1 2 5 10

P.E.(multivariate) 2.7e-07 8.4e-06 4.2e-05 3.2e-05 1.0e-05

P.E.(single) 2.9e-07 8.6e-06 4.7e-05 3.9e-05 1.5e-05

Gain 0.0741 0.0238 0.1064 0.1795 0.3333

3.7 Case Study

In this section, we apply the proposed methodology for a thorough analysis

of computer simulation data in the design of engine structure to minimize radiated

noise (Example 1.1). This data set has been analyzed in Chapter 7 of Fang, et al.

(2005). To optimize the design of the cylinder block, 17 design variables listed in

Table 1.1 were chosen. The variable Dam has three levels, and therefore there are 18

x-variables. A uniform design with 30 runs, given in Table 7.2 of Fang, et al. (2005),

was used for the experiment. In this example, the output is the structure response

(z) of the oil pan flange in terms of acceleration at 6 engine RPMs, 1000, 2000, ...,

6000 RPM, which directly influences the radiated noise through the vibro-acoustic
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relationship. The outputs are presented in Table 7.3 of Fang, et al. (2005), in which

the response were treated as functional response with sparse sample rate. Here we

will treat it as a multiple response. It is known that the response is exponentially

increasing as the level RPM increases and typically is modeled by

z = exp(α0 + α1RPM). (3.76)

To understand the impact of RPM on the structure response, we are interested in the

impact of design variables on the parameter α1. Thus, we take the response y to

be difference of the natural logarithm of the noise value between the adjacent RPM

levels. That is, for j = 1, · · · , 5,

yj = log(zj+1)− log(zj) = 1000 ∗ α1,

where zj is the structure response at j × 1000 RPM. This response value is plotted

in Figure 1.2. We can see the lines are almost parallel to each other for different

observations and there is a slight curvature along RPM direction. We will denote

these responses as Y = (YT
1 , · · · , YT

30)
T . Note that for each observation, the response

Yi is a 5-component vector.

Other than the shape of the curves, the most significant fact in this plot is that

the variation caused by different design cases is significantly less than the variation

caused by different RPM levels. But RPM level is not a control factor. For this sim-

ulation study, engineers want to understand which design variable is the most im-

pacting factor and also want to know how each variable affects the response under

different RPM levels. They want to lower the engine noise to the minimum through

the control of the design variables under different RPM level. Hence, the thorough

sensitivity analysis for the engine noise with respect to each design variable is re-

quired although the variation caused by this is not even on the same scale as the
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variation caused by RPM level. In the mean time, engineers would also like to get a

quick prediction at undesigned point.

We will use partial sum of squares in regression to do the sensitivity analysis

first. This approach allows researchers to get a rough idea of the importance rank for

each variable including the RPM level, design variable and all the interaction terms.

We will also get the regression coefficients for the corresponding selected terms. From

the sign of these coefficients, we can also get a rough idea how each item affects the

output. Then we will develop several versions of multivariate kriging for this case

so that our models are guaranteed to interpolate the observations. Then we will use

functional ANOVA decomposition to get the marginal effect for each design variable.

The result from the functional ANOVA can be viewed as the result which already

exclude all the other variables effect hence it is more accurate to reflect the effect of

this variable.

3.7.1 Sensitivity Analysis using Regression Partial Sum of Squares

We start with sensitivity analysis by using the partial sum of squares. We can

view the response under different designs with RPM level as single value responses

with the 18 variables plus the 5 different RPM difference levels as the predictor. Then

we can do a linear regression and use partial sum of square as the criteria for mea-

suring the importance of factors in the model. The goal of this section is to use partial

sum of square to select the most significant/sensitive predictors among all linear and

second order interaction terms.

Define the extra sum of squares of x(2) given x(1) as

SSR(x(2)|x(1)) = SSR(x(2), x(1))− SSR(x(1)), (3.77)

where x(1) is a sub-vector of predictor set x, x(2) is another sub-vector of predictor

set which components are not in x(1), and SSR(x(1)) is the regression sum of squares
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when the regression model only includes the predictor set x(1). This extra sum of

squares measures the increase of regression sum of squares for adding the predictor

set x(2) into the original predictor set x(1). If this value is large, it shows that x(2) is a

relative important/sensitive predictor set.

In this case, since Figure 1.2 shows a slight interaction shape with almost par-

allel lines, we let total predictor set x includes the RPM difference level, all the 18

linear terms in table 1.2, and all the second order interaction terms associated with

these terms. The regression model is

y = β0x0 +
19∑

i=1

βixi +
19∑

i=1

γix
2
i +

∑

i<j

τijxixj + ε, (3.78)

where x0 = 1 corresponding to the intercept, x1, · · · , x18 are defined in table 1.2,

x19 = 0, 1, · · · , 4 is the RPM difference level. Since we put x19 as one of the predictor,

the total observation number for this linear regression is 30× 5 = 150.

The first step is to calculate SSR(x0), the regression sum of squares with only

the intercept. The result is: SSR(x0) = 155.4366 and the corresponding β0 = 1.10180.

Along with these SSRs and the corresponding coefficient estimates, we also calculated

the prediction errors in the form of sum of square error: P.E. =
∑n

i=1(Yi − ŷi)2. For

the model with only intercept, P.E. = 1905.3.

Next, we begin the variable screening within the linear effect terms x1, · · · , x19.

The extra sum of squares for the main effects SSR(·|x0) is given in tables 3.10 and

3.11. Not surprisingly, x19 (RPM difference level) has the largest value hence x19 is

the most important linear effect. The estimated coefficient is −0.2515, which is given

in Table 3.12. The negative sign shows that the difference of the log engine noise will

become smaller with higher RPM difference level. But keep in mind that the RPM

variable is not a control variable and our goal is to adjust the most significant design

variables so that we can adjust the engine noise under different RPM value. Hence
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Table 3.10. Extra Sum of Squares for main effects

SS ∗ 100 x1 x2 x3 x4 x5 x6 x7 x8 x9 P.E.

SSR(·|x0) .2293 .2622 .2828 .1827 .0303 .7238 .0008 .0003 .3278 1905.3

SSR(·|x(1)) .2293 .2622 .2828 .1827 .0303 .7238 .0008 .0003 .3278 491.9

SSR(·|x(2)) .2818 .0118 .3528 .0956 .0712 .4690 .0300 .0014 .1015 490.2

SSR(·|x(3)) .2242 .0220 .4394 .0688 .0198 - .0223 .0000 .0539 489.5

SSR(·|x(4)) .2106 .0488 - .1201 .0152 - .1345 .0121 .0690 488.9

SSR(·|x′(5)) .0772 .0203 - .1737 .0061 - .0250 .0000 .0791 488.2

SSR(·|x′(6)) .0898 .0184 - - .0132 - .0450 .0058 .1334 488.0

Table 3.11. Extra Sum of Squares for main effect(continued)

SS*100 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

SSR(·|x0) .0156 .0534 .0377 .0008 .0544 .0100 .1183 .0001 1.1579 942.1968

SSR(·|x(1)) .0156 .0534 .0377 .0008 .0544 .0100 .1183 .0001 1.1579 -

SSR(·|x(2)) .0014 .1700 .0004 .0135 .1038 .0000 .0633 .0240 - -

SSR(·|x(3)) .0177 .2042 .0636 .0183 .1268 .0081 .0027 .0270 - -

SSR(·|x(4)) .0009 .3604 .0187 .0294 .1099 .0002 .0066 .0910 - -

SSR(·|x′(5)) .0014 - .0040 .0531 .1442 .0004 .0257 .1184 - -

SSR(·|x′(6)) .0257 - .0301 .1096 .1183 .0073 .0176 .0766 - -
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Table 3.12. Selected variables

x(1) (x0, x19)

β(1) (1.0180,−0.2515)

x(2) (x0, x19, x18)

β(2) (1.0180,−0.2515,−0.0088)

x(3) (x0, x19, x18, x6)

β(3) (1.0180,−0.2515,−0.0079,−0.0057)

x(4) (x0, x19, x18, x6, x3)

β(4) (1.0180,−0.2515,−0.0081,−0.0061, 0.0055)

x′(5) (x0, x19, x18, x6, x3, x11)

β′(5) (1.0180,−0.2515,−0.0089,−0.0066, 0.0065, 0.0051)

x′(6) (x0, x19, x18, x6, x3, x11, x5)

β′(6) (1.0180,−0.2515,−0.0087,−0.0064, 0.0070, 0.0055,−0.0035)

x(5) (x0, x19, x18, x6, x3, x
2
19)

β(5) (1.0438,−0.2515,−0.0081,−0.0062, 0.0055,−0.0260)

x(6) (x0, x19, x18, x6, x3, x
2
19, x18x19)

β(6) (1.0438,−0.2515,−0.0081,−0.0062, 0.0055,−0.0260,−0.0085)

x(7) (x0, x19, x18, x6, x3, x
2
19, x18x19, x1x19)

β(7) (1.0438,−0.2515,−0.0081,−0.0062, 0.0055,−0.0260,−0.0088, 0.0069)

x(8) (x0, x19, x18, x6, x3, x
2
19, x18x19, x1x19, x13x19)

β(8) (1.0438,−0.2515,−0.0081,−0.0062, 0.0055,−0.0260,−0.0093, 0.0079,−0.0060)
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Table 3.13. Selected variables–continued

β(9) β(10) β(11) β(12) β(13) β(14)

x0 1.0436 1.0436 1.0436 1.0436 1.0436 1.0436

x19 -0.2515 -0.2515 -0.2515 -0.2515 -0.2515 -0.2515

x18 -0.0078 -0.0078 -0.0078 -0.0080 -0.0080 -0.0080

x6 -0.0053 -0.0053 -0.0053 -0.0054 -0.0054 -0.0054

x3 0.0046 0.0046 0.0046 0.0050 0.0050 0.0050

x2
19 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260 -0.0260

x18x19 -0.0093 -0.0101 -0.0109 -0.0109 -0.0131 -0.0135

x1x19 0.0079 0.0072 0.0055 0.0055 0.0037 0.0034

x13x19 -0.0060 -0.0055 -0.0056 -0.0056 -0.0052 -0.0053

x1x15 -0.0071 -0.0071 -0.0071 -0.0079 -0.0079 -0.0079

x17x19 — 0.0054 0.0057 0.0057 0.0061 0.0068

x11x19 — — 0.0054 0.0054 0.0067 0.0076

x11x17 — — — 0.0049 0.0049 0.0049

x2x19 — — — — -0.0055 -0.0053

x3x19 — — — — — 0.0037

more importantly, we need to study the sensitivity of design variables and probably

the interactions between them. We then calculate SSR(·|x0, x19) with result given on

the second line in tables 3.10 and 3.11. This time, the most important linear effect is

x18 and the estimated coefficient is −0.0088 (in Table 3.12). The difference of log en-

gine noise has the same tendency with respect to this variable as it has with respect to

RPM difference level. We continue to repeat these steps, and finally we reach x′(6). We

can see that after the big jump on x(4), the decreasing of extra sum of squares is flat.

So in the main effect terms, we will pick the subset x(4) = (x0, x19, x18, x6, x3). The

definition of each selected x(·) are given in table 3.12 along with the corresponding re-

gression coefficient. Note that different from the other three variables, the difference
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of log engine noise tends to increase along with the increase of x3.

Next, we proceed to the second order interaction terms. Tables 3.15 and 3.16

give the extra sum of squares for each second order interaction term SSR(·|x(4)).

Again, not surprisingly, the term x2
19 has the largest value, which shows that x2

19 is the

most important second order term. Similarly, Tables 3.15 and 3.16 give SSR(·|x(5)).

We can see this time, the term x18x19 is the most important second order term. Table

3.14 gives the sequential maximum extra sum of squares for the second derivative

terms along with the prediction error. Due to the flat shape on the last two selec-

tion steps, the final selected predictor subset is x(12). The corresponding estimated

coefficients are given in Tables 3.12 and 3.13.

Table 3.14. Maximum extra sum of squares for second order interaction terms

Max SSR(·|x(i)) P.E.

x(4) 7.0256 488.90

x(5) 1.0573 478.38

x(6) 0.7105 476.82

x(7) 0.5125 475.77

x(8) 0.6937 475.02

x(9) 0.4094 474.01

x(10) 0.3813 473.41

x(11) 0.3409 472.87

x(12) 0.3252 472.38

x(13) 0.1796 471.92

x(14) 0.2145 471.68

From this extra sum of square analysis, we know that:

• The most important factors are x19 and x2
19, but they are not control variables.
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• Along with the increase of x19 and x2
19, the difference of log engine noise is

decreasing.

• It is desirable that the difference of log engine noise decreases.

• From the analysis result, we know that the difference of log engine noise will

increase with the increase of x3, x1x19, x17x19, x11x19, x11x17.

• Hence,in the practice, we need to minimize the design variables x3, x1, x17, x11.

Also, we need to maximize x18, x6, x13, and x1. Note that some of the variables

are controlled through the interaction term with the RPM difference level. By

doing so, we can minimize the difference of the log engine noise.

• The rough importance rank from regression partial sum squares point of view

is:

x0, x19, x18, x6, x3, x
2
19, x18x19, x1x19, x13x19, x1x15, x17x19, x11x19, x11x17.

