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ABSTRACT

The presence of stratified liquid-gas interfaces in vertical flows poses difficulties 

to most classes of solution methods for two-phase flows of practical interest in the 

field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor 

simulations unless handled with proper care. To illustrate these difficulties, the US 

NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected 

numerical benchmark problems. These numerical benchmarks demonstrate that the 

use of an average void fraction for computational volumes simulating vertical flows is 

inadequate when these volumes consist of stratified liquid-gas interfaces. An accurate 

description of these computational volumes, which are divided into two regions with 

distinct flow topology, requires that separate void fractions be assigned to each 

region. This strategy requires that the liquid-gas interfaces be tracked in order to 

determine their location, the volumes of regions separated by the interface, and the 

void fractions in these regions.

Although the idea of tracking stratified liquid-gas interfaces is not new, its applica-

tions in the reactor safety codes in the past showed only limited success. Improper 

modifications to the field equations were mostly responsible for their failures. This 

thesis proposes a systematic approach to implement a method for tracking interfaces 

in the one- and three-dimensional field equations of TRAC-M. This approach is appli-

cable to the solution methods of known thermal-hydraulic codes of the same class. 

The success of this approach was demonstrated by exercising TRAC-M with the same 

benchmark problems that were previously used to expose the difficulties of handling 

the liquid-gas interfaces.
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NOMENCLATURE
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TH: Thermal-Hydraulic
Symbols

 : Flow area
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 : Momentum flux time weighting factor
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 : Liquid wall drag coefficient

 : Gas wall drag coefficient
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CHAPTER 1 Thermal-Hydraulic Simulations of 
Nuclear Reactors
The purpose of this study is to develop a remedy for a deficiency known to 

exist in the state-of-the-art computational methods for simulating two-phase 

flows, and demonstrate that the computer simulations, a.k.a. “thermal-hydraulic” 

simulations, of light water nuclear reactors (LWRs) can be improved significantly 

by implementing this remedy.

The background information, the ideas behind the thesis and their implemen-

tation are presented in four chapters. In the first chapter, an introduction is made 

to the field of nuclear reactor safety and the concerns driving this field of nuclear 

engineering. This introduction emphasizes the importance of thermal-hydraulic 

simulations and the research done to improve these simulations in dealing with 

the issues pertinent to the safety of LWRs. This introduction will also help to 

understand my motivation behind pursuing this thesis that aims at improving 

these simulations. A limited review of the Computational Two-phase Fluid 

Dynamics (CTFD) will follow this introduction to prepare the reader for a 

detailed description of the core ideas and their implementation that form the 

basis of this thesis. In the second chapter, a set of benchmark tests are intro-

duced. The purpose of these tests is to expose the known difficulties of handling 

water levels in thermal-hydraulic simulations. A method to overcome these diffi-
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culties related to water levels or also known as “stratified liquid-gas interfaces” is 

described in the third chapter. While the method described in the third chapter is lim-

ited to the one-dimensional simulations of two-phase flows, the fourth chapter 

describes the extensions to this method in order to overcome the same difficulties 

related to water levels in three-dimensional simulations of two-phase flows.

Reactor Safety
LWRs are based on very simple concepts although today’s power plants that gen-

erate electricity from nuclear energy are very advanced designs that incorporate com-

plex and intricate systems. In LWRs, a reactor core generates the nuclear power, 

where the fission of heavy elements such as Uranium 235 is the source. Most reactor 

cores are formed by thousands of fuel rods. These rods are usually half an inch in 

diameter and twelve foot high, or maybe higher. While the numbers of these fuel rods 

can vary from one particular reactor type to another, the flow of water past these fuel 

rods is the common method among all LWR types used for extracting the heat gener-

ated within these fuel rods.

A steady generation of power and a steady cooling of the reactor core are the two 

essential elements for successful operation of an LWR. Large numbers of heavy ele-

ments like Uranium 235 simultaneously undergoing fission at a steady rate are the 

source of nuclear power. During each fission event, two or three high energy (fast) 

neutrons are released on the average following the split of heavy fissile nuclei. These 

high energy neutrons are eventually slowed down to lower energies in a series of colli-

sions with the hydrogen atom of the water molecules. Eventually, these low energy 

(thermal) neutrons induce the next wave of fission events. For steady and self-sus-

tained levels of reactor power, the neutron population must be controlled so that on 

the average only one neutron from each fission induces a new fission event. The neu-
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tron population is controlled by neutron absorbing materials carefully placed around 

the fuel rods. These neutron absorbers can be solubles dissolved in the coolant water 

(e.g. boron) or pellets of absorbers stacked in rods (i.e. control rods). Here, it should 

be noted that the water inside the reactor core of most LWRs has multiple roles: 1) as 

coolant it extracts the heat generated within the fuel rods, 2) as moderator it slows 

down the fast neutrons to lower energy levels for self-sustained levels of fission, and 

3) as host to soluble materials with high affinity to absorb neutrons, it helps to regu-

late the reactor power. These multiple roles of water inside LWRs and the strong 

interaction among these roles require that the flow of water inside the LWR cores be 

understood well in order to maintain a steady operation of these nuclear reactors and 

to maneuver them to desired flow rates and power levels. This requirement under-

scores the importance of computational tools for simulating coolant flow inside 

nuclear reactors.

The current generation of LWRs generates typically 3000MW, or more, of thermal 

power. Despite this tremendous power a typical reactor can generate, it occupies a 

very small space. For instance, the pressure vessel of a nuclear reactor usually fits onto 

a large trailer truck and it is generally towed to the construction site. Extracting the 

heat released inside this relatively small space therefore requires large quantities of 

water pumped through the reactor core at very high flow rates and very high pres-

sures. There are two common types of LWRs based on their flow rates and operating 

pressures: 1) Pressurized Water Reactors (PWRs), and 2) Boiling Water Reactors 

(BWRs). In PWRs, the coolant flows inside two separate loops isolated from each 

other. The primary loop extracts the heat from the reactor core and transfers it to the 

secondary loop across a steam generator. Inside the secondary loop, the steam from 

the steam generators then drives the turbines powering the generators. To preclude 

the boiling of water inside the reactor core of PWRs, the primary loop is pressurized 

to about 2200 psia (i.e. 150 times the atmospheric pressure). To withstand this high 
3



internal pressure, the reactor pressure vessel (RPV) of a PWR is manufactured from a 

10 inch carbon-steel. On the other hand, BWRs operate at lower pressures at about 

1000 psia (i.e. 70 times the atmospheric pressure) and allow the boiling of its coolant 

water inside the reactor core. The mixture of liquid and vapor water that exit the reac-

tor core is forced into swirl-vane separators installed above the core. The water vapor 

separated from the liquid inside separators are then directed into the steam dryers 

high above the separator drums, where the remaining moisture is removed before the 

steam is delivered to the turbines. In BWRs, the coolant water flows inside a single 

loop which connects the RPV directly to the turbines eliminating the need for steam 

generators.

The above description of LWRs is sufficient to illustrate the complex interaction 

among different engineering disciplines involved in designing nuclear reactors capable 

of generating controlled-fission power, e.g. the theory of neutron kinetics and trans-

port, coolant thermal-hydraulics, and material science. The interaction among these 

fields extends beyond simply meeting the goal of designing nuclear reactors. For 

instance, the flow rates inside BWRs and PWRs may exceed 150 million pounds per 

hour at pressures ranging from 1000 to 2200 psia. Any disruption in the flow of water 

through the reactor core or a breach in the boundaries of the coolant system can have 

undesired consequences. There is no doubt that the reactor fuel, highly radioactive 

due to fission products, inside a reactor core poses the greatest danger if released to 

the environment. Understanding the consequences of such hypothetical accident sce-

narios is the continuing goal of interaction among various engineering disciplines. 

The better understanding of these postulated accidents, which a nuclear reactor 

may never experience in its lifetime, helps to design emergency systems that can miti-

gate their consequences, ensure public safety, and protect the environment if an acci-

dent ever happens. The single purpose of the emergency systems in nuclear reactors is 
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to prevent the release of highly radioactive fission products under any circumstance. 

Thus, gaining an in-depth understanding of accident scenarios at nuclear reactors is a 

paramount task. This difficult task has been a major thrust for advances made in the 

thermal-hydraulic research. Substantial resources are spent in two areas of the ther-

mal-hydraulic research: 1) development and maintenance of thermal-hydraulic codes, 

2) large- and small-scale experiments that support development of these codes.

The safety analysis of a postulated accident, in which the likelihood of radioactiv-

ity release to the environment is the greatest, identifies the events that may lead to the 

release so that strategies can be developed and implemented to prevent these events 

from occurring. In LWRs, there are four different barriers which must be breached 

before any radioactivity is released to the environment: 1) the ceramic fuel itself, 2) 

zircaloy fuel cladding, 3) the coolant system pressure envelope, and 4) the contain-

ment building. For most reactor designs, the worst case scenario is a Loss of Coolant 

Accident (LOCA). A LOCA is the discharge of coolant water into the containment 

atmosphere due to a breach in the coolant system such as a large pipe break followed 

by a sudden depressurization of the system. The entire system which includes the fuel 

rods, the RPV, and other components endures tremendous thermal and mechanical 

stresses induced by the violent depressurization as the water begins to turn into 

steam. To determine whether any fuel rod inside the reactor core will fail, the tran-

sient conditions that the fuel rods are exposed to must be determined by a safety anal-

ysis. If the analysis predicts any failure of fuel rods, the limiting conditions that the 

containment building can withstand must then be determined, and the potential path-

ways for the release of radioactivity to the environment must be identified. Otherwise, 

any fuel rod failure may lead to the release of the highly radioactive fission products to 

the coolant system, to the containment atmosphere, and thereafter to the environ-

ment. Predicting correctly the state of the coolant inside a nuclear reactor and its con-

tainment building is therefore very important to a safety analysis. Accurately 
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predicting the transient conditions inside the reactor and the containment becomes 

especially important as the safety analysis is the only method used to demonstrate that 

the emergency systems implemented ensure the adequate cooling of the reactor core 

at all times during a LOCA.

