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Abstract

Distance-based Model-Selection with application to the Analysis of Gene Expression

Data

Multivariate mixture models provide a convenient method of density estimation and

model based clustering as well as providing possible explanations for the actual data gener-

ation process. But the problem of choosing the number of components (g) in a statistically

meaningful way is still a subject of considerable research . Available methods for estimating

g include, optimizing AIC and BIC, estimating the number through nonparametric maximum

likelihood, hypothesis testing and Bayesian approaches with entropy distances. In our current

research we present several rules for selecting a finite mixture model, and hence g, based on

estimation and inference using a quadratic distance measure.

In one methodology the goal is to find the minimal number of components that are

needed to adequately describe the true distribution based on a nonparametric confidence set

for the true distribution. We also present results for selecting g based on a risk analysis that in-

cludes a penalty for overfitting. Another less formal methodology is based on the concordance

measure which is analogous to R2 in regression. Moreover, we find develop diagnostics for

purposes of outlier detection. These diagnostics help to distinguish between outliers and true

clusters, and they provide insight into the initial values for iterative estimation of additional

components.

In this dissertation we also develop tools for determining the number of modes in

a mixture of multivariate normal densities. We use these criterion to select clusters which
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display distinct modes. Finally we fine tune our methods to analyze gene-expression data

from micro-arrays, and compare them with other competitive methods.
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Chapter 1

Introduction

Multivariate mixture models provide a convenient method of density estimation and

model based clustering as well as providing possible explanations for the actual data gener-

ation process. But the problem of choosing the number of components (g) in a statistically

meaningful way is still a subject of considerable research . Available methods for estimating

g include, optimizing AIC and BIC, estimating the number through nonparametric maximum

likelihood, hypothesis testing and Bayesian approaches with entropy distances. In our cur-

rent research we present several rules for selecting a finite mixture model, and hence g, based

on estimation and inference using a quadratic distance measure. In this chapter we will first

provide the basic definitions and concepts of an arbitrary mixture of statistical distributions.

Then, we will demonstrate why the problem of choosing the number of components is an

important area of research. In the later part of this chapter we will give an outline of this

dissertation and introduce the notations that are consistently used throughout this dissertation.

1.1 General introduction to finite mixture models

In this section we will define a finite mixture distribution. Let X be a random variable

or in general a random vector taking value in the sample space X . X is said to have a g-

component mixture density with density function f
�
x � if the density function can be written

1



2

as

f
�
x � �

g

∑
j � 1

π j f j
�
x;λ j � θ � for x � X � (1.1)

where, f j
�
y;λ j � θ � ’s are the component densities and π j are mixing proportions with the re-

striction

0 � π j � 1 � j and
g

∑
j � 1

π j � 1 � (1.2)

Note that the component densities may have some parameter (e.g. θ in (1.1)) constant over

all the component densities while some parameter (e.g. λ j in (1.1)) may distinguish the com-

ponent densities from one another. For example, we may think of a normal mixture with

constant variance but different location parameter for each component. The parameter set of

the mixture in equation (1.1) are often denoted in the following way

θ �
��

π1 π2 � � � πg

λ1 λ2 � � � λg

��
(1.3)

Note that in this dissertation we will not deal with infinite mixtures.

1.2 The challenge: choosing the number of components

Choosing the number of components in a statistically meaningful way is still a subject

of considerable research. Mixture models are broadly used for two specific purposes. One is to

give a semiparametric framework to a unknown distribution. Titterington et al. (1985) referred

to this as the “indirect application” of mixture models. In this case the choice of the number of

components is not usually a big issue. Referred to as the “direct application” by Titterington

et al. (1985), mixture models are mainly used to provide a model-based clustering and to do so

the choice of the number of components must be carefully and critically addressed. The main

problem in choosing the number of components is the problem of over-fitting, which arises

from the nesting of the mixture models, so that a distribution which can be well approximated
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by a the mixture of g-components can also be well approximated by g0-components, for any

g0 � g, in the sense that the two mixture distributions are empirically indistinguishable. Thus

the choice of g should be addressed very carefully. Moreover, the choice may depend on the

question asked.

Recent development in many scientific fields has produced huge datasets with high

dimension and large sample size. There is a strong demand to analyze these data and to group

them into appropriate clusters. Many of the existing methods for model selection are not

efficient enough to use in high dimensional data. In this dissertation all our model selection

methods are especially designed for high dimensional multivariate situations.

1.3 Outline of the thesis

In this section we will give an outline of the dissertation. The goal of this dissertation

is to propose model selection tools to choose the number of components in a normal mixture

model in a possibly high-dimensional multivariate set up. The multivariate structure of the

mixture models make many available methods of model selection impractical, because of

the computational complexity. Our methods of model selection are designed to overcome

this problem. Along with the theory, each chapter describes the application of the proposed

methods to an array of problems. In particular, we apply our model selection tools to the Iris

data and the Acidity Data along with two sets of simulated dataset, all of which are described

in the Appendix.

In the next chapter we will give a detailed overview of the approaches that have pre-

viously been used in choosing the number of components of a mixture model. First, we

define the goals of model selection and show how the inference on the number of components

may differ according to the specific goal. Widely used methods based on likelihood and in-

formation criterion cannot be used routinely as the asymptotic distribution is very complex.

Bayesian methods and nonparametric methods are also discussed in the context of model se-
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lection.

Chapter 3 introduces the specific problem of selecting the number of components in a

mixture of multivariate normals. Generalized quadratic distance, defined using a positive def-

inite kernel is introduced. The positive definite kernel we use is based on the normal density

function. Later we use these distance to construct an array of model selection tools. Using

existing theories on U-statistics and utilizing the convolution properties of normal kernels

we work out an unbiased estimator of the distance. These distance calculations avoid the

multidimensional numerical integration by using appropriate kernel for the proposed mixing

distribution. We have examined the large-sample null distributions of these quadratic dis-

tances. Based on a spectral decomposition theorem, the kernel can be decomposed into basis

functions (eigen-function/eigen-value analysis). Using the above spectral decomposition, the

the large sample null distribution of the distance can be written as an infinite sum of weighted

chi-squared distributions. These quadratic distances can be interpreted as the L2 distance be-

tween kernel smoothed densities. Graphical comparisons between the L1 distance, L2 distance

and the quadratic distances are demonstrated. Finally, we develop distance based model se-

lection rules using nonparametric confidence intervals in situations where one might wish to

allow for some approximation error in model building.

The distance defined in Chapter 3 is based on the normal kernel, which in turn depends

on a tuning parameter h. In Chapter 4 we will show how the choice of the tuning parameter

is extremely important in designing a powerful distance. Analogy will be drawn between the

tuning parameter “h” and the bin-width of a cell in the χ2 goodness-of-fit tests. To choose h

we define the “pseudo degrees of freedom”, an interesting and useful single number summary

of the sensitivity characteristics of the distance. It can be calculated once and for all without

using the model. Furthermore, we will use the “rule of thumb” available for the choice of

bin-width in χ2 goodness-of-fit tests, to decide on an interesting range of the tuning parameter

of the kernel in the quadratic distance.
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In Chapter 5 we use the quadratic distance to define the concordance between two

densities. Analogy is drawn between the concordance coefficients of two densities and the R2

values in the context of regression. The concordance coefficient between a proposed model

and the empirical data, describes the amount of variability in the data that has been explained

by the model density considered. Future work on using the concordance coefficients as a tool

for finding an interesting range of the tuning parameter h is proposed.

Chapter 6 describes the notion of risk-based model selection. Using the quadratic

distance as the loss function we define the risk of selecting a proposed model that is not the

true model. This risk can be decomposed into two parts: one captures the model lack of fit,

while the other is strongly related to the parameter estimation cost. We introduce some novel

ideas for estimating this risk and apply them to model selection problems.

In the previous three chapters we introduced the quadratic distance and used it to

build model selection tools. We next use it to construct diagnostics. The unbiased estimator of

distance has a natural decomposition as sum of the residuals. In Chapter 7 we define quadratic

residuals and use them for outlier detection. Although the unstandardized residuals are hard to

interpret, after appropriate standardization the quadratic residuals have potential as a powerful

diagnostic tool. In addition to providing information about model failure, they could be used

to add more components to the model. With a simulated dataset, we demonstrate the detection

of outliers.

Chapter 8 examines the number of modes in a two component multivariate mixture.

This chapter is not directly related to the distance based model selection tools described in

Chapters 3 through 6. However, this analysis is important for interpretation of the selected

model, as a mixture with many components could have only a few modes. Conditions for

modality of univariate densities have been studied by many scientists; but we did not find

any previous analysis for the modality of mixture of multivariate distributions. In this chapter

we discover analytical solutions for the existence of multiple modes when the component



6

densities have the same variance covariance structure. For the unequal variance case we have

created plot-based methods for detecting multimodality. We then develop the notion of modal

cluster, where we cluster together fitted mixture components based on pairwise unimodality.

In Chapter 9 we apply our model selection tools to analyze gene expression data. We

give a brief introduction of the dataset, the experiment and the goal of the study. Finally, we

demonstrate how our model selection tools are a good choice for analyzing high dimensional

data.

1.4 Notational Preliminaries

In this section we will define notation that is used consistently throughout the disser-

tation. Some specific notation will be introduced later when they are first used.

With respect to a vector Y , Y
�

is its transpose. Similarly A
�

is the transpose of matrix

A, where as its determinant is defined by
�
A
�
. I denotes the identity matrix of appropriate

dimension.

As for the statistical notation, X � f
�
x � means the random variable X follows a dis-

tribution with density f
�
x � . More specifically X � f

�
x;µ � σ � means the density function f

�
x �

depends on the parameters µ and σ. In particular, φ
�
x � µ � σ � will denote the normal density

with mean µ and variance σ. The distribution of X converges in probability to the distribution

of Y is denoted by X
P��� Y , where as X

d��� Y denote convergence in distribution. The normal

density with parameters µ and Σ is denoted by N
�
µ � Σ � .

We denote the real line by IR, the p-dimensional Euclidean space by IR p, and the set

of positive integers by II. In this dissertation we deal with multivariate mixture of normals.

Hence our sample space X defined in equation (1.1) is IRp. For a g-component Multivariate

Normal Mixture the component densities fi’s are multivariate normals.

For model selection purposes τ will denote the true underlying distribution and M̂g
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will denote the fitted g � component model. D
�
F � G � is a generic measure of distance between

two probability distributions F and G. Specific distances that depend on a kernel K will be

indicated by use use of a suffix as in DK .



Chapter 2

Overview of Previous Research

Multivariate mixture models provide well known and widely used methods for density

estimation, model-based clustering, and explanations for the data generation process. How-

ever, the problem of choosing the number of components of a mixture model in a statistically

meaningful way is still a subject of considerable research. In this chapter we discuss some

of the commonly used techniques for determining the number of components in a mixture

model. It should be noted that the choice of the number of components may not be a very

important issue when mixture models are used to provide a semiparametric framework to un-

known distributional shapes. In this case over-estimation of the number of components is not

a serious problem. In fact, when mixtures are used for distributional approximation, Leroux

(1992) showed that under very mild conditions, Akaike’s Information Criterion (AIC) and

Bayesian Information Criterion(BIC) along with certain other penalized likelihood criterion

do not underestimate the true number of components, asymptotically. However, technically

speaking they are incorrectly applied because the model lacks the regularity conditions needed

for the simple penalty functions based on the number of parameters (See Section 2.2.2).

Our goal is to use the mixture model to provide model-based clustering and to do so

the choice of the number of components must be carefully and critically addressed. The prob-

lem of over-fitting arises from the nesting of the mixture models, so that a distribution which

can be well approximated by a the mixture of g � components can also be well approximated

by g0 � components, for any g0 � g, in the sense that the two mixture distributions are empiri-

8
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cally indistinguishable. Thus, we can only a get a lower bound on the number of components.

So, the right question to ask is not “how many components are there in the mixture model?”

but “what is the smallest number of the components in the mixture needed to make the model

compatible with the data?”. Especially, in the context of model based clustering, the answer

to the latter would guarantee a reasonable explanation of the phenomenon by which the data

was generated without being wasteful.

2.1 Goals of selecting the number of components

Model selection rules are driven by the specific goal they serve. So let us start this

chapter with an overview of the different possible goals for selecting g.

1. Getting the number of components right: In this situation we want D
�
τ � M̂ĝ ��� 0, (D

being some measure of distance between two probability distributions) in such a way

that ĝ � g. In other words we want our estimated g to be a consistent estimator of the

number of components in the mixture model. But “getting the number of components

right” is not always a realistic goal as no upper confidence limit is possible for the

number of components (Donoho, 1988).

2. Using an adequate number of components: A more realistic approach would be to

find an adequate number of components, allowing for some distributional error because

we could never ensure that in nature the data was generated by a mixture of normals,

or some other distribution. In this case we propose to choose g so that D
�
τ � MTg � � ε,

where MTg is the Kullback-Leibler best g-component density and ε is a small positive

quantity.

3. Using the g that gives the minimum risk: Another goal of selecting the number of

components is getting a model which gives us the minimum expected risk. Here we

propose to select a g for which E � D �
τ � M̂g ��� is small. In this approach one is penalized
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for estimation of parameters. If we use richer and richer model, by increasing g, the

penalty for the number of parameters increases at the same time that the model fitting

error decreases. This approach to model selection is extensively discussed in Chapter 6.

2.2 Approaches to Model Selection

In this section we discuss different approaches that have previously been used in esti-

mating the number of components of a mixture model. Readers wishing to get further details

should consult the specific references. Before discussing the methods let us introduce some

definitions and abbreviation, which we will be using throughout the rest of this chapter and

beyond.

Abbreviations and definitions

� LRTS: The Likelihood Ratio Test Statistic will be denoted as λ, where

λ �
L̂0

L̂1
�

L̂i being the maximized likelihood under Hi
�
i � 0 � 1 � �

� NPMLE: Nonparametric Maximum Likelihood Estimator.

2.2.1 Number of Modes

Estimating the number of components of a mixture distribution by the number of

modes is one of the oldest methods based on intuition. Titterington et al. (1985) described

some inferential procedures for assessing the number of modes. However, the obvious draw-

back of this method is that if the component densities are not sufficiently far apart the mixture

distribution would still be unimodal and estimating the number of components by the number

of modes would fail. Note however, that the practical interest could lie in finding components

that correspond to separate modes, so that true separation occurs. Modality for the normal

mixture will be investigated in further detail in Chapter 8.
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Figure 2.1: Mixture of normals (a) means 4 standard deviation apart, (b) means 2 standard devi-
ations apart

We illustrate the distinction between modes and components through a simple exam-

ple with the mixture of two univariate normals. Figure 2.1(a) is the mixture of two normals

with equal weights, means being 4 standard deviation apart and Figure 2.1(b) has its means

2 standard deviations apart. In both the figures the dotted lines represent the component den-

sities and the solid line is the the mixture density. Though Figure 2.1(a) produces a bimodal

distribution, Figure 2.1(b) is still unimodal. Rigorous conditions for mixture of two densities

displaying bimodality are discussed in Chapter 8

The above example illustrates that we cannot always infer the number of components

with the help of the number of modes. Moreover visually inspecting the modes of a multivari-

ate distribution becomes much more difficult. Conditions for bimodality in the multivariate

case (both for the equal and unequal variance) are addressed in Chapter 8.

2.2.2 Likelihood based approaches

Likelihood based approaches are the most extensively used methods for testing of

hypotheses. Moreover, the model selection problem can be framed as a hypothesis testing

problem. One way for deciding whether the mixture model has g components is to perform

a likelihood ratio hypothesis test for H0 : g � g0 vs H1 : g � g0 � 1. In this section we will

discuss all likelihood based approaches to model selection and indicate why these tests are
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hard to use for model selection in the mixture setup.

Likelihood ratio test statistic

As in any hypothesis testing problem, an obvious way of approaching the testing of

the smallest number of component compatible with the data, is to use LRTS. Let us test the

hypothesis that the data was generated by a mixture of g0 components versus it was generated

by g1 components, for some g1 � g0. Framing it as a hypothesis test problem we write,

H0 : g � g0 vs H1 : g � g1 (2.1)

Denoting L̂i as the maximized likelihood under Hi
�
i � 0 � 1 � , the likelihood ratio test statistic

reduces to

λ �
L̂0

L̂1

or log λ � log
�
L̂0 � � log

�
L̂1 � (2.2)

Unfortunately in the mixture model setup, the test statistic � 2 log λ does not have the usual

asymptotic null distribution of χ2
d , d being the difference of the number of parameters un-

der the null and the alternative. This is because the standard regularity conditions(Cramer,

1946) about the asymptotic properties of LRT are not met by this model. First of all, the null

hypothesis is in the boundary of the parameter space rather than its interior (Lindsay, 1995),

which does not satisfy the conditions of classical theory . Moreover there is no unique way

of obtaining H0 from H1 (Ghosh and Sen, 1985) making H0 a non-identifiable subset of the

parameter space. This can be illustrated by the following example.

Let us consider the simple example, of testing a one component Binomial against a

two component mixture of Binomials. Thus, the likelihood ratio test setting for testing this

hypothesis is

H0 : Y � Bin
�
n � p0 � (1 unknown parameter)

H1 : Y � π Bin
�
n � p1 � �

�
1 � π � Bin

�
n � p2 � (3 unknown parameters) �
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For identifiability of the distributions in the alternative hypothesis we restrict p1
�

p2. In this setting the uni-component model, with arbitrary parameter p0, can be described

with many elements of the alternative parameter space. Three lines on the boundary of the

parameter space give the same null distribution.

π

p

  p

1

2

p
0

Figure 2.2: 3-D plot of the parameter space of a two component binomial density where the —–
and - - - -denotes the possible ways of getting a one component model

We can get H0 from H1 in multiple ways.��
π 1 � π

p0 p0

��
���

��
1 0

p0 p

��
���

��
0 1

p p0

��
(2.3)

� The line for p1 � p2 � p0, π=anything.

� The line where π � 0, p2 � p0 and and p1=anything.

� The line where π � 0, p1 � p0 and and p2=anything.

In Figure 2.2 the alternative parameter values corresponding to a single null hypothesis po
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is plotted. Thus, it can be easily seen how the standard condition needed for the asymptotic

distribution of LRT’s breaks down in this example.

It should be noted that, though � 2 log λ does not have a standard χ2
d distribution,

many references can be cited where the distribution of the LRT in the mixture set up has been

worked out under certain special cases. The limiting distribution is complex in general making

it hard to compute the critical value for the rejection or acceptance of the null hypothesis. In

its most general form, the limiting distribution of � 2 log λ for normal components with

unknown but identifiable mean parameters, is given by,

sup

�
D � � µ2 �

Var
�
D � � µ2 � ��� 2

� (2.4)

where D � � max � 0 � D � and D � � µ2 � is a zero mean Gaussian process whose covariance kernel

is a function of µ1 under H0. (Ghosh and Sen, 1985) derived the same asymptotic distribution

for a general parametric family but under the condition of “strong identifiability”.

We now discuss the asymptotic distribution of the log-likelihood ratio statistic for

some special cases. It can be shown that for a mixture of two known (but general) univariate

densities with unknown proportions π and 1 � π, the test statistic � 2 log λ follows a mixture

of χ2 distributions. For testing H0 : g � 1
�
π1 � 1 � vs H1 : g � 2

�
π1
� 1 � ,

� 2 log λ �
1
2

χ2
0 �

1
2

χ2
1 (2.5)

asymptotically under H0, where χ2
0, the “chi-squared with zero degrees of freedom”, denotes

the degenerate distribution that puts mass 1 at zero. Lindsay (1995, Section 4.2) referred to this

as “chi-bar squared distribution”; that is a mixture of chi-squared distributions. Another set of

special case was considered by Goffinet et al. (1992). If the component densities are unknown

normals, with known mixing proportion we have the chi-bar-squared type distribution.
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Bootstrapping the LRTS

One way to avoid the derivation of the complex null distribution of the test statistic is

to appeal to bootstrap based calculation of the null distribution. McLachlan (1987) proposed a

simple resampling based approach which would enable us to assess the P-value of the LRTS.

For testing

H0 : g � g0 vs H1 : g � g1

bootstrap samples are generated from the mixture model fitted under the null hypothesis of g0

components. The quantity � 2 log λ is computed, one for each bootstrap sample. i.e for each

bootstrap sample we fit the model under the null and the alternative hypothesis and calculate

the LRTS. This process is repeated B times independently( i.e. for B-bootstrap samples )

which enables us to approximate the P-value of the LRTS. However, for an accurate estimate

of the P-value we need B to be large enough (Efron and Tibshirani, 1993). This is one of

the drawbacks of these method, as calculation of the LRTS for a single replicate involves

considerable amount of computing.

2.2.3 Information criterion based methods

The problem of model selection can be approached with methods based on informa-

tion criterion. Bias-corrected log likelihood methods are commonly used for the determination

of the number of components in a mixture model. In its most general form an information cri-

terion for model selection is based on the bias-corrected log-likelihood given by

log L̂ � b
�
F � �

where b(F) is the bias corrected term. More commonly it is written in the form

� 2 log L̂ � 2C � (2.6)

where the first term equation 2.6 is the lack of fit and the second term is the complexity of the

model and we choose the model which minimizes equation 2.6. In particular AIC selects the
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model which minimizes

� 2 log L̂ � 2 d � (2.7)

where d is the total number of parameters in the model. On the other hand BIC, which has

been derived within a Bayesian framework can also be applied in a non-Bayesian sense. Here,

we minimize

� 2 log L̂ � d log n � n being the total sample size. (2.8)

However, the asymptotic expansion that justify the b
�
F � term in general, depends on the same

regularity conditions as the null distribution of the LRTS, which as we have indicated, fail

for tests on the number of components of the mixture models. Though in the mixture model

scenario AIC tends to overestimate the correct number of components, it is often used to assess

the order of a mixture model. Other information criterion based methods include Bootstrap-

Based Information Criterion (EIC) and Cross-Validation-Based Information Criterion (see

McLachlan and Peel, 2000, p. 205).

2.2.4 Bayesian approaches

In this subsection we discuss some approaches to the selection of number of compo-

nents from a purely Bayesian perspective. Raftery (1996) took a Bayes factor based approach

for choosing the model along with the number of components of the model. The Bayes factor

was calculated as the ratio of the posterior to prior odds. Later Aitkin et al. (1996) used the

posterior Bayes factors as a variation of the “prior” Bayes factor described by Raftery (1996).

Other approaches to choose the number of components from a fully Bayesian framework was

advocated by Philips and Smith (1996), and Richardson and Green (1997). In their approach

the number of component g was formulated as the unknown parameter and the model selection

was done by attaching a prior on g, along with other parameters for the g component model.
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All the Bayesian methods for model selection in the mixture model set up depend

heavily on the choice of an appropriate prior. One should note that choosing a fully non-

informative prior for the component parameters is not an option in the mixture setup, as there

is always a possibility that there are no observations allocated to one or more components,

resulting in a divergent posterior (Wasserman, 2000). Moreover, Bayesian methods require a

high computational effort even in the univariate case, making their multivariate generalization

very computer intensive.

2.2.5 Approaches based on Nonparametric methods

Nonparametric methods for choosing the number of components have been consid-

ered by many statisticians. Besides the normal scores plot (Harding, 1948, Cassie, 1954)

and the modified percentile plot of Fowlkes (1979), Lindsay and Roeder (1992) proposed the

use of residual diagnostics for determining the number of components. Roeder (1994) also

demonstrated that a mixture of two univariate normals divided by a normal density having the

same mean and variance as the mixture density is always bimodal.

Böhning et al. (1992) introduced a directional derivative based approach for decid-

ing upon the number of components in a mixture model. In this subsection we discuss this

approach in detail.

Directional Derivative and Gradient function

Let M̂ be the fitted g component mixture. The mixture maximum likelihood theorem

(Böhning et al., 1992) states

(a) M̂ is the NPMLE if and only if

∂
�
λ � M̂ � �

1
n

n

∑
i

f
�
xi � λ �

f
�
xi � M̂ � � 1 �

for all λ in the parameter space.