• In order to carefully study the effect of other design factors, it is important that

we treat the RPM difference term separately.
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Table 3.15. Extra Sum of Squares for interaction SSR(·|x(4))

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 .0266 - - - - - - - -

x2 .0009 .0725 - - - - - - -

x3 .0841 .0703 .0170 - - - - - -

x4 .0004 .0587 .0026 .0880 - - - - -

x5 .0073 .0108 .0075 .1354 .0561 - - - -

x6 .0697 .0235 .0548 .0095 .0141 .0605 - - -

x7 .0663 .2540 .0005 .0217 .0267 .0485 .0573 - -

x8 .2964 .0019 .0915 .0009 .0199 .0415 .0797 .0347 -

x9 .1605 .0009 .0761 .0648 .0201 .0074 .0293 .1725 -

x10 .2915 .0025 .0122 .0157 .0098 .1157 .0003 .1136 .0044

x11 .0005 .1444 .1397 .0263 .0185 .1199 .1004 .0854 .0914

x12 .2144 .0159 .0030 .0977 .0012 .1271 .0201 .0023 .0005

x13 .0997 .3028 .2858 .0797 .0063 .1250 .3167 .0022 .0073

x14 .0516 .0159 .0031 .1819 .0051 .0927 .0015 .0004 .0635

x15 .4952 .2426 .0117 .0025 .0348 .0217 .1052 .0283 .1162

x16 .0041 .0968 .1009 .0732 .0102 .0009 .1714 .0259 .0065

x17 .1139 .0921 .0955 .0594 .1071 .0420 .1939 .0571 .0975

x18 .2820 .0140 .0011 .0691 .0493 .0420 .0795 .0620 .0074

x19 .6285 .0341 .0060 .0122 .1471 .3174 .0620 .0998 .1063
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Table 3.16. Extra Sum of Squares for interaction SSR(·|x(4)) (continued)

x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

x11 .3003 - - - - - - - - -

x12 .0003 .0753 - - - - - - - -

x13 .0043 .0156 .0596 - - - - - - -

x14 .0198 .0567 .0670 .0113 - - - - - -

x15 .0208 .0403 .0322 .0024 .0056 .0004 - - - -

x16 .1106 .0141 .0259 .0186 .2507 .0181 .0257 - - -

x17 .0219 .2115 .2175 .0036 .1449 .0166 .0159 .0072 - -

x18 .0070 .0586 .0442 .0091 .1153 .0022 .0004 .2799 .0004 -

x19 .0266 .3673 .0155 .2354 .0096 .0462 .1418 .4059 1.0573 7.0260

3.7.2 Multivariate Kriging Model

We need models for computer experiment interpolate the observed data. Hence

we will use the multivariate version of the kriging model for this case. The multi-

variate version is ideal here because we want to separate the RPM effect from other

predictor effects. We also want smoothness for the prediction surfaces over these 18

design variables hence we will use Gaussian correlation function in the correlation

matrix in kriging model.

The Gaussian correlation function assumes the location-free and direction-

free property for the correlation coefficient between any two point. The Gaussian cor-

relation function for the correlation coefficient between any two points xi = (xi,1, · · · , xi,s)

and xj = (xj,1, · · · , xj,s) is:

r(xi, xj) = exp(−
s∑

k=1

θk(xi,k − xj,k)2) (3.79)
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Table 3.17. Extra Sum of Squares for interaction SSR(·|x(5))

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 .0266 - - - - - - - -

x2 .0009 .0725 - - - - - - -

x3 .0841 .0703 .0170 - - - - - -

x4 .0004 .0587 .0026 .0880 - - - - -

x5 .0073 .0108 .0075 .1354 .0561 - - - -

x6 .0697 .0235 .0548 .0095 .0141 .0605 - - -

x7 .0663 .2540 .0005 .0217 .0267 .0485 .0573 - -

x8 .2964 .0019 .0915 .0009 .0199 .0415 .0797 .0347 -

x9 .1605 .0009 .0761 .0648 .0201 .0074 .0293 .1725 -

x10 .2915 .0025 .0122 .0157 .0098 .1157 .0003 .1136 .0044

x11 .0005 .1444 .1397 .0263 .0185 .1199 .1004 .0854 .0914

x12 .2144 .0159 .0030 .0977 .0012 .1271 .0201 .0023 .0005

x13 .0997 .3028 .2858 .0797 .0063 .1250 .3167 .0022 .0073

x14 .0516 .0159 .0031 .1819 .0051 .0927 .0015 .0004 .0635

x15 .4952 .2426 .0117 .0025 .0348 .0217 .1052 .0283 .1162

x16 .0041 .0968 .1009 .0732 .0102 .0009 .1714 .0259 .0065

x17 .1139 .0921 .0955 .0594 .1071 .0420 .1939 .0571 .0975

x18 .2820 .0140 .0011 .0691 .0493 .0420 .0795 .0620 .0074

x19 .6285 .0341 .0060 .0122 .1471 .3174 .0620 .0998 .1063
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Table 3.18. Extra Sum of Squares for interaction SSR(·|x(5)) (continued)

x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

x11 .3003 - - - - - - - - -

x12 .0003 .0753 - - - - - - - -

x13 .0043 .0156 .0596 - - - - - - -

x14 .0198 .0567 .0670 .0113 - - - - - -

x15 .0208 .0403 .0322 .0024 .0056 - - - - -

x16 .1106 .0141 .0259 .0186 .2507 .0181 - - - -

x17 .0219 .2115 .2175 .0036 .1449 .0166 .0159 - - -

x18 .0070 .0586 .0442 .0091 .1153 .0022 .0004 .2799 0.0004 -

x19 .0266 .3673 .0155 .2354 .0096 .0462 .1418 .4059 1.0573 -

for the multiple variable version, where θk > 0, and:

r(xi, xj) = exp(−θ
s∑

k=1

(xi,k − xj,k)2) (3.80)

for the single variable version, where θ > 0. The advantage for the multiple variables

is its flexibility to model the data, but at the same time, it increases the complexities

of the problem. For the Fisher scoring algorithm, we need to supply good initial

values for these unknown parameters. When the number of unknown parameters

is large, it will be more and more difficult to find good initial values. The single

variable Gaussian correlation function will greatly simplify the estimation procedure

and furthermore, it will allow us to use cross-validation procedures to estimate the

unknown parameter. However it will lack the flexibility to model the different degree

of correlation in different component direction.
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MLE for Multiple Variable Gaussian Correlation Function

We start by using (3.79) and the Fisher scoring algorithm to construct the mul-

tiple variable kriging model for this data. The kriging model is

y(x) = B0x0 +
18∑

i=1

Bixi + r(x)R−1(Y− XB)

where x0 = 1, x1, · · · , x18 are 18 predictors listed in Table 1.1. Here, B0, · · · , B18 are

vectors with length 5, which is the same with y. The design matrix X is composed

of the intercept column together with 18 design variables listed in Tables 1.2 and 1.3.

Hence we consider the base/intercept effect together with the main effect. We use

(3.79) to construct R and r0 in the kriging model (3.31) for a given θ. We use (3.37) to

estimate B and use Fisher scoring algorithm to estimate θ.

We experienced the difficulty of a near singular Hessian matrix in Fisher scor-

ing algorithm for this dataset. In addition to this, we found that estimation for B and

Ω are not sensitive to the initial θ value, but the estimate for θ will change with differ-

ent initial value. Furthermore, the likelihood value itself is not sensitive to the initial

value. A typical estimated B is given below together with the estimated Ω which is

given in Table 3.19. The corresponding estimated θ is also given below.

Ψ̂ =




0.0013 −0.0005 −0.0006 0.0004 0.0001

−0.0005 0.0006 −0.0002 0.0001 0.0004

−0.0006 −0.0002 0.0031 −0.0027 0.0005

0.0004 0.0001 −0.0027 0.0054 −0.0022

0.0001 0.0004 0.0005 −0.0022 0.0056




, (3.81)

and

(θ̂1, θ̂2, θ̂5, θ̂6, θ̂8, θ̂9, θ̂13, θ̂17, θ̂18) =

(0.0844, 0.0974, 0.0333, 0.0250, 0.1461, 0.0431, 0.1757, 0.8250, 0.6341)
, (3.82)

where all other components are zero.
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Table 3.19. B̂ for kriging model using (3.79)

B̂ 1 2 3 4 5

1 1.4483 0.9821 1.1112 0.9899 0.5584

2 0.0008 0.0004 -0.0033 0.0184 -0.0041

3 0.0035 0.0041 0.0093 -0.0010 -0.0150

4 0.0197 0.0017 -0.0183 0.0145 0.0266

5 -0.0012 -0.0036 -0.0142 -0.0183 -0.0013

6 0.0071 0.0073 -0.0311 0.0123 0.0011

7 0.0001 -0.0036 -0.0183 0.0104 -0.0187

8 -0.0132 0.0042 -0.0084 -0.0044 0.0017

9 -0.0080 0.0086 -0.0062 0.0291 -0.0142

10 -0.0140 0.0067 0.0115 -0.0074 -0.0103

11 0.0078 0.0005 0.0018 -0.0029 0.0142

12 -0.0111 0.0111 -0.0173 0.0202 0.0232

13 -0.0017 -0.0007 -0.0072 -0.0047 0.0008

14 0.0127 -0.0106 -0.0046 -0.0086 -0.0100

15 -0.0100 0.0010 0.0120 -0.0096 -0.0097

16 0.0050 -0.0041 0.0005 -0.0057 -0.0070

17 0.0083 -0.0005 0.0011 -0.0260 0.0114

18 -0.0073 0.0071 0.0051 -0.0369 0.0399

19 -0.0012 -0.0027 -0.0072 0.0262 -0.0629
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From above results, we noticed that:

• Compared to the intercept term, the linear effect for all the predictors is very

small. This suggest us that we may do not need to put the 18 design variables

in the design matrix.

• There is a strong correlations between different RPM levels. For example, in

(3.81), the correlation coefficient between the first and second component are:

ρ21 = −0.0005√
0.0015·0.0007

= −0.488. So we can not simply apply kriging model to each

RPM difference level using the univariate version.

• The estimation is not stable due to the singularity of the Hessian matrix. Also,

since the likelihood value is not sensitive to initial θ values while the estimate

for θ is, we can not trust the θ estimation.

MLE from Gaussian Correlation Function with One Parameter

Next we move on to the Gaussian correlation function with one parameter

equation (3.80). In this section, we still trying to get MLE for both B and θ for mul-

tivariate kriging model. This time, we include the design 18 variables in the design

matrix first then try another one with only intercept included.

Estimates for B are given in Table 3.20. The estimated Ω is given in equation

(3.83). The corresponding estimated θ is 0.6538. For this univariate case, we do not

have the singularity problem with the Hessian matrix. The estimation for θ is also

pretty stable.

Comparing Table 3.19 and Table 3.20, we can see the estimates for B are very

close for multiple and one parameter versions for the Gaussian correlation function.

We trust this result more.
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Table 3.20. β̂ for kriging model using equation (3.80)

B̂ 1 2 3 4 5

1 1.4483 0.9821 1.1112 0.9899 0.5583

2 0.0008 0.0004 -0.0033 0.0185 -0.0042

3 0.0035 0.0041 0.0094 -0.0009 -0.0151

4 0.0197 0.0018 -0.0183 0.0144 0.0267

5 -0.0012 -0.0036 -0.0141 -0.0184 -0.0013

6 0.0071 0.0073 -0.0311 0.0122 0.0011

7 0.0001 -0.0036 -0.0183 0.0105 -0.0187

8 -0.0132 0.0042 -0.0084 -0.0044 0.0017

9 -0.0079 0.0086 -0.0062 0.0291 -0.0142

10 -0.0140 0.0066 0.0115 -0.0073 -0.0104

11 0.0078 0.0005 0.0018 -0.0029 0.0142

12 -0.0111 0.0111 -0.0173 0.0202 0.0232

13 -0.0018 -0.0007 -0.0072 -0.0048 0.0009

14 0.0127 -0.0106 -0.0046 -0.0086 -0.0100

15 -0.0100 0.0010 0.0120 -0.0096 -0.0097

16 0.0050 -0.0041 0.0005 -0.0056 -0.0070

17 0.0083 -0.0005 0.0011 -0.0260 0.0114

18 -0.0073 0.0071 0.0051 -0.0369 0.0399

19 -0.0012 -0.0027 -0.0072 0.0261 -0.0628
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Ψ̂ =




0.0004 −0.0002 −0.0001 −0.0000 −0.0001

−0.0002 0.0003 0.0000 −0.0001 0.0001

−0.0001 0.0000 0.0006 −0.0006 −0.0003

−0.0000 −0.0001 −0.0006 0.0015 −0.0000

−0.0001 0.0001 −0.0003 −0.0000 0.0009




(3.83)

Next, we tried the kriging model with design matrix only include the inter-

cept term. Table 3.21 gives the estimated B, and (3.84) gives the estimated Ω. The

estimated θ is 0.1653.

Table 3.21. B̂ for kriging model with intercept only using (3.80)

B̂ 1 2 3 4 5

1 1.4483 0.9821 1.1112 0.9899 0.5582

Ψ̂ =




0.0013 −0.0005 −0.0006 0.0004 0.0001

−0.0005 0.0006 −0.0002 0.0001 0.0004

−0.0006 −0.0002 0.0031 −0.0027 0.0005

0.0004 0.0001 −0.0027 0.0054 −0.0022

0.0001 0.0004 0.0005 −0.0022 0.0056




(3.84)

Although we got good MLE results using the single variable Gaussian cor-

relation function for kriging model, we find another aspect that is not good. Figure

3.1 shows the likelihood function versus θ. We can see that the likelihood function

is strictly increasing along with θ and when θ is large, the increasing is extremely

slow. This will create a problem in the MLE estimation since there is no mode in this

picture.
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Figure 3.1. Likelihood v.s. θ.