A LOCA analysis requires that the coolant mass and energy flowing throughout 

the reactor system be simulated continuously and accurately, a task which demands 

the use of sophisticated computer programs. These computer programs are com-

monly known in the field of reactor safety as thermal-hydraulic (TH) codes. The TH 

codes break down the entire volume of a reactor system into smaller computational 

volumes. The TH codes then set up and solve the conservation equations that 

describe the balance of fluid mass, momentum and energy inside these computational 

volumes as the fluid is allowed to flow across their boundaries. Figure 1-1 shows the 

section of a pipe broken down into computational volumes. The velocities of fluid 

entering and leaving a computational volume are shown as vectors in this figure. In 

the example shown in Figure 1-1, the state of fluid inside computational volumes is 

Velocities entering and leaving

Computational Volume

a Computational Volume

Pressure (P)
Gas Temperature (Tg)
Liquid Temperature (Tl)

FIGURE 1-1. Section of a pipe broken down to computational volumes

Void Fraction (α)
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described as a function of fluid pressure and temperature. When separate conserva-

tion equations are set up for steam and water, the fraction of steam volume inside a 

computational volume is given by the void fraction. While most TH codes assume 

uniform pressure inside computational volumes, they use separate temperatures for 

steam and water to describe the state of a steam and water mixture. In most of the 

state-of-the-art TH codes, the conservation equations for each field, i.e. steam and 

water, also account for dynamic interactions at the interface between two phases of 

water such as drag and heat transfer.

A typical reactor safety analysis using TH codes begins with the system at an ini-

tial state precursor to the accident being simulated, usually a steady state. The tran-

sient is initiated by an event such as a pipe break, inadvertent opening of a relief valve, 

or pump trip, etc. The analysis then tracks the state of the fluid in all computational 

volumes which make up the entire system as the transient develops. The already non-

trivial analysis due to the complex geometry of the reactor system becomes even 

more complicated due to the presence of complex interfaces between the liquid and 

vapor phases of water, and the transitions from one phase to another as the pressure 

in the system drops, e.g. bubbly flows, annular gas and liquid droplet flows, slug flows, 

etc. Predicting the thermal and mechanical conditions in and around the reactor 

therefore requires the use of (at least) two fluid models capable of simulating the flow 

of water in liquid and vapor phases. Therefore, not surprisingly, advances in computa-

tional modeling of multiphase flows have been driven mostly by the thermal-hydraulic 

research of nuclear reactors in its quest for more accurate and robust methods to sim-

ulate nuclear reactor accidents.
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 Computational Two-phase Fluid Dynamics
“Two-phase fluid dynamics has been described by several sets of equations rang-

ing in complexity from a simple homogeneous equilibrium model to a very compli-

cated two-fluid model involving a separate pressure for each phase” noted Liles and 

Reed1-10 in reference to the works of Kojasoy1-1 and Ishii.1-2 Along with the publica-

tions of Kojasoy and Ishii, which have been cited for their pioneering work on formu-

lating two-fluid flow equations, the publications by Stuhmiller,1-3 Deemer and 

Slattery,1-4 Drew and Lahey,1-5 Addessio,1-6 Stewart and Wendroff1-7, Ransom and 

Hicks,1-8 and numerous other articles in the literature not cited here present various 

formulations of two-fluid models and study their characteristics. While the intricacies 

of modeling two-phase flows will not be discussed here, a set of flow equations com-

monly known as the six-equation model, which is capable of describing two-phase 

flows of practical interest to the reactor safety, are presented here. Most of the state-

of-the-art TH codes set up and solve the six-equation model to determine the state of 

fluid inside several hundreds of computational volumes combined together to simu-

late the fluid flow across complex networks of pipes in nuclear power plants. The 

TRAC† series (Transient Reactor Analysis Code) of thermal-hydraulic codes are well 

known in the industry for their state-of-the-art application of the six-equation 

model.1-11 The remainder of discussions in this thesis will be presented in the context 

of this equation set and its implementation in TRAC.

†. The reactor safety code referred to as TRAC here is the US NRC Consolidated Thermal-hydraulics Code 
(a.k.a. TRAC-M).
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The Six-Equation Model

The following equation set will form the basis for further discussion of two fluid 

models that will lead to the description of a deficiency in computational methods for 

two-phase flows and the remedy for it, which is the subject of this thesis.

Gas Momentum:

(1-1)

Liquid Momentum:

(1-2)

Gas Mass:
(1-3)

Liquid Mass:
 (1-4)

Gas Energy:

(1-5)

Mixture Energy:

(1-6)

The above equation set is generally referred to as the six-equation model. It 

should be noted that while the appearance of these equations may vary from one 

implementation to another in the TH codes, the above equations are consistent with 

the equations solved by TRAC. Yet, some variations from the above set is expected 

even with TRAC. For example, Equation (1-4) may be replaced by (1-7), i.e. the mix-

αρg t∂
∂Vg Vg Vg∇⋅+
 
 
 

α P∇ αρgg–– fi– fwg+=

1 α–( )ρl t∂
∂Vl Vl Vl∇⋅+
 
 
 

1 α–( ) P∇ 1 α–( )ρlg–– fi fwl+ +=

t∂
∂ αρg( ) αρgVg( )∇+ Γi=

t∂
∂ 1 α–( )ρl[ ] 1 α–( )ρlVl[ ]∇+ Γi–=

t∂
∂ αρgeg( ) αρgegVg( )∇+ P t∂

∂α αVg( )∇+– Γhfg qwg qig qdg+ + + +=

t∂
∂ αρgeg 1 α–( )ρlel+[ ] αρgegVg 1 α–( )ρlelVl+[ ]                         ∇+

P αVg 1 α–( )Vl+[ ]∇–  qwg qwl qdg qdl+ + + +=
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ture mass equation, in order to avoid a singular solution as the flow becomes single 

phase.

(1-7)

The solution to these equations requires additional information on the state of 

fluid, i.e. , , , and . Furthermore, the exchange 

of momentum and energy across the phase interface, and the exchange of momentum 

and energy with the surroundings (i.e. pipe walls or other enclosing structures) must 

be known as well for closure. The additional information which supplement the six-

equation model are also known as the closure models.

The Semi-Implicit Method

The complex geometry of nuclear reactors and the degree of complexity due to 

the intricacies of two-phase flow make it impossible to obtain a closed form solution 

to any flow problem described by the six-equation model. Therefore, a practical com-

putational approach had to be developed. In 1970s, Liles and Reed1-10 presented “a 

technique for solving the equations of two-phase fluid dynamics.” Named by these 

authors as the Semi-implicit Method, this technique had paved the way for today’s TH 

codes that are applied in the field of reactor safety. In the field, these TH codes are 

also known widely as the “system codes.”

A computational grid must be set up in order to develop an approximation to the 

system of Equations (1-1) thru (1-6). Figure 1-2 shows the so-called staggered grid 

which places the dynamic variables (i.e. fluid velocities) at the boundaries between 

computational volumes and the static variables (i.e. fluid temperatures, pressures, and 

void fractions) at the centers of computational volumes. The discrete equations of the 

t∂
∂ αρg 1 α–( )ρl+[ ] αρgVg 1 α–( )ρlVl+[ ]∇+ 0=

ρg P Tg,( ) ρl P Tl,( ) eg P Tg,( ) el P Tl,( )
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semi-implicit method, which are approximations to Equations (1-1) thru (1-6), will be 

presented here using a fairly standard notation. In this notation, the subscripts pro-

vide information on spatial location. The centers of computational volumes are 

denoted by even integer subscripts (i.e. j-1, j). Similarly, the boundaries separating 

computational volumes are denoted by half integer subscripts (i.e. j-½, j+½).

First, the time derivative terms in the partial differential equations (PDEs), i.e. 