(b) ∂
�
λ � M̂ � � 0 for all support points λ of M̂.
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Table 2.1: Accident data of Thyrion (1960) used by Simar (1976)

yi 0 1 2 3 4 5 6 7

frequency wi 7840 1317 239 41 14 4 4 1
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Figure 2.3: Gradient function of two sets of fit for the Simar Data

One application of this theorem is to check the optimality of a candidate mixture

distribution M, which in turn can be used in determining the optimum number of components

of a mixture model. It can be best illustrated by the following example.

Simar (1976) provided one of the pioneering papers of NPMLE for mixture of Poisson

distributions. The study concerned the number of claims filed in a particular year by the policy

holders (total n = 9461) of La Royal Belge Insurance. The data (see Table 2.1) goes back to

Thyrion (1960) and has been used in many occasions in the literature.

Simar gave an estimate of a 4 component Poisson mixture model.

M̂ �

��
� 7600 � 2362 � 0037 � 0002

� 089 � 580 3 � 176 3 � 669

��
�

where the second row of M̂ gives the mean of the components, with its corresponding propor-
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tion in the first row. This fit has an associated log-likelihood of -5341.5310. This estimator

has been reported (Simar, 1976) to be the NPMLE of a mixture of Poisson, but an inspection

of the gradient function as given in Figure 2.3(a) shows that it attains values above 1. A fit

that is closer to the NPMLE is given by a 3 component model with parameters given by

M̂ �

��
� 4184 � 573 � 0087

0 � 0000 � 3356 2 � 5454

��

with an associated log-likelihood of -5340.7040. Not only the likelihood is greater, the gradi-

ent function is below 1 with high accuracy, as Figure 2.3(b) demonstrates.

One problem with using the NPMLE to estimate the number of components is that

the method is not guaranteed to be consistent. For example, if the true number of components

is g0 � 1, there is a significant probability of estimating more than one, even asymptotically

(Lindsay, 1995).

2.2.6 Moment based approaches

The method of moments has been used by many researchers as an effective tool for

choosing the number of components in a normal mixture model. Heckman et al. (1990),

and Furman and Lindsay (1994) introduce some elegant tools based on moments to help one

decide on the number of components. More recently a kurtosis-based approach has been taken

by Vlassis and Likas (1999) and Vlassis et al. (1999).

2.3 Conclusion

Besides the methods discussed in this chapter, an array of other approaches for se-

lecting the number of components have been introduced by researchers. A comprehensive

account of these methods can be found in McLachlan and Peel (2000, Chapter 6). All the

above methods have been used in numerous instances of model selection in the mixture model

setup. AIC and BIC tend to overestimate the number of components when the true situation
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has a small number of components. Still they are the most widely used methods for selecting

the number of components. Many other methods, including the purely Bayesian approach

have the drawback of huge increase in computational effort in multivariate cases.



Chapter 3

Generalized Quadratic Distance Based Model Selection

In this chapter we develop model selection tools based on generalized quadratic dis-

tances and discuss some of their properties. The model selection procedures based on the

generalized quadratic distance that we discuss will be generic in nature and can be applied

to a large number of model selection problems. Later in this chapter, we will discuss how

the generalized quadratic distance can be used for selecting the number of components in a

multivariate normal mixture model. The first portion of this chapter is joint work with Penn

State graduate students Shu-Chuan Chen and Ke Yang.

One attractive feature of model selection tools based on generalized quadratic dis-

tances is that they depend on a nonparametric test of model fit, unlike the AIC and BIC, where

one only compares models within a class of models. In our particular example of selecting the

number of components in the mixture model, AIC and BIC would compare the likelihood of

a 6 component model with a 5 component model, but would provide no guarantee that either

fits well. On the other hand, if we determine the distribution of the generalized quadratic dis-

tances, then, we can test to see if 6 component model lies close to the true distribution in the

over all distribution of the distance. Based on the distribution of the distance we can derive

rules for global acceptance and rejection of any model.

We will first define the generalized quadratic distance and discuss some of its impor-

tant properties. Then, we will see how this generalized quadratic distance can be interpreted

as a L2 distance in a smoothed scale. We will also discuss the asymptotic distribution of the

21
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distance in some special cases and how to use them for our model selection purpose. Finally,

it will be shown how we can develop a distance based model selection using nonparametric

confidence intervals in situations where one might wish to allow for some approximation error

in model building.

3.1 Generalized Quadratic Distance

In this section we will define a generalized quadratic distance between two statistical

distributions. The generalized quadratic distance is based on a positive definite kernel K
�
x � y � ,

having certain desirable properties. Besides providing the basic definition of quadratic dis-

tance, this section will introduce several examples which are commonly used in goodness-

of-fit tests. Before defining the generalized quadratic distance let us introduce some related

notations and definitions.

Definition 3.1. In its most general form, a kernel function K
�
x � y � , on two vector variables x

and y, is said to be positive definite if for any integer N, for any set of vectors x1 � x2 � � � � � xN ,

and any set of real numbers a1 � a2 � � � � � aN

N

∑
i � 1

N

∑
j � 1

aia jK
�
xi � x j ��� 0 � (3.1)

with equality holding iff ai � 0 � i �

From now onwards, for notational ease, we will use unbolded-x to denote a vector as well as a

variable which should be understood from the particular context. So K
�
x � y � and K

�
x � y � will

mean the same thing. Now, we define the generalized quadratic distance based on the positive

definite kernel K
�
x � y � .

Definition 3.2. The generalized quadratic distance between two probability measures F and

G, based on the kernel K,is defined by

DK
�
F � G � �

���
K
�
x � y � d � F � G � � x � d � F � G � � y � � (3.2)
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where K
�
x � y � is a positive definite kernel function. When F and G are discrete distributions

the generalized quadratic distance can be written as

DK
�
F � G � � ∑

x � S
∑
y � S

K
�
x � y �

�
f
�
x � � g

�
x ��� � f

�
y � � g

�
y ��� � (3.3)

where f and g are the probability mass functions of F and G respectively, and the summations

are over S , the joint support of F and G.

Note that in the discrete case the quadratic distance has the matrix representation

�
f � g � �

K
�
f � g � � (3.4)

where

f �
�
f
�
x1 � � f

�
x2 � � � � � � f

�
xn � �

� �
g �

�
g
�
x1 � � g

�
x2 � � � � � � g � xn � �

� �
Ki � j � K

�
xi � x j � i � j � 1 � 2 � � � � � n �

x1 � x2 � � � � xn being the support points in S �

3.1.1 Commonly used Quadratic Distances

Particular forms of the generalized quadratic distances have been used extensively for

assessing goodness-of-fit of probability models. For example, under a discrete measure, with

the kernel

K
�
x � y � ����	� 1 if x � y �

0 otherwise �
i.e. K � I(Identity Matrix) � (3.5)

the distance is given by DK
�
F � G � � ∑

x
� f � x � � g

�
x ��� 2; this is the L2 distance measure between

two densities. To generate the Pearson’s χ2 test statistic, we would use the kernel

K
�
x � y � � �
� 


� 1�
g
�
x � g � y � if x � y,

0 otherwise,
(3.6)

and the distance is given by DK
�
F � G � � ∑

x

�
g
�
x � � f

�
x ��
 2

g
�
x � .
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3.2 General properties of Kernel-based distance and estimation

In this section we will discuss some general properties of kernel-based quadratic dis-

tances. Later, we will exploit some of these properties of the kernel-based quadratic distances

to find an unbiased estimator of the distance. Let τ (unknown) be the true distribution and G

be a candidate estimator for τ. We would like to find the distance between τ and G, i.e. we

want to calculate DK
�
τ � G � . One way of estimating the distance DK

�
τ � G � on the basis of the

data F̂ is to use the standard V -statistic (von Mises, 1947) results. The V -statistic estimate

of DK
�
τ � G � is given by

DK
�
τ � G � � DK

�
F̂ � G � � (3.7)

But, it can be seen that the Eτ � DK
�
F̂ � G ������ DK

�
τ � G � . Instead we propose to use an unbiased

estimator for the distance. To develop this, let us define the G-centered kernel.

Definition 3.3. The G-centered kernel K, denoted by K̃G, is defined as

K̃G � x � y �

� K
�
x � y � �

�
x
K
�
x � y � dG

�
x � �
�

y
K
�
x � y � dG

�
y � �
�

x

�
y
K
�
x � y � dG

�
x � dG

�
y � � (3.8)

We will write the last expression as

K
�
x � y � � K

�
G � y � � K

�
x � G ��� K

�
G � G � �

Lemma 3.1. Let F and G be two arbitrary distributions. Then the kernel-based quadratic

distance can be written as

DK
�
F � G � �

�
x

�
y
K̃G � x � y � dF

�
x � dF

�
y � � (3.9)
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Proof :

�
x

�
y
K̃G � x � y � dF

�
x � dF

�
y �

�

�
x

�
y

�
K
�
x � y � �

�
x
K
�
x � y � dG

�
x � �

�
y
K
�
x � y � dG

�
y � �

�
x

�
y
K
�
x � y � dG

�
x � dG

�
y � � dF

�
x � dF

�
y �

�

�
x

�
y
K
�
x � y � dF

�
x � dF

�
y � �

�
y

�
x
K
�
x � y � dG

�
y � dF

�
x � �

�
x

�
y
K
�
x � y � dG

�
x � dF

�
y �

�
�

x

�
y
K
�
x � y � dG

�
x � dG

�
y �

�

�
x

�
y
K
�
x � y � d � F � G � � x � d � F � G � � y �

� DK
�
F � G � � �

Equation (3.9) shows that for fixed G, DK
�
F � G � can be written as a U- f unctional on F .

Thus using an U-statistic results from Serfling (1980) we can derive an unbiased estimator

of DK
�
τ � G � . The result implies that, if X and Y are independent observations from τ, then

Eτ � K̃G � X � Y ��� � DK
�
τ � G � � (3.10)

If X1 � X2 � � � � � Xn is a random sample from τ, then we can estimate the distance DK
�
τ � G � by the

U-statistic Un given by

Un
�
G � � ∑

i
∑
j �� i

1
n
�
n � 1 � K̃G

�
xi � x j � � (3.11)

In the following example we derive the unbiased estimator for the Pearson’s χ2 esti-

mator.

Proposition 3.1. The unbiased estimator of the Pearson’s χ2 distance is given by

Un
�
G � �

n
n � 1 ∑

x

�����
nx
n � 2

g
�
x � � 1 � � nx 	 1

g
�
x � � 1 
�� � (3.12)

� 	 1
n � 1


 Vn
�
G � � 	 n

n � 1

 ∑

x
nx 	 1

g
�
x � � 1 
 � (3.13)
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where g
�
x � =dG

�
x � , nx=number of observations belonging to the cell x, and Vn

�
G � is the usual

Pearson’s χ2 statistic

Vn
�
G � � n∑

x

� �
nx
n � 2

g
�
x � � 1 � � (3.14)

Proof : The Pearson’s χ2 kernel, given by equation (3.6) can also be written as

K
�
x � y � �

I � x � y ��
g
�
x � g � y � � I being the indicator function.

Thus we have,

K̃G � x � y �

�
I � x � y ��
g
�
x � g � y � �

�
x

I � x � y ��
g
�
x � g � y � g

�
x � �

�
y

I � x � y ��
g
�
x � g � y � g

�
y ���

�
x

�
y

I � x � y ��
g
�
x � g � y � g

�
x � g � y �

�
I � x � y ��
g
�
x � g � y � � 1 � 1 � 1

�
I � x � y ��
g
�
x � g � y � � 1 (3.15)

Thus the biased estimate of the Pearson’s χ2 is given by

Vn
�
G � � n

�
x

�
y

�
I � x � y ��
g
�
x � g � y � � 1 � dF̂

�
x � dF̂

�
y �

� n∑
x

���
nx
n � 2

g
�
x � � 1 � � (3.16)

and the unbiased estimate Un is such that,

n
�
n � 1 � Un � ∑

i
∑
j �� i

KG � xi � x j �

� ∑
i

∑
j

KG � xi � x j � � ∑
i � j

KG � xi � x j �

� n2 ∑
x

� � �
nx
n � 2

g
�
x � � 1 � � nx 	 1

g
�
x � � 1 
 � � (3.17)�
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Now,

Eg

�
n2 ∑

x

� �
nx
n � 2

g
�
x � � 1 � � � n

�
#cells � 1 � (3.18)

and Eg

�
nx 	 1

g
�
x � � 1 
 � � ∑

x
ng

�
x � 	 1

g
�
x � � 1 


� n∑
x

�
1 � g

�
x � �

� n
�
#cells � 1 � � (3.19)

Adding (3.18) and (3.19) we get EG �Un
�
G ��� � 0. On the other hand the biased estimate has

EG �Vn
�
G ��� �

�
#cells � 1 � .

3.3 Consistency of estimators

In this section we will discuss the consistency properties of the estimator D
�
F̂ � M � . It

is clear from the construction of D
�
F̂ � M � , that if the kernel K

�
x � y � is bounded and continuous

in
�
x � y � , then the weak convergence of F̂n to τ implies that

D
�
F̂ � M � P��� D

�
τ � M � as n � ∞ � (3.20)

when M is any fixed distribution. However, if M is estimated using M̂n, where M̂n is a model

fit by maximum likelihood, the statement

D
�
F̂n � M̂n � P� � D

�
τ � M̂n � (3.21)

is false because the right-hand side depends on n. Rather, one has

D
�
F̂n � M̂n � P��� D

�
τ � M �τ � � (3.22)

provided that the estimator M̂n
d��� M �τ . If M̂ is based on maximum likelihood then M �τ will

minimize the Kullback-Leibler distance between τ and M , not D
�
τ � M � , and so D

�
τ � M �τ � will

be greater than the minimum distance min
M � M

D
�
τ � M � � D

�
τ � Mτ � . If we instead want to estimate
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D
�
τ � Mτ � we could estimate M by minimizing the empirical distance D

�
F̂ � M � over the relevant

parameters

min
θ

D
�
F̂ � Mθ � P��� D

�
τ � Mτ � � (3.23)

We will focus on the distance estimator D
�
F̂ � M̂n � for all our model selection rules, where M̂n

is the MLE, because we believe potential users will find this more natural.

3.4 Choice of kernel

In this chapter, so far, we have discussed quadratic distances with arbitrary kernels.

In this section we will define a natural kernel for the problem of selecting the number of

components in a mixture of normals. Theoretically, any kernel could be used for this model

selection problem. But, before defining the kernel, we should note that to make the distance

practical for model selection the estimates should be easily computable. Also, we should note

that we will mostly deal with multivariate data, potentially with a huge number of variables, so

we would prefer to have a closed form for the integrals in the distance. To make an optimum

choice for the kernel we will make use of the convolution properties of the normal distribution.

We use the following well known result:

if φ
�
x;µ � Σ � is the density function of X � N

�
µ � Σ � (3.24)

then
�

y
φ
�
x;y � Σ1 � φ

�
y;µ � Σ2 � dy � φ

�
x;µ � Σ1 � Σ2 � � (3.25)

In other words if we define a kernel KΣ
�
x � y � by,

KΣ
�
x � y � �

1�
2π � p

2
�
Σ
� 1

2

exp 	 � 1
2

�
x � y � �

Σ � 1 � x � y � 
 �

then we have

�
y
KΣ1

�
x � y � KΣ2

�
y � z � dy � KΣ1 � Σ2

�
x � z � (3.26)



29

In mathematical language, the normal kernels form an additive semigroup of Hilbert-Schmidt

operators. Kernels other than the normal kernels also have this property. So, we choose

the kernel in equation (3.4), which will be referred to as the “normal kernel”. As it will be

seen later in Section 3.9.1, the normal kernel will give a closed form for the centered-kernel

and thus the distance calculation will need no numerical integration. Property (3.26) will be

used to show the kernel has an explicit square root and this will be used to prove positive

definiteness.

The normal kernel we will use for our model selection will have Σ � h2I � h being

a spherical “smoothing parameter”. Thus our model selection will be based on the normal

kernel with only one smoothing parameter and will be defined by

Kh
�
x � y � �

1�
2π � p

2
�
Σh
� 1

2

exp 	 � 1
2

�
x � y � �

Σ � 1
h

�
x � y � 
 � where � Σh � h2I � (3.27)

The choice of h is a very important issue, and will be discussed extensively in Chapter 4.

Here, we should note that we could have chosen an arbitrary matrix Σ to define our kernel.

But in that case we would have to choose a large number of “smoothing parameters” to define

the kernel completely. However, if other smoothing “shapes” are desired, our theory could be

easily extended to the kernels of the form Σ � h2V .

3.5 Model selection with Quadratic Distances

In this section we will describe the steps we will follow for model selection. In our

case, the competing models are the probability distributions given by multivariate normal

mixtures with different number of components. So our models are in the set M � � M � where

the elements of the model will typically be indexed by an integer g, the number of compo-

nents, so that M � � Mg : g � II � . Or in other words, among the competing models M1 �

N
�
µ � Σ � � M2 � � � � � Ml �

�
l

∑
i � 1

πiN
�
µi � Σi ��� , we want to decide which one is the best fit for the

true distribution τ. This will be based on the distances D
�
τ � M �1 � � D

�
τ � M �2 � � � � � � D �

τ � M �l � which
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in turn are estimated by D
�
F̂ � M̂1 � � D

�
F̂ � M̂2 � � � � � D �

F̂ � M̂l � � respectively. Here M �1 � M �2 � � � � � M �l

correspond to the weak limits of the corresponding maximum likelihood estimators when τ is

correct.

The model selection problem we are interested in can be written as a hypothesis test-

ing problem as follows

H0 : g � g0 vs H0 : g � g0 � (3.28)

where g is the “true number of components in the mixture”. Equivalently, H0 : τ � Mg0 , where

τ is the true distribution. We will consider the use of the empirical distance D
�
F̂ � M̂g � or a

standardized version of it as the test statistic. Ideally, to accept or reject some model we would

like to have a simple null distribution for the test statistic D
�
F̂ � M̂g � , along with a acceptance

(rejection) region . For particular choices of K we can derive an asymptotic null distribution

(discussed in Section 3.6), but in general it has unknown parameters. Due to this, we take

a resampling based approach (Section 3.9) to estimate the null distribution of DK
�
F̂ � τ � and

decide on the choice of model.

3.6 Asymptotic distribution of the generalized quadratic

Although it is impractical to derive an exact theoretical distribution for the unbiased

estimator of DK
�
τ � M � for an arbitrary kernel K, model M, and true distribution τ, we can de-

velop some asymptotic results. We should also note that the U-statistic estimates of D
�
τ � M �

will have easy asymptotic distributions when M �� τ, being a normal with calculable variance,

but the case of D
�
F̂ � τ � , which estimates zero, is more complicated. So we will need to dis-

tinguish between the asymptotic distribution for D
�
F̂ � M � when M � τ and when M �� τ. In

this section we will first work out the asymptotic distribution of the distance when M � τ, and

then we solve the asymptotic normality when M �� τ.
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3.6.1 Asymptotic distribution of generalized quadratic distance under the null
distribution

In this part of the thesis we will find the asymptotic distribution of the generalized

quadratic distance. First we will show that positive definite kernels in two variables can be

written as a infinite sum using eigenvalues and eigen-functions. We will then use this decom-

position to find the asymptotic distribution. First, we will state the theorem for the general

spectral decomposition of kernel based distance.

Theorem 3.2. Let K
�
x � y � be a real-valued � -measurable positive definite kernel function on

a measure space
�
S ��� � m � such that

�
S

�
S

�
K
�
x � y � � 2m

�
dx � m �

dy � � ∞ � (3.29)

Let K be the integral operator defined by the kernel K
�
x � y � :

�
K f � � x � �

�
s
K
�
x � y � f

�
y � m �

dy � � f
�

L2 � S � � L2 � S ��� � m � �

Then K
�
x � y � can be written as

K
�
x � y � �

∞

∑
j � 1

λ j f j
�
x � f j

�
y � � (3.30)

where λ j’s and f j
�
x � ’s are eigenvalues and corresponding normalized eigen-vectors of K, that

is
�
K f j �

�
x � �

�
S

K
�
x � y � f j

�
y � m �

dy � � λ j f j
�
x � � � �

f j
� � 2

�

�
S

f 2
j

�
y � m �

dy � � 1 �

The series in (3.30) converges strongly to K, that is

lim
n � ∞

�
S

� �
S

K
�
x � y � g � y � m �

dy � �
n

∑
j � 1

�
S

λ j f j
�
x � f j

�
y � g � y � m �

dy � � 2

m
�
dx � � 0 � � g � L2 � S � �

Moreover, λ j � 0 since K is positive definite.

Here we will give a background of the above theorem instead of the detailed proof. A

kernel K
�
x � y � that satisfies (3.29) is said to be of the Hilbert-Schmidt type. It can be shown
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that K is compact as an operator �
L
�
L2 � S � � L2 � S � � . If K

�
x � y � is real-valued and symmetric,

K is a self-adjoint operator, or say, symmetric transformation, that is
�
K f � g � �

�
f � Kg � . The

decomposition of K
�
x � y � given in equation (3.30) corresponds to the spectral decomposition

for a compact, self-adjoint operator. More about the operator’s spectral decomposition can be

found in Yosida (1980) and Riesz and Sz.-Nagy (1990).

This theorem requires only a weak assumption (equation (3.29)), which is satisfied by

the normal kernel, as

sup
x � y K2

h
�
x � y � �

1�
2πh � p

� ∞ �

and so we have

� � �
K
�
x � y � � 2dτ

�
x � dτ

�
y � � sup

x � y K2
h
�
x � y �

� �
dτ

�
x � dτ

�
y � � sup

x � y K2
h
�
x � y � � ∞ �

Under the theorem of spectral decomposition we have

∞

∑
j � 1

λ2
j �

�
S

�
S

�
K
�
x � y � � 2m

�
dx � m �

dy � � ∞ �

But many kernel functions satisfy even a stronger condition, that is ∑∞
j � 1 λ j

� ∞ � The operators

defined by those kernel are called nuclear. Now,

∞

∑
j � 1

λ j �

�
K
�
x � x � m �

dy � � (3.31)

and in fact the normal kernel is nuclear as

K
�
x � x � �

1�
2π � p

2
�
Σh
� 1

2

� ∞ � x �

which in turn implies

�
K
�
x � x � dτ

�
x � �

1�
2π � p

2
�
Σh
� 1

2

dτ
�
x �

�
1�

2π � p
2
�
Σh
� 1

2

� ∞

Next we will use the nuclear property of kernels to find the asymptotic distribution of kernel

based distances.
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Theorem 3.3. Let X1 � X2 � � � � � Xn � � � � be a sequence of random variables such that � n,

Xn �

∞

∑
i � 1

λiZ
2
ni

where

∞

∑
i � 1

λi
� ∞ � λi � 0 � E

�
Z2

ni � � 1 � E �
Zni � � 0 � � i � � n � and E

�
ZniZn j � � 0 � � i �� j � � n �

Moreover we assume that for every finite k � 1 � 2 � 3 � � � ��
�
�
�
�
�
�

�
Zn1

Zn2

...

Znk

�
�
�
�
�
�
�

� d��� N
�
0 � Ik � � as n � ∞ �

Then Xn satisfies

Xn
d
�

∞

∑
i � 1

λiZ
2
i �

where Zi’s are independent N
�
0 � 1 � .

Proof : Let us decompose Xn � ∑∞
i � 1 λiZ2

ni into two parts, the partial sum

Snk �

k

∑
i � 1

λiZ
2
ni

and the remainder sum

Rnk �

∞

∑
i � k � 1

λiZ
2
ni �

By Tchebysheff’s inequality, for each δ � 0,

P
�
Rnk � δ � � E

�
Rnk �
δ

�
E
�
∑∞

i � k � 1 λiZ2
ni �

δ

�
∑∞

i � k � 1 λi

δ
� (3.32)
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Since ∑∞
i � 1 λi

� ∞, it follows from this inequality that for any given ε � 0 and δ � 0, we can

choose k0 � k0
�
ε � δ � such that � n

P
�
Rnk � δ � � ε � for all k � k0 � (3.33)

Fix t � 0. We now show that limn � ∞ P
�
Xn � t � � P

�
∑∞

i � 1 λiZ2
i � t � for every t.