Parameter Estimation for Single Variable Gaussian Correlation Function Using Cross-validation

In this section, we will use cross-validation to estimate the unknown parame-

ter θ in the Gaussian correlation function (3.80). In previous results, we can see that

the estimated intercept B remains constant for different forms of Gaussian correlation

functions and for different design matrix. Hence in what follows, the design matrix

will contain only the intercept term.

We searched θ from 0 to 10 on a given grid set. For each θ value, we obtain

a leave-one-out cross-validation score for the multivariate kriging model which is

discussed in the previous section. Figure 3.2 gives the curve for the CV score versus

θ. The discrete CV score achieves the minimum value at θ = 0.1585 which is pretty

close to the MLE for the intercept only case. The corresponding estimated B and Ω
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are given in Table 3.22 and 3.85.
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Figure 3.2. CV Score v.s. θ.

Table 3.22. B̂ for kriging model with intercept only using (3.80) by cross-validation

B̂ 1 2 3 4 5

1 1.4450 0.9826 1.1138 0.9781 0.5682

Ψ̂ =




0.0025 −0.0011 −0.0008 0.0001 0.0001

−0.0011 0.0015 −0.0002 0.0000 0.0010

−0.0008 −0.0002 0.0050 −0.0044 −0.0003

0.0001 0.0000 −0.0044 0.0103 −0.0033

0.0001 0.0010 −0.0003 −0.0033 0.0103




(3.85)
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3.7.3 Functional ANOVA

To investigate the effect of each variable, we use multivariate functional ANOVA

which was discussed before to decompose the Gaussian kriging model. From the pre-

vious section, the final multivariate kriging model for this case can be written as

Ŷ(x) = B̂0 + r̂T (x)R̂
−1
r (Y− XB̂0) (3.86)

where B̂0 = (1.4450, 0.9826, 1.1138, 0.9781, 0.5682) is a 1 by s vector,

r̂(x) = (exp(−θ̂
d∑

i=1

(xi −X1,i)2), · · · , exp(−θ̂
d∑

i=1

(xi −Xn,i)2))T = (r1(x), · · · , rn(x))

is the Gaussian correlation vector between prediction point x and all the design point

Xj,i where i = 1, · · · , d and j = 1, · · · , n. R̂r is the estimated Gaussian correlation

matrix between all the design point which is a n by n matrix. Y is the n by s response

matrix, X = (1, · · · , 1) is a 1 by n matrix. Here, n = 30, d = 18 and s = 5.

The calculation shows that the overall behavior is

∫
ggT dx = 5.5787, g0gT

0 = 5.5736,

and the total variance is

D =
∫

ggT dx− g0gT
0 = 0.0051.

The total variance for the main effects are

s∑

i=1

∫
gig

T
i dx = 0.0049.

Hence the overall variance explained by the main/linear effects are: 0.0049/0.0051 =

96%. The detailed componentwise information is given in Table 3.23.

From Table 3.23, we can see that the largest componentwise variation comes

from the 5th component, which corresponding to the highest RPM (difference) level.
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Table 3.23. Componentwise total variation

Source 1 2 3 4 5

g(l)2 2.0903 0.9653 1.2358 0.9844 0.3029

g
(l)
0

2
2.0900 0.9652 1.2348 0.9828 0.3008

D(l) 0.0003 0.0001 0.0010 0.0016 0.0020

The next largest variation comes from the 4th component, which corresponding to

the second highest RPM level. The third largest variation comes from the third com-

ponent, which corresponding to the third highest RPM level. The rest component are

negligible. We need to control the predictors under the highest, second highest and

third highest RPM level.

Table 3.24 shows the component-wise individual main effect total variance.

From the above discussion, we need to concentrate on the 5th, the 4th, and the third

component. For the 5th component, we noticed that g18(x18) has the largest variation.

Next in order are g17(x17), g8(x8), g6(x6), and g3(x3). For the 4th component, g17(x17)

has the largest variation. Next in order are g18(x18), g8(x8), g3(x3), and g11(x11). For

the third component, g5(x5) has the largest variation. Next in order are g3(x3), g6(x6),

g4(x4), and g11(x11). Table 3.25 gives the corresponding componentwise main effect

Sobol indices. Table 3.26 gives the overall variation decomposition for each main

effect and their corresponding Sobol indices. This variation is just the simple sum-

mation across the componentwise direction in Table 3.24. The Sobol indices shows

that g18(x18) has the largest variation. Then is g17(x17), then is g3(x3).
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Table 3.24. 1000 ∗ ∫ 1

0
g
(l)
i

2
dxi

1 2 3 4 5

1 0.0029 0.0000 0.0157 0.0607 0.0396

2 0.0125 0.0026 0.0462 0.0214 0.0045

3 0.0893 0.0031 0.1444 0.1123 0.1083

4 0.0012 0.0003 0.0828 0.0006 0.0170

5 0.0126 0.0254 0.3133 0.0653 0.0016

6 0.0000 0.0021 0.1317 0.0369 0.1262

7 0.0056 0.0007 0.0118 0.0226 0.0334

8 0.0000 0.0136 0.0492 0.2397 0.1345

9 0.0594 0.0114 0.0082 0.0031 0.0410

10 0.0044 0.0001 0.0003 0.0190 0.0138

11 0.0112 0.0139 0.0699 0.1156 0.0167

12 0.0079 0.0006 0.0000 0.0077 0.0260

13 0.0485 0.0270 0.0015 0.0017 0.0223

14 0.0153 0.0001 0.0404 0.0849 0.0008

15 0.0083 0.0000 0.0024 0.0137 0.0491

16 0.0019 0.0006 0.0014 0.0812 0.0208

17 0.0171 0.0096 0.0398 0.3630 0.3484

18 0.0024 0.0015 0.0501 0.2939 0.9735
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Table 3.25. Componentwise main effect Sobol indices

1 2 3 4 5

1 0.0092 0.0003 0.0152 0.0377 0.0195

2 0.0394 0.0216 0.0446 0.0133 0.0022

3 0.2809 0.0252 0.1394 0.0698 0.0532

4 0.0037 0.0022 0.0799 0.0004 0.0083

5 0.0397 0.2067 0.3023 0.0405 0.0008

6 0.0000 0.0171 0.1271 0.0229 0.0620

7 0.0175 0.0058 0.0114 0.0140 0.0164

8 0.0000 0.1104 0.0475 0.1489 0.0661

9 0.1868 0.0927 0.0079 0.0019 0.0201

10 0.0138 0.0010 0.0003 0.0118 0.0068

11 0.0351 0.1129 0.0675 0.0718 0.0082

12 0.0250 0.0050 0.0000 0.0048 0.0128

13 0.1526 0.2195 0.0014 0.0010 0.0110

14 0.0481 0.0008 0.0389 0.0527 0.0004

15 0.0261 0.0001 0.0023 0.0085 0.0241

16 0.0059 0.0049 0.0014 0.0504 0.0102

17 0.0538 0.0782 0.0384 0.2255 0.1713

18 0.0076 0.0122 0.0483 0.1825 0.4785

sum 0.9453 0.9166 0.9738 0.9585 0.9720
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Table 3.26. Overall variance decomposition for each main effect and their Sobol indices

1000 ∗ ∫
gig

T
i dx Overall Sobol’s indices

∫
gig

T
i dx/D

1 0.1190 0.0221

2 0.0873 0.0162

3 0.4575 0.0850

4 0.1019 0.0189

5 0.4181 0.0777

6 0.2969 0.0552

7 0.0741 0.0138

8 0.4369 0.0812

9 0.1231 0.0229

10 0.0376 0.0070

11 0.2272 0.0422

12 0.0423 0.0079

13 0.1009 0.0188

14 0.1415 0.0263

15 0.0735 0.0137

16 0.1059 0.0197

17 0.7779 0.1446

18 1.3214 0.2456
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Figures 3.3 to 3.8 give the main effect functions g
(l)
i (xi) for i = 1, · · · , d and

each components l = 1, · · · , s.
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Figure 3.3. Functional ANOVA decomposition for x1 to x4. -: 1st component; –: 2nd component; .
3rd component; -.- 4th component; red -: 5th component

3.8 Summary

In this chapter, a multivariate kriging model has been proposed. Using matrix

normal theory, we developed an estimation procedure the the multivariate kriging

model. For given parameters in variance-covariance matrix, the MLE for coefficient
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Figure 3.4. Functional ANOVA decomposition for x5 to x8. -: 1st component; –: 2nd component; .
3rd component; -.- 4th component; red -: 5th component

has been proved to have a closed form, which is given in (3.37). There is no closed

form for the estimates for the coefficients and the parameters in variance-covariance

matrix. Hence we proposeed using Newton-Ralphson algorithm to optimize the cor-

responding likelihood function and obtain the MLE of the parameters.

To interpret the resulting multivariate Gaussian model, we extended the func-

tional ANOVA decomposition into multivariate version. For Gaussian correlation

function, we derived closed forms for the multivariate functional ANOVA decompo-
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Figure 3.5. Functional ANOVA decomposition for x9 to x12. -: 1st component; –: 2nd component; .
3rd component; -.- 4th component; red -: 5th component

sition.

To validate the proposed modeling procedures, a simulation study has been

conducted to similar settings in the engine noise example. The simulation results

show that the proposed estimation procedure performs very well even in the very

large noise level situation.

To demonstrate the advantage of the multivariate kriging model, we com-

pared it with the kriging model with single response. We use leave-one-out method
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Figure 3.6. Functional ANOVA decomposition for x13 to x16. -: 1st component; –: 2nd component; .
3rd component; -.- 4th component; red -: 5th component

to get the prediction error for both models. We performed the simulation for 1000

times and get the average of the prediction error. The result shows that the multi-

variate kriging model has more prediction power than the kriging model with single

response.

We conducted a detailed analysis to the engine noise example using the pro-

posed multivariate kriging model and functional ANOVA decomposition. In this

example, there are 18 design factors in total. The response is the difference of log of
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engine noise between adjacent RPM levels. We are interested in finding out the most

influential factor(s), and understand how each variable affects the responses.

The sensitivity analysis is performed first by regression partial sum of squares.

The RPM is included as a predictor in this linear regression. Not surprisingly, this ap-

proach found that RPM is the most influential factor among all the predictors. The

rough importance rank ordering for the rest of predictors are:

x18, x6, x3, x
2
19, x18x19, x1x19, x13x19, x1x15, x17x19, x11x19, x11x17.

From the regression coefficients, we need to minimize the design variables x3, x1, x17,

x11. Also, we need to maximize x18, x6, x13, and x1. From the analysis, we know that

the influence of RPM is much higher than the rest of the predictors. In order to study

the rest of the variables in detail, we need to separate RPM with all other predictors.

We further apply the multivariate functional ANOVA decomposition to this

example. The linear effects for all the predictors are very small compare to the inter-

cept term. Hence we further considered a multivariate kriging model that includes

the intercept term only. The multivariate functional ANOVA decomposition result

tells us that the largest componentwise variation comes from the 5th component,

which corresponding to the highest RPM (difference) level. The next largest vari-

ation comes from the 4th component, which corresponding to the second highest

RPM level. The third largest variation comes from the third component, which cor-

responding to the third highest RPM level. The rest component are negligible. We

need to control the predictors under the highest, second highest and third highest

RPM level. Also, for the 5th component, we noticed that x18 generates the largest

variation. Next in order are x17, x8, x6, and x3. For the 4th component, x17 has the

largest variation. Next in order are x18, x8, x3, and x11. For the third component, x5

has the largest variation. Next in order are x3, x6, x4, and x11. The result from Sobol

indices shows that x18 has the largest variation. Then is x17, then is x3.
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The methodology in this chapter can be directly applied to any computer ex-

periments with output data which can be consider as multivariate responses. The

example in this chapter is just a typical one of such computer experiments.



Chapter 4

Modeling Computer Experiment with Functional Response
by FLM

4.1 Introduction

In this chapter, we will consider the computer experiment with intensive func-

tional response. As discussed before, functional data is the data which are collected

over a certain range with a regular frequency. In Chapter 3, we studied the functional

response with sparse sampling rate. But usually, functional data is fairly dense com-

pared to longitudinal data and are collected at even space. These kind of data are

usually either collected by computer, or are the output of some computer code which

are run with various input variable at a set of even grid points.

As advances in modern technology and device of collecting data, people can

easily collect and store functional data with intensive sampling rate. Functional data

analysis is becoming popular in various research fields. Many techniques for the

analysis of data with functional nature which allows the variability exploration in

samples of curves and let the research of common structures among the curves or

groups of them have been introduced. The Valvetrain example (Example 1.3) which

is introduced in chapter 1 is a typical real case of the intensive functional response. In

this example, the valve motion error is simulated over the crank angle degree range

(0, 720) at almost each degree. For each case in the 16 design situations in Table 1.5,

we have 657 data points along the functional direction. Hence we can see clearly a
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curve for each design case. Figure 4.1 shows the computer simulated motion errors

of the valve compared to the prescribed motion by the camshaft for all the 16 designs

listed in Table 1.5. We can see from these plots that the errors within range (0,90) and

(450,720) are very small compared to the errors within the range (90,450) for all the

design cases.