Equations (1-1) through (1-6), are approximated with the following equation

(1-8)

where the superscript n indicates the time level.† 

†. In Eq. (1-8), the superscript n is an index variable which indicates the discrete time as the solution 
of discrete equations evolves in discrete time steps, i.e. t0, t1, t2, ..., tn-1, tn, tn+1, ..., tN-1, tN. In for-
mulating the discrete approximations to Eqs. (1-1) thru (1-6), it is assumed that the current time 
step is n, and that the discrete equations are solved for the next time step which is n+1. Thus, the 
terms appearing with superscript n+1 in the system of discrete equations are treated as unknowns 
before the solution proceeds to the next time step.

j-1/2

Pj

FIGURE 1-2. Computational grid for setting up the “discrete” field equations

j+1/2 j+3/2

j j+1j-1

αj
Tg,j
Tl,j

Vg,j+1/2
Vl,j+1/2

Vg,j-1/2
Vl,j-1/2

Pj+1
αj+1
Tg,j+1
Tl,j+1

t∂
∂ψ ψn 1+ ψn–

∆t
---------------------------=
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In their discrete form, the convective transport terms in mass and energy in Equa-

tions (1-3) to (1-6), i.e.  terms, require that fluid quantities defined at the cen-

ters of computational volumes (shown in Figure 1-2) be made available at the 

boundaries separating these volumes using some form of an averaging scheme. The 

Semi-implicit method uses values from the volumes adjacent to any given boundary, 

so the averaging scheme in this method is always in the following form:

(1-9)

The energy source terms in Equations (1-5) and (1-6), which describe the exchange of 

energy with the surroundings, are excluded later from the discussion of the discrete 

equations for the sake of simplicity since these terms are not significant to the thesis. 

The terms that describe the exchange of momentum and energy across the phase 

interface are included since the form of these terms needs to be understood well. The 

Semi-implicit method, and its implementation to TRAC is at the core of this thesis 

study — TRAC is one of well known state-of-the-art system codes. Therefore, the 

functional forms of the coefficients, which describe the momentum exchange at the 

phase interface and to the surroundings, as implemented in TRAC will be used in the 

discrete equations. In TRAC, the wall drag ( , ) and the interfacial drag ( ) 

force terms in (1-1) and (1-2) are formulated into the equations of gas and liquid 

motion as follow:

(1-10)

(1-11)

(1-12)

Next, the discrete equations of the Semi-implicit method, which are approxima-

tions to the six-equation model, can be formulated in the following implicit form pre-

ψV( )∇

ψ〈 〉 j+1/2 wj+1/2ψj 1 wj+1/2–( )ψj+1+=

fwg fwl fi

fwl CwlVl Vl=

fwg CwgVg Vg=

fi Ci Vg Vl–( ) Vg Vl–=
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sented in Equations (1-13) to (1-18). The convective momentum transport term in 

these equations below are left in their differential form for the sake of simplicity. In 

Equations (1-19) to (1-20), these terms are formulated into a form approximating the 

gradient of velocity at the given cell boundary.

(1-13)

(1-14)

(1-15)

Vg j+1/2,
n+1 Vg j+1/2,

n–
∆t

--------------------------------------------- Vg j+1/2,
n

x∂
∂Vg

j+1/2

n
1

ρg〈 〉 j+1/2
n

----------------------
Pj+1

n+1 Pj
n+1–

∆xj+1/2
-----------------------------

Cwg
n

αρg〈 〉 j+1/2
n

-------------------------- 2Vg j+1/2,
n+1 Vg j+1/2,

n–( ) Vg j+1/2,
n

Ci
n

αρg〈 〉 j+1/2
n

-------------------------- 2Vg j+1/2,
n+1 Vg j+1/2,

n– 2Vl j+1/2,
n+1 Vl j+1/2,

n+–( ) Vg j+1/2,
n Vl j+1/2,

n–

g∆h

+ +

+

+

+ 0=

Vl j+1/2,
n+1 Vl j+1/2,

n–
∆t

------------------------------------------ Vl j+1/2,
n

x∂
∂Vl

j+1/2

n
1

ρl〈 〉 j+1/2
n

---------------------
Pj+1

n+1 Pj
n+1–

∆xj+1/2
-----------------------------

Cwl
n

1 α–( )ρl〈 〉 j+1/2
n

--------------------------------------- 2Vl j+1/2,
n+1 Vl j+1/2,

n–( ) Vl j+1/2,
n

Ci
n

1 α–( )ρl〈 〉 j+1/2
n

--------------------------------------- 2Vg j+1/2,
n+1 Vg j+1/2,

n– 2Vl j+1/2,
n+1 Vl j+1/2,

n+–( ) Vg j+1/2,
n Vl j+1/2,

n––

g∆h

+ +

+

+ 0=

Volj
α̃j

n+1
ρ̃g j,

n+1
αρg〈 〉 j

n–

∆t
------------------------------------------------ φ∑ g

+ VoljΓ
˜

i j,
n+1

=
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 (1-16)

(1-17)

(1-18)

where the momentum flux terms are:

(1-19)

(1-20)

and the sum of flux terms for one-dimensional flows are defined as follow:

Volj
1 α̃j

n+1
–( )ρ̃l j,

n+1
1 α–( )ρl〈 〉 j

n–

∆t
-------------------------------------------------------------------------- φ∑ l

+ VoljΓ
˜

i j,
n+1

–=

Volj
α̃j

n+1
ρ̃g j,

n+1
ẽg j,

n+1 αρgeg〈 〉 j
n–

∆t
----------------------------------------------------------------- ζ∑ g

VoljP̃j
n+1 α̃j

n+1
αj

n–
∆t

------------------------ ω∑ g
++ +

VoljhfgΓ
˜

i j,
n+1

=

Volj
α̃j

n+1
ρ̃g j,

n+1
ẽg j,

n+1 αρgeg〈 〉 j
n–

∆t
-----------------------------------------------------------------

1 α̃j
n+1

–( )ρ̃l j,
n+1

ẽl j,
n+1 1 α–( )ρlel〈 〉 j

n–

∆t
------------------------------------------------------------------------------------------+

 
 
 
 
 

+ ζ∑ g
ζ∑ l

VoljP̃j
n+1

ω∑ g
ω∑ l

++ + 0=

Vj+1/2 x∂
∂V

j+1/2
βVj+1/2

n+1 1 β–( )Vj+1/2
n+[ ] x∂

∂Vn

j+1/2
=

β

1    when x∂
∂Vn

j+1/2
0≥

0    when x∂
∂Vn

j+1/2
0<










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(1-21)

(1-22)

(1-23)

(1-24)

φ∑ g
φg j+1/2, φg j-1/2,–=

αρg〈 〉 j+1/2
n Aj+1/2Vg j+1/2,

n+1 αρg〈 〉– j-1/2
n

Aj-1/2Vg j-1/2,
n+1=

wg j+1/2, αρg〈 〉 j
n 1 wg j+1/2,–( ) αρg〈 〉 j+1

n+[ ]Aj+1/2Vg j+1/2,
n+1=

wg j-1/2, αρg〈 〉 j-1/2
n 1 wg j-1/2,–( ) αρg〈 〉 j

n+[ ]Aj-1/2Vg j-1/2,
n+1–

φ∑ l
φl j+1/2, φl j-1/2,–=

1 α–( )ρl〈 〉 j+1/2
n Aj+1/2Vl j+1/2,

n+1 1 α–( )ρl〈 〉 j-1/2
n Aj-1/2Vl j-1/2,

n+1–=

wl j+1/2, 1 α–( )ρl〈 〉 j
n 1 wl j+1/2,–( ) 1 α–( )ρl〈 〉 j+1

n+[ ]Aj+1/2Vl j+1/2,
n+1=

wl j-1/2, 1 α–( )ρl〈 〉 j-1/2
n 1 wl j-1/2,–( ) 1 α–( )ρl〈 〉 j

n+[ ]Aj-1/2Vl j-1/2,
n+1–

ζ∑ g
ζg j+1/2, ζg j-1/2,–=

αρgeg〈 〉 j+1/2
n Aj+1/2Vg j+1/2,

n+1 αρgeg〈 〉 j-1/2
n Aj-1/2Vg j-1/2,

n+1–=

wg j+1/2, αρgeg〈 〉 j
n 1 wg j+1/2,–( ) αρgeg〈 〉 j+1

n+[ ]Aj+1/2Vg j+1/2,
n+1=

wg j-1/2, αρgeg〈 〉 j-1/2
n 1 wg j-1/2,–( ) αρgeg〈 〉 j

n+[ ]Aj-1/2Vg j-1/2,
n+1–

ζ∑ l
ζl j+1/2, ζl j-1/2,–=

1 α–( )ρlel〈 〉 j+1/2
n Aj+1/2Vl j+1/2,

n+1 1 α–( )ρlel〈 〉 j-1/2
n Aj-1/2Vl j-1/2,

n+1–=

wl j+1/2, 1 α–( )ρlel〈 〉 j
n 1 wl j+1/2,–( ) 1 α–( )ρlel〈 〉 j+1

n+[ ]Aj+1/2Vl j+1/2,
n+1=

wl j-1/2, 1 α–( )ρlel〈 〉 j-1/2
n 1 wl j-1/2,–( ) 1 α–( )ρlel〈 〉 j

n+[ ]Aj-1/2Vl j-1/2,
n+1–
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(1-25)

(1-26)

Equations (1-13) to (1-18) capture the Semi-implicit method in sufficient detail 

for the discussions of this thesis. An additional detail that is noteworthy to mention 

here is a special case when the void fraction approaches to zero or one. The semi-

implicit method of TRAC requires that the gas mass and the liquid mass equations be 

replaced by the mixture mass and a void fraction equation, respectively.

Choosing a set of independent variables to formulate a solution to these equa-

tions is the first step towards solving these equations. Although the above equations 

suggest that fluid densities ( ) and internal energy ( ) along with fluid velocities ( ) 

and the void fraction ( ) are good candidates for being independent variables in a 

solution, the Semi-implicit method in TRAC chooses pressure ( ) and temperature 

( ) in favor of density and internal energy for a more stable and simpler solution. 