First, because Xn � t � Snk � t � k,

P
�
Xn � t � � P

�
Snk � t � � � k � (3.34)

Also,

P
�
Xn � t � � P

�
Xn � t � Rnk

� � 0 � δ � �

� P
�
Snk � Rnk � t � Rnk

� � 0 � δ � �

� P
�
Snk � t � δ � Rnk

� � 0 � δ � � [nested set]

� P
�
Snk � t � δ � � P

�
Snk � t � δ � Rnk � δ �

� P
�
Snk � t � δ � � P

�
Rnk � δ �

� P
�
Snk � t � δ � � ε , � k � k0 � (3.35)

Thus, from ( 3.34) and ( 3.35), we have for all n and for all k � k0
�
ε � δ �

P
�
Snk � t � δ � � ε � P

�
Xn � t � � P

�
Snk � t � �

Now, letting n � ∞, since Snk � Sk � ∑k
i � 1 λiZ2

i , by the normality assumption, for all k � k0

we have

P
�
Sk � t � δ � � ε � liminf

n � ∞
P
�
Xn � t �

� limsup
n � ∞

P
�
Xn � t �

� P
�
Sk � t � � (3.36)
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Also, since � Sk � t ��� � Sk � 1 � t � , so the sets are decreasing in k, for any t, we have

lim
k � ∞

P
�
Sk � t � � P

�
lim
k � ∞

�
Sk � t � � (3.37)

� P
�
S∞ � t � � where S∞ �

∞

∑
i � 1

λiZ
2
i � (3.38)

Therefore, from ( 3.36), letting k � ∞,

P
�
S∞ � t � δ � � ε � liminf

n � ∞
P
�
Xn � t �

� limsup
n � ∞

P
�
Xn � t �

� P
�
S∞ � t � � (3.39)

The above result is true for all ε � 0 and δ � 0, so we can let ε � 0, to obtain

P
�
S∞ � t � δ � � liminf

n � ∞
P
�
Xn � t �

� limsup
n � ∞

P
�
Xn � t �

� P
�
S∞ � t � � (3.40)

Finally, letting δ � 0,

P
�
S∞
� t � � liminf

n � ∞
P
�
Xn � t �

� limsup
n � ∞

P
�
Xn � t �

� P
�
S∞ � t � � (3.41)

However S∞ has a continuous distribution, so

lim
n � ∞

P
�
Xn � t � � P

�
S∞ � t �

as needed to finish the proof.
�
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Next, using the spectral decomposition, the estimate of the distance can be written as follows,

DK
�
F̂ � τ � �

� �
K̃
�
x � y � dF̂

�
x � dF̂

�
y �

�

� � ∞

∑
j � 1

λ j f j
�
x � f j

�
y � dF̂

�
x � dF̂

�
y �

�

� � ∞

∑
j � 1

λ j f j
�
x � f j

�
y � dF̂

�
x � dF̂

�
y �

�

∞

∑
j � 1

λ j 	 �
x

f j
�
x � dF̂

�
x � 
 	 �

y
f j
�
y � dF̂

�
y � 


� ∑λ∞
j � 1

�
f̄ j 
 2

(3.42)

where f̄ j �
1
n ∑

i

f j
�
xi �

The f j’s are mean 0 and f j
�

fk for all j �� k. Hence Zn j � f̄ j satisfy the assumptions of

Theorem 3.3.

Now, using Theorem 3.3 we have

DK
�
F̂ � τ � d

�
∞

∑
i � 1

λiZ
2
i (3.43)

where Zis are independent N
�
0 � 1 � . Thus, the, the limiting distribution is ∑λiχ2

i

�
1 � where the

χ2
i are independent and each χ2

i

�
1 � is a one degree of freedom chi-square variable.

3.6.2 Asymptotic distribution of generalized quadratic distance under the alter-
native

Now we will show that when M �� τ the asymptotic distribution of the distance is

normal. Using the standard results of of asymptotic properties of U -statistics (Hoeffding,

1948) it can be shown that the distance is asymptotically normal if the following conditions

are satisfied.

Theorem 3.4. (Hoeffding, 1948) If Eτ � K̃2 � X � Y ��� � ∞ and ψ1 � Vary � Ex
�
K̃
�
X � Y � ��� � 0 then

�
nUn

d� � N
�
0 � 4ψ1 � (3.44)
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For the quadratic kernel

Ex
�
K̃
�
X � Y � � � K

�
τ � y � � K

�
τ � M � � K

�
M � y ��� K

�
M � M � (3.45)

Thus when M � τ, Ex
�
K̃
�
X � y � � � 0, implying ψ1 � 0 and so asymptotic normality

does not hold in this case. On the other hand, since K is a strictly positive definite kernel if

M �� τ we will have then DK
�
τ � M � �� 0. Thus if M �� τ we always have ψ1 � 0. We have

already shown that for our kernel, Eτ � K̃2 � X � Y ��� � ∞. Thus when M �� τ we have

�
nUn

d� � N
�
0 � 4ψ1 � (3.46)

where the explicit form of ψ1 will be computed in Section 3.12.

3.7 Interpretation of generalized quadratic distance as an L2 dis-
tance in smoothed scale

A kernel based quadratic distance between two statistical distributions has a nice inter-

pretation as the L2 distance between kernel-smoothed version of their densities. In this section

we will see how this can be done. We will also provide a comparison between kernel-based

densities with different smoothing parameters, the L2 distance, and the L1 distance.

3.7.1 L2 distance in smoothed scale

We have defined the kernel-based distance on positive definite kernels. Analogous to

the positive definite matrices, associated with every positive definite kernel there is a square-

root kernel. If the positive definite kernel has a spectral decomposition

K
�
x � y � �

∞

∑
j � 1

λ j f j
�
x � f j

�
y � �

the square root kernel, L
�
x � y � can be written as

L
�
x � y � �

∞

∑
j � 1

�
λ j f j

�
x � f j

�
y � � (3.47)
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and it satisfies the relation

K
�
x � y � �

�
w

L
�
x � w � L � w� y � dw� (3.48)

For example, if Kh is the normal kernel given in (3.4), then the square root kernel is given by

L
�
x � y � � K h�

2

�
x � y � �

1
�
2π � p

2

�
h�
2
� p exp

�
� 1

2

�
x � y � � �

x � y �
h2

2

� � (3.49)

The above follows from the properties of normal convolution.

In general, using the relation of equation (3.48) the distance distance between two

measures F and G based on the kernel K, given by DK
�
F � G � can be written as

DK
�
F � G � �

�
x

�
y
K
�
x � y � d � F � G � � x � d � F � G � � y �

�

�
x

�
y
	 �

w
L
�
x � w � L � w� y � 
 d

�
F � G � � x � d � F � G � � y � dw

�

�
w
	 �

x
L
�
x � w � d � F � G � � x � 
 2

dw

�

�
w

�
f �
�
w � � g �

�
w � � 2

dw (3.50)

where f �
�
w � ��� L

�
x � w � dF

�
x � and g �

�
w � ��� L

�
x � w � dG

�
x � . Note that for the normal kernel,

(3.50) implies that it is positive definite. We can interpret f � and g � as “kernel smoothed”

densities for F and G. Note that, even though the original distributions are discrete, their

kernel-smoothed versions are always continuous and so we can find the distance between a

discrete and a continuous distribution with the help of generalized quadratic distance. Thus,

generalized quadratic distances can be easily used to find the distance between an empirical

density, which is inherently discrete, and its fitted continuous density.

3.7.2 Example: Galaxy Data

Mixture analysis of the galaxy data was introduced by Roeder (1990). the dataset

consists of velocity of 82 galaxies moving away from our galaxy. These 82 galaxies are
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Figure 3.1: Histogram of Galaxy Data.

believed to belong to some distinct clusters. This data set has also been analyzed by several

authors. In this example we fit a five component normal mixture to the galaxy data. The best

5 component fit to the galaxy data is given by

G � � 08 N
�
9 � 71 � 0 � 18 � � � 02 N

�
16 � 13 � 0 � 01 ��� � 4 N

�
19 � 79 � � 45 �

� � 42 N
�
22 � 92 � 1 � 44 � � � 02 N

�
26 � 98 � 0 � 01 � � � 04 N

�
33 � 04 � 0 � 85 � � (3.51)

This was given by McLachlan and Peel (2000). Also, for the normal kernel, the square root

of K is another normal kernel, so f �
�
w � � � L

�
x � w � dF̂

�
x � is just a kernel smoothed density

estimator of F̂ and the g �
�
w � � � L

�
x � w � dG

�
x � is the kernel smoothed version of the 5 com-

ponent normal. Thus, the kernel-based distance between F̂ and G can be easily interpreted as

the L2 distance between f � and g � .
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Figure 3.2: Histogram of Galaxy Data with the 5 component fitted mixture of normals given
by (3.51).
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Figure 3.3: Histogram of Galaxy Data and the smoothed 5 component mixture of normals.
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Figure 3.4: Histogram of Galaxy Data, the smoothed empirical density (—) and the smoothed 5
component mixture of normals(—).
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Figure 3.5: Histogram of Galaxy Data, the smoothed empirical density and the smoothed 5 com-
ponent mixture of normals. The difference between the two densities is the shaded region.
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Figures 3.1 to 3.5 illustrate the L2 interpretation with the help of some graphical dis-

plays. Figure 3.1 displays the probability histogram of the galaxy data. Figure 3.2 displays the

smoothed fitted 5 component normal (smoothing parameter h=.5) overlaid on the histogram

of the galaxy data. Figure 3.4 displays the smoothed fitted 5 component normal(—) and the

smoothed empirical density(—) overlaid on the histogram. Figure 3.4 displays smoothed fitted

5 component normal, the smoothed empirical density, and the their difference. The integral of

the squared difference is the generalized quadratic distance.

3.8 Comparison of Generalized Quadratic distance with other mea-
sures of distance

In this section we will compare the theoretical values of the generalized quadratic

distance, the L2 distance and the L1 distance for the mixture of two multivariate normals. First,

we calculate the theoretical values of the generalized quadratic distance. The L2 distance will

be obtained as a special case of the generalized quadratic distance. Finally, we calculate the

L1 distance and compare them all.

3.8.1 Quadratic distance between two mixture of normals

Proposition 3.2. Let f1 and f2 be two multivariate normal mixture densities with

f1
�
x � �

g1

∑
l � 1

π1lφ
�
x � µ1l � V1l � and f2

�
x � �

g2

∑
k � 1

π2kφ
�
x � µ2k � V2k � (3.52)

Then the generalized quadratic distance based on kernel KΣ is given by

DK
�
F1 � F2 � �

g1

∑
i � 1

g1

∑
j � 1

π1iπ1 jKW11
i j

�
µ1i � µ1 j ���

g2

∑
i � 1

g2

∑
j � 1

π2iπ2 jKW22
i j

�
µ2i � µ2 j � � 2

g1

∑
i � 1

g2

∑
j � 1

π1iπ2 jKW 12
i j

�
µ1i � µ2 j � �

(3.53)

where W lk
i j � Σ � Vli � Vk j � i � 1 � 2 � � � � � g1 � j � 1 � 2 � � � � � g2.
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Proof : By equation (3.50) we have,

DK
�
F1 � F2 � �

�
x

�
f �1
�
x � � f �2

�
x � � 2dx

�

�
x

�
f �1
�
x � 2 � 2 f �1

�
x � f �2

�
x � � f �2

�
x � 2 � dx (3.54)

where f �1
�
x � ��� w KΣ

2

�
x � w � φ � w � dw. Now using the convolution properties of the normal,

f �1
�
x � �

�
w

KΣ
2

�
x � w � f1

�
w � dw �

g1

∑
i � 1

π1iKΣ
2 � V1i

�
x � µ1i � � (3.55)

which implies,

�
x

�
f �1
�
x � � 2dx �

�
x

�
g1

∑
i � 1

π1iKΣ
2 � V1i

�
x � µ1i � � �

g1

∑
j � 1

π1 jKΣ
2 � V1 j

�
x � µ1 j � � dx

�

g1

∑
i � 1

g1

∑
j � 1

π1iπ1 jKW 11
i j

�
µ1i � µ1 j � � (3.56)

Similarly,
�

x

�
f �2
�
x � � 2dx �

g2

∑
i � 1

g2

∑
j � 1

π2iπ2 jKW 22
i j

�
µ2i � µ2 j � (3.57)

and
�

x
f �1
�
x � f �2

�
x � dx �

g1

∑
i � 1

g2

∑
j � 1

π1iπ2 jKW 12
i j

�
µ1i � µ2 j � � (3.58)

Putting the values from equations (3.56), (3.57) and (3.58) in equation (3.54) we have the

proof of the proposition.
�

3.8.2 Comparison with other distance

To compare the quadratic distance with other distances we look at the simplest case

of distance between two one component univariate normals. The quadratic distance between

f1 � N
�
µ1 � σ1 � and f2 � N

�
µ2 � σ2 � can be simplified to

1
�

2π

��
1�

2σ2
1 � h2

� 1�
2σ2

2 � h2
� 2

exp
�
� 1

2 � µ1
� µ2 � 2

� σ2
1 � σ2

2 � h2 � ��
σ2

1 � σ2
2 � h2

��
�

But we should note that quadratic distances are not scale invariant. So to make the distances

comparable they are scaled. A scale invariant version of Dk
�
F1 � F2 � , denoted by D �k

�
F1 � F2 � , is
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defined as,

D �k
�
F1 � F2 � �

Dk
�
F1 � F2 �

� x f �
2

1

�
x � dx � � x f �

2

2

�
x � dx

�
� x f �1

�
x � 2 � 2 f �1

�
x � f �2

�
x ��� f �2

�
x � 2dx

� x f �
2

1

�
x � dx � � x f �

2

2

�
x � dx

� 1 � 2
� x f �1

�
x � f �2

�
x � dx

� x f �
2

1

�
x � dx � � x f �

2

2

�
x � dx

� 1 � 2
∑g1

i � 1 ∑g2
j � 1 π1iπ2 jKW12

i j

�
µ1i � µ2 j �

∑g1
i � 1 ∑g1

j � 1 π1iπ1 jKW11
i j

�
µ1i � µ1 j ��� ∑g2

i � 1 ∑g2
j � 1 π2iπ2 jKW22

i j

�
µ2i � µ2 j � �

(3.59)

This scaling will return in Chapter 5, where we define and discuss “discordance”. Thus in the

univariate one component case the scaled distance will be

1 � 2

exp � �

1
2 � µ1 � µ2 � 2� σ2

1 � σ2
2 � h2 ����

σ2
1 � σ2

2 � h2

1�
2σ2

1 � h2
� 1�

2σ2
2 � h2

�

It can be easily noticed that if f1 � f2, implying µ1 � µ2 and σ1 � σ2, the distance is 0. Also

if
�
µ1 � µ2 � 2 � ∞ the distance goes to 1. In general, for fixed

�
σ2

1 � σ2
2 � the distance between

densities is a increasing function of the distance between their respective means. Note that

the L2 distance corresponds to the generalized quadratic distance with smoothing parameter

being h � 0. Thus the scaled L2 distance between f1 and f2 is

L2
�
F1 � F2 � � 1 � 2

exp � �

1
2 � µ1 � µ2 � 2� σ2

1 � σ2
2 � ��

σ2
1 � σ2

2

1�
2σ2

1

� 1�
2σ2

2

� (3.60)

In general the L1 distance between f1 and f2 is given by

L1
�
F1 � F2 � �

1
2

����� f1
�
x � � f2

�
x �
��� dx �

For f1 � N
�
µ1 � σ � and f2 � N

�
µ2 � σ � the L1 distance is

L1
�
F1 � F2 � � 1 � 2Φ

�
�
	 µ2

� µ1 	2 � � (3.61)
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where Φ
�
x � is the normal probability integral. Note that the L1 and the scaled L2 and the scaled

quadratic distance all lie between 0 and 1, and attain the value 1 for
�
µ2 � µ1

� � � ∞.

The L1 distance is important to our consideration because of its properties. Although,

the Kullback-Leibler distance is often used as the standard statistical distance due to its role

in asymptotic estimation, the L1 distance has several nice statistical interpretations. First, it

equals sup
A

�
P1
�
A � � P2

�
A � � , where P1 and P2 are the probability measures associated with f1

and f2, and A is a arbitrary Borel set. Secondly, if we were to test f1 vs f2 using the Neyman-

Pearson lemma, the L1 distance equals to the maximal value of the “power minus size” among

such tests. (See Lindsay and Markatou (2003))

Figures 3.6 and 3.7 display the square root of the scaled quadratic distance, for differ-

ent values of h, along with the square root of scaled L2 distance and the L1 distance, when F

and G are univariate normals with same variance. The x-axis is the difference in means of the

two normals and the y-axis gives the distance. The distances in Figure 3.6 are plotted against

means differing at most by 10 units, whereas in Figure 3.6 the plot is shown for a smaller

range of x. As expected L1, the L2 and the quadratic distances with reasonable h’s reaches the

asymptotic value of 1 very fast. However, the quadratic distance with h=10 is very slow in

approaching the asymptote of 1. In essence, the smoothing has been so extreme as to loose all

sensitivity. If we plotted using larger values of the difference in means, then we would have

found that all the distances approach the value 1. But, initially, especially for large values of

h, it is very difficult to detect the asymptote as the curves have too little growth. Thus, we

can see how the choice of h makes the distance more or less sensitive, and how the scaled

quadratic distance compares with the scaled L2 distance and L1 distance. We also notice that

for h � 1 the square root of the scaled quadratic distances are larger than or equal to the L1

distance for the whole range of
�
µ2 � µ1 � , whereas the distances are smaller than or equal to

the L1 distance for h � 1.
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Figure 3.6: Comparison of quadratic distance with various smoothing parameters, L2 and L1

distance. The distance is a function of the difference of means
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Figure 3.7: Comparison of quadratic distance with various smoothing parameters, L2 and L1

distance. The distance is a function of the difference of means less than 2 standard deviations
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distance. The distance is a function of the mixing proportion ε of the mixing distribution � 1 �
ε � N � 0 � 1 ��� ε N � 5 � 1 �

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mixing Proportion with N(5,1)

C
al

cu
la

te
d 

D
is

ta
nc

es

L1 distance
L2 distance
h= 0.5
h= 1
h= 2
h= 10
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Next, we compare the various distances in a different way. Let f1 remain the same,

that is f1 � N
�
µ � 1 � , but now let f2 be a mixture of normals with means µ and µ � 5 and mixing

proportion ε. Thus f2 is given by

f2 �
�
1 � ε � N �

µ � σ � � ε N
�
µ � 5 � σ � �

For these comparison we chose µ � 0 and σ � 1.We calculate the scaled L2 distance and

quadratic distance with different h’s using the formula in equation (3.59). The L1 distance

reduces to ε 	 1 � 2Φ 	 � 5
2

 
 . Figure 3.8 gives the various distances as a function of the

mixing proportion ε. Again, we can see how, with large values of h, one fails to detect

the difference between f2 and f1, but smaller values are more sensitive. At ε � 1 we have

N
�
0 � 1 � vs N

�
5 � 1 � and all reasonable h give 1 to eyeball accuracy. To observe the behavior

of the distances when the mixing distributions are not far apart we next take

f2 �
�
1 � ε � N �

µ � 1 ��� ε N
�
µ � 2 � 1 � �

Figure 3.9 gives the various distances as a function of the mixing proportion ε for the mixing

distributions, with means two standard deviation apart. Again, we see that for h � 1 the square

root of the scaled quadratic distances are larger than or equal to the L1 distance for ε � � 0 � 1 � ,
whereas the distances are smaller than or equal to the L1 distance for h � 1.

3.9 Resampling based nonparametric acceptance region

In this section we will take a resampling-based approach to derive an approximate

null distribution for DK
�
F̂ � τ � and will suggest an acceptance rule for selecting a model. In

Section 3.6 we showed how we find the asymptotic distribution of generalized quadratic dis-

tance. But for a normal kernel the spectral decomposition is hard to find and the asymptotics

may be suspect. So, instead we use a nonparametric estimator of the null distribution. As τ is

unknown, we use bootstrap methodology and mimic the distribution of DK
�
F̂ � τ � with the dis-
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tribution of DK
�
F̂ � � F̂ � where F̂ � has the bootstrap distribution corresponding to resampling

from F̂ , i.e. bootstrap samples from the data.

D (F,M )D (F,M )

Acceptance Region

 1
2

3
4

D (F,M )D (F,M )k             4 k             3 k             2 k             1

Figure 3.10: Diagram showing the histogram of DK � F̂ � � F̂ � along with the relative position of the
quadratic distance of several models with different number of components and the acceptance
region of the model selection rule

Next we need to decide upon an acceptance rule. Donoho (1988) showed that for the

testing for the number of components in a mixture model, also known as mixture complexity,

one can only construct a lower confidence limit, but not an upper confidence limit for the

number of components. Intuitively, if we are given any g-component mixture we can find a
�
g � 100 � component mixture that is arbitrarily close in distribution. So, we should reasonably

expect only to make one sided tests, and conclude only that g is larger than some lower limit.

However we also wish to be parsimonious, so if we are selecting a number of components, we

select the smallest g that is acceptable. Thus we propose the following acceptance rule.

Let M̂1 � M̂2 � � � � � M̂g be the fitted normal mixtures with 1 � 2 � � � � g components respec-

tively. The number of components selected will be the smallest g such that

D
�
F̂ � M̂g � � c � 5 � where P

�
D
�
F̂ � � F̂ � � c � 5 � � � 5 (3.62)

Based on Donoho’s results, we expect our estimator of g to be consistent.



50

Conjecture: limn � ∞ P
�
ĝn � g0 � � � 5,

so that ĝ provides a valid 50% lower limit for g0.

3.9.1 Estimation of distance under the normal kernel

In this section we will formulate estimation of the distance DK
�
τ � M �g � , M �g being the

asymptotically best-fitting mixture normal density in g components, when using maximum

likelihood. With the normal kernel given by (3.4), the quadratic distance DK
�
F̂ � Mg � can be

written explicitly in an expression involving the data-points and the mixed normal density Mg.

Using the convolution properties of normal we can show that the centered kernel with

respect to the normal density M where dM �

g

∑
i

φ
�
x;µi � Vi � is given by

K̃M �
x � y � � K

�
x � y � � K

�
x � M � � K

�
M � y ��� K

�
M � M �

� K
�
x � y � �

g

∑
i � 1

πiKΣh � Vi

�
x � µi � �

g

∑
i � 1

πiKΣh � Vi

�
µi � y ���

g

∑
i � 1

g

∑
j � 1

πiKWi j

�
µi � µ j �

� (3.63)

where Wi j � Σh � Vi � Vj

Thus using equation (3.11), the unbiased estimator of distance is

Un
�
Mg � �

1
n
�
n � 1 �

n

∑
i � 1

n

∑
j �� i

K̃
�
xi � x j �

�
2

n
�
n � 1 �

n

∑
i � 1

∑
j � i

K̃
�
xi � x j � � (3.64)

where K̃ is given by (3.63). We can now recall one important reason for using the normal ker-

nel: it leads to explicit integrals for K
�
x � M � and K

�
M � M � and so we have avoided numerical

integration in calculating our distance.

Now if Mg is estimated by M̂g using maximum likelihood, the resulting estimator

Un
�
M̂g � should be consistent for D

�
τ � M �g � ; however, it is not necessarily unbiased for this

target parameter. However, we found that using the U-statistic estimator gives much more

satisfactory results than using D
�
F̂ � M̂g � .



51

3.10 Choice of tuning parameter

When calculating the distances for a specific model one is faced with specifying the

“tuning parameter” h. As it turns out the best “tuning parameter” depends on the number of

observations, the dimensionality of the data, and the hypotheses of interest. This tuning pa-

rameter selection will determine the tradeoff between our sensitivity to hypotheses of interest

and the “noise” (variability) that arises from being sensitive towards too rich a class of alter-

natives. More insight on the choice of h is provided in Chapters 4 and 5 where we discuss the

concept of “pseudo degrees of freedom”, and the concordance and discordance coefficients.

3.11 Using “detectable distance” instead of the raw distance

In this section we introduce the idea of “detectable distance” to make the distances on

a range of h comparable.

The idea here is that when the truth is not the model, the estimated distances are

asymptotically normal; i.e. if D
�
τ � G � �� 0, then

�
n
�
D
�
F̂ � G � � D

�
τ � G � � � N

�
0 � σ2

h

�
τ � � (3.65)

or
�

n

�
D
�
F̂ � G � � D

�
τ � G � �

σh
�
τ � � N

�
0 � 1 � � (3.66)

Let us call
D
�
τ � G �

σh
�
τ � the “detectable distance”. It is clear that dividing the raw distance by the

true standard deviation puts them all in a standard scale which we might call the “signal-to-

noise-ratio”. The “detectable distance”,
D
�
τ � G �

σh
�
τ � can be estimated by

D
�
F̂ � G �

σh
�
F̂ � or

Un
�
G �

σh
�
G � . In

the following section we will detail the calculation of the variance σ2
h

�
τ � .