Table 4.1 shows the final design matrix X = (X1, X2, · · · , X9), where Xi =

(x1,i, x2,i, · · · , x16,i)T . Note that in Table 1.5, the last column has three levels. In order

to make it similar with other columns in the matrix, we split it into two columns, one

is the indicator of Ture/False if it equal to 1, the other is the indicator of Ture/False if

it equal to 2. X1 is the intercept term. The eight predictors are:

X2: H.S., Cylinder Head stiffness;

X3: R.S., Rocker Arm stiffness,;

X4: L.A., Hydraulic Lash Adjuster;

X5: C.P., Cam Phasing, Clearance;

X6: C.L., Clearance;

X7: S.H., Spring;

X8: R.H.1, Ramp Height 1.

X9: R.H.2, Ramp Height 2.

Intuitively, we can get the ordinary least square estimates

β̂OLS(uj) = (X′X)−1X′Y(uj)

at each crank angle point uj , j = 1, · · · , J for the coefficients β in the following model:

yi(uj) = µ(xi; uj) + εij = β(uj)T xi + εij , (4.1)
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(c) Motion errors for the third 4 designs
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Figure 4.1. Valve motion errors for 16 valvetrain designs listed in Table 1.5
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Table 4.1. Final design matrix X for Valvetrain

X1 X2 X3 X4 X5 X6 X7 X8 X9

1 0 0 0 0 1 1 0 0

1 1 0 0 0 1 0 0 1

1 0 1 0 0 0 1 0 1

1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0

1 1 0 1 0 0 1 1 0

1 0 1 1 0 1 0 1 0

1 1 1 1 0 1 1 1 0

1 0 0 0 1 0 0 1 0

1 1 0 0 1 0 1 1 0

1 0 1 0 1 1 0 1 0

1 1 1 0 1 1 1 1 0

1 0 0 1 1 1 1 0 1

1 1 0 1 1 1 0 0 0

1 0 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0 1

where Y(uj) = (y1(uj), · · · , yn(uj))T , i = 1, · · · , n = 16, xi = (xi,1, xi,2, xi,p), p = 9,

and

β(uj) = (β0(uj), β1(uj), · · · , βp(uj))T .

In model (4.1), we model the overall mean function as:

µ(x; u) = β(u)T x. (4.2)

Figure 4.2 shows the OLS estimates for the functional coefficients within crank

angle (0, 720). Again, the amplitude of these functional coefficients are very small

within ranges (0, 90) and (450, 720). Furthermore, we can see that all the 9 coefficient
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components amplitude are about on the same level within the crank angle (360, 450).

Meanwhile, in the crank angle (90, 360), there are several coefficient components with

variation larger than the other components. We can apply the functional linear model

to estimate the mean function for the valve motion error within crank angle (360, 450).

To get a parsimonious model for the valve motion error within crank angle (90, 360),

we will use the partial functional linear model to estimation the mean function in the

next chapter. After we get the estimation for the mean function, we can get the resid-

ual at each observation point. We then will develop a spatial-temporal model to get

a smooth surface which will interpolate each residual point. Adding this surface to

the smooth mean function, we then have a smooth surface which will passes through

each observation point.

4.2 Estimating Procedure for Functional Linear Model

Let n denote the number of observations for (xi, yi) and let J denote the num-

ber of time points for each observation. Here, we assume the number and location

of time point are the same for each observation. This is often the case in the com-

puter experiments since all the data are collected by computer or the output of the

computer code.

Consider the ith observed data pair at the jth time index (or at the time uj)

(xi, yi(uj)), i = 1, · · · , n where xi = (xi,1, xi,2, · · · , xi,p)T is the predictor set at ith

observed data pair. Here, we assume the predictor set do not change with time. Then

the functional linear model is:

yi(uj) = µ(xi, uj) + εij

= Xiβ(uj) + εij

= β0(uj) + β1(uj)T xi + εij

(4.3)

where Xi = (1, xT
i ), i = 1, · · · , n and j = 1, · · · , J . For a given time index j, the
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Figure 4.2. OLS estimates for the functional coefficients within crank angle region (0,720)
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functional coefficient vector is:

β1(uj) = (β1(uj), β2(uj), · · · , βp(uj))T

Note that both the coefficients β = (β0, β
T
1 )T and the predictor x are the functions of

another index variable u (for example, time). But the random error ε has mean zero.

Our purpose is to get the estimations for the coefficient functions β(u). We

use two step estimation procedure–OLS estimates at each time point and local linear

smoothing along time direction for each component of functional coefficients.

4.2.1 OLS estimates at each time point

For any given j (uj), ordinary least square estimators can be used to estimate

the initial point coefficients across all the observations at jth time index:

β̃(uj) = (β̃0(uj), β̃1(uj)T )T (4.4)

which is:

β̃(uj) = AY(uj) = (XT X)−1XT Y(uj) (4.5)

where

Y(uj) = (y1(uj), y2(uj), · · · , yn(uj))T

and

X =




1 x1,1 x1,2 · · · x1,p

1 x2,1 x2,2 · · · x2,p

...
...

...
...

...

1 xn,1 xn,2 · · · xn,p




is the corresponding design matrix with the first subscript as the index of the obser-

vations and second subscript as the index of the predictors. And:

A = (XT X)−1XT (4.6)
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The estimated value for Y (uj) is:

Ŷ(uj) = PYj
Y(uj) = X(XT X)−1XT Y(uj), (4.7)

where

PYj = X(XT X)−1XT (4.8)

is the projection (hat) matrix for Y(uj).

4.2.2 Local linear smoothing for each coefficient component

After we get all the initial point estimations for the β(uj) from the OLS esti-

mator (4.5) for j = 1, · · · , J , the next step is to do smoothing for each β̃j along time

direction. The smoothing step is necessary due to the following reasons. First of all,

this smoothing step can give smooth estimates for the underlying smooth coefficient

functions. Secondly, since the first step estimator do not use the information from

the neighboring time point, hence they are inefficient. Smoothing each of the first

step estimator along time direction enables the estimator to pool information from

the neighboring time points hence it will improve the efficiency of the raw estimates.

Thirdly, we may also want to estimate the values of the coefficient curves at non-

design points. And the smoothing is one-dimensional for each individual coefficient

function hence for different components of coefficient functions, different amount of

smoothing can be conducted and any existing smoothing technique can be utilized.

At here, the local linear regression with Epanechnikov kernel will be used to handle

the smoothing step.

Consider the local linear estimation for smooth coefficient function βj(u) where

j = 0, 1, · · · , p. Since βj(u) is smooth, applying Taylor expansion for βj(u) in a neigh-

borhood of u (for example, for ui close to u):

βj(ui) ≈ βj(u) + (ui − u)β′j(u) = uT
i Bj(u) (4.9)
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where ui = (1, (ui − u))T and Bj(u) = (Bj,1(u), Bj,2(u))T = (βj(u), β′j(u))T . Our

purpose is to get the estimation for all the functions Bj(u) where j = 0, 1, · · · , p. Here,

more specifically, we need an estimation for the first component function βj(u) =

Bj,1(u). Intuitively, datum points close to u will have more influence about βj(u).

This suggests using a locally weighted polynomial regression:

min
Bj(u)

J∑

i=1

(β̃j(ui)− uiBj(u))2Kh(ui − u), (4.10)

where Kh(x) = h−1K(x) and K(x) is the kernel function. Denote W = diag(Kh(u1−
u), · · · ,Kh(uJ − u)), and U as the design matrix associated with ui, i = 1, J , then the

solution to locally weighted least squares (4.10) is:

B̂j(u) = (U′WU)−1U′WΓj = PΓjΓj (4.11)

where Γj = (β̃j(u1), · · · , β̃j(uJ))T . The estimator for the regression function βj(u) is:

β̂j(u) = B̂j,1(u)

Furthermore, an estimator for the 1st order derivative of βj(u) at u is:

β̂′j(u) = B̂j,2(u)

The choice of kernel function is not sensitive to the estimation of βj(u). Since

the symmetric kernel function has many advantages over asymmetric functions, the

most significant one is it will have better asymptotic properties, hence people prefer

the symmetric probability density function. The most commonly used kernel func-

tion is the Gaussian kernel function:

K(t) =
1√
2π

exp(−t2/2). (4.12)

In Fan (1993), he showed that the best kernel function should be the Epanechnikov

kernel:

K(t) = 0.75(1− t2)+, (4.13)
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where t+ = t when t ≥ 0 and t+ = 0 when t < 0. Here, we use Epanechnikov kernel.

The smoothing bandwidth h is crucial in local linear smoothing. Ruppert et al.

(1995) showed that for the local degree p, the optimal bandwidth which minimizes

the mean integrate sum error (MISE):

MISE = E[
∫

(m̂(x; h)−m(x))2f(x)dx]

is:

hMISE ≈ [
(p + 1)(p!)2R(Kp)

∫
v(x)dx

2µp+1(Kp)2
∫

m(p+1)(x)2f(x)dxn
]1/(2p+3), (4.14)

where µl(K) =
∫

ulK(u)du, R(K) =
∫

K(u)2du, v(x) is the variance, m(x) is the

mean smooth function we want to get, f(x) is the density for X . They use plug-in

method to find the estimate for the integrals in above expression. After some calcula-

tion, they found that the asymptotic optimal bandwidth for local linear least squares

estimate is:

hAMISE ∝ C1(K)

where C1 = 151/5 for Epanechnikov kernel. In this research, we use the optimal

bandwidth selection subroutine which is provided by Ruppert to calculate the op-

timal bandwidth for each functional coefficient component βj . This allows us to

use different smoothing parameters for different components of coefficients. Note

that this subroutine provides the asymptotic optimal bandwidth for Gaussian kernel

for a given dataset. We need to convert this optimal bandwidth to the bandwidth

for the Epanechnikov kernel. From Table 4.2 (Ruppert et al. (1995)), we know that

C1 = (1/(2
√

π))1/5 for Gaussian kernel. The relationship for the optimal bandwidth

between Gaussian kernel (h2) and Epanechnikov kernel (h1) is given by:

h1 = (30
√

π)1/5h2 (4.15)



113

Table 4.2. Kernel-Dependent Constants

Kernel Epanechnikov Biweight Normal

C1(K) 151/5 351/5 {1/(2
√

π)}1/5

4.2.3 Effect of the Smoothing Step

The effect of the second step in the functional linear model is tosmooth the

ordinary least square estimator of the functional coefficients in the model in the time

direction. From the Mean Square Error (MSE) of the fitted coefficient point of view,

the simulation result shows the necessaries of this smoothing step.

Define the following MSE:

MSE
(1)
i = 1

ni

∑ni
j=1(βi(uj)− β̃i(uj))2

MSE
(2)
i = 1

ni

∑ni
j=1(βi(uj)− β̂i(uj))2

(4.16)

where the superscript denotes the step number (“1” refers to OLS estimates, “2” refers

to the smoothed fit) and the subscript stands for the different parameters, i = 0, · · · , p

and ni is the number of points in u direction. From the experiment for the functional

linear model in this chapter, we can see that MSE(2) is significantly less than MSE(1),

which shows the importance for the smoothing step in the sense of reducing the MSE

of the estimates.

But notice that the smoothing procedure is done on the direction of time for

each functional coefficient, which is not on the direction of the original observed re-

sponse, so we expect a certain degree of distortion for the fitted original response. We

need to balance the prediction power and the goodness of fit.
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4.3 Simulation for local linear regression

In this simulation study, we generated a random sample of size n = 500 from

the following model

Y = 4 sin(2πX) + ε,

where X ∼ U(0, 1), the uniform distribution over [0, 1], and ε ∼ N(0, 1). We use local

least squares approach with Epanechnikov kernel to estimate the regression function

m(x) = E(Y |X = x).

4.3.1 Effective number of parameters

For a random sample (X1, Y1), · · · , (Xn, Yn) i.i.d. with conditional mean func-

tion as m(x) = E(Y |X = x), regression between X and Y , what we want to estimate

is the mean function m(x) where:

E(Y |X = x) = m(x)

where we assume the mean function m(x) is a smooth curve.

Using Taylor expansion around x, we have the following local linear approx-

imation:

m(Xi) ≈ m(x) + m′(x)(Xi − x) = β0(x) + β1(x)(Xi − x) = xT
i β(x) (4.17)

where xi = (1, Xi − x)T , m(x) = β0(x), m′(x) = β1(x), and β(x) = (β0(x), β1(x))T .

So β0(x) is an estimator for the mean function m(x). Using kernel function

as the weight, we attempt to minimize the following square loss function at each x

point:
n∑

i=1

(Yi − xT
i β(x))2Kh(Xi − x),

where K is the kernel function. In this part, we choose Epanechnikov kernel.
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The minimizer for the above summation is the least squares estimate(LSE) for

β(x):

β̂(x) = (XT WX)−1XT WY (4.18)

where W = diag(Kh(x−Xi)), X = (xT
1 , · · · , xT

n )T , and Y = (Y1, · · · , Yn)T .

The predicted value at Xi is:

Ŷi = m̂(Xi) = β̂0(Xi) = (1, 0)(XT
0 W0X0)−1XT

0 W0Y = ST
i (h)Y

where X0 = (x0
1, · · · , x0

n)T , x0
j = (1, Xj −Xi), W0 = diag(Kh(X1 −Xi), · · · , Kh(Xn −

Xi)), and ST
i (h) = (1, 0)(XT

0 W0X0)−1XT
0 W0 is a one by n row vector. Finally, the

smoothing matrix is:

S(h) = (S1, · · · , Sn)T ,

where Ŷ = S(h)Y. Hence, the effective number of parameters is:

df(h) = trace(S(h)).