Equations of state express fluid density and internal energy as functions of pressure 

and temperature, i.e. , , , and . Since these func-

tions, which describe the relation of density and energy to pressure and temperature, 

are generally nonlinear, the system of equations formed by Equations (1-13) to (1-18) 

ω∑ g
ωg j+1/2, ωg j-1/2,–=

α〈 〉 j+1/2
n Aj+1/2Vg j+1/2,

n+1 α〈 〉 j-1/2
n Aj-1/2Vg j-1/2,

n+1–=

wg j+1/2, α〈 〉 j
n 1 wg j+1/2,–( ) α〈 〉 j+1

n+[ ]Aj+1/2Vg j+1/2,
n+1=

wg j-1/2, α〈 〉 j-1/2
n 1 wg j-1/2,–( ) α〈 〉 j

n+[ ]Aj-1/2Vg j-1/2,
n+1–

ω∑ l
ωl j+1/2, ωl j-1/2,–=

α〈 〉 j-1/2
n Aj-1/2Vl j-1/2,

n+1 α〈 〉 j+1/2
n Aj+1/2Vl j+1/2,

n+1–=

wl j-1/2, α〈 〉 j-1/2
n 1 wl j-1/2,–( ) α〈 〉 j

n+[ ]Aj-1/2Vl j-1/2,
n+1=

wl j+1/2, α〈 〉 j
n 1 wl j+1/2,–( ) α〈 〉 j+1

n+[ ]Aj+1/2Vl j+1/2,
n+1–

ρ e V

α

P

T

ρg P Tg,( ) ρl P Tl,( ) eg P Tg,( ) el P Tl,( )
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combined with the state equations yield a coupled set of nonlinear equations. To 

obtain a solution for this equation set, the unknown terms (i.e. at time level n+1) are 

expressed as linear extrapolations of the known terms (i.e. at time level n). A key fea-

ture of TRAC is that a Newton iteration is used to obtain a solution to this set of non-

linear equations as opposed to a simpler approach which could merely replace the 

nonlinear equations by their linearized approximations.

The Semi-implicit method of TRAC begins the solution by formulating the 

unknown velocities as a linear function of changes in the pressure field, and thus, by 

treating the velocities as dependent variables in the mass and energy equations for the 

liquid and gas. First, the phase velocities at time level n+1 in (1-13) and (1-14) are 

expressed as linear functions of pressure changes at the adjacent computational vol-

umes, i.e. (1-27) and (1-28) are substituted into (1-13) and (1-14):

(1-27)

(1-28)

The gas and liquid momentum equations, (1-13) and (1-14), are then solved for the 

tilde velocities by assuming that the pressures remain constant ( ). Thus, the 

tilde velocities exclude the changes in fluid momentum due to pressure variations 

across computational volumes adjacent to any given boundary. The resulting momen-

tum equations are coupled due to the interfacial drag component forming the linear 

Vj+1/2
n+1 Ṽj+1/2

n+1

Pj+1
n+1∂

∂Vj+1/2
n+1

δPj+1
i

Pj
n+1∂

∂Vj+1/2
n+1

δPj
i+

 
 
 
 
 

i
∑+=

Vj-1/2
n+1 Ṽj-1/2

n+1

Pj
n+1∂

∂Vj-1/2
n+1

δPj
i

Pj-1
n+1∂

∂Vj-1/2
n+1

δPj-1
i+

 
 
 
 
 

i
∑+=

δP 0=
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system in Equation (1-29) that can be solved directly for , , 

 and .

(1-29)

(1-30)

Next, (1-27) and (1-28) are substituted for phase velocities at time level n+1 in 

(1-15) to (1-18) eliminating the velocities as unknowns from these equations. Before 

Equations (1-15) to (1-18) can be solved by an iterative method, the nonlinear prod-

ucts in these equations, i.e. products of density and internal energy at time level n+1, 

are approximated by the following linear expressions.

(1-31)

(1-32)

Ṽl j+1/2,
n+1

Ṽg j+1/2,
n+1

∂Vl j+1/2,
n+1 ∂Pj

n+1⁄ ∂Vg j+1/2,
n+1 ∂Pj

n+1⁄

cVg,1 cVl,1

cVg,2 cVl,2

Ṽg j+1/2,
n+1

Ṽl j+1/2,
n+1

⋅
rhsg

rhsl
=

cVg,1 cVl,1

cVg,2 cVl,2

∂Vg j+1/2,
n+1 ∂Pj

n+1⁄

∂Vl j+1/2,
n+1 ∂Pj

n+1⁄
⋅

∂rhsg ∂Pj
n+1⁄

∂rhsl ∂Pj
n+1⁄

=

P̃
n+1

P̃
n+1

( )
i

δPi+1+=

α̃
n+1

α̃
n+1

( )
i

δαi+1+=

T̃l
n+1

T̃l
n+1

( )
i

δTl
i+1+=

T̃g
n+1

T̃g
n+1

( )
i

δTg
i+1+=

α̃
n+1

ρ̃g
n+1

α̃
n+1

( )
i
ρ̃g

n+1
( )

i
ρ̃g

n+1
( )

i
δαi+1+=

+ α̃
n+1

( )
i

P∂
∂ρg

n+1
δPi+1 α̃

n+1
( )

i

T∂
∂ρg

n+1
δTg

i+1+
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(1-33)

(1-34)

(1-35)

In the above equations, the superscript i is the iteration count of the iterative solution 

in TRAC, i.e.  is the value of  after the i-th iteration for time step n+1. Next, 

the linear approximations given in (1-27), (1-28), and (1-31) to (1-35), assuming the 

variations ( ) are sufficiently small so that their products can be ignored, are substi-

tuted into (1-15) to (1-18), to form the following matrix equation.

1 α̃j
n+1

–( )ρ̃l j,
n+1

1 α̃
n+1

( )
i

– ρ̃l
n+1

( )
i

ρ̃l
n+1

( )
i
δαi+1–=

+ 1 α̃
n+1

( )
i

– P∂
∂ρl

n+1

i

δPi+1 1 α̃
n+1

( )
i

– T∂
∂ρl

n+1

i

δTl
i+1+

α̃j
n+1

ρ̃g j,
n+1

ẽg j,
n+1 α̃

n+1
( )

i
ρ̃g

n+1
( )

i
ẽg

n+1( )
i

ρ̃g
n+1

( )
i

ẽg
n+1( )

i
δαi+1+=

+ α̃
n+1

( )
i

ẽg
n+1( )

i

P∂
∂ρg

n+1

i

δPi+1
T∂

∂ρg

n+1

i

δTg
i+1+

+ α̃
n+1

( )
i
ρ̃g

n+1
( )

i

P∂
∂eg

n+1

i

δPi+1
T∂

∂eg

n+1

i

δTg
i+1+

1 α̃j
n+1

–( )ρ̃l j,
n+1

ẽl j,
n+1 1 α̃

n+1
( )

i
– ρ̃l

n+1
( )

i
ẽl

n+1( )
i

ρ̃l
n+1

( )
i

ẽl
n+1( )

i
δαi+1–=

+ 1 α̃
n+1

( )
i

– ẽl
n+1( )

i

P∂
∂ρl

n+1

i

δPi+1
T∂

∂ρl

n+1

i

δTl
i+1+

+ 1 α̃
n+1

( )
i

– ρ̃l
n+1

( )
i

P∂
∂el

n+1

i

δPi+1
T∂

∂el

n+1

i

δTl
i+1+

ψn+1( )
i

ψ

δψi
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(1-36)

Equation (1-36) is then solved for the pressure, void fraction, and temperature varia-

tions in the following form:

(1-37)

Equation (1-37) expresses the changes in void fraction and temperatures as linear 

functions of changes in fluid pressure reducing itself to a single equation that relates 

the pressure change in a computational volume to the pressure changes in its adjacent 

volumes.

(1-38)

The coefficients of (1-38), which multiply fluid pressures, form a tridiagonal sys-

tem when (1-38) is set up for a series computational volumes of an one-dimensional 

flow conduit. Once the solution for pressures is obtained, the changes in void frac-

tions and temperatures, driven by changes in the pressure field, are predicted by sub-

stituting these changes in the remaining rows of (1-37). The predicted changes are 

a11 a11 a11 a11

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

δPj

δαj

δTg j,

δTl j,

i+1

⋅

b1

b2

b3

b4

c1 2,

c2 2,

c3 2,

c4 2,

δPj+1
i+1 δPj

i+1–( )+=

 

c1 1,

c2 1,

c3 1,

c4 1,

δPj-1
i+1 δPj

i+1–( )+

δPj

δαj

δTg j,

δTl j,

i+1
b'1
b'2
b'3
b'4

c'1 2,

c'2 2,

c'3 2,

c'4 2,

δPj+1
i+1 δPj

i+1–( )

c'1 1,

c'2 1,

c'3 1,

c'4 1,

δPj-1
i+1 δPj

i+1–( )+ +=

c'1 1, δPj-1
i+1– 1 c'1 1, c'1 2,+ +( )δPj

i+1 c'1 2, δPj+1
i+1–+ b'1=
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then substituted back into (1-31) to update the values of independent variables. At the 

end of a time step cycle, also updated are the end of time step phase velocities 

described by (1-27) and (1-28) as linear functions of pressure changes. 