When the truth equals the model, one cannot appeal to asymptotic normality anymore,

but we might hope that the standardized “null” distributions are now more similar, and so the

modified bootstrap distribution is estimating a more stable distribution now. In fact, one would

now bootstrap the ratios
D
�
F̂ � � F̂ �

σ
�
F̂ � � , where σ

�
F̂ � � can be computed explicitly.
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3.12 Variance calculation

In this section we will derive the exact expression of the variance of the unbiased

estimator Un
�
G � , given in equation (3.11), for any arbitrary distribution G. For notational ease

and compactness let us introduce the following,

Ki j � K
�
xi � x j �

Kiτ �

�
y
K
�
xi � y � dτ

�
y �

KτG �

�
x

�
y
K
�
x � y � dτ

�
x � dG

�
y �

∆i �
�
Kiτ � KiG � �

�
Kττ � KτG � �

Proposition 3.3. The exact variance of Un
�
G � is given by

Var
�
Un

�
G � � �

2
n
�
n � 1 � Eτ

�
K̃τ � xi � x j � 
 2 � 4

n
Eτ � ∆2

i � � (3.67)

Proof :

�
n
�
n � 1 � � 2 VarτUn

�
G �

�
�
n
�
n � 1 � � 2 Eτ �Un

�
G � � Eτ �Un

�
G � � 2

� Eτ

�
n

∑
i � 1

n

∑
j �� i

�
Ki j � KiG � KG j � KGG � �

�
Kττ � KτG � KGτ � KGG � � 2

�
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We next re-center K about τ to obtain terms that will later be orthogonal. Thus

�
n
�
n � 1 � � 2 VarτUn

�
G �

� Eτ

�
n

∑
i � 1

n

∑
j �� i

�
K̃τ

i j � KiG � KG j � 2Kττ � KτG � KGτ � Kiτ � Kτ j � 2

� Eτ

�
n

∑
i � 1

n

∑
j �� i

K̃τ
i j � 2

�
n � 1 �

n

∑
i � 1

�
Kiτ � KiG � Kττ � KτG � � 2

� Eτ

�
n

∑
i � 1

n

∑
j �� i

K̃τ
i j � 2

�
n � 1 �

n

∑
i � 1

∆i � 2

where ∆i �
�
Kiτ � KiG � �

�
Kττ � KτG �

� Eτ

�
n

∑
i � 1

n

∑
j �� i

K̃τ
i j � 2

� 4
�
n � 1 � 2Eτ

�
n

∑
i � 1

∆2
i �

becauseE
� �

K̃τ
i j � ∆i � 
 � 0 � i �� j � i �

�

� Eτ

�
n

∑
i � 1

n

∑
j �� i

n

∑
k � 1

n

∑
k �� l

K̃τ
i jK̃

τ
kl � � 4

�
n � 1 � 2Eτ

�
n

∑
i � 1

∆2
i �

� 2n
�
n � 1 � Eτ

�
K̃τ

i j 
 2 � 4n
�
n � 1 � 2Eτ � ∆2

i � �

since E � K̃τ
i jK̃

τ
kl � � 0 unless i � k and j � l or vice versa.

� 2n
�
n � 1 � Eτ

�
K̃τ � xi � x j � 
 2 � 4

�
n � 1 � 2nEτ � ∆2

i � �

Thus the variance of Un
�
G � is given by

Var
�
Un

�
G � � �

2
n
�
n � 1 � Eτ

�
K̃τ � xi � x j � 
 2 � 4

n
Eτ � ∆2

i � � �
Remark: Notice that the two terms in the variance expression have orders of magnitude

1
n2

and
1
n

respectively, so that asymptotically the second term dominates for any fixed pair τ and

G with τ �� G. However as τ and G become closer, the magnitude of E
�
∆2

i � decreases. In this

dissertation, where we seek models close to the truth τ, both terms will be relevant. In fact

when G � τ, i.e, when the model is correct, the second term in the variance expression equals
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to zero as ∆2
i � 0 � � i. Thus

Var
�
Un

�
G � � O

�
1
n2 � �

� Var
�
nd̂
�
G � � O

�
1 � �

Var
�
Un

�
τ � � O

�
1
n � �

� Var
� �

nd̂
�
G � � O

�
1 � �

3.12.1 Estimation of variance

An unbiased estimator of Eτ
�
K̃τ

�
xi � x j � � 2

is
1

n
�
n � 1 �

n

∑
i � 1

n

∑
j �� i

�
K̃2

F̂

�
xi � x j � 
 and a consis-

tent estimator of Eτ
�
∆2

i ) is
1
n

n

∑
i � 1

∆̂F̂

�
xi � , where ∆̂F̂

�
xi � �

�
KiF̂ � KiG � KF̂F̂ � KF̂G � . Thus an

estimator of the variance of Un
�
G � is given by

�

Var
�
Un

�
G � � �

1�
n
�
n � 1 � 2 �

n

∑
i � 1

n

∑
j �� i

�
K̃2

F̂

�
xi � x j � 
 � 4

n2

�
KiF̂ � KiG � KF̂F̂ � KF̂G � � (3.68)

3.13 Summary

In short an algorithm for choosing the number of components of a Multivariate Nor-

mal Mixture model using the nonparametric confidence interval is given in Figure 3.11.

3.14 Results

In this section we present some results based on the model selection criterion dis-

cussed in this chapter. Description of four datasets discussed below can be found in Appendix

I.

Now we give a general description of the figures described in this section. The figures

consists of the relative position of the distance of a g component model fitted to the respective

data, overlaid on a histogram obtained from 1000 bootstrap samples of the distance. In each

plot the median (C � 5) of the histogram is a shown as a vertical line in red. That means the

acceptance region is to the left of the red line. Also the distance of a particular model, is
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� Choose h: Choose several values of the tuning parameter h based on a pseudo degrees
of freedom analysis.

� Histogram: Estimate the scaled distribution of the D
�
F̂ � τ � by the histogram of the dis-

tances obtained from the bootstrap samples, i.e. the histogram of
D
�
F̂ � � F̂ �

�

σ
�
F̂ � �

for different

bootstrap samples F̂ � .

� Model Fitting: Estimate the parameters of the Multivariate Mixture Normals
M̂1 � � � � � M̂g, where M̂g is the fitted mixture with g components.

� Model Distance: Obtain the estimated distances D � F̂ � M̂1 �
σh � F̂ � � D � F̂ � M̂2 �

σh � F̂ � � � � � � D � F̂ � M̂l �
σh � F̂ � .

� Model Selection: g0, our choice of the number of components is the first g that falls
within the acceptance region described in Section 3.9.

Figure 3.11: Algorithm for Model Selection based on the nonparametric confidence interval

denoted by a vertical black line, with the number of components imprinted on it (e.g. see

Figure 3.12).

For all the four datasets analyzed in this section, the choice of the tuning parameter

was done on the basis of the theory in Chapter 4 (in particular, see Section 4.6). For the Iris

data we used the tuning parameter h � 0 � 5. On the basis of our decision rule, we infer from

Figure 3.12 that the data has 5 mixture components, as g � 5 is the first model whose distance

is less than the median of the bootstrap distribution. Note that, though the Iris data was

collected from 3 different species namely Setosa, Virginica and Versicolor, many analyses

including the aural approach of Wilson (1982) show that there could be subspecies within

the two species making a total of 5 subclusters. But, if we select h � 0 � 8 (Figure 3.13) our

conclusion would be 3 components as we have smoothed the data more compared to choosing

h � 0 � 5, and thus we ignore the the finer subclusters. From Figure 3.12 and Figure 3.13 we

can appreciate the fact that the generalized quadratic distance can analyze a data at different

scales, revealing clusters, superclusters and subclusters. In addition we can see that the two



56

−1 0 1 2 3

0
50

10
0

15
0

23456

P
S

frag
replacem

ents

Median

Fr
eq

ue
nc

y

Figure 3.12: Confidence Set decision for the Iris data with h=.5
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Figure 3.13: Confidence Set decision for the Iris data with h=.8
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Figure 3.14: Confidence Set decision for the Simulated Data 1 with h=.5
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Figure 3.15: Confidence Set decision for the Simulated Data 2 with h=.5
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median of x is= −0.125937
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Figure 3.16: Confidence Set decision for the Acidity data with h=.2

component model shows definite inadequacy compared to three or more.

Figures 3.14 and 3.15 represent the analysis of the two simulated datasets 1 and

2 (see Appendix). Observing Figures 3.14 and 3.15, we would select the right number of

components, i.e. 4, and see that the evidence is pretty strong. Finally in Figure 3.16, which is

the univariate acidity dataset, we used h � 0 � 05, and would choose 4 components. In this case

there is no known answer. It also appears that three components provide a good fit.

3.15 Conclusion

Generalized quadratic distances are a tool for measuring the distance between two ar-

bitrary distributions. They can be used to create a global model selection tool. One advantage

of using these distances is that they can be used when one distribution is continuous and the

other discrete.

Since the empirical distances can be re-written as U- f unctionals, we can use all the
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standard results on U-statistics. We can also develop a simple asymptotic theory. More-

over, using the product closure properties of the kernel, we avoid multidimensional numerical

integration in calculating the distance. This speed in calculation enables us to construct a non-

parametric confidence interval for detectable distance. In Chapters 5 and 6 we will use the

quadratic distance to construct other model selection tools.



Chapter 4

Pseudo Degrees of Freedom

The generalized quadratic distances described earlier in Chapter 3 depend on the se-

lection of a kernel K which, in turn, depends on a tuning parameter, “h”. Furthermore, since

we do not have a homogeneous distance measure (i.e., one based on transformation to a uni-

form scale), signal-to-noise analyses will depend on the kernel, the true state of nature τ � and

the directions of its deviation M (proposed model) being considered. In order to better un-

derstand and control the behavior of the distance we now develop data-based tools for use in

selecting the tuning parameter h. An analogy can be drawn between the tuning parameter “h”

and the bin-width of a cell in the χ2 goodness-of-fit tests. The choice of the parameter is a

very important in designing a powerful distance between two distributions. In this chapter we

propose a simple summary statistic, the “Pseudo Degrees of Freedom” (pDOF), to help us

decide on the range of the tuning parameter.

The idea of the “degrees of freedom” as‘ a summary statistic for the level of smoothing

has been used in other scientific literature. For choosing the tuning parameter Kou and Efron

(2002) appealed to the “ideal degrees of freedom”, which was developed based on a similar

theory. Gu (1998) and Hall and Johnstone (1992) also refer to degrees of freedom for choosing

tuning parameters. The idea of “stochastic degrees of freedom”, which is most similar to the

quantity used here, was used by Yoo and Stark (2003) in the context of covariance kernel for

Gaussian processes.

60
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4.1 Motivation

As mentioned before, the problem of choosing the tuning parameter “h” is analogous

to choosing the bin-width of each cell (or, equivalently choosing the number of cells) in a

χ2 goodness-of-fit test. If the number of cells is small, then the test may be unable to detect

important discrepancies between two distributions because too much has been “smoothed

out”. On the other hand, if the number of cells is too large the test statistic is much more

variable, and so power of the test is lost against many alternatives. (See Kallenberg et al.,

1985).

For a χ2 goodness-of-fit test, the degrees of freedom is equal to the (# of cells) � 1.

Rough rules of thumb for selecting the number of cells is that the degrees of freedom should

be more than 5 and less than n
�
5, n being the total number of observations. So to choose an

interesting range of the tuning parameter “h” of the quadratic kernels, we will determine a

natural extension of the “degrees of freedom”, and then use a rule of thumb for selecting the

appropriate value.

It should be noted that here we want to define the degrees of freedom in a multivariate

situation. Thus, instead of implicitly defining the length of each interval (bin-width), we are

in effect defining higher dimensional bins (hypercubes or hyperballs). An advantage of our

method is that we only have to define the tuning parameter “h” in the quadratic kernel K, not

the location and size of bins. That is, our method requires no selection of the number of bins,

but rather the effective bin-width (h).

4.2 Definition and properties of pDOF

In this section a formal definition of the pDOF will be provided. We will also discuss

some important properties of the pDOF .

From the spectral decomposition theory described in Chapter 3 we know that the null
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distribution of the generalized quadratic distance DK
�
F � G � is such that,

n DK
�
F̂ � τ � d

�
∞

∑
i � 1

λiχ2
i � 1 � �

One could approximate the null distribution of the distance D, which is a infinite sum

of weighted χ2

� 1 � , by a scaled χ2 distribution by matching the first two moment (Satterthwaite,

1941). Let the approximate scaled χ2 distribution be given by cχ2
pDOF , where the degrees of

freedom is pDOF . Matching the first two moments we have

E � cχ2
pDOF � � E � D � �

∞

∑
i � 1

λi �
� c pDOF �

∞

∑
i � 1

λi � (4.1)

V � cχ2
pDOF � � V � D � � 2

∞

∑
i � 1

λ2
i �

� c2 pDOF �

∞

∑
i � 1

λ2
i � (4.2)

Solving equations 4.1 and 4.2 we get,

c �
∑∞

i � 1 λ2
i

∑∞
i � 1 λi

� pDOF �

�
∑∞

i � 1 λi � 2
∑∞

i � 1 λ2
i

� (4.3)

Also from the spectral decomposition of the kernel K with respect to τ, we have the

following

�
x
K̃τ � x � x � dτ

�
x � �

∞

∑
i � 1

λi and
�

x

�
y

�
K̃τ � x � y � � 2

dτ
�
x � dτ

�
y � �

∞

∑
i � 1

λ2
i � (4.4)

Thus we define the summary statistic pDOF by,

pDOF �

�
� K̃τ

h

�
x � x � dτ

�
x � � 2

� �
�
K̃τ � x � y � � 2

dτ
�
x � dτ

�
y �

� (4.5)

where K̃h
�
x � y � is the centered kernel defined in Chapter 3, which is

K̃τ
h

�
x � y � � Kh

�
x � y � � Kh

�
τ � y � � Kh

�
x � τ ��� Kh

�
τ � τ � � (4.6)

where Kh
�
x � y � �

1

� 2π � p
2 	Σh 	 12 exp

�
� 1

2

�
x � y � �

Σ � 1
h

�
x � y � �

and Σh � h2I � h being the “tuning parameter”. In this Chapter, from now onwards we will

suppress the symbol τ in K̃τ. So unless otherwise specified K̃ will mean K̃τ.
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Note that if the asymptotic distribution of the distance D is exactly chi-squared, which

would happen when q eigenvalues equal to 1 and the rest are equal to zero, then the pDOF

is exactly the degrees of freedom of the χ2 distance D
�
F̂ � τ � . Otherwise, the pDOF equals

the approximate degrees of freedom used by Satterthwaite (1946) to create approximate test

regions.

Notice also that pDOF is an invariant measure under scale multiplication of D. It is

a simple and invariant natural summary of the overall concentration of the eigenvalues. If we

let π j �
�
λ j

�
∑k λk � � then it can be written as

pDOF �

�
∑π2

j � � 1
�

Expressed in this form we can see that it approaches infinity as the eigenvalues become more

equal. In the models we study here, the pDOF will go to infinity as the bandwidth h shrinks,

corresponding intuitively to having a chi-squared statistic with more and more data cells. We

shall return to this intuition later in the Chapter.

4.3 Theoretical Calculation of the pDOF

In this section we calculate pDOF for our normal kernel when the true distribution τ

is a mixture of normals.

Now for our normal kernel Kh
�
x � y � , with true distribution τ being a mixture of nor-

mals given by τ � ∑g
l � 1 πlN

�
µl � Vl � , we have the following calculations. The numerator of
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equation (4.5) can be simplified in the following way.

�
K̃h

�
x � x � dτ

�
x � �

�
Kh

�
x � x � dτ

�
x � �

�
Kh

�
τ � x � dτ

�
x � �

�
Kh

�
x � τ � dτ

�
x � �

�
Kh

�
τ � τ � dτ

�
x � (4.7)

�

�
Kh

�
x � x � dτ

�
x � � Kh

�
τ � τ �

as � Kh
�
τ � x � dτ

�
x � � � Kh

�
x � τ � dτ

�
x � � � x

�
� y Kh

�
x � y � dτ

�
y � � dτ

�
x � � Kh

�
τ � τ �

�

�
1� �

2πh � p
dτ

�
x � � Kh

�
τ � τ � (4.8)

�
1� �

2πh � p
�

g

∑
l � 1

g

∑
k � 1

πlπkclk �

where

clk �
1�

2π � p
2
�
Vl � Vk � Σh

� 1
2

exp 	 � �
µi � µ j �

� �
Vl � Vk � Σh � � 1 � µi � µ j �

2

 � KWlk

�
µl � µk �

and Wlk � Σh � Vl � Vk.

Next, applying the convolution properties of normal and using the result from equa-

tion (3.63) we calculate the theoretical value of the denominator, � � K̃2
h

�
x � y � dτ

�
x � dτ

�
y � .

through the following steps. We have, first,

K̃2
h
�
x � y � � � Kh

�
x � y � � Kh

�
τ � y � � Kh

�
x � τ � � Kh

�
τ � τ ��� 2 � (4.9)

Integrating the above we get,

�
x

�
y
K̃2

h
�
x � y � dτ

�
x � dτ

�
y �

�

�
x

�
y
K2

h

�
x � y � dτ

�
x � dτ

�
y � �

�
x
K2

h

�
x � τ � dτ

�
x ���

�
y
K2

h

�
τ � y � dτ

�
y � � K2

h

�
τ � τ �

� 2
�

x

�
y
Kh

�
x � y � Kh

�
x � τ � dτ

�
x � dτ

�
y � � 2

�
x

�
y
Kh

�
x � y � Kh

�
τ � y � dτ

�
x � dτ

�
y �

� 2Kh
�
τ � τ �

�
x

�
y
Kh

�
x � y � dτ

�
x � dτ

�
y � � 2

�
x

�
y
Kh

�
x � τ � Kh

�
τ � y � dτ

�
x � dτ

�
y �

� 2Kh
�
τ � τ �

�
x
Kh

�
x � τ � dτ

�
x � � 2Kh

�
τ � τ �

�
y
Kh

�
τ � x � dτ

�
y � � (4.10)

Also, the following identities are always true. The terms � x K2
h

�
x � τ � dτ

�
x � , � y K2

h

�
τ � y � dτ

�
y � ,

� x � y Kh
�
x � y � Kh

�
x � τ � dτ

�
x � dτ

�
y � , and � x � y Kh

�
x � y � Kh

�
τ � y � dτ

�
x � dτ

�
y � , are all equal to
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� x � y Kh
�
x � y � Kh

�
z � y � dτ

�
x � dτ

�
y � dτ

�
z � and Kh

�
τ � τ � � x � y Kh

�
x � y � dτ

�
x � dτ

�
y � , Kh

�
τ � τ � � x Kh

�
x � τ � dτ

�
x � ,

Kh
�
τ � τ � � y Kh

�
τ � x � dτ

�
y � , � x � y Kh

�
x � τ � Kh

�
τ � y � dτ

�
x � dτ

�
y � , and K2

h

�
τ � τ � are all equal to�

� x � y Kh
�
x � y � dτ

�
x � dτ

�
y � � 2

.

Using the above set of identities, equation (4.10) reduces to

�
x

�
y
K2

h

�
x � y � dτ

�
x � dτ

�
y � � 2

�
x

�
y
Kh

�
x � y � Kh

�
z � y � dτ

�
x � dτ

�
y � dτ

�
z � � 	 �

x

�
y
Kh

�
x � y � dτ

�
x � dτ

�
y � 
 2

�

(4.11)

We can calculate the first term of equation (4.11) by first showing

K2
h
�
x � y � �

�
1� �

2πh � p
exp 	 � 1

2

�
x � y � � �

x � y �
h2


 � 2

�
1� �

2πh � 2p
exp 	 � �

x � y � � �
x � y �

h2 

�

1�
2

�
πh � p

1� �
2π h�

2
� p

exp

�
� 1

2

�
x � y � � �

x � y �� h�
2
� 2 �

�
1�

2
�

πh � p
K h�

2

�
x � y � � (4.12)

and then integrating the above we have,

�
x

�
y
K2

h
�
x � y � dτ

�
x � dτ

�
y � �

1�
2

�
πh � 2

g

∑
l � 1

g

∑
k � 1

πlπkc �lk � (4.13)

where

c �lk �
1�

2π � p
2
�
Vl � Vk � Σ

�
2
� exp 	 � �

µl � µk �
� �

Vl � Vk � Σ
�
2 � � 1 � µl � µk �

2

 � KWlk

�
µl � µk �

and W �lk �
Σh
2 � Vl � Vk. The third term of equation (4.11) is the square of the second term in

equation (4.8). The middle term � x � y Kh
�
x � y � Kh

�
z � y � dτ

�
x � dτ

�
y � dτ

�
z � is tedious to calculate.

So, we next simplify to the case where τ is a single component normal. For a one component

p-variate Normal with variance V , pDOF reduces to

pDOF �

� �
Σh
�

�

1
2 � �

Σh � 2V
�

�

1
2 � 2

�
Σh
�

�

1
2
�
Σh � 4V

�
�

1
2 � 2

�
Σh � V

�
�

1
2
�
Σh � 3V

�
�

1
2 � �

Σh � 2V
�

� 1
� (4.14)
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For V � I, i.e. in case of a standard normal,

pDOF �

�
h

� p � �
h2 � 2 � �

p
2 � 2

h � p
�
h2 � 4 � �

p
2 � 2

�
h2 � 1 � �

p
2
�
h2 � 3 � �

p
2 � �

h2 � 2 � � p
� (4.15)

From this calculation it can be seen that pDOF � ∞ as h � 0. Also, for small h equa-

tion (4.15) can be reduced to,

pDOF �

1
h2p 	 1 �

�
h2

h2 � 2 � p
2 
 2

1
h2p � h2 � 4 � p

2
	 1 � 2 h2p � h2 � 2 � p

2

� h2 � 1 � p
2 � h2 � 3 � p

2
� h2p � h2 � 2 � p

2

� h2 � 2 � p 

� 	 h2 � 4

h2

 p

2

for small h

� 	 2
h

 p

� (4.16)

Here, we might note that the pDOF increases exponentially in p, the dimension of the data,

for fixed h, so that much larger values of h are needed in higher dimensions to obtain the same

pDOF . In the standard normal for h2 small, the approximation pDOF �
�
2

�
h � p can be a

useful guide, as we show later. Note that this approximation has a natural interpretation. If

we think of the standard normal density as being 4σ � 4 standard deviations wide, and the

normal kernel, standard deviation h as being a window of effective width 2h, then 2
�
h equal

to the “number of effective bins.”

4.4 Estimating the Pseudo Degrees of freedom

For a given dataset, one can estimate pDOF empirically as follows. For a particular

h, we estimate � Kτ
h

�
x � x � dτ

�
x � by

1
n

n

∑
i

K̃F̂
h
�
xi � xi � , where K̃F̂

h

�
xi � x j � is the centered kernel,

centered using the empirical distribution. The explicit form of the centered kernel is given by

is given by,

K̃h
�
xi � x j � � Kh

�
xi � x j � � 1

n ∑
i

Kh
�
xi � x j � � 1

n ∑
i

Kh
�
xi � x j � � 1

n2 ∑
i

∑
j

Kh
�
xi � x j �
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Moreover, using the U -Statistics results, � �
�
Kτ

h

�
x � y � � 2

dτ
�
x � dτ

�
y � can be estimated by

2
n
�
n � 1 �

n

∑
i

∑
j � i

�
K̃F̂

h
�
xi � x j � � 2

�

Thus, we will use the estimator

�

pDOF �

1
n ∑n

i K̃h
�
xi � xi �

2
n � n � 1 � ∑n

i ∑ j � i

�
K̃F̂

h

�
xi � x j � � 2 � (4.17)

4.5 Preliminary ideas on selecting pDOF

In this section we will propose some preliminary rules for selecting pDOF and hence

h. If for a given h the pDOF is smaller than 5, we will consider it likely to be too much

smoothing, whereas a pDOF � n
�
5 would mean too little smoothing. Thus we should choose

a reasonable range in between to look for signals at different bandwidths. Further research on

the choice of degrees of freedom is needed.