We choose the following bandwidth:

h = 0.05 ∗ 1.1j ,

where j = 0, 1, · · · , 30. The corresponding effective number of parameters versus

bandwidth is given in graph 4.3. We can see with increasing of bandwidth, the effec-

tive number of parameters will decrease. This probably will result in the increasing

of mean square error.

4.3.2 Bandwidth selection

We use Ruppert, Sheather and Wand (1995, JASA) plug-in method to select

an optimal bandwidth. Using equation(4.18), we can get the local linear least squares
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estimate for m(x) is β̂0(x). To get the estimation variance, consider the variance-

covariance matrix for β̂(x):

cov(β̂(x)) = (XT WX)−1XT WΣWX(XT WX)−1,

where Σ = cov(Y). Since in this simulation, Y1, · · · , Yn are independent with constant

variance, Σ = σ2I. The covariance matrix becomes:

cov(β̂(x)) = σ2(XT WX)−1XT W 2X(XT WX)−1.

To estimate σ2, we use MSE to approximate it. Note that at here,

σ̂2 = MSE =
∑n

i=1(Yi − Ŷi)2

df
=

∑n
i=1(Yi − β̂0(Xi))2

df
,

where β̂0(Xi) can either be calculated at each observation point or can be interpolated

from the grid points (xi, β̂0(xi)), i = 1, · · · , ngrid. df is the effective number of para-

meters for the corresponding bandwidth. Due to the asymptotic normal property of

the local least squares estimate, the 95% confidence interval of the resulting estimate

is:

β̂0(x)± 2SD(β̂0(x)).
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Using the subroutine provided by Steve Marron (http://www.stat.unc.edu/postscript/papers/marron/Matlab7Software/Smoothing/)

and the relationship (4.15), the optimal bandwidth for Epanechnikov kernel for the

generated dataset is:

h1 = 0.079,

and figure 4.4 shows the regression function together with 95% confidence interval.

From this plot, we can see that the result is good. Near the boundary, the confidence

interval is gradually adjusted to broader range.
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Figure 4.4. Regression function and 95% confidence interval
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4.4 Simulation for Functional Linear Model

To test the quality for the functional linear model, we consider a simple case

where there is only one predictor x (p = 1). xi, i = 1, · · · , n are generated indepen-

dently from N(0, 1). Here, x is fixed, not a function of other parameters. There is no

any additional technical difficulties in the estimating steps for the predictor x to be

the function of uj . εi,j , i = 1, · · · , n, j = 1, · · · , ni are also generated independently

from N(0, σ2). The independent variable u is set to be evenly distributed within the

interval (0, 1), uj = j
J+1 , where j = 1, · · · , J .

The random functional observations yi(uj) are generated using β0(u) = 4 sin(2πu)

and β1(u) = 16(u− 0.5)2. Then the functional linear model in this case turns into:

yi(uj) = β0(uj) + β1(uj)xi + εij

= 4 sin(2πuj) + 16(uj − 0.5)2xi + εij

(4.19)

For this example, we choose to set n = 100, J = 200. Figure 4.5 shows the

fitted value for the functional coefficient β0(u) and the corresponding 97.5 percent

quantile and 2.5 percent quantile curves for different values of σ2. We can see for

small variance case, the estimation is very good and even for the largest variance

case, the estimation is still very good.

Figure 4.6 shows the fitted value for the functional coefficient β1(u) and the

corresponding 97.5 percent quantile and 2.5 percent quantile curves for different val-

ues of σ2. We can see for small variance case, the estimation is very good for this

quadratic functional coefficient. Even in the largest variance case, the estimation is

still very good for this quadratic functional coefficient.

To address the importance of the second smoothing steps in terms of the MSE

for the functional coefficients, we consider the following setup: N = 5000 groups

of the different random sample of the same size are generated and the above func-
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Figure 4.5. Estimates of functional coefficient β0 for model (4.19). Solid line is the estimated value,
dotted line is the true value.
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Figure 4.6. Estimates of functional coefficient β1 for model (4.19). Solid line is the estimated value,
dotted line is the true value.
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Table 4.3. MMSE and VarMSE

j i = 0(β0(s.e.)) i = 1(β1(s.e.))

1(β̃) 0.0204(3.35e-03) 0.0214(5.62e-03)

2(β̂) 0.0019(1.10e-03) 0.0014(1.11e-03)

tional linear regression steps are iterated for N times. For each random sample group

k, the MSEs for both the estimates from the 1st step and 2nd step (MSE
(1)
i (k) and

MSE
(2)
i (k)) are calculated. Also the means and variances of these MSEs are calcu-

lated. These are defined by:

MMSE
(j)
i =

1
N

N∑

l=1

MSE
(j)
i (l)

for the means of MSEs and:

V arMSE
(j)
i =

1
N − 1

N∑

l=1

(MSE
(j)
i (l)−MMSE

(j)
i )2

for the sample variances of MSEs. Tables 4.3 shows the values for MMSE
(j)
i and

V arMSE
(j)
i . From these two tables, we can see the MSEs for the smoothed parame-

ters is only a fraction of the unsmoothed ones. We observe the same situation for the

variance of the MSEs. This shows the importance for the smoothing step.

Another way to look at the benefit of the smoothing step is to look at the ratio

of the two MSEs for both step of each group. Let:

ri(k) =
MSE1

i (k)
MSE2

i (k)

where i = 0 is for β0(u) and i = 1 is for β1(u). ri(k) will show the benefit we can get

from the smoothing step. The larger this ratio is, the more gain we get from penalized

spline regression step. Figure 4.7 gives the boxplot for these two log ratios because

of the wide range of the ratios. From this plot, we can see that most of the ratios is

larger than 10. So the smoothing step is very efficient.
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Figure 4.7. Boxplot of the log ratio MSEs.

4.5 Case Study: Mean function estimation for valve motion error for crank
angle within (360, 450) using FLM

In this section, part of the valvetrain data (the crank angle within (360,450))

will be analyzed by functional linear model using the two-step estimation procedure

discussed in previous sections.

The ordinary least square estimate β̂(u) for the model:

yi(u) = Xiβ(u) + ε

are given in Figure 4.8 . Note that there are eight predictors and the number of func-

tional coefficient is nine including one baseline function β0(u). From these figures,

we can see all the coefficients have large variation along with the crank angel. So

the function linear model is suitable for this part of the problem. Figures 4.9 to 4.10
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Figure 4.8. OLS estimates for the functional coefficients within crank angle region (360,450)
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give the smoothed functional coefficients together with the 97.5 percentile and 2.5

percentile curves from the functional linear model using the procedure described in

chapter 4. The result is very good. Figures 4.11 to 4.13 give the FLM fitted value, OLS

fitted value and the SAE simulation result comparison for all the 16 design cases.

From these plots, we can see most of the FLM fitted results are very good but for

some design cases, the smoothing of functional coefficients along crank angle direc-

tion distorts the original information with a certain degree.
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Figure 4.9. Estimated coefficients from functional linear model within crank angel region (360,450)
with the design matrix in Table 4.1
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Figure 4.10. LSE for the functional coefficients within crank angle region (360,450) with the design
matrix in Table 4.1
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(b) The 2nd design case
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(c) The 3rd design case

360 370 380 390 400 410 420 430 440 450
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Crank Angel

M
o

ti
o

n
 E

rr
o

r

Run Case4

CAE simulation
FLM estimate
OLS estimate

(d) The 4th design case
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(e) The 5th design case
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(f) The 6th design case

Figure 4.11. Valvetrain motion errors comparison for the first 6 design cases in Table 4.1 within crank
angel region (360,450)
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(a) The 7th design case
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(b) The 8th design case
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(c) The 9th design case
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(d) The 10th design case
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(e) The 11th design case
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(f) The 12th design case

Figure 4.12. Valvetrain motion errors comparison for the second 6 design cases in Table 4.1 within
crank angel region (360,450)
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(a) The 13th design case

360 370 380 390 400 410 420 430 440 450
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Crank Angel

M
o

ti
o

n
 E

rr
o

r

Run Case14

CAE simulation
FLM estimate
OLS estimate

(b) The 14th design case
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(c) The 15th design case
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Figure 4.13. Valvetrain motion errors comparison for the last 4 design cases in Table 4.1 within crank
angel region (360,450)
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4.6 Functional ANOVA for Functional Linear Model with Kriging

Similar to the case in Chapter 3, we are interested in knowing which predictor

has more effect on the response as well. We use functional ANOVA decomposition

to analyze this problem.

The functional linear model with kriging term can be written as:

m(x; t) = xβ(t) + r(x; t)R−1(Y(t)− Xβ(t)), (4.20)

where β(t) is the functional coefficient vector, Y(t) is the observed response vector

at index t, X is the design matrix. From the last section, we know that the two-step

kriging model with interpolation in temporal direction is a more favorable model and

we still use this procedure to estimate the parameter in this model.

Here, we assume Gaussian correlation function with single parameter θ as the

structure of correlation matrix at each index point. As shown in figure (4.14.(a)), the

Newton-Ralphson algorithm will not work well on the original likelihood function

since this function will flat out at higher range of θ. The penalized likelihood with

L2 penalty is utilized to get the optimal θ and β. In order to show the comparison

of these two likelihoods, figure (4.14.(b)) zooms into the zone where the penalized

likelihood has the maximum point. From this plot, we can see clearly the maximum

point after the penalty.

The parameter estimation is performed as follows. At each functional in-

dex point, θ value is searched on a pre-defined dense grid point set. For each θ

value, the corresponding weighted least square estimate for β is computed followed

by the calculation of penalized likelihood. The MLE for θ (and β) is then picked

which corresponding to the maximum likelihood value. After all the θ estimation is

ready along the functional direction, a non-parametric smoothing is performed to get
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Figure 4.14. Log-likelihood function for FLM with kriging

the smoothed version of θ. The coefficient β is then calculated again by using the

weighted least square estimation.

After the estimation of θ̂ and β̂, we can directly plug them into (4.20) to get the

function which needs to be decomposed orthogonally onto each variable direction by

functional ANOVA:

g(x; t) = g0(t) +
d∑

i=1

gi(xi; t) +
∑

i<j

gij(xi, xj ; t) + · · ·+ g1···d(x1, · · · , xd; t). (4.21)

This functional ANOVA decomposition at each functional point is a direct

application of the work of Sobol’ (1993), Sobol’ (2001) and Sobol’ (2003). Please refer

to Chapter 3 for the properties of this decomposition.

Denote the total variance as

D(t) = Varg(t) = E(g(t)2)− (Eg(t))2, (4.22)
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and the component variance as:

Di1···ik(t) = Vargi1···ik =
∫

g2
i1···ik(xi1 , · · · , xik)dxi1 · · · dxik . (4.23)

Due to the orthogonality, we have:

D(t) =
d∑

k=1

∑

i1<···<ik

Di1···ik(t).

Then the Sobol’ indices are:

Si1···ik =
Di1···ik

D
.

These indices reflect how much does each component in decomposition (4.21) affect

the response.

In order to calculate the functional decomposition conveniently, we normalize

the predictor x ∈ (0, 1)d first. Denote:

M = (M1, M2, · · · ,Mn)T = R−1(Y− Xβ̂), (4.24)

(4.20) turns into:

g(t) = β̂0(t) +
d∑

i=1

xiβ̂i(t) +
n∑

i=1

ri(t)Mi(t). (4.25)

The overall mean effect turns into:

g0(t) = Eg(t) =
∫

g(t)dx = β̂0(t) +
1
2

d∑

i=1

β̂i(t) +
n∑

i=1

Mi(t)
∫

ri(t)dx. (4.26)

The linear component turns into:

gk(xk, t) =
∫

g(t)Πi6=kdxi−Eg = (xk− 1
2
)β̂i(t)+

n∑

i=1

Mi

∫
riΠl 6=kdxl−

n∑

i=1

Mi

∫
ridx.

(4.27)

In order to get the overall variance, we need to get Eg2(t), which can be calculated in

the following way:

Eg2 =
∫
x∈[0,1]d g2dx

= β̂2
0 + β̂0

∑d
j=1 β̂j + 2β̂0

∑n
i=1 Mi

∫
x∈[0,1]d ridx + 1

3

∑d
j=1 β̂2

j

+1
2

∑d
j=1

∑d
k=j+1 β̂j β̂k +

∑n
i=1

∑n
j=1 MiMj

∫
x∈[0,1]d rirjdx

+
∑n

i=1

∑d
j=1 β̂j

∫
riΠk 6=jdxk

∫ 1
0 xjexp(−θ̂(xj −Xi,j)2)dxj .

(4.28)
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The integration terms like
∫

ridx and
∫

rirjdx are given in (3.64) and (3.66).