TRAC repeats this iterative cycle beginning with (1-31) until a desired conver-

gence is achieved. For the sake of completeness, the basic step equations described 

here are reformulated using the variable names of TRAC and made available in 

Appendix A.

The Stability Enhancing Two-Step Method

In addition to the standard solution of the Semi-implicit method, where the max-

imum achievable time step size is bounded by the material Courant stability limit, 

TRAC provides a more implicit method known as SETS (Stability-Enhancing Two-

Step).1-12 As its name suggests, the SETS method constitutes a two step solution that 

allows it to advance the transient time using time step sizes that are not bounded by 

the material Courant stability limit. First, the semi-implicit solution (i.e. predictor 

step) converges to a new time velocity field as the velocities are updated by (1-27) and 

(1-28). A more implicit solution to the same equation set follows (i.e. corrector step), 

where the quantities convected across boundaries by Equations (1-21) to (1-26) are 

redefined at time level n+1, i.e. as unknowns. This additional equation set, also known 

as the stabilizer equations, is used to propagate the information on continuity waves 

more implicitly in order to eliminate the material Courant stability limit. 

The SETS method of TRAC begins a time step by solving the following stabilizer 

equations for momentum. It should be noted that the order in which TRAC solved 

the predictor and corrector equations was chosen after performing rigorous numeri-

cal experiments to determine the most stable order.1-13 
21



(1-39)

(1-40)

where the momentum flux terms are redefined as follows:

(1-41)

(1-42)

Ṽg j+1/2,
n+1

Vg j+1/2,
n–

∆t
--------------------------------------------- Ṽg j+1/2,

n+1
x∂

∂Ṽg
n+1

j+1/2

1

ρg〈 〉 j+1/2
n

----------------------
Pj+1

n Pj
n–

∆xj+1/2
-----------------------

Cwg
n

αρg〈 〉 j+1/2
n

-------------------------- 2Ṽg j+1/2,
n+1

Vg j+1/2,
n–( ) Vg j+1/2,

n

Ci
n

αρg〈 〉 j+1/2
n

-------------------------- 2Ṽg j+1/2,
n+1

Vg j+1/2,
n– 2Ṽl j+1/2,

n+1
Vl j+1/2,

n+–( ) Vg j+1/2,
n Vl j+1/2,

n–

g∆h

+ +

+

+

+ 0=

Ṽl j+1/2,
n+1

Vl j+1/2,
n–

∆t
------------------------------------------ Ṽl j+1/2,

n+1
x∂

∂Ṽl
n+1

j+1/2

1

ρl〈 〉 j+1/2
n

---------------------
Pj+1

n Pj
n–

∆xj+1/2
-----------------------

Cwl
n

1 α–( )ρl〈 〉 j+1/2
n

--------------------------------------- 2Ṽl j+1/2,
n+1

Vl j+1/2,
n–( ) Vl j+1/2,

n

Ci
n

1 α–( )ρl〈 〉 j+1/2
n

--------------------------------------- 2Ṽg j+1/2,
n+1

Vg j+1/2,
n– 2Ṽl j+1/2,

n+1
Vl j+1/2,

n+–( ) Vg j+1/2,
n Vl j+1/2,

n––

g∆h

+ +

+

+ 0=

Ṽj+1/2
n+1

x∂
∂Ṽ

n+1

j+1/2
Vj+1/2

n
x∂

∂Ṽ
n+1

j+1/2
β Ṽj+1/2

n+1
Vj+1/2

n–( ) x∂
∂Ṽ

n

j+1/2
+=

β

1   when x∂
∂Vn

j+1/2
0≥     and    Vj+1/2

n Ṽj+1/2
n

0>

0   when x∂
∂Vn

j+1/2
0<     or       Vj+1/2

n Ṽj+1/2
n

0≤








=
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As the stabilizer momentum equations of adjacent computational volumes are 

coupled due to term  in (1-41), the coefficients of  and  in 

these equations form a tridiagonal matrix and the solution for these velocities there-

fore require a simultaneous solution of (1-39) and (1-40) for all computational vol-

umes. Once  and  are obtained, the time step proceeds with the 

solution of Equations (1-13) and (1-14) where the momentum flux terms are modi-

fied to further enhance the stability of the method. The following equation replaces 

(1-19).

(1-43)

The resulting velocities from the combined solution of stabilizer and basic step 

momentum equations are in better agreement with the expected variations in the 

pressure field than the velocities from a solution of the basic momentum equations 

alone. 

The next step, also known as the basic step of the SETS method, obtains new 

time values of independent variables that describe the fluid flow, i.e. Equations (1-27), 

(1-28), and (1-31), by solving the Semi-Implicit equations as discussed in the previous 

section. To improve the robustness of the SETS method, the flux terms of the Semi-

Implicit equations are redefined to use a mixture of old and new time values. The 

expressions in (1-44) to (1-47) are substituted into Equations (1-21) to (1-26) for the 

macroscopic quantities of the cells for which the balance equations are set up.

(1-44)

x∂
∂Ṽ

n+1

j+1/2
Ṽl j+1/2,

n+1
Ṽg j+1/2,

n+1

Ṽl j+1/2,
n+1

Ṽg j+1/2,
n+1

Vj+1/2 x∂
∂V

j+1/2
Vj+1/2

n
x∂

∂Ṽ
n+1

j+1/2
β Vj+1/2

n+1 Vj+1/2
n–( ) x∂

∂Ṽ
n

j+1/2
+=

αρg〈 〉 j
n 1 γ–( ) αρg〈 〉 j

n γα̃j
n+1

ρ̃g j,
n+1

+→
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(1-45)

(1-46)

(1-47)

where  is a weighting factor based on the phase change rate. It is set to zero for 

computational volumes where the fluid is single phase. It should be noted that while 

this modification to the flux terms is not a requirement of the SETS method, the 

modified flux terms improve the method’s handling of situations where there is 

strong phase change such as boiling.

After the basic step, a fully implicit form of the mass and energy equations are 

solved to propagate the continuity waves across the solution domain more efficiently. 

The solution of the stabilizer mass and energy equations differ from their Semi-

Implicit counterparts from the basic step not only in terms of their level of implicit-

ness but also in terms of what they are solved for. The solution to these equations, 

(1-48) to (1-51), merely obtains the macroscopic densities of mass and energy.

(1-48)

 (1-49)

(1-50)

1 α–( )ρl〈 〉 j
n 1 γ–( ) 1 α–( )ρl〈 〉 j

n γ 1 α̃j
n+1

–( )ρ̃l j,
n+1

+→

αρgeg〈 〉 j
n 1 γ–( ) αρgeg〈 〉 j

n γα̃j
n+1

ρ̃g j,
n+1

ẽg j,
n+1+→

1 α–( )ρlel〈 〉 j
n 1 γ–( ) 1 α–( )ρlel〈 〉 j

n γ 1 α̃j
n+1

–( )ρ̃l j,
n+1

ẽl j,
n+1+→

γ

Volj
αρg〈 〉 j

n 1+ αρg〈 〉 j
n–

∆t
-------------------------------------------------- φ∑ g

+ VoljΓi j,
n+1=

Volj
1 α–( )ρl〈 〉 j

n 1+ 1 α–( )ρl〈 〉 j
n–

∆t
---------------------------------------------------------------------------- φ∑ l

+ VoljΓi j,
n+1–=

Volj
αρgeg〈 〉 j

n 1+ αρgeg〈 〉 j
n–

∆t
------------------------------------------------------------- ζ∑ g

VoljP̃j
n+1 α̃j

n+1
αj

n–
∆t

------------------------ ω∑ g
++ +

VoljhfgΓ
˜

i j,
n+1

=
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(1-51)

where the flux terms are defined as follows:

(1-52)

(1-53)

(1-54)

(1-55)

Volj
1 α–( )ρlel〈 〉 j

n 1+ 1 α–( )ρlel〈 〉 j
n–

∆t
------------------------------------------------------------------------------------- ζ∑ l

VoljP̃j
n+1 αj

n α̃j
n+1

–
∆t

------------------------ ω∑ l
+

+

+ VoljhfgΓ
˜

i j,
n+1

–=

φ∑ g
wg j+1/2, αρg〈 〉 j

n+1 1 wg j+1/2,–( ) αρg〈 〉 j+1
n+1+

 
 
 

Aj+1/2Vg j+1/2,
n+1=

 wg j-1/2, αρg〈 〉 j-1
n+1 1 wg j-1/2,–( ) αρg〈 〉 j

n+1+
 
 
 

Aj-1/2Vg j-1/2,
n+1+

φ∑ l
wl j+1/2, 1 α–( )ρl〈 〉 j

n+1 1 wl j+1/2,–( ) 1 α–( )ρl〈 〉 j+1
n+1+

 
 
 

Aj+1/2Vl j+1/2,
n+1=

 wl j-1/2, 1 α–( )ρl〈 〉 j-1
n+1 1 wl j-1/2,–( ) 1 α–( )ρl〈 〉 j

n+1+
 
 
 

Aj-1/2Vl j-1/2,
n+1+

ζ∑ g
wg j+1/2, αρgeg〈 〉 j

n+1 1 wg j+1/2,–( ) αρgeg〈 〉 j+1
n+1+

 
 
 

Aj+1/2Vg j+1/2,
n+1=

 wg j-1/2, αρgeg〈 〉 j-1
n+1 1 wg j-1/2,–( ) αρgeg〈 〉 j

n+1+
 
 
 

Aj-1/2Vg j-1/2,
n+1+

ζ∑ l
wl j+1/2, 1 α–( )ρlel〈 〉 j

n+1 1 wl j+1/2,–( ) 1 α–( )ρlel〈 〉 j+1
n+1+

 
 
 

Aj+1/2Vl j+1/2,
n+1=

 wl j-1/2, 1 α–( )ρlel〈 〉 j-1
n+1 1 wl j-1/2,–( ) 1 α–( )ρlel〈 〉 j

n+1+
 
 
 

Aj-1/2Vl j-1/2,
n+1+
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(1-56)

(1-57)

It should be noted that the left hand sides of (1-15) to (1-17) and the liquid energy 

equations are substituted for the phase change terms on the right hand sides of Equa-

tions (1-48) to (1-51). When Equations (1-48) to (1-51) are set up for a series of com-

putational volumes, the coefficients of unknowns, i.e. , , 

, and , form a tridiagonal matrix for each equation that 

can be solved independently.