4.6 Results

In addition to the four datasets that were discussed in the Chapter 3, we also use

two other simulated datasets, both from a uni-component multivariate normal, one having

uncorrelated variables and the other one having correlated variables. These calculations were

done in order to compare the estimator
�

pDOF with the theoretical pDOF in section 4.3.

Simulated dataset 3 is a sample of size 160 generated from a multivariate normal with

µ �

�
�
�
�
�
�
�

�
1

1

1

1

�
�
�
�
�
�
�

� and V � I4 �

�
�
�
�
�
�
�

�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�
�
�
�
�
�
�

� � (4.18)
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and the Simulated Dataset 4 consists of 160 samples generated from multivariate normal with

µ �

�
�
�
�
�
�
�

�
1

1

1

1

�
�
�
�
�
�
�

� and V �

�
�
�
�
�
�
�

�
1 0 � 44 0 � 44 0 � 44

0 � 44 1 0 � 44 0 � 44

0 � 44 0 � 44 1 0 � 44

0 � 44 0 � 44 0 � 44 1

�
�
�
�
�
�
�

� � (4.19)

Table 4.1: Pseudo degrees of freedom for Uni-component Multivariate Normal Uncorrelated
Dataset

p=1

h
�

pDOF pDOF pDOF �

0.1 20.12 19.89 20.0

0.2 10.09 9.98 10.0

0.5 4.16 4.21 4.0

1.0 2.30 2.43 2.0

2.0 1.46 1.56 1.0

4.0 1.13 1.17 0.5

p=2

h
�

pDOF pDOF pDOF �

0.1 361.3 403.66 400.00

0.2 98.7 103.65 100.00

0.5 19.4 19.56 16.00

1.0 7.21 7.27 4.00

2.0 3.60 3.68 1.00

4.0 2.44 2.48 0.25

p=3

h
�

pDOF pDOF pDOF �

0.1 6075.76 8040.79 8000.00

0.2 1070.02 1025.32 1000.00

0.5 82.42 78.44 64.00

1.0 17.23 17.12 8.00

2.0 6.56 6.55 1.00

4.0 3.93 3.93 0.12

p=4

h
�

pDOF pDOF pDOF �

0.1 24183.25 160833.16 160000

0.2 7609.33 10231.19 10000

0.5 324.47 310.73 256

1.0 37.64 37.45 16

2.0 10.48 10.44 1

4.0 5.57 5.53 6.00e-02

First, for simulated dataset 3 and simulated dataset 4, we calculate the theoretical

pDOF and the estimated pDOF for different h and for different dimension of data. For the

simulated dataset 3, which comes from a standard normal, the theoretical pDOF and
�

pDOF

are also compared with the approximation given by equation (4.16). For the other four datasets
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given in Appendix I, we only calculate
�

pDOF . For the multidimensional datasets (Iris and

Simulated 1 to 4) we tabulate the values for all dimensions to inspect the change in the pDOF

when the number of dimension changes. For example for the IRIS dataset, p=1 means the

first variables (Petal width), p=2 means the first two variables (Petal width, Petal length) and

so forth. Also, to choose the appropriate h for each dataset and for each subsets of variable we

calculated the pDOF for a range of h.

In Table 4.1, we first compare the estimated pDOF , denoted by
�

pDOF (Column

2) with the theoretical pDOF (Column 3), given by equation (4.15) for the uni-component

multivariate uncorrelated dataset. For each p and h, pDOF and
�

pDOF are quite close. Thus,

we can conclude that our estimator appears to work well in the uncorrelated case. Moreover,

we should also observe that, for a fixed number of variables, as h
� � pDOF � . Also, we

should notice the change in the value of pDOF for changes in dimensionality of the data. As

the dimension goes up the value of the pDOF goes up exponentially. So, if we want to keep

the degrees of freedom fixed, we must choose much larger h when we include more variables.

Now, let us discuss how we select an interesting range of h based on Table 4.1. We

will follow the same selection criterion for the other tables. Here, our dataset consists of 160

observations. So, by the threshold values proposed in Section 4.5 we would be interested

in the range of values of pDOF somewhere between 5 and 32. Thus considering p � 1 we

should choose h � 0 � 2 or h � 0 � 1, as the corresponding pDOF values are 9.98 and 19.89. If

we do further computation we could refine 0 � 1 to an even smaller value of h. For example, for

h � � 07 we have pDOF � 28 � 42937. Going by the same rule, our choice of h for dimension

2, 3 and 4 would be somewhere around .5, 1 and 2 respectively.

Next, we compare the the actual pDOF with the approximate pDOF , denoted by

pDOF � , which is
�
2

�
h � p. Columns 4 in Table 4.1 gives this approximation. As mentioned

earlier this approximation works well only for small h. For p � 1, i.e. the approximation

works very well for h � � 2. It even works quite well for h � 0 � 5 and h � 1. Comparing the
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Table 4.2: Pseudo degrees of freedom for Uni-component Multivariate Normal Correlated
Dataset

p=1

h
�

pDOF pDOF

0.1 20.64 19.89

0.2 10.27 9.98

0.5 4.20 4.21

1.0 2.36 2.43

2.0 1.51 1.56

4.0 1.16 1.17

p=2

h
�

pDOF pDOF

0.1 382.82 362.18

0.2 103.30 93.34

0.5 18.81 17.85

1.0 6.69 6.64

2.0 3.28 3.30

4.0 2.19 2.15

p=3

h
�

pDOF pDOF

0.1 9597.11 6154.00

0.2 1151.09 789.80

0.5 74.81 62.82

1.0 15.12 14.21

2.0 5.53 5.35

4.0 3.22 3.04

p=4

h
�

pDOF pDOF

0.1 24905.90 102067.43

0.2 6229.29 6545.65

0.5 243.00 211.37

1.0 30.07 27.92

2.0 8.10 7.83

4.0 4.06 3.89

the other 3 sub-tables of Table 4.1 for p � 2 � 3 � 4 we still find that the pDOF � is a very good

approximation for pDOF, for small values of h. However, it can be a severe underestimate at

some reasonable degrees of freedom in higher dimension.

Since we have discussed the interpretation of Table 4.1 in detail we briefly note our

conclusions from the pDOF values of the other table. For Table 4.2 we have the estimated

and the actual pDOF . According to the rule of thumb, for 160 observations from our grid of

h values we would have chosen h � � 1 for p � 1, h � � 5 for p � 2 , h � 1 for p � 3 h � 1 for

p � 4. Also the estimates (Column 2) are quite close to the actual values (Column 3) for all p
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and for reasonable h’s.

Table 4.3: Pseudo degrees of freedom for Iris Dataset

p=1

h pDOF

0.1 19.80

0.2 9.80

0.5 3.97

1.0 2.22

2.0 1.44

4.0 1.13

p=2

h pDOF

0.1 202.10

0.2 75.18

0.5 15.50

1.0 6.01

2.0 3.30

4.0 2.37

p=3

h pDOF

0.1 723.93

0.2 161.49

0.5 21.53

1.0 6.61

2.0 3.18

4.0 2.23

p=4

h pDOF

0.1 2508.06

0.2 325.77

0.5 31.07

1.0 8.03

2.0 3.26

4.0 2.12

Table 4.4: Pseudo degrees of freedom for Generated Dataset 1

p=1

h pDOF

0.1 7.48

0.2 3.85

0.5 1.61

1.0 1.17

2.0 1.05

4.0 1.02

p=2

h pDOF

0.1 61.32

0.2 19.00

0.5 5.51

1.0 2.56

2.0 1.56

4.0 1.25

p=3

h pDOF

0.1 379.09

0.2 66.72

0.5 10.67

1.0 3.53

2.0 1.76

4.0 1.34

p=4

h pDOF

0.1 2552.86

0.2 326.50

0.5 27.68

1.0 7.59

2.0 3.06

4.0 1.90

For the Iris dataset we have 4 variables and 150 observations. So, among the values

Table 4.3, we might choose h � � 5 when p � 4, which gives pDOF � 31 � 07. Drawing a

parallel to the chi-squared statistic, this implies that on an average each cell will have around

five observations. Similarly for the simulated datasets 1 and 2 (n � 160 � p � 4) we would go

for h � � 5 (see Tables 4.4 and 4.5). For the acidity dataset (p � 1) we evaluate the pDOF for

a greater range of h including some smaller values. Our best choice from the table would be

h � � 05, as in this dataset for h � � 5 the pDOF is too small (3.47).
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Table 4.5: Pseudo degrees of freedom for Generated Dataset 2

p=1

h pDOF

0.1 4.90

0.2 3.54

0.5 2.93

1.0 1.92

2.0 1.27

4.0 1.07

p=2

h pDOF

0.1 26.26

0.2 11.41

0.5 4.90

1.0 2.83

2.0 1.82

4.0 1.56

p=3

h pDOF

0.1 114.01

0.2 28.02

0.5 6.69

1.0 3.90

2.0 3.00

4.0 2.58

p=4

h pDOF

0.1 766.21

0.2 98.69

0.5 12.01

1.0 4.88

2.0 3.34

4.0 2.81

Table 4.6: Pseudo degrees of freedom for Acidity Dataset

p=1

h
�

pDOF

0.001 251.44

0.01 146.78

0.05 29.79

0.1 15.11

0.2 7.77

0.5 3.06

1.0 1.66

2.0 1.20

4.0 1.06

4.7 Conclusion

The estimated pseudo degrees of freedom,
�

pDOF provides an interesting and useful

single number summary of the sensitivity characteristics of the distance. It can be calculated

once and for all without using the model. Even though more research needs to be done on
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the choice of pDOF , following our “rule of thumb” we can get a useful range of the tuning

parameter. In general, we observed that when we include more variables we have to make h

larger. Observing the difference in the values of the pDOF of Simulated dataset 1 and 2, we

can conclude that the selection of h also depends on the variability structure and amount of

separation between the components.

Again, we should note that, our main goal is not to approximate the asymptotic distri-

bution of nDK
�
F̂ � τ � by c χ2

pDOF . Equation (4.3) could also be used to find a solution for c, and

then one could approximate ∑∞
i � 1 λiχ2

i � 1 � . However, in this dissertation the pDOF will only be

used as a tool for selection of an interesting range of the “tuning parameter” h.



Chapter 5

Concordance and Discordance based Analysis

In this chapter we will introduce a concordance/discordance based analysis of the

quadratic distance. The idea of concordance and discordance has been used by Lin (1989) to

evaluate reproducibility in assay validation. In general, the concordance curves, which have

R2 like properties, determine the amount of variability in the empirical density explained by

the models. The concordance coefficient will be examined as an informal model selection cri-

terion. The sensitivity of the concordance coefficients for a particular “smoothing parameter”,

h can also be used to select an interesting range of h.

5.1 Definition of Concordance/Discordance

Definition 5.1. As a density distance measure the discordance between two probability den-

sities f and g is defined as

δ
�
f � g � �

� �
f
�
x � � g

�
x � � 2 dx

�
f 2 � x � dx �

�
g2 � x � dx

(5.1)

and the corresponding concordance is

C
�
f � g � � 1 � δ

�
f � g � �

2
�

f
�
x � g � x � dx

�
f 2 � x � dx �

�
g2 � x � dx

� (5.2)

Notice that δ
�
f � g � is the scaled version of the “L2” distance between f and g discussed

in Section 3.8. The scaling gives δ
�
f � g � a natural range of � 0 � 1 � as we see in the next lemma.
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Lemma 5.1. The discordance and concordance coefficients lie between 0 and 1 and reaches

their extreme values when

� f � g ��� C � 1 and δ � 0

� f
�

g ( i.e. completely different support sets ) ��� C � 0 and δ � 1

Proof : First of all both the the numerator and the denominator of δ are positive quantities, so

we have δ � 0. Also

δ �

� �
f � g � 2dx

�
f 2dx �

�
g2dx

�

�
f 2dx �

�
g2dx � 2

�
f gdx

�
f 2dx �

�
g2dx

� 1 since for a � b � 0 � a2 � b2 � �
a � b � 2 �

Thus 0 � δ � 1. Moreover

f � g �
�

� �
f � g � 2 � 0 �

� δ � 0

f
�

g �
�

�
f gdx � 0 �

� δ � 1 �
5.2 Concordance Correlation in the choice of g in the Mixture

Model

As before, let us choose the quadratic distance with the normal kernel K, where

K
�
x � y � �

1�
2π � p

2
�
Σ
� 1

2

exp 	 � 1
2

�
x � y � �

Σ � 1 � x � y � 

and Σ � h2I � h being the “smoothing bandwidth parameter”.

We extend the concordance/discordance coefficients to our model selection criterion.

Based on the density interpretation discussed in Section 3.7, the generalized quadratic distance
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between two densities F and G can be written as an L2 distance on the kernel smoothed den-

sities. If we write the concordance and discordance in terms of f �
�
w � � � L

�
x � w � dF

�
x � and

g �
�
w � � � L

�
x � w � dG

�
x � , we can define a kernel smoothed concordance coefficient between F

and G as the concordance between f � and g � .

C
�
F � G � � 1 � � � f � � g � � 2dx

� � f � � 2dx � � � g � � 2dx

� 1 � � K
�
x � y � d

�
F � G � � x � d

�
F � G � � y �

� K
�
x � x � dF

�
x � dF

�
x ��� � K dG

�
x � dG

�
x � (5.3)

� 1 � DK
�
F � G �

� K
�
x � x � dF

�
x � dF

�
x ��� � K dG

�
x � dG

�
x � � (5.4)

Notice that C
�
F � G � is a function of the smoothing parameter h because K is. For notational

convenience we will use the following notation throughout this chapter:

K
�
F � G � �

�
K
�
x � y � dF

�
x � dG

�
y � �

so that equation (5.4) becomes

C
�
F � G � � 1 � DK

�
F � G �

K
�
F � F � � K

�
F � G � (5.5)

5.3 Estimation

We now consider the estimation of C
�
F � M � , where F is the true model and M is a

fitted model. For estimating the concordance coefficient we examine both the unbiased and

biased estimators. The biased estimator is based on the V -statistic (von Mises, 1947), while

the unbiased estimator is based on the U-statistic results (Serfling, 1980). We will estimate

each of the quantities DK
�
F � M � , K

�
F � F � , and K

�
M � M � separately and combine them to get

an estimator of the concordance coefficient C
�
F � M � . Using the results from Subsection 3.9.1,

for a particular multivariate normal mixture model, the quantity K
�
M � M � can be calculated
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as,

�

K
�
M � M � �

g

∑
l � 1

g

∑
k � 1

πlπkclk � (5.6)

where clk �
1�

2π � p
2
�
Vl � Vk � Σ

� exp 	 � �
µi � µ j �

� �
Vl � Vk � Σ � � 1 � µi � µ j �

2

 �

From now onwards we will denote the biased estimates with a superscript “ b” and the unbi-

ased estimates with a superscript “ u”. From equation (3.7) biased estimates of DK
�
F̂ � M � and

KFF are given by
�

DK
�
F � M � b �

1
n2

n

∑
i � 1

n

∑
j � 1

K̃
�
xi � x j � � (5.7)

�

K
�
F � F � b �

1
n2

n

∑
i � 1

n

∑
j � 1

K
�
xi � x j � � (5.8)

From equation (3.64) Unbiased estimates of DK
�
F̂ � M � and K

�
F � F � are given by

�

DK
�
F � M � u �

1
n
�
n � 1 �

n

∑
i � 1

n

∑
j �� 1

K̃
�
xi � x j � � (5.9)

�

K
�
F � F � u �

1
n
�
n � 1 �

n

∑
i � 1

n

∑
j �� 1

K
�
xi � x j � � (5.10)

Thus the biased estimator of the concordance coefficient is given by

�

Cb � 1 �
�

DK
�
F̂ � M � b

�

K
�
F � F � b �

�

K
�
M � M �

� (5.11)

and the corresponding unbiased estimator is given by

�

Cu � 1 �
�

DK
�
F̂ � M � u

�

K
�
F � F � u �

�

K
�
M � M �

� (5.12)

Note that value of concordance coefficient of the unbiased estimator
�

Cu may be greater than

1, due to the fact that
�

DK
�
F̂ � M � u can take on negative values.

5.4 Interpreting the concordance curves

Concordance curves can be used as an informal tool for model selection. First let

us draw some analogy between the concordance value and the R2 value used in regression

analysis.
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The R2 value, in the context of regression, is interpreted as the proportion of variability

of the dependent variable explained by the regression model. Likewise, the concordance value

between a particular model and the empirical distribution, describes the amount of variability

in the data density that has been explained by the model density considered. A concordance

value of ‘zero’ can be interpreted as the model having no explanatory or predictive power,

whereas a concordance value of ‘one’ means that the model density is an exact fit with the

data density.

A parallel can be drawn between the selection of a number of components using the

concordance values and selection of a subset of variables using the R2 values, assuming there

exists a large number of covariates. Addition of a new variable to the existing subset will

always increase the R2 value. Thus in order to check whether we should include a new variable

in the subset of covariates, we might design a stopping rule based on either a target value of

R2 for the new subset, or the increase in value of R2 due to using the new variable. The design

of a good stopping rule depends on inferential objectives and subject matter knowledge.

We can use the idea of ‘subset selection’ for selecting the number of components

in a mixture model. We have already noticed that a richer model (i.e, a model with more

components) always fits the data better. Let us denote all g component models by Mg, and

M̂g the best g-component fit. Thus, irrespective of the value of the smoothing parameter,

DK
�
F � M̂g0 ��� DK

�
F � M̂g0 � 1 � for any g0. Though a formal proof is not yet available, it has also

been observed that, empirically, K
�
M̂g � M̂g � � K

�
M̂g0 � 1 � M̂g0 � 1 � for any g0 (see Table 5.1).

Thus, we expect C
�
F � M̂g0 � � C

�
F � M̂g0 � 1 � for any g0. So, for a particular h, we can design a

stopping rule for including extra components based on the concordance values and use it is an

model selection criterion.

Next, we discuss Figure 5.1 in detail and show how the concordance values can be

used as a tool for model selection. Though we present both the unbiased and biased concor-

dance curves we will base our model selection results on the unbiased version. It has already
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Table 5.1: Calculation of the unbiased estimates of the concordance values for the Iris data set,
with h � 0 � 5, and g ranging from 1 to 6.

g
�

K
�
F � F � u

�

K
�
M � M �

�

DK
�
F � M � u

�

Cu
�
F � M �

1 0.029 0.0180 0.0132 0.719

2 0.029 0.0265 0.0035 0.937

3 0.029 0.0259 0.0007 0.989

4 0.029 0.0264 0.0001 0.998

5 0.029 0.0269 -0.0002 1.005

6 0.029 0.0280 -0.0006 1.011

been observed that h � 0 � 5 is a reasonable smoothing parameter for the Iris data . The con-

cordance values for g � 1 � 2 � 3 � 4 � 5 � 6 are � 719 � � 937 � � 989 � � 998 � 1 � 1 � 01 respectively. If we had

set our stopping rule as the absolute value of the concordance being greater than � 98, then we

would have selected the model with 3 components. On the other hand if our stopping rule was

set at concordance � � 9 we would have gone with the two component model. Also, if we had

set the stopping rule as the increase in concordance value being more than � 01, we would have

selected the model with 3 components.

All these rules of model selection based on the concordance are ad-hoc. For this

reason we call it an informal method of model selection. The method can be formalized if we

derive the null distribution of the concordance values and then form a rejection region. Then

we can associate a confidence value with the rejection or acceptance of a model that fits the

data. Further research is needed in this area.

5.5 Results

In this section we will use the concordance values to select the number of components

in the other three datasets given in the Appendix. For the Simulated Dataset 1 and 2 we have
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already seen that h � 0 � 5 is a good choice for the “smoothing parameters”, whereas for the

acidity dataset we chose h � 0 � 05. We will base our model selection on the unbiased estimates

of the concordance values for each of these dataset.

Looking at the h � 0 � 5 curve in Figure 5.3 we would decide on the number of com-

ponents being 4 with the estimated concordance coefficient Ĉ � 1 � 0189 (unbiased estimate).

One interesting thing to notice here is that if we had based our model selection strictly on the

relative increase in concordance, we might have decided on only 2 components, as there is

not much increase in the concordance value from 2 to 3 components. However, when using

concordance we would know Ĉ � � 8976 for three components. So we would look for a better

fit, although we we would still know that a great improvement of fit occurred going from 1 to

2 component.

For the acidity dataset (Figure 5.7), looking at the concordance values for h � � 05 we

might choose 3 components with Ĉ � 1 � 0156. If we had used the h � � 5 curve in this Figure

we would have selected 2 components with Ĉ � 1 � 00114. Since h � � 5 for the acidity dataset

is “over-smoothing”, some of the local variation is obscured and so we choose 2 components

instead of 3. On the other hand even at h � 0 � 5, most of the fit improvement occurs going

from 1 to 2 components

5.6 Using Concordance to choose the smoothing parameter

In this section we will discuss how the sensitivity of the concordance curve might be

used to select an interesting range of h. Closely examining the concordance curves for the

four datasets we can easily observe that large or small values of h produce a less responsive

curve, while the middle values show significant increase with the increase of the number of

components.

For example, let us examine the concordance curves of the Iris dataset (see Figure 5.2.
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Figure 5.1: Concordance values of the iris data for different h with unbiased estimates
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Figure 5.2: Concordance values of the iris data for different h with biased estimates
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Figure 5.3: Concordance values of the Simulated dataset 1 for different h with unbiased esti-
mates
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Figure 5.4: Concordance values of the Simulated dataset 1 for different h with biased estimates



83

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h= 0.1
h= 0.2
h= 0.5
h= 1
h= 2
h= 4

P
S

frag
replacem

ents

C
on

co
rd

an
ce

No of components

Figure 5.5: Concordance values of the Simulated dataset 2 for different h with unbiased esti-
mates
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Figure 5.6: Concordance values of the Simulated dataset 2 for different h with biased estimates
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Figure 5.7: Concordance values of the acidity data for different h with unbiased estimates
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Figure 5.8: Concordance values of the acidity data for different h with biased estimates
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Figure 5.9: Concordance values of the iris data for a different set of h with unbiased estimates

Here we should note that this h is proportional to the unit variances of the scaled dataset,

because whenever we calculate the concordance coefficient we scale the data to make each of

the variables have unit variance. On this scale h � 1 is never a good choice as we can see in all

the concordance curves. Intuitively, h � 1 uses a kernel which has a larger variance than the

data, thus over smoothing it. From the concordance curves, this phenomenon can be observed

from the fact that for almost all h � 1 the concordance coefficients are nearly 1 even with very

few or even 1 component. This implies that for these h the concordance coefficients are not

sensitive for different components. So most often our choice will be limited to h
� 1.

On the other hand, if using very small h we would be forced to model even the “noise”

by using more and more components, thus not achieving large values for the concordance

coefficients even after fitting a considerable number of components. This can be observed

from the concordance values for h � � 1. To further illustrate this phenomenon another graph

(Figure 5.9) is presented for the Iris data with smaller values of h.
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It can easily be seen that for h � � 1 and h � � 05 the concordance curves for the iris

dataset are much less responsive. For h � � 01 the concordance curve is almost flat. Similar

phenomenon can be observed for other datasets.

Any h � 1 produced a flat curve for the two generated datasets. However, as the

clusters in the generated datasets were really well separated, the lower limit of h for which we

still had substantial change in the concordance curve was lower than for the Iris dataset. In fact

the concordance curves displayed strong slopes until h � � 01. Though, the Iris dataset and the

two generated datasets are of the same dimension, the range of h for which the concordance

curve displayed a strong slope varied, because of the difference in the strength of the signal.

For the acidity dataset as observed before the concordance curves starts to display an

interesting slope only when h � � 1. This is because of the dimension of the data being 1.

All the observations so far indicate that there exists an interesting range of h beyond

which the concordance curve looks almost flat and so is non-informative.

So, the first and foremost criterion of choosing an interesting range would be to find

the range of h for which the shape of the concordance curve looks informative about questions

of interest. In future research we intend to investigate the relationship between the choice of

smoothing parameter h, the sensitivity of the distance to questions of interest, and the pseudo

degrees of freedom.