4.7 Simulation–Coefficients Estimates and Functional ANOVA

Our purpose in this section is to validate the code for parameter estimation

and functional ANOVA decomposition for model (4.20). We pick the same design

matrix as in table 4.1, which is the same design matrix as in Example 1.2. Let the

true functional coefficient β(t) to be the estimated functional coefficient in model

(4.20) using the data from Example 1.2. The error term needs to be smooth, which is

required by the kriging model. We pick the following formula for the error term:

εij = c[sin(2kπtj) + cos(2kπtj)]exp(−1
2

xiAjx′i), (4.29)

where i = 1, 2, · · · , 16, j = 1, · · · , 83. Aj is a square matrix with off diagonal elements

equal to ρj , and diagonal element equal to unit. ρj is uniformly randomly picked

within range (0.3, 0.7). Aj can be viewed as the correlation matrix for xi at the j − th

functional index. In this simulation study, we take k = 12. c is a constant which

controls the noise-signal ratio. In order to see the effect to the code by the noise level,

it is taken to be the following values: 0.01,0.1,0.5,1,2,5,10. The true model for this

simulation is:

yij = xiβj + εij . (4.30)

To investigate the sensitivity of the code to the noise ratio, we calculate the

mean-square-error (MSE) between true value and simulation result for functional co-

efficients βi (i = 0, 1, · · · , 8) and individual variance component in functional ANOVA.

The MSE for coefficient is:

MSEi(c) =
1
n

83∑

j=1

(βi,j − β̂i,j)2, (4.31)

where n = 83, βi,j is the true coefficient value for the i-th component at j-th functional

index, β̂i,j is the corresponding estimates. Apparently, this MSE is a function of noise
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Table 4.4. MSE for coefficients for FLM with kriging

c = 0.01 c = 0.1 c = 0.2 c = 1 c = 2 c = 5 c = 10

β0 0.0000092 0.0009417 0.0223609 0.0952003 0.3754671 2.4088899 9.5717694

β1 0.0000003 0.0000337 0.0008068 0.0034130 0.0134650 0.0863404 0.3427715

β2 0.0000003 0.0000337 0.0008068 0.0034130 0.0134650 0.0863404 0.3427715

β3 0.0000004 0.0000484 0.0011464 0.0049066 0.0193179 0.1244280 0.4936032

β4 0.0000004 0.0000484 0.0011464 0.0049066 0.0193179 0.1244280 0.4936032

β5 0.0000003 0.0000337 0.0008068 0.0034130 0.0134650 0.0863404 0.3427715

β6 0.0000003 0.0000337 0.0008068 0.0034130 0.0134650 0.0863404 0.3427715

β7 0.0000003 0.0000337 0.0008068 0.0034130 0.0134650 0.0863404 0.3427715

β8 0.0000008 0.0000850 0.0020744 0.0085856 0.0339740 0.2165106 0.8594909

level c. Table 4.4 shows this MSE for c = 0.01, 0.1, 0.2, 1, 2, 5 and 10. We can see

that the MSE will increase along with the increasing of the noise ratio. Within all

the components, β0 is most sensitive to the noise ratio c. Figure 4.15 shows the true

and simulated coefficients under several different noise ratio situations. Figure 4.16

shows simulated β0. From these figures, we can see that the model estimation for

mean function will perform well if the noise ratio is not too large (c ≤ 2). For large

noise/signal ratio, the mean functional estimation will be distorted.

To investigate the sensitivity of functional ANOVA decomposition to the noise

level, we calculate the following MSE:

MSEi(c) =
1
n

n∑

j=1

(Vargi,j − ˆVargi,j)
2, (4.32)

where n = 83, Vargi,j is the variance component on xi at functional index j. Ta-

ble 4.5 gives this MSE for each variance component. Please note that the real MSE

value equals to the value in this table divided by 104. Figures 4.17 and 4.18 show

the estimated variance components and the corresponding true values for c = 2 and
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Figure 4.15. Simulation result for coefficient estimates for FLM with kriging
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Figure 4.16. Estimated β0 for FLM with kriging

c = 5. Figure 4.19 shows the estimated overall variance and true value under differ-

ent noise ratio situations. From these results, we can see that from MSE point of view,

the functional ANOVA decomposition is less sensitive to the noise ratio compared to

the mean function estimation.

4.8 Simulation–Comparison of Multivariate and Single Response

In this section, we make a comparison between multivariate kriging model

and kriging model with single response. Equation (4.30) is used to generate the sim-

ulation response on the given design matrix in table 4.1. Furthermore, we generate

another N random observations for the same predictors in table 4.1, where N = 1000.

Using FLM, we obtain the main functions estimates and get the residual. We label

these points as x∗i , where i = 1, · · · , N , and the corresponding functional residual

as y∗i . Then we use kriging with single response and multivariate kriging model to

build models on design matrix separately. Then the predictions on each of the ran-
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(a) Variance on x1
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(b) Variance on x2
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(c) Variance on x3
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(d) Variance on x4
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(e) Variance on x5
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(f) Variance on x6
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(g) Variance on x7
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(h) Variance on x8

Figure 4.17. Variance on each components for c = 2 for FLM with kriging
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(a) Variance on x1
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(b) Variance on x2
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(c) Variance on x3
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(d) Variance on x4
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(e) Variance on x5
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(f) Variance on x6
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(g) Variance on x7
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(h) Variance on x8

Figure 4.18. Variance on each components for c = 5 for FLM with kriging
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(a) c = 2
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(b) c = 5
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(c) c = 10

Figure 4.19. Overall variance comparison
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Table 4.5. MSE for variance of individual components

MSE ∗ 104 c = 0.01 c = 0.1 c = 0.2 c = 1 c = 2 c = 5 c = 10

Varg1(x1) 0.0030 0.0033 0.0052 0.0112 0.0338 0.1350 1.4204

Varg2(x2) 0.0172 0.0173 0.0205 0.0234 0.0520 0.1871 1.6312

Varg3(x3) 0.0052 0.0053 0.0182 0.0503 0.1985 1.4023 8.6714

Varg4(x4) 0.0122 0.0123 0.0301 0.0765 0.2910 1.9507 10.8222

Varg5(x5) 0.0040 0.0040 0.0051 0.0080 0.0269 0.1389 1.5303

Varg6(x6) 0.0004 0.0004 0.0013 0.0029 0.0126 0.0931 1.2444

Varg7(x7) 0.0631 0.0636 0.0692 0.0797 0.1165 0.2947 1.7435

Varg8(x8) 0.4201 0.4457 1.1185 2.9694 10.6880 60.4602 274.0258

Overall Variance 2.1780e-04 1.9903e-02 0.6147 2.3921 13.0000 230.0844 3280.22

domly generated points are obtained from each model. The prediction errors for each

functional index are defined as

P.E.(j) =
N∑

i=1

‖(y∗(j)i − ŷ∗(j)i)‖2,

where y∗(j) is the ith residual at functional index j, ŷ∗(j) is the predicted value.

We use 2 points in functional direction for multivariate version to compare

with the single response version. The result shows that the prediction error of single

version is uniformly greater than the one of multivariate version. The averaged pre-

diction error across functional direction for single version is 22.0001 for c = 10 (the

magnitude for the error term), while the corresponding result for multivariate ver-

sion is 20.1894. Table 4.6 shows the detailed comparison for some functional index

j, where gain is defined as P.E.(single)−P.E.(multivariate)
P.E.(single) . From this table, we can see

we gain a lot by using multivariate kriging model compared to kriging with single

response. Also note that for different functional index, we have difference gains. This

clearly shows the advantage of multivariate kriging model.
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Table 4.6. Comparison for multivariate kriging and kriging with single response in FLM for c = 10

Source j = 1 j = 3 j = 5 j = 7 j = 9 j = 11 j = 13

P.E.(single) 23.1115 18.0262 45.2933 5.7887 35.0812 13.5569 25.8520

P.E.(multivariate) 20.7360 16.0467 41.5343 5.2572 32.0415 12.4487 23.6551

Gain 0.1028 0.1098 0.0830 0.0918 0.0866 0.0817 0.0850

4.9 Functional ANOVA: Case Study

In this section, we perform functional ANOVA analysis to Example 1.2 for

the crank angle in (360, 450). The model is FLM with kriging (4.20). Parameters θ

and β are estimated by MLE from penalized likelihood followed by non-parametric

smoothing along crank angle direction, which is described in previous sections. In

order to see the effect of each variable, the functional ANOVA analysis is then per-

formed to decompose the function onto each predictor orthogonally.

Figure 4.20 shows the estimated θ curve of MLE for penalized likelihood and

the smoothed version, from where we can see that θ varies around 1.4. Note that the

larger θ is, the weaker correlation between design cases is. This plot shows that the

correlation around crank angle 360 and 400 is weaker than other crank angle region

in (360, 450). Figure 4.21 shows the corresponding estimated functional coefficients

given the smoothed θ curve.

As before, we calculate the variance of linear effect terms and their ratio to the

total variance to investigate how much the linear effect explains the total variance.

Figure 4.22 is the total linear effect plot. It shows s versus t, where s is the sum

of Sobol’ indices for linear effect: s(t) =
∑d

i=1 si(t) =
Pd

i=1 Di(t)
D(t) . si(t) = Di(t)

D(t) is

the Sobol’ indices for the ith linear effect. From this plot, we can see that the total

linear effect explains over 85% of the overall variation at each point on the functional

direction. Except around crank angle 395, this variance ratio is larger than 90% on
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Figure 4.20. MLE for penalized likelihood and the smoothed curve

all other points. This plot shows that most of the overall variance is explained by the

linear effects. Figure 4.23 shows each Sobol’ indices for individual linear component.

We can see the linear effect on x8 has the most impact on the overall variation. Its top

variation range is around 0.8. The next one is x7, which range is around 0.5. The next

is x2 and x4, which range is around 0.35.

The above figures only give us information on how much each/total linear

effect explain the total variance. To better understand how each variable affects the

response, we need to get the estimation for each component function. After the func-

tional ANOVA decomposition, each component gi is a function of crank angle and

the corresponding variable xi which has been normalized and the range is in (0, 1).

We can calculate gi at any given grid set on (360, 450) by (0, 1) to get an estimate of

the component surface. Figures 4.24 and 4.25 show the contour plots for g1 to g8. We

can see clearly how each component function varies on the predictor domain.
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Figure 4.21. WLS estimates for the functional coefficients within crank angle region (360,450) in
kriging model
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Figure 4.23. Sobol’ indices for linear effect
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Figure 4.24. Contour plots for x1 to x4
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Figure 4.25. Contour plots for x5 to x8
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4.10 Conclusion

In this chapter, we propose a spatial-temporal model for functional response

computer experiments with high sampling rate. This chapter focuses on the situation

in which the overall trend can be represented as a functional linear model. We first

model the overall trend using the functional linear model. We use two steps estimat-

ing procedure for FLM and the simulation shows the advantage of the smoothing

step, which follows the step of initial least square estimation. Local linear regression

with Epanechnikov kernel is implemented in smoothing step. The simulation shows

the algorithm for FLM works quite well.

The proposed spatial-temporal model naturally produces a smooth interpola-

tion surface over the spatial (design variable) and temporal (functional index) space,

which is the most desirable functionality for engineers. We further compared two

estimation and prediction procedures for this model, one is kriging with single re-

sponse at each functional index followed by linear/cubic interpolation along func-

tional index. This corresponds to the one proposed in Fang, Li and Sudjianto (2005).

Another one is multivariate kriging over design variables and the nearest functional

index points. Both procedures can predict at combination of any untried design vari-

ables and functional index, and interpolate the observed data points. The compari-

son result shows clearly that the multivariate version yields more accurate prediction

than the single version.

We further developed the functional ANOVA decomposition for this spatial-

temporal model, and derived a closed form for this decomposition. Since the sam-

pling rate is intensive in the functional response situation, we can obtain a smoothed

surface over the variable value range and functional direction for each variable from

the functional ANOVA decomposition, which provides engineers more insights into

how each variable affects the response in this situation.
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We validated the proposed modeling procedures via a simulation study. Us-

ing the similar settings with valvetrain example, we generated several set of func-

tional responses with different noise levels. The simulation results showed that the

proposed estimation procedure performs quite well in the moderate noise level. Also,

the variance of individual components is estimated with high accuracy in functional

ANOVA decomposition.

For illustration purpose. we applied the proposed model and estimation pro-

cedure to valvetrain example for crank angle in (360, 450). We recovered the coeffi-

cients of the main effects in spatial-temporal model and the parameters in correlation

matrix in kriging terms. We found that the correlation around crank angle 360 and

400 is weaker than other crank angle region in (360, 450). Furthermore, the total lin-

ear effect explains over 85% of the overall variation at each point on the functional

direction. Except around crank angle 395, this variance ratio is larger than 90% on

all other points. We also found that the linear effect on x8 has the most impact on

the overall variation. Its top variation range is around 0.8. The next one is x7, which

range is around 0.5. The next is x2 and x4, which range is around 0.35.

Finally, we obtained the contour plots for the functional response surfaces

which is decomposed onto each variable. From those plots, we see clearly how each

functional response component surface changes for each variable and functional in-

dex.

The methodology developed in this chapter can be applied directly to any

computer experiments with output data with intensive sampling rate. The valvetrain

example is a typical example of such computer experiments.



Chapter 5

Modeling Computer Experiment with Functional Response
by Partial FLM

5.1 Partial Functional Linear Model

In most of the situations, we find that the functional coefficients have differ-

ent levels of dependency on the functional index. Some of them vary a lot with it

while others only change a little. As the same in previous chapter, denote n to be the

number of observations for (xi, yi) and let ni denote the number of functional points

at each observation point i. If in a functional linear model defined in (4.3), some of

the coefficients in β strongly depend on the functional index (denote it by u) com-

pared to the rest of the coefficients in β, then we can split β into two groups, one

group includes all the coefficients which are highly dependent on u, the other group

contains the rest of the coefficients. Let α denote the coefficients in the first group

and w denote the corresponding predictors. Let γ denote the rest of the coefficients

and z denote the corresponding predictors. For the predictors z, we can simplify their

coefficients as constants so that the functional linear model turns into:

µ(x, u) = wα(u) + zγ, (5.1)

where x = (w, z). In this model, part of the coefficients (α(u)) are functions of u,

the other part γ are just constants. So this model are called semi-varying coefficient

model.