While it is recognized that the pressures, temperatures, and void fractions from 

the basic step are no longer consistent with the macroscopic densities from the stabi-

lizer step, the experience with TRAC has shown that the use of these pressures and 

temperatures in the next time step is adequate. However, the experience has also 

shown that the SETS method in TRAC is more robust if a new a void fraction consis-

tent with terms , , , and  from 

the solution of (1-48) to (1-51), not  from the basic step, is used. First, the mac-

roscopic densities from the stabilizer step are expressed in terms of final values of 

pressures, temperatures, and void fractions for every computational volume.

ω∑ g
wg j+1/2, α̃j

n+1
1 wg j+1/2,–( )α̃j+1

n+1
+

 
 
 

Aj+1/2Vg j+1/2,
n+1=

 wg j-1/2, α̃j-1
n+1

1 wg j-1/2,–( )α̃j
n+1

+
 
 
 

Aj-1/2Vg j-1/2,
n+1+

ω∑ l
wl j+1/2, 1 α̃j

n+1
–( ) 1 wl j+1/2,–( ) 1 α̃j+1

n+1
–( )+

 
 
 

Aj+1/2Vl j+1/2,
n+1=

 wl j-1/2, 1 α̃j-1
n+1

–( ) 1 wl j-1/2,–( ) 1 α̃j
n+1

–( )+
 
 
 

Aj-1/2Vl j-1/2,
n+1+

αρg〈 〉n+1 1 α–( )ρl〈 〉n+1

αρgeg〈 〉n+1 1 α–( )ρlel〈 〉n+1

αρg〈 〉n+1 1 α–( )ρl〈 〉n+1 αρgeg〈 〉n+1 1 α–( )ρlel〈 〉n+1

α̃
n+1
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(1-58)

The left hand sides of (1-58) are the macroscopic quantities known from the solu-

tion of the stabilizer equations. When the right hand sides of (1-58) are linearized fol-

lowing Equations (1-31) to (1-35), the resulting equations form a 4x4 linear system 

that can be solved for , , , and  in every computational volume. 

The SETS method in TRAC keeps only the void fraction from this solution and dis-

cards the other variables.

Simulation of Two-Phase Flows in Three-Dimensional Cylindrical Coordinates

TRAC is one of very few TH codes that include the capability to solve the six-

equation model fully in three-dimensional cylindrical and cartesian coordinates. This 

capability is especially important in LOCA simulations where one-dimensional mod-

els of the reactor pressure vessel are not adequate to determine how much of the 

emergency coolant reaches into the reactor core. The one- and three-dimensional 

finite volume formulations of the six-equation model are identical in terms of their 

resolution of time and length scales of the flow phenomena considered by them, i.e. 

both approaches employ similar size computational volumes and similar time step 

sizes. The two approaches differ mainly due to the extra flow directions considered by 

the three-dimensional field equations. Figure 1-3 shows the three-dimensional com-

putational grid in cylindrical coordinates. Similar to the computational grid set up for 

the one-dimensional field equations, the three-dimensional grid places the dynamic 

variables (i.e. fluid velocities) the boundaries between computational volumes, and the 

αρg〈 〉 j
n αj

n+1ρg j,
n+1=

1 α–( )ρl〈 〉 j
n 1 αj

n+1–( )ρl j,
n+1=

αρgeg〈 〉 j
n αj

n+1ρg j,
n+1eg j,

n+1=

1 α–( )ρlel〈 〉 j
n 1 αj

n+1–( )ρl j,
n+1el j,

n+1=

δPj δTl j, δTg j, δαj
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static variables (i.e. fluid temperatures, pressures, and void fractions) at the centers of 

computational volumes. Similar to the notation used to present the one-dimensional 

field equations, the subscripts are used to provide information on spatial location. 

The centers of computational volumes are denoted by three subscripts where a sepa-

rate subscript is used for each direction. Figure 1-3 illustrates the use of the subscripts 

in three-dimensional grid by marking the eight corners of a three-dimensional volume 

with half integer subscripts. In addition to the use of these subscripts, each of the six 

faces on a computational volume are assigned an integer number for a simpler nota-

tion.

Rather than offering a full description of the three-dimensional field equations, 

only the differences between them and the one-dimensional field equations are 

emphasized here to avoid lengthy equations. The differences between the one- and 

three-dimensional field equations originate from the vector quantities, which appear 

in boldface, in Equations (1-1) to (1-6). 

FIGURE 1-3. A three-dimensional computational volume
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The momentum equations are split into each orthogonal component of the liquid 

and gas vector momentum.

(1-59)

(1-60)

(1-61)

(1-62)

(1-63)

(1-64)

αρg t∂
∂Vgz Vgr r∂

∂Vgz Vgθ
r

---------
θ∂

∂Vgz Vgz z∂
∂Vgz+ + +

 
 
 

α z∂
∂P αρggz–– fiz– fwgz+=

αρg t∂
∂Vgr Vgr r∂

∂Vgr Vgθ
r

---------
θ∂

∂Vgr Vgθ
2

r
---------– Vgz z∂

∂Vgr+ + +
 
 
 

α r∂
∂P αρggr–– fir– fwgr+=

αρg t∂
∂Vgθ Vgr r∂

∂Vgθ Vgθ
r

---------
θ∂

∂Vgθ VgrVgθ
r

------------------ Vgz z∂
∂Vgθ+ + + +

 
 
 

α
θ∂

∂P αρggθ–– fiθ– fwgθ+=

1 α–( )ρl t∂
∂Vlz Vlr r∂

∂Vlz Vlθ
r

--------
θ∂

∂Vlz Vlz z∂
∂Vlz+ + +

 
 
 

1 α–( ) z∂
∂P 1 α–( )ρlgz––= fiz fwlz+ +

1 α–( )ρl t∂
∂Vlr Vlr r∂

∂Vlr Vlθ
r

--------
θ∂

∂Vlr Vlz z∂
∂Vlr+ + +

 
 
 

1 α–( ) r∂
∂P 1 α–( )ρlgr––= fir fwlr+ +

1 α–( )ρl t∂
∂Vlθ Vlr r∂

∂Vlθ Vlθ
r

--------
θ∂

∂Vlθ Vlz z∂
∂Vlθ+ + +

 
 
 

1 α–( )
θ∂

∂P 1 α–( )ρlgθ––= fiθ fwlθ+ +
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In the above equations, the wall and interfacial drag force terms are simply 

denoted with directional subscripts while no further discussion on how these force 

terms are determined will be given here. The discrete forms of the momentum equa-

tions in three-orthogonal directions are lengthy because of the cross-derivative terms. 

Therefore, to illustrate the procedure to evaluate these terms, only the in R- and Z-

directional components of the gas momentum equation are presented here.

(1-65)

(1-66)

where the cross-derivative terms of the Z-direction gas momentum are given by the 

following equations. To maintain a simple notation, the subscripts in the following 

equations are omitted unless the subscript points to a cell other than Cell (i, j, k).

(1-67)

Vg6
n+1 Vg6

n–
∆t

-------------------------- Vgr r∂
∂Vgz Vgθ θ∂

∂Vgz Vgz z∂
∂Vgz+ +

 
 
 

i j k+1/2, ,

+

1

ρg〈 〉6
n

--------------
Pi j k+1, ,

n+1 Pi j k, ,
n+1–

∆z6
--------------------------------------– 1

αρg〈 〉6
n

------------------ fiz fwgz–( ) gz∆h6–+=

Vg2
n+1 Vg2

n–
∆t

-------------------------- Vgr r∂
∂Vgr Vgθ

r
---------

θ∂

∂Vgr Vgθ
2

r
---------– Vgz z∂

∂Vgr+ +
 
 
 

i+1/2 j k, ,

+

1

ρg〈 〉2
n

--------------
Pi+1 j k, ,

n+1 Pi j k, ,
n+1–

∆r2
--------------------------------------– 1

αρg〈 〉2
n

------------------ fir fwgr–( ) gr∆h2–+=

Vgr r∂
∂Vgz

i j k+1/2, ,
Min

Vg2∆z Vg2 k+1, ∆zk+1+
∆z ∆zk+1+

-------------------------------------------------------- 0,
Vg6 i+1, Vg6–

∆r2
---------------------------------=

 Max
Vg1∆z Vg1 k+1, ∆zk+1+

∆z ∆zk+1+
-------------------------------------------------------- 0,

Vg6 Vg6 i-1,–
∆r1

--------------------------------+
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(1-68)

In Equations (1-67) and (1-68), Min and Max are the mathematical functions of 

minimum and maximum values of the terms inside the brackets. Analogous expres-

sions hold for the other cross-derivative terms. The derivative terms in the direction 

of flow continue to be defined by Equations (1-19) and (1-20).