5.7 Conclusion

The concordance coefficient provide a great deal of information about the fit of a

model. It has many attractive properties; we believe it has a very good potential to be used

as an model selection tool. Importantly, it is a non decreasing function of the number of

components, and theoretically it lies between 0 and 1. Concordance values at different h helps

us analyze the data at different levels of smoothness. But, the main hindrance in using this



87

method as a formal model selection tool is the same problem as for R2, choosing the stopping

rule. As mentioned earlier, this needs to be investigated in detail.



Chapter 6

Risk-based model selection

In this chapter we will take yet a different approach to the problem of model selection.

We will estimate the statistical risk of the models and choose the model with minimum risk.

To do so, we define a loss function for an estimator M̂ based on a distance D
�
τ � M̂ � and then let

the risk equal the expected value of the loss function. For a particular dataset, model selected

by the risk analysis need not be the same as the models select by other methods described in

the dissertation. The reason is that the objective of risk-based model selection is somewhat

different from the other methods.

6.1 Motivation

As we have already noticed, the problem of selecting the right number of components

of the mixture distribution is hard because the fit gets better with more and more components.

But, we should also observe that, as we fit more and more components the number of parame-

ters to be estimated increases, too. AIC, BIC and other penalized likelihood based methods for

model selection incorporate the above idea by penalizing the likelihood by some function of

the number of parameters to be estimated. In this chapter we will marry the idea of quadratic

distances with the notion of parameter estimation cost by assigning a measure of risk for each

competing model. Again, let τ be the true distribution. Let us also define a set of compet-

ing models given by M . For example, in our case M will be the set of all normal mixture

model with a finite number of components. Note that, unlike the likelihood based penalized

88
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methods, in our risk analysis based model selection we will not define the penalty function

for parameters explicitly, rather the distance inherently takes care of the parameter estimation

cost.

6.1.1 Generalized Quadratic Distance as the Loss function

We next define the loss function using the quadratic distance introduced in Chapter 3.

Let D
�
τ � M̂ � be the loss incurred when using estimator M̂ to estimate τ. This in turn defines a

risk function

Rn
�
τ � � Eτ � D

�
τ � M̂ ��� � (6.1)

where n is the sample size used to estimate M.

Defining the distance as the loss function has many desirable properties. We can

use all the properties of estimation of distance to calculate the estimated risk of model. In

particular, U � statistics results can be applied to find an unbiased estimator of the risk. The

estimation of the risk will be discussed in detail in Section 6.3

Furthermore, the risk has a very attractive interpretation. It can be decomposed ex-

plicitly into a model lack-of-fit item plus a parameter estimation cost. This is discussed in

detail in the following section.

6.2 Decomposition of the Risk

In this section we will illustrate how the total risk Eτ � D
�
τ � M̂ ��� can be broken into

two parts, one attributable to the lack-of-fit of the model class and the other part evaluating

the parameter estimation cost. Let D
�
τ � M � � inf

M � M
D
�
τ � M � be called the Model lack-of-fit or

model building error. We assume the infimum is attained at M � Mτ. The model lack-of-fit is

zero if the model class is correct and otherwise is an intrinsic error occurring from using the

incorrect model class for τ.
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However in practice we will have M̂, where M̂ is an estimator of the model M based

on F̂ , i.e. the data. We can decompose the loss function when using M̂, into two parts

D
�
τ � M̂ � � D

�
τ � Mτ � �

�
D
�
τ � M̂ � � D

�
τ � Mτ � 
 � (6.2)

where D
�
τ � Mτ � is the model lack-of-fit and

�
D
�
τ � M̂ � � D

�
τ � Mτ � 
 is a positive term because

Mτ is the distance minimizer. Taking expectations of equation (6.2) we get

Eτ � D
�
τ � M̂ ��� � D

�
τ � Mτ � � Eτ

�
D
�
τ � M̂ � � D

�
τ � Mτ � 
 � (6.3)

where Eτ
�
D
�
τ � M̂ � � D

�
τ � Mτ � 
 represents the parameter estimation cost. We expect that its

magnitude is strongly related to the number of parameters estimated. We will investigate this

feature further in our simulations.

Thus Eτ � D
�
τ � M̂ ��� , the risk associated with using model estimation method M̂ is the

sum of the model error and the mean parameter estimation cost.

6.3 Estimation

In this section we will use the results on distance to calculate the estimated risk of a

fitted model. Let us first introduce some notation which will be used through out the rest of

this chapter.

�

�

M � i � j � is the fitted model M whose estimates are calculated on the basis of all but ob-

servations Xi and X j. In general,
�

M � S � is the fitted model with the estimates calculated

leaving out those X whose indices are in S , where S � � 1 � 2 � � � � � n � . We will denote a

subset S containing exactly n1 elements by Sn1 .

� The delete-n1 risk is based on n � n1 data points, denoted as Rn � n1

�
τ � , and is given by

Rn � n1

�
τ � � Eτ

�
D
�
τ �

�

M � S � � �
�
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Now let us start with the definition of the “leave-two-out estimator”,

R̂n � 2
�
τ � �

2
n
�
n � 1 �

n

∑
i � 1

∑
j � i

K̃
�
M � i � j � � xi � x j � � (6.4)

It can be easily seen that, R̂n � 2
�
τ � is an unbiased estimator of Rn � 2

�
τ � .

An intuitive idea behind the “leave-two-out” estimator is that we expect the risk to

decrease as long as the the fitted distribution, leaving the two out, also fits those two obser-

vations well, but the risk should start increasing when we fit too many components because

the fitted distribution will be able to fit the
�
n � 2 � observations very well, but at the price of

poorly fitting the omitted observations. Since we would expect Rn � 2
�
τ � to be close to Rn

�
τ �

for large n, we will use this estimator to assess our risk in using our model M̂.

One of the difficulties of implementing this method is that each time we leave out

two or more observations, we have to recompute all the parameters based on the remaining

observations. Although, we can start the EM algorithm, for the new parameter estimates, using

as the starting values the estimates based on all the n observations, the whole process becomes

computationally expensive, especially, as the number of components increases. Moreover, in

the leave-two-out estimation, the point estimates change so little that the difference in distance

before and after deletion was hard to measure accurately. Finally the leave-two-out estimator

requires n2 distance calculations.

So, for practical purposes, we implemented the following strategy. We deleted n1

observations, then calculated the model estimate
�

M � Sn1
� , and took an average of the risks

over the repeated random deletions of size n1. Taking the average over Q sets of deletions the

estimator can be written as

R̂n � n1 �
1
Q

Q

∑
q � 1

�
1

n1
�
n1 � 1 � ∑

i � j � Sq

∑
j �� i

K
�
M � Sq �

�
xi � x j � � � (6.5)

Note that R̂n � n1 , like R̂n � 2 is still an unbiased estimate of Rn � n1 , but with a lower precision. In

our calculations we have used Q � 20 and n1 � 30 (about 20% of the number of observations).
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Along with the estimates of risk for specified models, we would also like to have a

significance level of the increase or decrease in risk from model A to model B. One may think

that the significance values can be calculated as the paired difference of the Q samples from

each model, where the p-value is calculated with respect to t with Q � 1 degrees of freedom

(paired-sample t test). But it should be noted that the Q samples are correlated. So, for now

we avoid calculating the significance values and base our conclusions on the absolute value of

the changes in risk.

6.4 Results

In this section we discuss examples of model selection based on the risk analysis

criterion. Description of the 4 datasets discussed below can be found in Appendix I.

Based on the pDOF analysis in Chapter 4 the risk-based model selection are done

taking h � 0 � 5 for the Iris data and the two simulated data. For the Iris data (see Figure 6.1) a

decision based on minimum risk would suggest 3 components, as the risk is clearly minimized

for 3 components. Similarly, for the simulated dataset 1 (see Figure 6.2), we would go for 4

components, as there is no significant improvement in the of risk for 5 and 6 components.

For the simulated dataset 2, where we have four distinct clusters our decision method gives a

strong indication to go for 4 components (see Figure 6.3). For the acidity dataset with h � � 05,

we would choose a 3 component model (see Figure 6.4).
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6.5 Conclusion

The risk of a model can be used as a very important and general tool in selecting a

model. As mentioned earlier, we should not compare the results of risk analysis with other

model selection methods described in this dissertation, as the optimizing criteria are not the

same. Here the best model is chosen based on the optimum balance between the model lack-

of-fit and the parameter estimation cost. In the other methods, we wish only to get close to the

true τ without regard to the parameter cost. Note that, like the other distance based methods,

the risk based analysis also allows one to “play” with the “smoothing parameter” h, in the

analysis of the model which could result in different choices for g.

Future research in this topic could include the selection of the optimum deletion pa-

rameter (n1). Further research should also be done for calculating a significance level for the

change in risk from model to model.



Chapter 7

Residual Analysis through Quadratic distance

In this chapter we will discuss some initial ideas about how the unbiased estimator

of the quadratic distance could be used as diagnostic tool for outlier detection. We believe

that these outliers could be used for detection of extra components as well as indicating the

locations of the needed components. The most attractive feature of these residuals is that we

do not have to calculate them explicitly; rather they are a natural outcome of the distance

estimation. At this time, issues regarding standardization and determining a cutoff value for

extreme values remain to be rigorously worked out. However, we believe that the generalized

quadratic residuals we describe next could prove to be an important diagnostic tool in model

assessment.

7.1 Motivation

Our definition of model residuals arises from a re-expression of the unbiased estimator

of the quadratic distance. Using the U-statistics results found in Chapter 3 we showed that

the unbiased estimator of the distance DK
�
τ � G � can be written as,

Un
�
G � �

1
n
�
n � 1 � ∑i

∑
j �� i

K̃G
�
xi � x j � � (7.1)
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where X1 � X2 � � � � � Xn are random samples from the distribution τ. The above equation can be

re-written as

Un
�
G � �

1
n ∑

i

�
1

n � 1 ∑
j �� i

K̃G
�
xi � x j � � �

�
1
n ∑

i

r
�
xi � (7.2)

where r
�
xi � �

1
n � 1 ∑ j �� i K̃G

�
xi � x j � will be called the quadratic residual at the data point Xi.

From the expression in equation (7.2) the total distance Un
�
G � can be thought as the sum of

residuals of all the data points. Since large values of the estimated distance provide evidence

against G, it might be anticipated that r
�
xi � should somehow represent the contribution of the

distance coming from observation Xi � xi

To understand how r
�
xi � serves as a measure of the effect of an observation on the

estimated distance one can ask the question: Given the rest of the dataset, how does the

estimated distance change if we add Xi? Without loss of generality, let i � n, and delete Xn.

Then

Un
�
G � � Un � 1

�
G � �

1
n
�
n � 1 �

n

∑
i � 1

n

∑
j �� i

K̃G
�
xi � x j � � 1�

n � 1 � � n � 2 �
n � 1

∑
i � 1

n � 1

∑
j �� i

K̃G
�
xi � x j �

�

�
1

n
�
n � 1 � �

1�
n � 1 � � n � 2 � � n � 1

∑
i � 1

n � 1

∑
j �� i

K̃G
�
xi � x j ��� 1

n
�
n � 1 � 2

n � 1

∑
i � 1

K̃G
�
xi � xn �

� � 2
n

Un � 1
�
G ��� 2

n
r
�
xn � � (7.3)

That is, the change in estimated distance is a function of the new data point only through

the magnitude of r
�
xn � . As an aside, from equation (7.3) we can get the following recursive

formula for calculating the distance,

Un
�
G � �

n � 2
n

Un � 1
�
G ��� 2

n
r
�
xn � � (7.4)
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To understand the structure of the residuals further, we decompose r
�
xi � as follows

r
�
xi � �

1
n � 1 ∑

j �� i

K̃G
�
xi � x j �

�
1

n � 1 ∑
j �� i

� K �
xi � x j � � K

�
xi � G � � K

�
G � x j � � K

�
G � G ���

�
1

n � 1 ∑
j �� i

K
�
xi � x j � � K

�
xi � G � � 1

n � 1 ∑
i �� j

K
�
G � x j � � K

�
G � G �

�
1

n � 1 ∑
j �� i

K
�
xi � x j � � 	 1 � 1

n � 1

 K

�
xi � G � � 1

n � 1

n

∑
j � 1

K
�
G � x j ��� K

�
G � G � �

(7.5)

Now, the last two terms in equation (7.5) remain constant over all i. Moreover, as n � ∞,

when G is correct, their sum goes to zero. So finally, the variability in the values of r
�
x i � over

the sample can be attributed to the first two terms of equation (7.5).

Let f �� i �
�
t � �

1
n � 1 ∑ j �� i K

�
t � x j � . Then f �� i �

�
t � is a kernel density estimator for τ based

on the data with Xi deleted. And the first term in equation (7.5) is f �� i �
�
xi � . This value

objectively defines how well the ith data point agrees with the rest of the empirical distribution.

On the other hand, K
�
G � t � � g �

�
t � corresponds to a kernel smoothed density for G, so g �

�
xi �

represents the smoothed null density at the observation. Here we can draw a similarity with the

Pearson’s χ2 test in that r
�
xi � nearly has the form of observed minus expected frequency. Note,

that the last two terms in equation (7.5) are required to make the overall distance unbiased.

So, the residuals can be re-written as

r
�
xi � � f �� i �

�
xi � � 	 1 � 1

n � 1

 g �

�
xi � � c � for i � 1 � 2 � � � � � n � (7.6)

where c �
1

n � 1 ∑n
j � 1 K

�
G � x j � � K

�
G � G � and f �� i �

�
xi � and g �

�
xi � already described in the pre-

vious paragraph. For identifying extreme values we could as well work with only

r̃
�
xi � � f �� i �

�
xi � � 	 1 � 1

n � 1

 g �

�
xi � � for i � 1 � 2 � � � � � n (7.7)

instead of r
�
xi � .
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7.2 Standardizing the residuals

Unfortunately, without standardization these residuals may not reflect the “surprise”

that one has due to the observation. Indeed we have found that the raw residuals are not

reliable at detecting outliers. This is still a subject of ongoing research, about which we have

the following comments.

Viewed as a random function of the data, the r
�
xi � are exchangeable in distribution,

and so they have constant variance. They are also correlated with each other. If the spectral

decomposition corresponding to the kernel K̃G under G were available, we might use the

orthogonal eigen-functions as diagnostics for sources of model lack of fit.

Since such a decomposition is not feasible, we might instead ask the question as

follows: Given the data points X1 � X2 � � � � � Xn � 1 and the model G, is the new data point Xn

“surprising” in the sense of the magnitude of its change in the estimated distance. In doing this

we seek a conditional distribution under model G, with X1 � X2 � � � � � Xn � 1 fixed at x1 � x2 � � � � � xn � 1

.

We first note that the conditional mean of r
�
xn � is zero under G:

E � r � Xn �
�
x1 � x2 � � � � � xn � 1 � �

1
n � 1

n � 1

∑
i � 1

E � K̃G � Xn � xi ��� � 0 (7.8)

Secondly, the conditional variance has the form

σ2
r� n �

1�
n � 1 � 2 EG

�
n � 1

∑
a � 1

n � 1

∑
b � 1

K̃G � Xn � xa � K̃G � Xn � xb � � (7.9)

�
1�

n � 1 � 2
n � 1

∑
a � 1

n � 1

∑
b � 1

EG

�
K̃G � Xn � xa � K̃G � Xn � xb � 
 � (7.10)

If we calculate h
�
t1 � t2 � � EG

�
K̃G � X � t1 � K̃G � X � t2 � 
 , then

σ2
r� n �

1�
n � 1 � 2

n � 1

∑
a � 1

n � 1

∑
b � 1

h
�
xa � xb � � (7.11)

This leads to the standardized residuals

r �0
�
xi � �

r
�
xi �

σr� n � (7.12)
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An alternative analysis would be to condition on Xn � xn. In this case ∑n � 1
i � 1 K̃G

�
xn � xi �

is an i.i.d. sum. It is also conditionally mean zero and so the conditional variance under G is

σ2
1 � Xn

� EG

�� �
1

n � 1

n � 1

∑
i � 1

K̃G
�
xn � xi � � 2 ��

(7.13)

�
1

n � 1
EG

� �
K̃G

�
xn � xi � � 2 � � (7.14)

These variances do depend on Xn and thus provide local standardizing. They can be calculated

as follows

σ2
1 � X � E

� �
K̃G

�
x � X � � 2 �

� E
� �

K
�
x � X � � K

�
x � G � � K

�
G � X � � K

�
G � G � � 2 �

� E � � K �
x � X � � K

�
x � G � � 2 � � E � � K �

G � X � � K
�
G � G � � 2 � �

2E � � K �
x � X � � K

�
x � G � � � K �

G � X � � K
�
G � G � ���

� VarG � K �
x � X ��� � VarG � g �

�
X ��� � 2CovG � K �

x � X � � g �
�
X ��� � (7.15)

Through rigorous calculation it can be shown that for G being a p-component univari-

ate normal with mean µ and variance V

σ2
1 � X �

1�
2

�
π � p

� 1
�
Σh
� 1

2

KΣh � V
�
X � µ � � 1

�
Σh � V

� 1
2

KΣh � 2 � V � 2
�
X � µ �

� 1
�
Σh � V

� 1
2

KΣh � 2 � 3V � 2
�
X � µ � � 1

�
Σh � 2V

� 1
2

KΣh � 2 � V
�
X � µ � �

� 2
� 1
�
Σh
� 1

2
�
Σh � 2V

� 1
2

��� � Σ � 1
h � �

Σh � 2V � � 1 � � 1
��� 12 KΣh � � Σ � 1

h � � Σh � V � � 1 �
�
X � µ �

� 1
�
Σh
� 1

2
�
Σh � V

� 1
2

��� � � Σh � V � � 1 � �
Σh � 2V � � 1 � � 1

��� 12 K � � Σh � V � � 1 � � Σh � 2V � � 1 � � X � µ � � �

(7.16)

From this point one can consider either using estimates of variance by using the sample

variance s2
1Xn

of K̃
�
xn � X1 � � K̃

�
xn � X1 � � � � � � K̃ �

xn � Xn � 1 � or by carrying out the above calcula-

tion (7.15), which can be done explicitly in the normal mixture. This yields two forms for the
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Figure 7.1: Plot of 100 sample from f1 and 3 sample from f2

residuals,

r �1
�
xi � �

r1
�
xi �

s1Xi

(7.17)

and r �2
�
xi � �

r1
�
xi �

σ1Xi

� (7.18)

7.3 Results

In this section we will use standardized residuals to detect outliers in a synthetic data.

To demonstrate the idea through plots we examine a bivariate data set. Let f1 and f2 be

two bivariate normals with mean vector µ1 �
�
0 � 0 � �

and µ2 �
�
4 � 4 � �

respectively, and with

common variance being the identity matrix. The first 100 observations were generated from

f1 and 3 were generated from f2. Thus, the dataset has 103 points, among which the last three

are possible outliers. A plot of the 103 data points is given in Figure 7.1.

In Figure 7.2 data points denoted by “� ” denote the 10 most extreme residuals using

the standardized residuals r �1. The next ten extreme residuals are denoted by “� ”. Figure 7.3
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Figure 7.2: Detecting outliers based on the standardized residuals r �1 � xi �

gives the histogram for the standardized residuals. displays the outliers for standardized resid-

uals r �1
�
xi � . Here, we observe that the three data points from f2 are not just classified among

the 10 more extreme values of the residuals, they are outliers in the residual distribution (see

Figure 7.3). In the histogram, the three bins with frequency one are the three outliers. In fact,

the magnitude of the three observations from the distribution f2 was extremely high. These

10 most extreme residuals also include all the outlying points of the distribution f1. Table 7.1

gives the value of the 10 largest standardized residuals, using the r �1
�
xi � values. For a compar-

ative study, we also give the histogram of the raw residuals in Figure 7.4. From the histogram

it is clear that the raw residuals would have been unable to detect the outliers.

From the magnitude of the residuals some “ad hoc” rule of of outlier detection can be

proposed. For now, we propose plotting the residual distribution to determine if there are very

unusual points.

A further note: although we identify individual points as outliers, we are actually



103

F
re

qu
en

cy

0 5 10 15 20 25

0
20

40
60

80

Figure 7.3: Histogram of the standardized residuals r �1

F
re

qu
en

cy

−0.08 −0.06 −0.04 −0.02 0.00

0
5

10
15

Figure 7.4: Histogram of the raw residuals r



104

Table 7.1: Residual analysis of the simulated data with 3 outliers, using standardized residuals
(only 10 largest values are shown)

Data Coordinates r σ2
1 � X r1 Rank

x y (Largest to smallest)

3.881 5.238 0.00293 1.458406e-08 24.3069 1

4.135 4.285 0.00372 1.564925e-07 9.4168 2

3.935 3.532 0.00321 2.237121e-06 2.1480 3

-0.957 3.066 0.00747 3.687338e-03 0.1230 4

-0.076 -3.237 0.00714 3.405210e-03 0.1224 5

-1.644 -2.800 0.00582 3.323357e-03 0.1010 6

0.487 2.871 0.00911 8.670933e-03 0.0978 7

-2.061 1.605 0.01039 1.889262e-02 0.0755 8

-1.009 2.171 0.01271 3.168819e-02 0.0714 9

0.416 -2.411 0.01045 2.806342e-02 0.0623 10

looking at the model discrepancies in the neighborhood of the point, where the point itself is

excluded. Thus we would only find outlier clusters of two or more, not singletons, using this

method.

7.4 Conclusion

Residual analysis is a natural outcome of the distance estimation process for the

quadratic distance. We should note that the outliers considered here also depend on the value

of the “smoothing parameter” of the kernel, so the same data point can be an extreme outlier

for some value of h, but at some other value h
�

the residual of that data point might not be

significantly large. In the particular case of finding the number of components the residual

analysis may be used to find and explore further clusters to be added to the model. That is,

if we find a several outliers together we may want to check whether we can find an extra



105

component consisting of the close knit outliers. We would also get an idea of the location of

the component. Residual analysis in the generalized quadratic distance seems quite promis-

ing. Further research needs to be done to standardize the residuals and find cut-off values to

determine outliers.



Chapter 8

Detection Number of Modes in Two Component Mixture

Modality is one objective way to define what we mean by distinct clusters. As we have

discussed in Chapter 2, even though the number of modes and the number of components may

not be the same, the number of modes provides further insight into the distribution of a non-

homogeneous population. Considerable work has been done for the detection of bimodality

in univariate models with specific distributions. Helguero (1904) determined necessary and

sufficient conditions for bimodality in the mixture of univariate normals with equal variances

and mixing proportions. Later, conditions for bimodality in the mixture of univariate normal

distribution with unequal variance and unequal mixing proportion was studied by Eisenberger

(1964), Behboodian (1970) and Robertson and Fryer (1969). Kakiuchi (1981) and Kemper-

man (1991) addressed conditions for bimodality using non-normal component densities.

In this chapter we will investigate modality conditions for a mixture of multivariate

normal densities. To our knowledge, no other previous results are available on this topic.

Bimodality in the multivariate situation is harder to describe in terms of the first and second

order differentials. We propose a new method for detecting modal structure in a mixture of

multivariate normals. For the equal variance matrix case we have an “if and only if” condition

for bimodality which depends on the mean vectors and the common covariance matrix. For

the unequal variance matrix case we develop plotting methods which are guaranteed to detect

the number of modes. However, simple algebraic conditions for bimodality for a mixture of

106



107

multivariate normal, when the component densities have unequal variances, are not given. In

the univariate case such formulas exist; we doubt their existence in the multivariate case.

In this chapter determination of modality refers to determination of modality in the

context of the two component multivariate ( say p-variate) normal distribution. In other words

we will determine the modality of the density fX
�
x � , where

X � πN
�
µ1 � Σ1 � �

�
1 � π � N �

µ0 � Σ0 � � (8.1)

where µi’s and Σi’s are the means and variances of the component i � i � 1 � 2 and π is the

proportion of the 1st component. Denoting the the density of a multivariate normal with mean

µ and variance Σ, by φ
�
x;µ � Σ � we can write fX

�
x � as,

fX
�
x � � πφ

�
x;µ1 � Σ1 ���

�
1 � π � φ � x;µ0 � Σ0 � (8.2)

The work on generalization to more than two components is still in progress but the answer is

bound to be significantly more complex.