149
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With the mean function (5.1), model (4.3) becomes:

y(x, u) = wα(u) + zγ + ε(x, u) (5.2)

We can write this model at observation point (xi, yi) at time uj componentwise as:

yi(uj) = wiα(uj) + ziγ + εi,j (5.3)

5.2 Back-fitting Algorithm

The idea of back-fitting algorithm is very simple. If we know γ, then using

the procedure for the functional linear model, we can solve for α(u) for the following

model:
yf (x, u) = y(x, u)− zγ

= wα(u) + ε(x, u)
(5.4)

And if we know α(u), then we can use least square estimator to solve for γ for the

following model:

yl(x, u) = y(x, u)−wα(u) = zγ + ε(x, u) (5.5)

The above steps immediately give us an iterative method to solve for α(u)

and γ simultaneously. To get the initial value for the iteration procedure, we can get

the least square estimators for the coefficients (α(uj)T ,γ(uj)T )T at each time point

uj , denote them as α̂(0)(uj) and γ̂(0)(uj):

 α̂(0)(uj)

γ̂(0)(uj)


 = (XT X)−1XT Y(uj)

where X = (wT , zT )T is the design matrix for the whole system, Y(uj) = (y1(uj), · · · , yn(uj))T

is the observed response vector at time uj .

For the back-fitting algorithm, first calculate:

yl
i(uj) = yi(uj)−wiα̂

(0)(uj)
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and average yl
i(uj) along time direction:

yl
i =

1
ni

ni∑

j=1

yl
i(uj)

then using least square to get γ̂(1) from the following model:

Yl = Zγ + ε

where Z is the design matrix composed only by the predictor group z, Yl = (yl
1, y

l
2, · · · , yl

n)T

and:

γ̂(1) = (ZTZ)−1ZT Yl

The second step is to get α̂(0)(uj) for all the time point. First calculate:

yf
i (uj) = yi(uj)− ziγ̂

(1)

then using functional linear model to estimate the coefficient α(uj) from the follow-

ing model:

yf
i (uj) = wiα(uj) + εi,j

and denote the resulting estimates for α(uj) as α̂(1)(uj).

Theses two steps complete an iteration step. Continue to iterate for these two

steps until the solution converges. Usually this iterative method converges very fast.

5.3 Simulations for Back-fitting Algorithm

As an illustrating example, we generate a random sample of size n = 16 and

ni = 245 from the following semi-varying coefficient model:

yi(uj) = α0(uj) + w1,iα1(uj) + w2,iα2(uj) +
7∑

k=1

zk,iγk + εi,j , (5.6)

where α0(u) = sin(2πu), α1(u) = cos(2πu), α2(u) = 4(u−0.5)2, uj = j
ni+1 , w1,i, w2,i, zk,i ∼

Bernoulli(0.5), γk = k/8, k = 1, · · · , 7 and εi,j ∼ N(0, σ2). Note that we purposefully
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Table 5.1. γ and γ̂ from semi-varying coefficient model

k γk σ2 = 0.25 σ2 = 1 σ2 = 2 σ2 = 4

k = 1 0.1250 0.1326 0.1402 0.1465 0.1554

k = 2 0.2500 0.2614 0.2729 0.2824 0.2958

k = 3 0.3750 0.3692 0.3634 0.3586 0.3518

k = 4 0.5000 0.5020 0.5039 0.5056 0.5079

k = 5 0.6250 0.6219 0.6188 0.6162 0.6125

k = 6 0.7500 0.7555 0.7609 0.7655 0.7719

k = 7 0.8750 0.8843 0.8935 0.9012 0.9120

matched the number of observations and data points in functional direction as the

case in Example 1.2 to study the algorithm quality.

As in the previous chapters, we tested several cases with different variance

values σ2 = 0.25, 1, 2 and 4. Table 5.1 lists the “true” constant coefficients of γk, k =

1, · · · , 7 and the converged solution for the estimated value γ̂k. From this table, we

can see the estimated result is very close to the true value even for the large variance

when σ2 = 4.

Figure 5.1 shows the fitted functional coefficient for α0, α1 and α2 for σ2 =

0.25 and 1. We can see that the estimates and the original true mean function almost

collapse into one curve. Figure 5.2 shows the fitted functional coefficient for α0, α1

and α2 for σ2 = 2 and 4. We can see even for the large variance in error term like

σ2 = 4, the estimates and the original true mean function are very close. This simula-

tion result proves the quality of the backfitting algorithm for partial functional linear

model.
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Figure 5.1. Estimates of functional coefficient for model (5.6) with σ2=0.25 and 1. (a), (b) and (c) are
for σ2=0.25; (d), (e) and (f) are for σ2=1
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Figure 5.2. Estimates of functional coefficient for model (5.6) with σ2=2 and 4. (a), (b) and (c) are for
σ2=2; (d), (e) and (f) are for σ2=4
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5.4 Partial Functional Linear Model with Kriging and Functional ANOVA
Decomposition

The previous sections concentrate on the mean function estimation for partial

functional linear model, which is a much more parsimonious model than FLM. Since

it is a regression model, the mean function will not interpolate the observed value.

But in engineering field, people always want to get a model which can interpolate the

data.

The kriging model for partial FLM is a natural extension of model (4.20). Sim-

ply replace the mean function xβ(u) in model (4.20) with the mean function of partial

FLM: wα(u) + zγ, we have the partial FLM with kriging:

m(x; u) = wα(u) + zγ + r(x; u)R−1(u)(Y(u)−wα(u)− zγ). (5.7)

We propose the estimation procedure for model (5.7) as follows. First, treat

the model (5.7) as a general FLM:

y(u) = xβ(u) + ε(u) ∼ N(xβ(u), σ2(u)R(u)), (5.8)

where x = (w, z). Using the estimation procedure in Chapter 4, we can get the MLE

for all the parameters in this model , such as the functional coefficients β(u), the

parameters θ(u) in correlation matrix R(u), and the functional variance σ2(u).

Next, we rewrite x = (w, z), split the coefficients into functional group α(u)

and constant group γ, and substitute the estimated variance σ̂2(u) and correlation

matrix R̂(u) into the above model, then the FLM changes into partial FLM with

known variance-covariance structure:

y(u) = wα(u) + zγ + ε(u) ∼ N(wα(u) + zγ, σ̂2(u)R̂(u)). (5.9)

Next, we invoke backfitting algorithm to get the estimation for the coefficients

in model (5.9):
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• set α(u) = α̂(u), Y∗(u) = Y(u)−wα̂(u) = zγ + ε(u). By assuming the indepen-

dent of ε(i) and ε(j) for i 6= j, the estimate of γ is:

γ̂ = (z′
J∑

u=1

Covε(u)−1z)−1(z′
J∑

u=1

Covε(u)−1Y∗(u)), (5.10)

where Covε(u) = σ2(u)R(u). In the estimation procedure, we substitute the

estimated variance and correlation matrix into this formula.

• set γ = γ̂, Y∗∗(u) = Y(u)− zγ̂ = wα(u) + ε(u), the WLE for α is:

α̂(u) = (w′R−1(u)w)−1w′R−1(u)Y∗∗(u). (5.11)

We get the final estimation result by repeating above two steps until the algorithm

converges.

Functional ANOVA decomposition for partial FLM with kriging is also a nat-

ural extension of the functional ANOVA decomposition in FLM case. After having all

the estimates for functional coefficients α(u), the constant coefficients γ, and parame-

ters θ in correlation matrix R, the constant coefficient γ can be viewed as a function

of u with constant value so that we can substitute these estimates into formula (4.29)

to (4.32) for FLM with kriging case.

5.5 Simulation for Partial FLM with Kriging and Functional ANOVA De-
composition

In order to test the quality of the code and the algorithm for partial FLM with

kriging, we generate simulation data by mimicking Example 1.2:

yij = α0,j + wi,1α1,j + wi,2α2,j +
6∑

k=1

zi,kγk + εij , (5.12)

where i = 1, · · · , 16, j = 1, · · · , 253, w:,1 = X8, w:,2 = X9, z:,k = Xk+1, and Xk is taken

as the design case in Example 1.2, which is given in table 4.1. γk = 1 + sin (k
7 ) for

k = 1, · · · , 6. The functional coefficients αj,: are given in figure (5.3), where j = 0, 1, 2.
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Figure 5.3. Functional coefficients α0,α1,α2 in simulation 5.12

The error term needs to be smooth, which is required by the kriging model.

We use the same error term as in the simulation for FLM:

εij = c[sin(2kπuj) + cos(2kπuj)]exp(−1
2

xiAjx′i), (5.13)

where i = 1, 2, · · · , 16, j = 1, · · · , 253. xi is the design variable corresponding to the

ith design case, which is listed in table 4.1. Aj is a square matrix with off diagonal

elements equal to ρj , and diagonal element equal to unit. ρj is uniformly randomly

picked within range (0.3, 0.7). Aj can be viewed as the correlation matrix for xi at the

j − th functional index. As the same with FLM case, we take k = 12, and error level

c as: 0.01,0.1,0.5,1,2,5,10.

First of all, the estimated functional coefficients are compared with the true

values. Table 5.2 lists the MSE of estimated functional coefficients. We can see that

even for the extreme case where noise amplitude c = 10, MSE is less than unity.

Figure 5.4 gives the simulation result for α0, α1 and α2 under several noise levels. We

can see that the estimated functional coefficients is very close to the true curve even

for the largest noise level.
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Table 5.2. MSE for functional coefficients in simulation 5.12

MSE c = 0.01 c = 0.1 c = 0.2 c = 1 c = 2 c = 5 c = 10

α0 0.0009 0.0094 0.0472 0.0946 0.1889 0.4735 0.9444

α1 0.0005 0.0047 0.0233 0.0467 0.0934 0.2340 0.4669

α2 0.0008 0.0080 0.0402 0.0804 0.1608 0.4026 0.8038
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Figure 5.4. Simulation result for functional coefficients for simulation 5.12
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Table 5.3. Error for estimated constant coefficients in simulation 5.12

True c = 0.01 c = 0.1 c = 0.2 c = 1 c = 2 c = 5 c = 10

γ1 1.1424 0.1148E-04 0.1143E-03 0.0006 0.0011 0.0023 0.0057 0.0114

γ2 1.2818 0.1148E-04 0.1143E-03 0.0006 0.0011 0.0023 0.0057 0.0114

γ3 1.4156 0.1008E-04 0.1005E-03 0.0005 0.0010 0.0020 0.0050 0.0100

γ4 1.5408 0.1008E-04 0.1005E-03 0.0005 0.0010 0.0020 0.0050 0.0100

γ5 1.6551 0.1008E-04 0.1005E-03 0.0005 0.0010 0.0020 0.0050 0.0100

γ6 1.7560 0.1008E-04 0.1005E-03 0.0005 0.0010 0.0020 0.0050 0.0100

Next, we consider the quality for estimating the constant coefficients in simu-

lation 5.12. The error for this estimation is calculated. The error is defined by γ̂i − γi

for i = 1, · · · , 6. Table 5.3 lists this error information for the simulation under differ-

ent noise level. We can see that even for the largest noise level c = 10, the estimated

constant coefficients are very close to the true value.

Next, we consider the quality of the functional ANOVA decomposition. Since

we know the true function of (5.12), we can integrate it and get the true decomposed

functional components and their variances. Then we can calculate the MSE for each

estimated decomposed functional component along functional direction. Table 5.4

gives the MSE for estimated variance of individual decomposed functional compo-

nents along functional direction. This MSE is defined as:

MSEi =

√√√√ 1
J

J∑

j=1

( ˆVargi,j − Vargi,j)2,

where gi,j is the ith decomposed functional component at the jth functional index,

Vargi,j is the variance corresponding to this function, ˆVargi,j is the estimated vari-

ance value. Figure 5.5 gives the true and estimated total variance for the functional

ANOVA decomposing. Together with table 5.4, we can see that when noise/signal

level is not too extreme, the estimation is good. Figures 5.6 and 5.7 show the estimated
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Table 5.4. MSE for individual decomposed functional component in simulation 5.12

MSE c = 0.01 c = 0.1 c = 0.2 c = 1 c = 2 c = 5 c = 10

g1 0.0025 0.0023 0.0023 0.0038 0.0070 0.0217 0.0406

g2 0.0066 0.0071 0.0106 0.0155 0.0277 0.0648 0.1376

g3 0.0011 0.0013 0.0035 0.0071 0.0129 0.0333 0.0640

g4 0.0013 0.0016 0.0039 0.0080 0.0145 0.0372 0.0709

g5 0.0016 0.0019 0.0047 0.0095 0.0172 0.0440 0.0839

g6 0.0019 0.0022 0.0052 0.0104 0.0188 0.0479 0.0907

g7 0.0022 0.0025 0.0056 0.0112 0.0202 0.0514 0.0972

g8 0.0025 0.0028 0.0060 0.0119 0.0214 0.0545 0.1029

Total Variance 7.1407E-04 0.0071 0.0357 0.0745 0.1424 0.3719 0.7677

variance for decomposed g1(w1) and g2(w2), from which we can see the estimation

for each component variance is good.