The next significant difference between the one- and three-dimensional field 

equations of TRAC is in the sum terms which signify the net flow of quantities across 

a computational volume. As the number of faces increase from two to six, the terms 

which were previously defined by Equations (1-20) to (1-26) must be redefined to 

include the flow through Faces 1 to 4 shown in Figure 1-3 (i.e. radial and azimuthal 

flows). Using the face number notation from Figure 1-3, the flux sum terms are rede-

fined as follows.

(1-69)

(1-70)

(1-71)

(1-72)

(1-73)

Vgθ θ∂

∂Vgz

i j k+1/2, ,
Min

Vg4∆z Vg4 k+1, ∆zk+1+
∆z ∆zk+1+

-------------------------------------------------------- 0,
Vg6 j+1, Vg6–

∆θ4
---------------------------------=

 Max
Vg3∆z Vg3 k+1, ∆zk+1+

∆z ∆zk+1+
-------------------------------------------------------- 0,

Vg6 Vg6 j-1,–
∆θ3

--------------------------------+

φg∑ φg2 φg1– φg4 φg3– φg6 φg2–+ +=

φl∑ φl2 φl1– φl4 φl3– φl6 φl2–+ +=

ζg∑ ζg2 ζg1– ζg4 ζg3– ζg6 ζg2–+ +=

ζl∑ ζl2 ζl1– ζl4 ζl3– ζl6 ζl2–+ +=

ωg∑ ωg2 ωg1– ωg4 ωg3– ωg6 ωg2–+ +=
31



(1-74)

where the flux terms are defined using the same face number notation.

 (1-75)

where m =1,2,...,6. Just as for the one-dimensional field equations, the velocities in the 

above equation are eliminated in favor of the change in cell pressures (i.e. ) using 

equations analogous to Equation (1-28). Next, Equations (1-31) to (1-35) are substi-

tuted into the mass and energy equations to obtain a linearized set of equations, which 

then can be solved iteratively following the same steps already described for the one-

dimensional equations.

The Continuing Role of Thermal-Hydraulic Codes in Reactor Safety
One of the most debated issues in the field of reactor safety is the continued use 

of the three decade old TH codes. Developed in the late 70’s, these codes continue to 

be the work horse of the industry and the regulatory agencies around the world. For 

instance, the US Nuclear Regulatory is currently consolidating its suite of thermal-

hydraulic codes into a single code.1-14 Although significant leaps are made in simula-

tion technology in various industries, the nuclear industry remains behind these 

advances. While there are less limitations imposed by today’s computing technology, 

the thermal-hydraulic simulations of the nuclear reactors remain as one of very chal-

ωl∑ ωl2 ωl1– ωl4 ωl3– ωl6 ωl2–+ +=

φgm αρg〈 〉m
n AmVgm

n+1=

φlm 1 α–( )ρl〈 〉m
n AmVlm

n+1=

ζgm αρgeg〈 〉m
n AmVgm

n+1=

ζlm 1 α–( )ρlel〈 〉m
n AmVlm

n+1=

ωgm α〈 〉m
n AmVgm

n+1=

ωlm 1 α–〈 〉m
n AmVlm

n+1=

δP
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lenging computing tasks. For example, the simulation of a nuclear reactor requires 

that the complex feedback mechanisms among different processes whose time and 

length scales differ by several orders of magnitude be handled very accurately, i.e. fluid 

flow, conduction and radiation heat transfer, and nuclear reactions. Further, there is 

an added complexity due to the control system mechanisms of the reactors such as 

emergency procedures, shut down mechanisms, valve operations, etc. The codes 

capable of simulating reactors with all of these details are continuously maintained 

and improved by the industry to handle more and more sophisticated designs of the 

new generation nuclear reactors. For example, the thermal-hydraulic model in Figure 

1-4 is for one of the recent reactor designs. This model includes the reactor pressure 

vessel and its internals, valves of several different types, a steam generator, tanks hold-

ing emergency coolant supplies, etc. 

It is extremely difficult for the industry to drop a proven (and tested) capability 

and switch to a revolutionary new approach. The best analogy can be made to the 

heavy bombers of the air force still in service. Some of these planes are flown by 

pilots who are several generations younger than their planes. While the fuselage of 

these planes have been the same shape since their inception, these planes did undergo 

significant upgrades including new flight controls, improved aerodynamic surfaces, 

and more powerful engines. The TH codes are the “heavy bombers” of the nuclear 

industry. Many analysts using these codes to simulate nuclear reactors are at least a 

generation or two younger than their computer codes. Just as the heavy bombers of 

the air force, the TH codes have been continuously maintained and upgraded to avoid 

falling behind the advances in computing technology. Some of the deficiencies 

described in this study and the remedies developed to cure these deficiencies may be a 

non-issue for more advanced computational methods for fluid flow. However, these 

new methods have not been applied to meet the needs of the nuclear industry and 

these deficiencies continue to have serious consequences in simulations of nuclear 

reactors.
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FIGURE 1-4. A thermal-hydraulic model of a nuclear plant 
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CHAPTER 2 Numerical Experiments With 
Moving Water Levels
Ensuring the stability and accuracy of the computational methods for simu-

lating two-phase flows is relatively more difficult than it is for the methods for 

single-phase flows. There are numerous studies available in the literature which 

focus on the stability and accuracy of computational methods for two-phase 

flows. While the conventional forms of stability analysis highly abundant in these 

studies help to understand better the characteristics of computational methods, 

they are not sufficient to determine the overall stability of a method over a wide 

range of two-phase flow conditions expected during thermal-hydraulic simula-

tions of nuclear reactors. Only the carefully constructed numerical experiments 

can provide such insight into the stability of these methods over the expected 

wide range of conditions.2-1,2-2 One particular example is the concern over the 

stability and accuracy of a method when water levels are present in thermal-

hydraulic simulations of nuclear reactors. The experience with the popular meth-

ods shows that the difficulties posed by water levels can plague a simulation 

unless the water levels are handled by a computational method with proper care.

This chapter presents a series of numerical experiments which put the spot 

light on areas where computational methods for solving the six-equation model 

exhibit serious failures when water levels are present in simulations. Also included 
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in this chapter are the results of simulations performed with TRAC that demonstrate 

the kinds of troubles suffered by most methods similar to the Semi-implicit/SETS 

method of TRAC.

Fill and Drain Test
A schematic diagram of the test problem is shown in Figure 2-2. The model con-

sists of a vertical pipe with 1.0 m2 axial flow area and 10.0 m height. A “T” branch 

with 0.5 m2 axial flow area and 3.0 m height is connected to the bottom of the test 

pipe. There are two variations to this test problem. In the first case, liquid water is 

injected, at the side entry of the “T” branch, to raise the level of the liquid column and 

then withdrawn to let the level drop back to its starting location. In the second case, 

air is injected, at the bottom entry of the “T” branch, to maintain a steady mixture of 

liquid water and air under the standard room temperature and pressure conditions. 

Again, liquid water is first injected to raise the level of the mixture, and then with-

drawn to let the level drop back to its starting location. The injection and withdrawal 

of liquid water in both cases at 1.0 m3/s moves the level across one computational 

volume in every second.2-3,2-4 

Conditions are subcooled and isothermal to remove any complications that may 

result from failures of interfacial heat transfer packages to account properly for the 

level. Gravity and interfacial drag between air bubbles and liquid water are the only 

forces that act on the fluid. The wall friction is suppressed in the test so that pressure 

below the level is due to the hydrostatic gravity head only. Moreover, the isothermal 

and subcooled conditions at the standard room temperature and pressure conditions 

force all interfacial mass transfer terms to zero. Hence the solution depends only on 

the terms of the six-equation model that describe the exchange of fluid by convection 
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across the boundaries of computational volumes and the momentum flux due to con-

vection, interfacial drag, and gravity. The TRAC simulations of the fill and drain test 

are discussed below.

FIGURE 2-1. Schematic of the fill and drain test 
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Shown in Figure 2-2 is the computational model that represents the test pipe, 

made of ten equal computational volumes. Henceforth, the computational volumes 

will also be referred to as “cells.”