One way of detecting bimodality in the univariate case is by visual inspection of a

density histogram. But, for the multivariate case visual inspection is not a good option. Here,

we present an example to illustrate why the detection of bimodality, from density plots is

difficult, even in the bivariate case. Figure 8.1 displays the density function of a mixture

of normal with the means µ1 �
� � 1 � � 1 � �

, µ1 �
�
1 � 1 � �

and common variance Σ � I2. For

detecting the bimodality in the density, visually inspecting the 3-dimensional plot is possible,

but not easy. So, we look at the marginal distribution of only one variable. The distribution

along the x and y axis is the same and is given by Figure 8.2. The density along the x and y

axis is not bimodal. But if we look at the distribution along the line x � y (Figure 8.3), we can

easily detect the bimodality. Visual inspection will be even more difficult in greater than two

dimensions. Nor is it clear that multivariate bimodality will always be evident form a marginal

plot.
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Figure 8.1: Density plot of the mixture of two bivariate normals with means µ1
� � � 1 � � 1 � �

, µ1
�

� 1 � 1 � �

and common variance Σ � I2.
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Figure 8.2: Marginal distribution of the mixture of two bivariate normals along the axes

In this chapter we will show that there exists a one dimensional curve in X such that,

in order to detect all the modes of (8.2), it is necessary and sufficient to determine the modes

of the density along that curve.

The layout of the chapter is as follows. First, we determine conditions for bimodality

in a mixture of multivariate normals when the component variances are equal. It will be seen
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Figure 8.3: Distribution of the mixture of two bivariate normals along the “axis of maximum
separation”

that the condition for bimodality of the multivariate distribution can be reduced to the univari-

ate condition of bimodality for the density of a specific linear combination of the variables.

We will denote this linear combination as the “axis of maximum separation”.

Then we proceed to the case of unequal variances. We derive several plots one can

use to detect bimodality. They are based on reducing the p-dimensional problem to a one

dimensional problem by constructing an explicit “ridge-line” curve along which all the modes

must occur. In the unequal variance case the modes can be surely detected if we can detect

modality along the ridge-line curve.

8.1 Detection of Bimodality: The equal variance case

In this section we will derive conditions for bimodality for a mixture of multivariate

normals where the components have equal variance. We will derive the “axis of maximum

separation” and the inference on the modality of the multivariate distribution will be based

on the modality of the distribution of the univariate distribution over the “axis of maximum
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separation”.

8.1.1 The “axis of maximum separation” for a multivariate normal mixture

A mixture of multivariate normals is bimodal if and only if it is bimodal along some

line. By this we mean that, if a mixture of multivariate normals is bimodal, with modes at X1

and X0, then the density is bimodal when calculated as a function of α along the line αX0 �
ᾱX1. It turns out that if Σ1 � Σ0, then we will show there is also a vector V, corresponding to

a change of axes, such that V
�

X has a bimodal univariate density. If Σ1 � Σ0, then our density

of interest is

fX
�
x � � πφ

�
x;µ1 � Σ ���

�
1 � π � φ � x;µ0 � Σ � � (8.3)

Let Y � Σ �

1
2
�
X � µ1 � . Then,

Y � πN
�
0 � I � � �

1 � π � N �
µy � I � where µy � Σ �

1
2
�
µ0 � µ1 � � (8.4)

Let B be an orthonormal matrix of size p with the first row γ
�

1 being proportional to µy. Thus

by Gram-Schmidt orthogonalization we can have B, such that

B �

�
�
�
�
�
�
�

�
γ

�

1

γ
�

2
...

γ
�

p

�
�
�
�
�
�
�

� (8.5)

where γ1 �
µy� �
µy
� � � γ

�

iγ j � 0 � i �� j � and γ
�

iγi � 1 � i �

Thus

Z � BY � � BΣ �

1
2
�
X � µ1 � �

�
πN

�
0 � I � � �

1 � π � N �
µ �y � I � � (8.6)

where µ �y � Bµy �

�
�
�
�

� � �
µy
� �

0
...

0

�
�
�
�

�
�
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Lemma 8.1. If Z �
�
Z1 � Z2 � � � � � Zp � is a random variable such that�

�
�
�
�
�
�

�
Z1

Z2

...

Zp

�
�
�
�
�
�
�

� � πN

�
�
�
�
�
�
�

�
�
�
�
�
�

� 0

0
...

0

�
�
�
�
�

� � Ip

�
�
�
�
�
�
�

� � �
1 � π � N

�
�
�
�
�
�
�

�
�
�
�
�
�

� c

0
...

0

�
�
�
�
�

� � Ip

�
�
�
�
�
�
�

� � (8.7)

then Z1 � Z2 � � � � � Zp are statistically independent.

Proof : The moment generating function (MGF) of Z denoted by MZ
�
t � is

MZ
�
t � � E � exp

�
t

�

Z ���

� π exp 	 1
2

t
�

It 
 � �
1 � π � exp 	 t1c � 1

2
t

�

It 

� π exp

�
1
2

p

∑
i � 1

t2
i � � �

1 � π � exp

�
t1c � 1

2

p

∑
i � 1

t2
i �

� exp

�
1
2

p

∑
i � 2

t2
i � �

π exp 	 1
2

t2
1 
 � �

1 � π � exp 	 t1c � 1
2

t2
1 
 �

� MZ1

�
t1 � MZ2

�
t0 � � � � MZp

�
tp � � (8.8)

Thus Z1 � Z2 � � � � � Zp are statistically independent.
�

Moreover, Z2 � Z3 � � � � � Zp are independent one component normals, and Z1 is the only

variable which is a mixture of two normals and corresponds to the axis of maximal separation.

So if we can show that the modality of the original random variable X is preserved under the

transformation Z � BΣ 1
2
�
X � µ1 � , then we have the following if and only if condition, “ X has

g modes iff Z1 has g modes”.

Lemma 8.2. Let A be any positive definite p � p matrix. A r.v. X has g modes to its density

fX
�
x � iff Z � AX has has g modes to its density fZ

�
z � .

Proof : Let x1 � x2 � � � � � xg be the g distinct modes of the density fX
�
x � . Thus, we have,

∂
∂x

f
�
xi � � 0 for i � 1 � 2 � � � � g � (8.9)

∂2

∂x∂x
� f
�
xi � is a negative definite matrix for i � 1 � 2 � � � � g � (8.10)
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The density function of Z is given by

fZ
�
z � � fX

�
x � 1
�
A
�� (8.11)

Therefore,

∂
∂z

fZ
�
z � �

�
∂

∂x
fX
�
x � � ∂x

∂z
1
�
A
�

�
A

� 1
�
A
�

�
∂

∂x
fX
�
x � � (8.12)

and

∂2

∂z∂z
� fZ

�
z � �

A
� 1
�
A
�

�
∂2

∂x∂x
� fX

�
x � � A

� 1
� (8.13)

Note that A is positive definite implies A
� 1 is also positive definite. Equations (8.9) and (8.12)

�
� ∂

∂z fZ
�
z � � 0 for z � zi � Axi � i � 1 � 2 � � � � g and equations (8.9) and (8.12) �

� ∂2

∂z∂z � fZ
�
z �

is negative definite for z � zi � Axi � i � 1 � 2 � � � � g. Also as A is positive definite xi �� x j �
�

zi �� z j for all i �� j. Thus if X has a g modal density so does Z � AX. The “only if” condition

can be verified trivially since X � A
� 1Z and A

� 1 is also a positive definite matrix.
�

We know that Z1, being the mixture of two univariate normal densities, can have at

most two modes (Behboodian, 1970). Thus using lemma 8.1 and 8.2 we can conclude that X

has at most a bimodal density and is bimodal iff Z1 has a bimodal density. Now,

Z1 � 1st element of BΣ �

1
2
�
X � µ1 �

� γ
�

1Σ �

1
2
�
X � µ1 �

�

�
µ0 � µ1 � Σ � 1 � X � µ1 ��
µ0 � µ1 � Σ � 1

�
µ0 � µ1 � � (8.14)

Thus the variable of maximum separation is
�
µ0 � µ1 � Σ � 1 � X � µ1 � .

8.1.2 Conditions for bimodality of Multivariate Mixture

Before deriving the conditions for bimodality in the multivariate situation, we would

like to mention the bimodality condition for the mixture of univariate normals.
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Theorem 8.3. (Helguero, 1904). Let X be the mixture of two univariate normal random

variable with mean µ1 and µ0, (µ1 �� µ0), equal variance σ2 and equal mixing proportion. The

distribution of X is bimodal iff
�
µ0 � µ1

�

σ
� 2 � (8.15)

Thus, based on theorem 8.3, lemmas 8.1 and 8.2 we have the following corollary,

Corollary 8.1. Let X be the mixture of two multivariate normals, with unequal means µ1

and µ0, equal variances Σ, and equal mixing proportions π � 1 � π � � 5 The density of X is

bimodal iff

�
µ1 � µ0 �

�

Σ � 1 � µ1 � µ0 � � 4 � (8.16)

The known modality conditions for univariate mixtures with arbitrary mixing propor-

tions (see Theorem 8.4 with σ1 � σ0) can be applied to the multivariate case again by using

the density of the marginal univariate distribution over the “axis of maximum separation”.

8.2 Detection of bimodality: the unequal variance case

Deriving the conditions for bimodality in the unequal variance case is a challenging

subject of research. Univariate conditions of bimodality in the case of normal mixtures are

discussed in Eisenberger (1964), Behboodian (1970). Robertson and Fryer (1969) and recently

Schilling et al. (2002) derived the following condition for bimodality in the univariate case:

Theorem 8.4. Let X � πN
�
µ1 � σ2

1 � �
�
1 � π � N �

µ0 � σ2
0 � and r �

σ2
1

σ2
0

.

� Then X has a unimodal distribution for all 0 � π � 1, iff

�
µ1 � µ0

� � S
�
r � � σ1 � σ0 � (8.17)

where S
�
r � �

�
� 2 � 3r � 3r2 � 2r3 � 2

�
1 � r � r2 � 3

2

�
r
�
1 � �

r � �
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� For
�
µ1 � µ0

� � S
�
r � � σ1 � σ0 � , X is bimodal iff π � �

π1 � π0 � where,

π � 1
i � 1 � r

3
2 yi

µ � yi
exp

�
� 1

2
y2

i �
1
2 	 yi � µ

�
r

 2 � for i � 1 � 2 and µ �

µ0 � µ1

σ
(8.18)

and y1 and y0 are the solutions of the cubic equation

�
r � 1 � y3 � µ

�
r � 2 � y2 � µ2y � µr � 0

with 0 � y1
�

y0
�

µ �

Otherwise, X is unimodal.

In the multivariate situation with unequal variances the problem of determining modal-

ity becomes more difficult. Earlier we argued that if a multivariate distribution has two modes

there exists a line ( the line between modes) along which the joint density is bimodal. How-

ever, the converse is not necessarily true. However, we now show how to construct a one

dimensional curve along which the converse is true.

8.2.1 The X-modality curve

Theorem 8.5. Let fX
�
x � be the mixture of two multivariate normal densities, namely

fX
�
x � � πφ

�
x;µ1 � Σ1 � � π̄φ

�
x;µ0 � Σ0 � �

Then all of fX
�
x � ’s critical values, and hence modes, lie along the curve in α defined by

xα �

�
αΣ � 1

1 � ᾱΣ � 1
0 
 � 1 � αΣ � 1

1 µ1 � ᾱΣ � 1
0 µ0 
 � (8.19)

where α � � 0 � 1 � and ᾱ � 1 � α.

Proof : Suppose that ∇ fX
�
x � � � 0 so x � is a critical point. Then we have

0 � πφ
�
x � ;µ1 � Σ1 � ∇φ

�
x � ;µ1 � Σ1 �

φ
�
x � ;µ1 � Σ1 � � π̄φ

�
x � ;µ0 � Σ0 � ∇φ

�
x � ;µ0 � Σ0 �

φ
�
x � ;µ0 � Σ0 � (8.20)
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Let α �
πφ

�
x � ;µ1 � Σ �

πφ
�
x � ;µ1 � Σ ��� π̄φ

�
x � ;µ0 � Σ � , which is between 0 and 1. Note further that

∇φ
�
x � ;µ � Σ �

φ
�
x � ;µ � Σ � � � Σ � 1 � X � � µ � � (8.21)

Thus, we have from equation (8.20), that for every critical value x � there exists an α

such that

αΣ � 1
1

�
x � � µ1 ��� ᾱΣ � 1

0

�
x � � µ0 � � 0 � (8.22)

Solving this equation for x � gives the theorem. �
In general, as α varies from 0 to 1, Xα is a curve from µ0 to µ1 along which the modes

and saddle points must occur. We will call this line the X-modality curve. It could also be

called the “ridge-line curve” because of its similarity to a mountain ridge-line on which the

saddles and the peaks occur. Therefore, to check whether the distribution of X is multimodal

or unimodal, we can focus our attention ‘to the density on the ridge-line Xα .

This ridge-line can be given a second interpretation. Consider any contour � X :

φ1
�
x � � c � of the component φ1. This forms an ellipse. Provided µ0 is not inside the el-

lipse, there exists constant d such that the ellipse of the other component � X : φ0
�
x � � d �

just touches the first ellipse. One can show that the point X̃ they have in common is neces-

sarily a point on the ridge-line, and that all points on the ridge-line have this characteristic.

The interpretation of such point is that, no matter which direction one heads from it, one of� φ1
�
x � � φ0

�
x � � increases and the other decreases, so that it is not possible to go in any direction

in which both decrease.

8.2.2 Plots for detecting modality on the basis of the X-modality curve

Our next problem is to develop some diagnostic tools for the modality analysis. We

will focus on plotting methods. We will also treat the component parameters as fixed in each
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analysis, and seek to determine the modality as a function of π. Based on the structure of the

X-modality curve we define the “density curvature plot” to be the plot of
�
φ1

�
xα � � φ0

�
xα � � as

curve in α ( See Figure 8.4). Note that, the density value πφ1 � π̄φ0 is the inner product of
�
π � π̄ � and

�
φ1 � φ0 � . And the local maxima or the modes correspond to

�
π � π̄ � � �

φ
�

1 � φ
�

0 � , that is

the inner product of
�
π � π̄ � and

�
φ

�

1 � φ
�

0 � being 0, where φ
�

i refers to the α-derivative of φi. That

is,
�
π � π̄ � is orthogonal to the tangent vector of the curve at the critical points in α. This means

that the values of π with multiple modes must have multiple tangent points.

To calculate φ1
�
xα � we need to calculate the exponent. Let Σα � αΣ1 � ᾱΣ0. Then

�
xα � µ1 �

�

Σ � 1
1

�
xα � µ1 �

�

�
Σ � 1

α
�
αΣ � 1

1 µ1 � ᾱΣ � 1
0 µ0 
 � µ1 
 �

Σ � 1
1

�
Σ � 1

α
�
αΣ � 1

1 µ1 � ᾱΣ � 1
0 µ0 
 � µ1 


�

�
Σ � 1

α ᾱΣ � 1
0

�
µ1 � µ0 � 
 �

Σ � 1
1

�
Σ � 1

α ᾱΣ � 1
0

�
µ1 � µ0 � 


�
�
µ1 � µ0 �

�

ᾱΣ � 1
0 Σ � 1

α Σ � 1
1 Σ � 1

α ᾱΣ � 1
0� ��� �

�
µ1 � µ0 � � (8.23)

ᾱ2W1α �

Similarly,

�
xα � µ0 �

�

Σ � 1
0

�
xα � µ0 � �

�
µ1 � µ0 �

�

α2W2α
�
µ1 � µ0 � � (8.24)

where W2α � Σ � 1
1 Σ � 1

α Σ � 1
0 Σ � 1

α Σ � 1
1 �

We would later find it useful to have the square roots of W1 and W0. Note that

	 Σ � 1
0 Σ � 1

α Σ
�

1
2

1 
 � 1

� Σ
1
2
1 ΣαΣ0 � αΣ

�

1
2

1 Σ0 � ᾱΣ
1
2
1 � P1α (say)

�
� Σ � 1

0 Σ � 1
α Σ

�

1
2

1 � 	 αΣ
�

1
2

1 Σ0 � ᾱΣ
1
2
1 
 � 1

�
� W1α � P

� 2
1α � (8.25)

Also taking P2α � αΣ
1
2
0 � ᾱΣ1Σ

�

1
2

0 we have W2α � P
� 2
2α .

We claim that if this curve has no sign changes in its curvature, then we get a unimodal

density for all values of π because
�
π � π̄ � cannot be orthogonal to

�
φ

�

1 � φ
�

0 � more than once.
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Figure 8.4: Hypothetical density Curvature plot � φ1 � xα � � φ0 � xα � � of a bimodal density

Also, the signed change of this curvature at point α is given by

φ
� �

0

�
α � φ �

1

�
α � � φ

� �

1

�
α � φ �

0

�
α �

c
where c is a positive function of α � (8.26)

Hence, we can use the numerator of equation (8.26) to determine the sign changes. For exam-

ple, we can use the curvature function K
�
α � defined by

K
�
α � �

φ
� �

0

�
α � φ �

1

�
α �

φ1
�
α � φ0

�
α � �

φ
� �

1

�
α � φ �

0

�
α �

φ1
�
α � φ0

�
α � (8.27)

to determine whether the distribution is multimodal or unimodal. If the function K
�
α � changes

its sign in the range α � � 0 � 1 � , then the density can be multimodal, depending on the value of

π. In fact, if the density is bimodal K
�
α � will have exactly two sign change

� � � � � � � and the

two potential modes will lie on either side of the two points of sign change. In particular, we

can show that in the equal variance case K
�
α � is a quadratic equation and for the proportional

variance case ( Σ1 � σ2
1V � Σ0 � σ2

0V ), K
�
α � is a cubic in α. These polynomials agree with the

ones used to determine univariate modality along the axis of maximal separation.

It turns out that the curvature plots are a bit hard to use to determine the range of π

where multi modality occurs, so we develop a second plotting method. If α is a critical value
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it satisfies πφ
�

1 � π̄φ
�

0 � 0. Now set

φ
�

0

�
α �

� φ
�

1

�
α � � γ

�
α � � (8.28)

Note, that if α is a critical value, γ
�
α � �

π
π̄ . Further, note that

γ
� �

α � � � φ
� �

0

�
α � φ �

1

�
α � � φ

� �

1

�
α � φ �

0

�
α ��

φ
�

1

�
α � � 2 � (8.29)

which has the opposite sign to the curvature function K
�
α � , given in equation. 10.1. The

zeroes in the curvature will be critical values of γ
�
α � .

We can further describe γ
�
α � on α � � 0 � 1 � , by noticing that that φ1

�
on range α � � 0 � 1 �

beacuse φ
�

1 � 0; also φ
�

1 � 0 at α � 1. Simultaneously, φ0 � on range α � � 0 � 1 � as φ
�

0
� 0 and

φ
�

0 � 0 at α � 0. Figure 8.5 shows an example of γ
�
α � when fX

�
x � has a bimodal density.

Given the curve γ
�
α � , and densities f1 and f0, one can determine the range of values

of π
π̄ that give the multimodality. For any given π

π̄ � y0 draw a horizontal line y � y0. If it

crosses γ
�
α � once, there is a single critical value for the density corresponding to single mode.

If it crosses the three times, then there exists three critical points, corresponding to mode,

antimode, and mode, respectively.

Also from equation (8.28) we have π �
φ

�

0

�
α �

φ
�

0

�
α � � φ

�

1

�
α � at any critical value. A direct

idea of the range of π for which the density is multiimodal can be obtained by plotting γ1
�
α � �

φ
�

0

�
α �

φ
�

0

�
α � � φ

�

1

�
α � . Note that γ1

�
α � also has the change of signs at the same place as we have

γ
�

1
�
α � �

φ
� �

0

�
α �
�
φ

�

0

�
α � � φ

�

1

�
α � � � �

φ
� �

0 � φ
� �

1

�
α � � φ

�

0

�
α ��

φ
�

0

�
α � � φ

�

1

�
α � � 2

� � φ
� �

0

�
α � φ �

1

�
α � � φ

� �

1

�
α � φ �

0

�
α ��

φ
�

0

�
α � � φ

�

1

�
α � � 2 � (8.30)

So we can observe the change of curvature and the range of π solutions from both γ
�
α � and

γ1
�
α � . (See Figure 8.6). But, for γ1

�
α � we can directly determine the range of π for which the
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Figure 8.5: Hypothetical curvature plot (γ � α � ) of a bimodal density

α  0 1

π

γ 
(α

)
 1

Figure 8.6: Hypothetical curvature plot (γ1 � α � ) of a bimodal density

distribution is multimodal. Another advantage of using γ1
�
α � is the plots are visually more

comparable over different densities because γ1
�
α � � � 0 � 1 � .

8.3 Example: Bimodality of bivariate normals

Now, let us see how well the three types of plots φ1
�
α � vs φ0

�
α � � γ � α � and γ1

�
α � .

capture the modality structure for some specific bivariate mixtures of normals. In this section

we investigates the plots for detection of modality for various selection of mean and variance

structure of an arbitrary mixture two component bivariate normals.

We will first give four sets of parameters which will define four different mixtures.
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Figure 8.7: Contour plot of mixtures of bivariate normals for four different sets of parameters
described in (8.31)
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Figure 8.8: Plot of φ0 � α � vs φ1 � α � for the four sets of mixtures
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Figure 8.9: Plot of γ � α � for the four sets of mixtures
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Figure 8.10: Plot of γ1 � α � for the four sets of mixtures
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The contour plots of the component densities of these mixture densities will be displayed in

Figure 8.7. Figures 8.8, 8.9 and 8.10 are the φ1
�
α � vs φ1

�
α � � γ � α � and γ1

�
α � plots, in the

order mentioned, of these four bivariate mixtures. Parameters of four sets of mixtures are

given below.
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Mixture (a) is the mixture of two bivariate normals with a common variance and

as
�
µ1 � µ0 �

�

Σ � 1 � µ1 � µ0 � � 4. Using the condition of Theorem 8.1 we can infer that there

exist some mixing proportion π for which the density of the mixture is bimodal. In fact,

the existence of bimodality is reflected by Figures 8.8(a) 8.9(a) and 8.10(a). Moreover, from

Figure 8.10(a) we can see that the range of π for which the density is bimodal is roughly
�

� 3 � � 7 � and otherwise it is unimodal.

For the mixture given by the parameters in (b) we have common variance Σ � I and
�
µ1 � µ0 �

�

Σ � 1 � µ1 � µ0 � � 4. Thus, the density cannot be bimodal for any value of π. The plots

of Figure 8.8(b) shows no change of curvature. Also Figures 8.9(b) and 8.9(b) shows that the

functions γ and γ1, respectively, are non-decreasing. This implies that the there is no value of

π for which we will have a bimodal density.

Now we will move on to (c) and (d) with unequal variances, in which case we cannot
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infer modality using Theorem 8.1. In fact, mixture (c) has the same mean as mixture (b)

but a different variance structure. Figure 8.8(c) displays a change of curvature implying the

presence of bimodality. Also, Figures 8.9(c) and 8.9(c) shows that mixtures given by the

parameters in (c) will have a bimodal density for values of π roughly in the range
�

� 2 � � 4 � . In

mixture (d) the variances are proportional. Here Figures 8.8(d), 8.9(d) and 8.10(d) detect the

possibly bimodal structure of the density and show that the range is about
�

� 25 � � 55 � .

Among the three plots, we believe that the γ1 plots are the most informative and easy

to use. The
�
φ1
�
α � � φ1

�
α � � -plot detects the bimodal structure through the change of curvature,

but it is not easily detectable from the plots. As we can only plot the curve for a finite set

of values, we may not be able to detect the minute change in curvature for a certain level of

precision. Thus for all practical purposes we would depend on either γ
�
α � or γ1

�
α � plots. As

mentioned earlier γ1
�
α � is better for two reasons:

� The γ1
�
α � plots are comparable to one another as they always lie in the same scale (γ1

values are always between 0 and 1).

� We can directly get the range of π for which the distribution is bimodal.