Since there is no main effect for variables zj (j = 1, · · · , 6), the decomposed

variance comes from the error term εi,j in (5.12). The noise to signal ratio here is very

large even for small value of c. Hence the variance change in functional direction will

be influenced a lot by error. Figure 5.8 gives the comparison of the estimated and true

variance of decomposed g3(z1).

5.6 Simulation–Comparison of Multivariate and Single Response

In this section, we make a comparison between multivariate kriging model

and kriging model with single response. Equation (5.12) is used to generate the sim-

ulation response on the given design matrix in table 4.1. Furthermore, we generate

another N random observations for the same predictors, where N = 1000. Using

PFLM, we obtain the main functions estimates and then get the residual. We label

these points as x∗i , where i = 1, · · · , N , and the corresponding functional residual
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(b) c = 0.5
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(c) c = 1
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(e) c = 5
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(f) c = 10

Figure 5.5. Estimated total variance for functional ANOVA decomposition for simulation 5.12
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Figure 5.6. Estimated variance for decomposed g1(w1) for simulation 5.12
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(f) c = 10

Figure 5.7. Estimated variance for decomposed g2(w2) for simulation 5.12
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Figure 5.8. Estimated variance for decomposed g3(z1) for simulation 5.12
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Table 5.5. Comparison for multivariate kriging and kriging with single response in PFLM for c = 10

Source j = 1 j = 3 j = 5 j = 7 j = 9 j = 11 j = 13

P.E.(single) 17.0364 22.1657 15.5470 43.5936 23.6791 11.5649 16.1706

P.E.(multivariate) 14.9903 19.5102 13.4279 35.3501 20.0254 9.8105 13.5073

Gain 0.1201 0.1198 0.1363 0.1891 0.1543 0.1517 0.1647

as y∗i . Then we use kriging with single response and multivariate kriging model to

build models on design matrix separately. Then the predictions on each of the ran-

domly generated points are obtained from each model. The prediction errors for each

functional index are defined as

P.E.(j) =
N∑

i=1

‖(y∗(j)i − ŷ∗(j)i)‖2,

where y∗(j) is the ith residual at functional index j, ŷ∗(j) is the predicted value.

We use 2 points in functional direction for multivariate version to compare

with the single response version. The result shows that the prediction error of single

version is uniformly greater than the one of multivariate version. The averaged pre-

diction error across functional direction for single version is 18.6301 for c = 10 (the

magnitude for the error term), while the corresponding result for multivariate ver-

sion is 16.7326. Table 5.5 shows the detailed comparison for some functional index

j, where gain is defined as P.E.(single)−P.E.(multivariate)
P.E.(single) . From this table, we can see

we gain a lot by using multivariate kriging model compared to kriging with single

response. Also note that for different functional index, we have difference gains. This

clearly shows the advantage of multivariate kriging model.
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5.7 Case Study: Partial Functional Linear Model with kriging for valve
motion error within crank angle (90, 360)

In this section, the valvetrain data of the crank angle within (90,360) is ana-

lyzed using semi-varying coefficient model.

Figure 5.9 give the OLS estimates of the functional coefficients for the valve-

train data within the crank angle (90,360). From these plots, we can see that only β0,

β7 and β8 are strongly depend on the crank angle. Hence we put these three coeffi-

cients into one group α(u) = (β0(u), β7(u), β8(u)), and the rest of the coefficients into

another group γ = (β1, β2, · · · , β6), which is treated as a constant coefficient vector.

We also split the predictor xi into two parts wi and zi which will corresponding to

the different groups of the coefficients. Then we use the estimation procedure which

is introduced and validated in previous sections to get the parameter estimates for

model 5.7.

As in FLM, we still use Gaussian correlation function with single parameter

as the correlation structure. θ is estimated by maximizing the penalized likelihood

function together with the estimation for σ2 and all the functional/constant coeffi-

cients. The detailed estimation procedure has been discussed in detail in previous

sections. Figure 5.10 shows the MLE for θ and σ2 along crank angle. The plot shows

that parameter θ in correlation function varies between 1.4 and 2 along crank angle.

Note that the correlation will become stronger if this parameter is small. This result

says the correlation between the design cases are changing along crank angle. This

figure also shows the MLE for σ2 versus crank angle. The result shows that the MSE

varies a lot along crank angle. We can also observe that when σ2 achieves its peak,

the estimated θ goes to the bottom.

The back-fitting result gives:

γ̂ = (β̂1, · · · , β̂6) = (−0.2184, 0.0392,−0.5147,−0.0006, 0.2409,−0.2857).
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Figure 5.9. OLS estimates of all the functional coefficients within crank angel region (90,360)
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Figure 5.10. MLE for parameter θ and σ2 in model 5.7

The result tells us that overall, x1, x3, x4, and x6 will try to decrease the valve motion

error, while x2 and x5 will try to increase the motion error. The estimated varying

coefficients β0(u), β7(u) and β8(u) from back-fitting algorithm and OLS are given in

figure 5.11. Figures 5.12 to 5.13 give the SAE simulated motion error and the OLS and

back-fitting algorithm for semi-varying coefficient model result for all the 16 design

cases. From these plots, we can see the restored information from back-fitting algo-

rithm for the semi-varying coefficient is smoother than the OLS estimates. But also

there are a certain degree of information distortion for this estimating procedure as

seen from these plots.

Figure 5.14 shows the Sobol’ indices for the linear effect in model 5.7. Note

that here, w1 and w2 corresponding to x7 and x8, zj corresponding to xj+2 for j =

1, · · · , 6. From this plot, we can see that the linear effect of variable x7 and x8 (w1 and

w2) explains most of the total variance except at some crank angle region. Around

crank angle 150, the linear effects of x5 (z5) explain almost 50% of the total variance,

while the linear effect of x7 and x8 almost explain none of the total variance. Around

crank angle 120, the linear effect of x7 drops to almost zero, and x8 drops to about
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Figure 5.11. Back-fitting and OLS estimates of the functional coefficients β0, β7 and β8 within crank
angel region (90,360)
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(b) The 2nd design case
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(c) The 3rd design case
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(d) The 4th design case
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(e) The 5th design case
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(f) The 6th design case
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(g) The 7th design case
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(h) The 8th design case

Figure 5.12. Estimated valvetrain motion errors with OLS and Back-fitting algorithm for the first 8
design cases in Table 4.1 within crank angel region (90,360)
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(a) The 9th design case
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(b) The 10th design case
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(c) The 11th design case

100 150 200 250 300 350
−6

−4

−2

0

2

4

6

Crank Angel

M
o

ti
o

n
 E

rr
o

r 
fo

r 
C

a
s
e

1
2

SAE Simulation
OLS
Back−fitting

(d) The 12th design case
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(e) The 13th design case
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(f) The 14th design case
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(g) The 15th design case
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Figure 5.13. Estimated valvetrain motion errors with OLS and Back-fitting algorithm for the last 8
design cases in Table 4.1 within crank angel region (90,360)
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20% of the total variance. Instead, the linear effect of x1 and x5 explains about 20% of

the total variance each.

The third plot of figure 5.14 shows the sum of linear effect for all the variables.

We can see that except for crank angle around 120 and 150, the linear effect explains

over 90% of the total variance. The dramatic drop around crank angle 120 and 150

indicates that the effect of interaction between those variables explains more around

those regions.

The above figures only give us information on how much each/total linear

effect explain the total variance. To better understand how each variable affects the

response, we need to get the estimation for each component function. After the func-

tional ANOVA decomposition, each component gi is a function of crank angle and

the corresponding variable xi which has been normalized and the range is in (0, 1).

We can calculate gi at any given grid set on (90, 360) by (0, 1) to get an estimate of the

component surface. Figures (5.15) and (5.16) show the contour plots for g1 to g8. We

can see clearly how does each component function vary on the predictor domain.

5.8 Conclusion

In this chapter, we consider a spatial-temporal model with the overall trend

by a partially functional linear model. In practice, some functional coefficients in

functional linear model may be modeled as a constant. In the consideration of pre-

diction accuracy, it is desirable to obtain a parsimonious model. This is the motivation

we consider partial functional linear model to represent the overall trend. The back-

fitting algorithm is proposed to estimate both constant and functional coefficients in

PFLM.

We proposed a new estimation procedure for the spatial-temporal model with

partially functional linear model trend. First, estimate the parameters in Gaussian
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Figure 5.14. Sobol’ indices for linear effects for crank angel within (90,360) for model 5.7
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Figure 5.15. Contour plots for x1 to x4
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Figure 5.16. Contour plots for x5 to x8



176

correlation function by treating the model as a general FLM using the estimation

procedure proposed in Chapter 4. Then we use backfitting algorithm to estimate the

constant and functional coefficients by treating the variance and variance-covariance

matrix as the estimated ones from the FLM. The functional ANOVA decomposition

is also a natural extension of the ones for FLM.

We conduct simulation studies to assess the proposed methodology. From our

simulation, the proposed estimation procedures work well. Furthermore, we conduct

a simulation to compare the prediction accuracy for multivariate kriging with the one

used in Fang, Li and Sudjianto (2005). The result clearly shows the advantage of our

proposed procedure over Fang, Li and Sudjianto (2005).

We then applied the proposed model and estimation procedure to valvetrain

example for crank angle in (90, 360). From the estimated functional coefficients in

FLM, we can see clearly that the functional intercept and functional coefficients for

design variable x7 and x8 have significant larger variation range than all other func-

tional coefficients. Hence we use PFLM in this situation. The result shows that both

the variance and the correlation between design cases are changing along crank angle

direction. We also observed that when variance goes to the peak, the correlation will

become stronger. The estimated constant coefficients tells us that overall, x1, x3, x4,

and x6 will try to decrease the valve motion error, while x2 and x5 will try to increase

the motion error.

From the result of functional ANOVA decomposition, we can see that the

linear effect of variable x7 and x8 explains most of the total variance except at some

crank angle region. Around crank angle 150, the linear effects of x5 (z5) explain almost

50% of the total variance, while the linear effect of x7 and x8 almost explain none of

the total variance. Around crank angle 120, the linear effect of x7 drops to almost

zero, and x8 drops to about 20% of the total variance. Instead, the linear effect of x1
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and x5 explains about 20% of the total variance each. Except for crank angle around

120 and 150, the linear effect explains over 90% of the total variance. The dramatic

drop around crank angle 120 and 150 indicates that the effect of interaction between

those variables explains more around those regions.

Again, the methodology in this chapter can be applied directly to any com-

puter experiments with functional coefficients in FLM have different degree of vari-

ation. The valvetrain example is just one of the real cases for such computer experi-

ments.



Chapter 6

Final Remarks

6.1 Summary

Most existing modeling procedures for computer experiments in the litera-

ture can only deal with single response computer experiments. Motivated by two

examples shown in Chapter 1 and analyzed in Chapters 3, 4 and 5, we systematically

studied how to model functional response computer experiments.

We first studied how to model computer experiments with multiple responses

since this is closely related to model sparse functional response computer experi-

ments. We proposed a multivariate kriging model for multiple response computer

experiments. The resulting predictor of the multivaraite kriging model is the best

linear unbiased predictor and automatically interpolates the observed data. Since

the multivariate kriging model takes into account the correlation between multiple

responses, it provides us more accurate prediction than modeling the multiple re-

sponse one by one using univariate kriging model. The accuracy gain may be up to

30% for high noise level. Using theory of matrix normal distribution, we proposed an

estimation procedure for the multivariat kriging model and developed an algorithm

to obtain the estimate of model parameters. To investigate the impact of each vari-

able, we developed an multivariate version of functional ANOVA decomposition for

the multivariate kriging model. We further derived the closed forms of each function

for main effect. Closed forms for total variance and variance for each main effect are

178
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also derived. By doing functional ANOVA decomposition on the multivariate krig-

ing model, we can get the clear picture of the shape of each component function over

the functional and design domain, after removing the effect of all other variables.

This decomposition is highly useful to answer the questions such as how a particu-

lar variable affects the multiple responses, how important a specific variable is to the

multiple responses, etc.

In Chapters 4 and 5, we developed spatial-temporal models for functional re-

sponse computer experiments, and demonstrated how to apply them to model com-

puter experiments. We consider both functional linear models and partially func-

tional linear models to represent thee overall trend in the proposed spatial-temporal

models. Based on the data structure of functional response computer experiments,

we proposed estimation procedures for the functional linear models and partially

functional linear models. We further developed several method for prediction of

functional response computer experiments. Compared with the one proposed in

Fang, Li and Sudjianto (2005), our proposed procedure yields more accurate predic-

tion.

We also constructed the functional ANOVA decomposition for spatial-temporal

model with the overall trend being either partially functional linear model or func-

tional linear model. The closed forms for each linear individual component are ob-

tained. The decomposition is very useful to examine the effects of variables of interest

on the functional response.

6.2 Future Works

In this dissertation, we focus on functional response with 1-dimensional in-

dex. It is certain of interest to study functional response with multi-dimensional in-

dex. Image data can be viewed as functional response with 2-dimensional index.
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Object data or tree-structure data may be regarded as functional response with 3-

dimensional index. Future works are need to conduct research on how to analyze

image functional data and object functional data.

In this dissertation, we consider only a simple situation of functional response

computer experiment. In practice, a simulation systems may be very complicated

and consist of multilevel of sub-computer experiments. It is of interest to extend

this dissertation work to a complex, multilevel and functional response computer

experiments.
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