8.4 Results

We applied the modality criterion to detect clusters in the four datasets we analyzed

in the previous chapters. After getting the parameter estimates for a g component fit, we

compare the components pairwise to see whether they display bimodality. If the mixture of

two components, with weights proportional to fitted weights, is unimodal we will say the the

components are linked. Intuitively, we might think of the linkage as defining a single modal

cluster. One could go further and consider the set of linkages in a modal fit as describing

its overall structure. For equal variance estimates, we used the analytical formula given in

Section 8.1. For the unequal variance case we used the graphical plot γ1
�
α � described in
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Figure 8.11: Plot of γ1 � α � for the mixture of components 2 and 3 in the 3 components fit of the
Iris data
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Figure 8.12: Plot of γ1 � α � for the mixture of components 1 and 3 in the 5 components fit of the
Iris data

Section 8.2. Here we present the results for the Iris data set. Fits with 1 through 6 components

were tried. Each pairwise comparisons for the 2,3 and 4 component fits indicated no linkage.

But when we fit 5 components, components 1 and 3 were linked, suggesting that we might

merge components 1 and 3, and so we will have 4 distinct modal clusters in the dataset.

For the unequal variance estimates we appeal to the pairwise γ1
�
α � plot. For the 2

components in the pair, if the horizontal line at the mixing proportion π (denoted by the - -

- - line Figure 8.12 and 8.11) cuts the γ1
�
α � curve three times in its range [0,1] then the two

components have distinct modes. Again comparing different pairs we find that all pairs up till
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the 4 component fit displays two distinct modes. See for one example, Figure 8.12. But for the

5 component fit, components 1 and 3 were linked. See Figure 8.11. Thus going by the rule,

“distinct modes correspond to distinct clusters”, we would suggest having 4 modal clusters.

8.5 Conclusion

Determining conditions for bimodality in the multivariate normal mixture problem

is still a challenging issue. We derived an analytical condition for the equal variance case.

For the unequal variance case, we have created plots that display a variety of information

and can easily detect bimodality. These methods can be used in clustering by doing pairwise

comparisons of the different components in a multi component fit and merging components

which are linked. In this way we would arrive at a more parsimonious description, as well as

a greater understanding of how “clustered” the clusters actually are.

This leaves several open questions. First, is it possible to prove from these results that

there exists at most two modes in the two component mixture? This will involve a detailed

analysis of the curvature function K
�
α � . Secondly, is it possible to arrive at analytical solutions

to zeroes in the curvature function which in turn give explicit calculations for the range of

π? Of this we are doubtful. However, this seems not so important as we believe that one

can produce an elementary numerical algorithm which would quickly and reliably find these

points.

Next, pairwise linkages define a graphical relationship between components. For

example, for the three components we could have component 1 linked to 2 and 2 linked to 3,

but not 1 to 3. this suggests a ridge-line structure, with some shape. However, if 1, 2, 3 are all

pairwise linked, the structure would see more like a single mass. Can we use graph theory in

a fruitful way to describe structure?

Finally at this time we do not know the relationship between pairwise modality and



128

overall modality. As a clustering tool, however, the pairwise method has distinct advantages.

For example, if we find that a three components has two modes, it is not so obvious how to

identify the three components with two clusters.



Chapter 9

Application: Analysis of Gene Expression Data

In this chapter we will apply our model selection methodology to one of the most

challenging areas of statistical and scientific research, gene-expression data. Despite the in-

formation made available by ongoing research on sequencing the human genome (structural

genomics), we lack a full understanding of how our genes are properly turned on or off so as

to maintain a healthy body (functional genomics). Many diseases including cancer, genetic

diseases and other infectious diseases are a direct consequence of mis-expression by the genes.

To examine how gene regulatory proteins assemble a gene and regulate its expression we need

to know the expression levels of thousands of genes at the same conditions. These rich data are

made available by micro-array experiments that are performed over a set of conditions. But

the dimension and complexity of raw gene expression data obtained by oligonucleotide chips,

spotted arrays, or whatever technology is used, create challenging data analysis and data man-

agement problems. In a limited way these challenges can be met by existing software systems

and analysis methods in the hands of end users.

Microarray data can be analyzed using several approaches. Clustering methods (i.e.

unsupervised learning) are widely used and have the ability to uncover coordinated expression

patterns from a collection of microarrays (e.g., Eisen et al., 1998, Getz et al., 2000, Tibshirani

et al., 2002, 2001, Dudoit et al., 2002, Kerr et al., 2002). The analysis of gene-expression

data using clustering techniques has an important role to play in the discovery, validation and

understanding of various classes and subclasses of disease. Because of the high levels of noise

129
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inherent in this technology, as well as in the cell itself, it is desirable to carry out the analysis

of microarray data within a statistical framework. Widely used methods of clustering such as

k-means clustering, hierarchical clustering and other agglomerative and divisive algorithms

do not utilize the inherent statistical structure of the data. These methods can be pulled under

the broad category of model-free methods. We will address the problem of clustering using a

model based approach.

Model based methods provide a stable and useful way of clustering. It also gives a

clear definition that a cluster is a subpopulation with a certain distribution, and several statis-

tical methods can be applied to address the problem of choosing of number of clusters in an

objective way. Finite mixtures of distributions provide a flexible as well as rigorous approach

to modeling various random phenomenon. In this section we will use the finite mixture of

normals to cluster genes on the basis of experimental conditions (treatment) and cluster con-

ditions on the basis of genes. The later is a non-standard problem in parametric (model-based)

clustering because the dimension of the feature space ( the number of genes) is typically much

greater than the number of conditions ( 2 � 100 conditions versus 103 � 104 genes). In this

dissertation we will mostly study the first type, but will discuss the second type of clustering

and show how mixture of multivariate normals can solve the issue of dimensionality.

9.1 Description of the dataset

In this section a short description of the data will be provided. For more details on

the data please see Chitikila et al. (2002). The experiments were done in the Pugh Lab, Penn-

sylvania State University (http://www.bmb.psu.edu/faculty/pugh/lab/lab.html). As

the research is an ongoing one, new experiments on various other conditions are in progress.

Here I provide a very short and non-technical description of the experimental data.
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9.1.1 Notations and abbreviations

First, let us introduce some notations and abbreviations that we will use through out

this chapter

� TATA Box: A conserved AT-rich septa-mer found between 250 bp to 50 bp before the

start point of each eukaryotic RNA polymerase II transcript unit; it may be involved in

positioning the enzyme for correct initiation.

� TBP: TATA Binding Protein: The proteins which bind to the TATA-Box and initiate

the transcription. This is required for the expression of nearly all genes.

� TAND: A domain(region) of TAFI protein.

� ∆TAND : A strain of yeast protein TAFI, removing the TAND region.

9.1.2 The Biology

The TATA-binding protein binds to the TATA box. Though actually a long string,

the TBP is intertwined in such a way that it forms a concave surface and a convex surface.

The concave surface is supposed to attach with the TATA box, whereas the convex surface

may attach to some other protein. Thus, a mutation in the concave surface may inhibit the

effect of the TBP, whereas a mutation the convex surface may affect the interaction of of

TBP and the other protein and thus have an impact on the transcription. In our experimental

example the proteins in the concave region (positions 71, 161,69) are altered, but we also have

an experiment with a mutation in the 182th position, the location of interaction with another

protein NC2. We reproduce a figure (Figure 9.1.2) from Chitikila et al. (2002) to show the

relative position of the mutation and the protein binding positions.

The interplay of the TAFI and the TBP protein is still not completely understood.

What we do know is that the TBP binds with the TAND region/domain of TAF1. Some

models proposed in Chitikila et al. (2002) are provided in Figure 9.1.2.
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Figure 9.1: (Reproduced from Chitikila et al. (2002)). Structures of TBP interaction with NC2 and
TAND 1 domain of TAFI.

9.1.3 The experiment

An experiment was conducted to address whether TBP and TBP-TAND interactions

represents distinct mechanisms. In the experiment there are two yeast strain WT and ∆TAND

, where WT is the wild type and ∆TAND is a strain which has a mutation in a certain protein

of interest (namely TAF145). Codes V71R, V161R, N69R, N69S, V161E, and V71E are for

the mutant versions obtained by changing particular base pairs in the protein; e.g. for V161E

one changes protein V to protein E in the 161st position. In addition to the mutant versions,

we have the WT and the null experimental condition. Observing the expressions of genes

under each version of TBP mutants for each of the yeast strain (WT or ∆TAND ), we have a

total of 16 experimental conditions. Moreover under WT for the null condition and V161R
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Figure 9.2: (Reproduced from Chitikila et al. (2002)). Proposed models for the interplay of TBP
effectors in regulating the genes identified in the 4 clusters identified by k-means.

we have the data from two researchers ( coded by null-K, null-L and V161R-K, V161R-L).

Similarly under ∆TAND for the V161R mutant, we have data from those two researchers. We

also have a negative control for the WT strain from the mutant version F182V. As the 182th

position does not interact with the ∆TAND domain, the F182V mutation should not affect the

TAF1-TBP interaction. The eventual goal is to have an expanded study of more interactions

with different mutant versions of the protein.

To summarize we have 20 conditions. 11 under WT and 9 under ∆TAND .

� WT: WT, null-K, null-L,V161R-K, V161R-L, V71R, N69R, N69S, V161E, V71E,

F182V.

� ∆TAND : WT, null, V161R-K, V161R-L, V71R, N69R, N69S, V161E, V71E.

In our analysis, for each condition and each gene we have one value the log (base 2) ratio of

the test signal to the reference signal. The log base 2 is used in the gene expression literature
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as it gives an easy interpretation to the data in terms as fold changes in expression level. To

neutralize the dye effect, dyes were switched and the same experiment was repeated. Thus,

actually there two replicates for each set of experimental conditions. But we only consider

their average log-ratio in our analysis. The final data consists of 6226 rows ( 6188 genes

covering 99.4% of the S. cerevisiae strain S288C and 38 control) over 20. During filtering,

which will be discussed in the following subsection, some spots were flagged which gave rise

to missing data.

9.1.4 Preprocessing

Preprocessing of the data is described in the details in Chitikila et al. (2002)(See Sec-

tion on Statistical Filtering). Here we provide a short description of the statistical filtering.

The log2 ratios of the gene expression from a single experiment (test vs. reference) were nor-

malized by mode centering. Finally the mode centered data were filtered in the following way.

The significant fold changes were selected if it met all the below mentioned criterion. 1

1. Raw gene expression intensities were greater than one standard deviation above local
background in both the test and reference samples in both replicates.

2. Ratios changed in the same direction in each replicate.

3. Ratios in each replicate were greater than two standard deviations above 1.0

4. p-values of the arithmetic average of the log2 ratios were � 0.005.

5. Fold changes in gene expression level were � 1.5.

After applying the filters several spots were flagged; so, now the array of 6226 rows

and 20 columns have several missing values.

1Reproduced from Chitikila et al. (2002)
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9.2 Proposed Analysis

The analysis of this gene-expression data can be done in a number of ways. Here

we mainly deal with the number of clusters or number of distinct patterns of expression.

Formulating the problem in terms of multivariate mixture of normals we denote the genes by

Y1 � Y2 � � � � � Yn where each Yi is a p-dimensional vector. Thus, in this we initial have p=20 and

n= 6226. Several issues were rigorously checked before applying the model selection tools .

Though, the number of genes decreased when we included on those genes whose expression

changed significantly, still the number of genes were quite high. The other issue was to deal

with the large number of variables. And the last but not the least is the issue of tackling

missing values. In our model fitting and model selection process we also keep the option of

incorporating known structures of the data.

The most attractive feature of our model selection tools is that it can work very effi-

ciently with high dimensional data. Most other, clustering methods including K-means, are

based on the calculation of distance between two data points. These dissimilarity (distance)

matrix can be thought as a multidimensional scaling; intuitively, it loses most of the informa-

tion present in the full 20 dimensions in the process of conversion to a matrix of distances.

Moreover, the choice of the distance measure is always a critical issue for the construction of

the dissimilarity matrix. In our analysis, we can effectively use all the variables to select the

number of components in the multivariate mixture model. Just the same, we can apply other

variable selection tools to reduce the dimensionality if we feel some variables are statistically

redundant.

Moreover, missing data, or the flagged spots, can be modeled and included in the EM

algorithm to find a best solution by imputing the missing value. This will help us include the

genes with some missing values which would have been discarded otherwise.

In the next section we present the results obtained from analyzing the gene expression

data.
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9.3 Results

After filtering we chose genes with less than 2 missing values. This reduced the num-

ber of genes with significant changes in expression level to 2358. Figure 9.3 gives a k-means

clustering of the 2358 genes over 4 clusters. How the 4 clusters were obtained are explained

in Chitikila et al. (2002). Before explaining the figure let us give a general description of

Figures 9.3 and 9.3. The rows are genes and the columns are the experimental conditions.

The green indicates a decreased expression, red indicates a increased expression and black

represents no change. The missing values are denoted by grey. The plots were drawn using

the Treeview (Eisen et al., 1998) available at http://rana.lbl.gov/EisenSoftware.htm.

Here we present result for a risk analysis of the gene expression data. Again, the

risk analysis was done with 2358 genes over 20 conditions. We choose 200 observations for

deletion (see 6) for calculating the risk. Moreover, as we have dimension 20, we chose h � 2

(see Table 9.1).

Table 9.1: Table Pseudo degrees of freedom for the gene expression data with 20 dimension

h
�

pDOF

0.1 7.885e+06

0.2 7.885e+06

0.5 3.246e+06

1 4659

2 95.91

4 16.81

From the risk analysis (Figure 9.4) at this level of smoothness we see a clear indi-

cation that there are 5 components. Also we see a slight dip of the risk when we have 10

components. A logical explanation of the 10 components may be that the 10 components are
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Figure 9.3: (Reproduced from Chitikila et al. (2002)). K-means cluster of gene expression data with 4
clusters
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finer classification of the 5 main components. Our, analysis over a large range of h gave us 5

clusters. So our overall conclusion would be that the data set has 5 clusters.
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Figure 9.4: Risk analysis of the gene expression data with h=.7

The multivariate normals were fitted by an EM algorithm. After getting the posterior

probabilities for the 5 clusters we did a hard clustering by assigning the gene to the class with

maximum posterior probabilities. The 5 clusters are given in Figure 9.3.

We found that if we ignore the variation in column F182V, then 4 components may be

reasonable. Several other analyses are in progress. Some analyses are being done with fewer

variables or linear combinations of variables.

Another natural outcome of applying the multivariate mixture model to fit the gene

expression is that it also provides a mean pattern µi for the ith cluster. Thus comparing the

difference between clusters will be more objective. How tight the clusters are can be deter-

mined from their estimated variances. We can determine overlap by examining the modality

of neighbors. The estimated π
�

is will provide information about the proportion of gene in each
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Figure 9.5: Cluster of gene expression data with 5 clusters from the risk analysis
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cluster. This may help us delete small clusters from further analysis.

A related biological question would be to assess whether one cluster is the mirror

image of another cluster. We may propose an ad-hoc testing criterion that cluster i would be

called the mirror image of cluster j another if µi � � µ j . Statistical tests depending on the

parameter estimates of the multivariate mixture models can be developed easily to check the

above hypothesis.

9.4 Biological significance

The biological significance of the above clustering is still under study. But, from the

clustering it is very clear that there is interaction between the TBP and the TAND domain of

the TAF1 protein. In almost all the clusters it can be observed that the same TBP mutants have

different expression levels in the WT and ∆TAND strains.

Especially, observing the set of genes in clusters 1,3, and 4 in Figure 9.3 it can be

inferred that the presence and absence of the TAND region affects the expression level signifi-

cantly. As expected, the WT and the null column displays no significant changes in expression

levels over all the clusters as expected. Also the changes in F182V can be clearly seen to have

no relation with the changes in the expression levels of the mutants in WT and ∆TAND .

9.5 Conclusion

Clustering high-dimensional data is a challenging task. Efficient methods designed

for clustering univariate data may not be useful for high-dimension. Moreover, as pointed out

before, clustering methods based on dissimilarity matrices often ignores the rich data available

in high-dimension as it bases the clustering on a reduction of the data.

Our methods of model selection are very efficient for clustering high-dimensional

data. It can use all the structural information about the relation of the variables with one
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another and produce an efficient model selection method. Moreover, it avoids numerical in-

tegration while calculating the distance of the proposed model from the data, thus making

computing time manageable. Another attractive feature of these model selection methods

based on quadratic distance is the smoothing parameter, h. Varying h we can observe finer

clusters which may be attributed to subclasses of bigger clusters. Also, as mentioned before,

missing data, which is a common occurrence in array data, can be handled easily.

All these attractive features, make distance based model selection a highly appropriate

clustering method for gene expression data. Further research will be on finding modal clusters

and including sequence information in clustering.



Chapter 10

Discussion

10.1 Conclusions

In this dissertation we have introduced generalized quadratic distances and used them

as a model selection tool. The model selection tools are general in nature and can be used

for a variety of problems. The distance was defined using a positive definite kernel with a

smoothing parameter. By varying the parameter we could analyze the model fits at different

scales, revealing clusters, superclusters and subclusters. One of the greatest problems of avail-

able multivariate model selection tools, is the enormous calculation involved. We bypass this

problem by choosing an appropriate kernel and thus getting a closed form for the quadratic

distance.

By using the spectral decomposition of positive definite kernels, we derived the null

distribution of the distance. We can readily use this for model selection purposes. To summa-

rize, the following are the definite advantages of using quadratic distance for model selection:

� Calculation of the distance does not require multidimensional, integration making these

distance a natural choice for model selection tools in the multivariate scenario.

� Varying the tuning parameter h allows us to construct a set of distances, and thus analyze

the data at different levels of smoothness.

� Asymptotic distributions of these distances can be easily worked out.

142



143

� As a natural outcome for the distance we get the residuals of each data point which can

be used for diagnostics.

Choosing an appropriate range of h for the distances was the subject of discussion in

Chapter 4. We designed a summary statistic, the pseudo degrees of freedom and used it to find

a suitable range of h. One attractive feature of this statistic is that it can be calculated once

and for all because it depends only on the data.

In the next two chapters after 4 we used the quadratic distance to design model selec-

tion tools. Chapter 5 introduced the concordance coefficient, a scaled measure of discrepancy

between two densities. This measure lies between 0 and 1 so as a distance it has an inter-

pretable magnitude. Based on drawing an analogy to the subset selection in regression using

the R2 coefficient, we used the concordance coefficients to select the number of components

in the mixture distribution of a proposed model.

In Chapter 6 we used the distance as a loss function and developed a risk based model

selection tool. Unlike AIC and BIC, where we have to define the penalty term explicitly on

the number of parameters estimated, our risk function inherently incorporates a term which is

designed to capture the parameter estimation cost of a model.

In Chapter 3 it was observed that the distance can naturally be decomposed into sum of

residuals. Using these residuals with appropriate standardization, in Chapter 7 we developed

diagnostic methods for outlier detection.

Next we took up the issue of determining number of modes in a mixture of multivari-

ate normals. This chapter is indirectly related to the distance based methods, though through

the modality conditions one can assess the degree of separation of fitted mixture components.

If the fitted mixture of two components display a unimodal density then we might merge them

into one single “modal cluster”. Using the existing conditions of bimodality in the univariate

case for the equal variance case, we devised analytic conditions in the multivariate situations.
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For the unequal variance case we designed plots which display modality properties in a clear

and easy-to-interpret fashion.

The last chapter deals with the application of our model selection tools to the analysis

of gene expression. This is an area of application demanding analysis of high dimensional

data with large sample sizes. Most of the usual clustering methods ignore the rich information

available from all the variables and perform the clustering only on a summary of the data. Our

methods are designed to deal with the high dimension while retaining the low computational

complexity that makes the methods practical to use. Moreover, most clustering algorithms are

designed for a fixed number of clusters. Methods for comparing the clustering results using

different numbers of clusters are not obvious. In contrast, our methods does the clustering

for a user-specified range on the number of clusters. Along with the clustering our model

selection tools gives a method of comparison among the different sets of clusters so one can

choose the best one according to the question asked.

10.2 Future Work

In this dissertation we proposed the distance based model selection and detection

of modality in the multivariate mixture situation. A number of issues in both these broad

topics need to be investigated further. Here we discuss some of the possible extensions of our

methods.

10.2.1 Combining the results from different h

As mentioned before sliding the tuning parameter in the kernel we can analyze the

data at a number of smoothing scales. Future work along these lines may be to develop theories

to choose the number of subclusters and superclusters along with the number of clusters. One

problem that is strongly related to the above is to find out the suitable range of h (discussed

in Chapter 4) and then divide into sub ranges, which we can then relate to regions of h giving
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subclusters, clusters and superclusters. This should be a very useful approach to discover all

the structure in the data, not just analyzing it from one level.

10.2.2 Standardization of residuals and distribution of standardized residuals

The raw residuals, which are the natural outcome of the distance estimates, are very

informative, though by themselves they cannot be used as a diagnostic tool. We need to

standardize them properly to use them to detect outliers. The proper standardization is not

obvious. In this dissertation we proposed a few standardizations; we expect to do future

research on the standardization. Moreover, the distribution of the standardized residuals is

another important issue. To classify some values of the residuals as outliers we need to use

the distribution of the residuals, to find a cutoff value.

10.2.3 Analytical conditions for multi modality in the unequal variance case

In this thesis we have resolved the issue of existence of more than one mode in mixture

of multivariate normals with equal component variances, by providing analytical conditions.

For the unequal variance case we provided some informative plots. The curvature function

K
�
α � , defined by

K
�
α � �

φ
� �

0

�
α � φ �

1

�
α �

φ1
�
α � φ0

�
α � �

φ
� �

1

�
α � φ �

0

�
α �

φ1
�
α � φ0

�
α � � (10.1)

could be studied further to determine if there are analytical conditions in the unequal variance

case, and to confirm that there are at most two modes to a mixture of 2 multivariate normals.

Moreover, more work should be done on using modality ideas to create modal clusters.

10.2.4 Analysis of gene expression data

Application of the model selection tools to the gene expression data has several possi-

ble extensions. The mean and variance structure could be modeled through known biological

information. Missing data could also be modeled using the existing data and other biologi-
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cal knowledge. In general, besides clustering the genes, one may ask the question of how to

cluster the conditions. This is a non-standard problem in parametric (model-based) clustering

because the dimension of the feature space ( the number of genes) is typically much greater

than the number of conditions ( 2 � 100 conditions versus 103 � 104 genes). Future work on

extending our methods to classify conditions is underway. Finally, we would like an appro-

priate application to try out ideas and methods for combining results from distances based on

different h, in the context of gene expression data.



APPENDIX

Here we provide the description of the dataset we have analyzed in different chapters.

Complete datasets are available at http://www.stat.psu.edu/ ˜surajit/mixture/.
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Figure 1: Projection of Iris Data on the first two principal components

.1 Iris Data

This is the dataset made famous by Fisher, who used it to illustrate principles of

discriminant analysis. Data on 4 variables namely Petal width, Petal length, Sepal width, and

Sepal length were collected on flowers of 3 species species: Setosa, Verginica, Versicolor.

Each species has 50 observations. So the whole dataset consists of 150 observations on 4

dimensions. First we present a plot of the 4 dimensional iris data on the first two principal

components (Figure 1), where the three species are coded by different colors.
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Figure 4: Projection of simulated dataset 1 on the first two principal components

.2 Simulated Dataset 1

This data was simulated as a sample of size 160 from a mixture of 4 multivariate (4

dimension) normals with equal mixing proportions and variance. The mean structure of the 4

components were such that, component 1 is very close to component 2 and components 3 is

very close to component 4, but components 1 and 2 are far from component 3 and 4. Figure 4

gives a projection of the data cloud in four dimensions, projected on the first two principal

components.
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Figure 5: Projection of simulated dataset 2 on the first two principal components

.3 Simulated Dataset 2

This dataset was also simulated from a mixture of 4 multivariate (4 dimension) nor-

mals with equal mixing proportions and variance. Here too we have 160 samples. But, un-

like the simulated dataset 1, the means of the 4 components in this dataset are further apart.

Figure 5 gives a projection of the data cloud in four dimensions, projected on the first two

principal components.
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Histogram of Lake acidity data
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Figure 6: Histogram of Acidity data

.4 Acidity Data example

This data set concerns an acidity index measured in a sample of 155 lakes in the

Northeastern United States and has been previously analyzed as a mixture of gaussian distri-

butions on the log scale by Crawford et al. (1992). Figure 6 gives the histogram of the acidity

dataset.
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