FIGURE 2-2. Schematic of the fill and drain test simulated 
using one-dimensional equations
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This test problem was simulated using the SETS method of TRAC with the stan-

dard upstream donor method. As shown in Figure 2-2, the collapsed water level given 

by , is rising and falling back to its starting location at a 

steady rate. The rising front is expected to fill the computational volumes at a steady 

rate starting from the bottom of the pipe and move to the next volume above once 

HC t( ) 1 αi t( )–[ ]∆xi∑=

FIGURE 2-3. Void fractions of the single-phase fill and drain test (simulated 
with the standard method of solution)
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FIGURE 2-4. Pressures of the single-phase fill and drain test (simulated 
with the standard method of solution)
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the volume being filled is full of liquid water. The SETS solution of TRAC with the 

standard upstream donor method fails to predict this expected behavior of cell void 

fractions as the water level rises. A plot of void fractions in Figure 2-3 shows that the 

liquid front moves to the next volume above, before the volume is fully liquid water, 

trapping a gas bubble behind. This distorted picture of the rising liquid front repeats 

itself as the water is drained from the test pipe and the water level drops back to its 

FIGURE 2-5. Void fractions of the two-phase fill and drain test (simulated with 
the standard method of solution)
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FIGURE 2-6. Pressures of the two-phase fill and drain test (simulated with 
the standard method of solution)
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starting location. The liquid front is smeared over several volumes as the descending 

liquid front leaves significant amount of liquid left behind in its tail. Due to smearing 

of the liquid front, the “predicted” cell pressures below the moving liquid front do 

not exhibit the expected behavior as well, i.e. a steady change proportional to the 

height of the rising and falling water level. Instead, the cell pressures below the water 

level increase and decrease sporadically indicating sudden acceleration and decelera-

tion of the fluid, a behavior which is absolutely numerical in nature. Figure 2-5 and 

Figure 2-6 show that the SETS method with the standard donor method continues to 

suffer severely from similar difficulties when the fluid below the moving liquid front 

is a mixture of air and liquid water.

The fill and drain test in Figure 2-2 exercises the one-dimensional flow equations 

of TRAC. To exercise the three-dimensional flow equations in cylindrical coordinates, 

the fill and drain test was repeated using the VESSEL component of TRAC to simu-

late the vertical pipe in Figure 2-1. The VESSEL component in TRAC is nothing but 

a cylindrical tank that can consist of computational cells in three orthogonal direc-

tions of the cylindrical coordinate system. Figure 2-7 shows the two- and three-

dimensional versions of the fill and drain test designed to exercise the three-dimen-

sional field equations of TRAC. The two-dimensional version of the test pipe is 

divided into two “equal volume” cells in the R direction and ten “equal height” cells 

in the Z direction, and it consists a total of 20 computational cells. The two-dimen-

sional pipe exercises the R- and Z-direction components of the field equations. The 

three-dimensional version of the test pipe is divided into eight “equal volumes” in the 

R-Θ plane and ten “equal height” levels in the Z direction, and it consists a total of 80 

computational cells. The three-dimensional pipe exercises all of the directional com-

ponents of the field equations making the test a very challenging one. As with the 

one-dimensional version of the test, the two- and three-dimensional versions of the 

test were repeated with the air-water mixture below the water level.
43



It should be noted that the use of two- and three-dimensional computational cells 

allows more accurate modelling of expanding flow area from the “T” branch into the 

vertical test pipe. Certainly, this added detail increases the level of difficulty in simulat-

ing the fill and drain test.

FIGURE 2-7. Schematic of the fill and drain tests that exercise 
the 2D and 3D field equations
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The increased level of irregularities in the simulation results reveal that the Semi-

Implicit/SETS method of TRAC, and the standard solution methods in general, suf-

fer more severely when simulating the two- and three-dimensional versions of the fill 

and drain test. The signs of trouble are obvious in Figure 2-8 and Figure 2-10. The 

void fractions in the latter figure belong to the simulation repeated with the gas injec-

tion that created a steady mixture of liquid water and air bubbles inside the vertical 

FIGURE 2-8. Void fractions of the 2D single-phase fill and drain test (simulated 
with the standard method of solution)
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FIGURE 2-9. Pressures of the 2D single-phase fill and drain test (simulated 
with the standard method of solution)
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pipe. In addition to the diffusive behavior already seen in the one-dimensional version 

of the test (Figure 2-3), the moving water level in the two-dimensional test is no 

longer stratified spreading over several cells in the lateral and vertical planes. More-

over, the void fractions predicted for the drain phase of the test indicate a break up of 

the liquid phase that results in pancaking of high and low void fraction regions near 

the water level. The spread of the water front is also apparent in the three-dimen-
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FIGURE 2-10. Void fractions of the 2D two-phase fill and drain test (simulated 
with the standard method of solution)
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FIGURE 2-11. Pressures of the 2D two-phase fill and drain test (simulated 
with the standard method of solution)
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sional version of the fill and drain test that exercises the Θ-direction field equations. 

As a consequence to these reversals in void fraction distribution in the axial and lat-

eral planes, the simulations exhibit bounded oscillations in cell pressures as seen in 

Figure 2-9 and Figure 2-13. 

The most challenging of all benchmarks presented here is perhaps the two-phase 

version of the three-dimensional fill and drain test. The void fractions of 40 cells, i.e. 

FIGURE 2-12. Void fractions of the 3D single-phase fill and drain test 
(simulated with the standard method of solution)
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FIGURE 2-13. Pressures of the 3D single-phase fill and drain test 
(simulated with the standard method of solution)
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eight cells per level, plotted in Figure 2-14 exhibit a very “chaotic” behavior. Unlike 

any of the previous simulations of the fill and drain test, the liquid-gas interface is 

smeared across several cells in the axial and lateral directions. The pressures of the 

same cells are plotted in Figure 2-15 exhibiting spike changes and oscillations. This 

test clearly demonstrate the need for improvement in TRAC to simulate the water lev-

els more accurately.

FIGURE 2-14. Void fractions of the 3D two-phase fill and drain test (simulated 
with the standard method of solution)
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FIGURE 2-15. Pressures of the 3D two-phase fill and drain test (simulated 
with the standard method of solution)
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Oscillating Manometer
The U-tube manometer in this test consists of gas and liquid with the liquid form-

ing equal collapsed water levels in each arm. Initially, the liquid slug has a uniform 

velocity and no acceleration. The top of manometer arms are open to the standard 

room temperature and pressure conditions — it should be noted that the original 

benchmark problem connects the manometer arms at the top, forming a closed sys-

tem. The schematic of the oscillating manometer test is given in Figure 2-16. Ransom 

specifies the problem,2-6 “The initial conditions for the problem are: isothermal 

throughout at 50oC temperature, pressure at the interfaces between the vapor and liq-

uid equal to 1.01x105 Pa, and corresponding hydrostatic pressures at all other points 

in the system, ... The initial position of the liquid-vapor interface is 5.0 m from the 

bottom of each manometer leg and all fluid initially has a velocity of 2.1 m/s. This ini-

tial velocity will cause the interface to oscillate approximately 1.5 m in height from the 

initial location... The system is adiabatic so that the thermal boundary condition is 

zero flux at the wall.” Ransom further explains the objective of the problem is model-

ing the period of oscillation, which is analytically known; and evaluating the capability 

of the numerical discretization scheme to retain the liquid-gas interface.

An analytic solution for the water levels and the pressures at any location inside 

the two manometer arms can be obtained by applying a mechanical energy balance to 

the oscillating water slug. In the absence of any losses, the mechanical energy balance 

dictates that the gain of total potential energy is always equal to the loss of total 

kinetic energy and vice versa.2-5

(2-1)td
dK

td
dΦ+ 0=
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Defining the length of the oscillating slug L, and the cross sectional area of the 

manometer arm S, the distance between the water level at any time to its initial posi-

tion with H(t), and the velocity of the oscillating slug with V(t), the change of kinetic 

energy and potential energy with respect to time can be expressed as follows:

(2-2)

(2-3)

FIGURE 2-16. Schematic of the oscillating manometer test
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(2-4)

Equation (2-4) can be solved for the location of the manometer water level as 

function of time, i.e. H(t), with the initial conditions that specify the initial position of 

the oscillating slug and its velocity:

  ,  (2-5)

The solution of Equation (2-4) yields the distance between the surface of the 

oscillating water levels and their starting location inside the left and right manometer 

arms:

 and (2-6)

where the period of the oscillating manometer is found to be

. (2-7)

Once the location of the oscillating manometer water level is known as a function 

of time, pressures at any point along the manometer arm can be determined from a 

simple force balance between the point of interest and the surface of the oscillating 

water level. The force balance should include the terms due to fluid acceleration and 

gravity.

(2-8)
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In the above equation, the length of the water slug between the surface of the oscillat-

ing water level and the point of interest is defined as follows:

(2-9)

In Equation (2-9), variable x is the distance from the point of interest to the bottom 

of the manometer arm. The solution of Equation (2-8) for the locations below the 

oscillating water level then be becomes:

 for (2-10)

Equation (2-10) can be used to compute the cell pressures and then be compared 

to the TRAC solution. Figure 2-17 shows the resulting pressures from applying Equa-
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FIGURE 2-17. Manometer pressures predicted by a closed form solution
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tion (2-10) to the oscillating manometer test. A related variable which provides insight 

to the manometer test is the difference between the pressures at the same elevation of 

the two manometer arms. This variable, given in Equation (2-11), simply defines the 

net force acting on the segment of the manometer fluid between the two locations at 

the same elevation of the opposing arms. A program written in Fortran that computes 

the manometer pressures and the oscillating water level is provided in Appendix B.

FIGURE 2-18. Water level of the oscillating manometer (simulated with the 
standard method of solution)
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FIGURE 2-19. Pressures along the oscillating manometer arm (simulated 
with the standard method of solution)
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(2-11)

For a manometer with 10m long oscillating water slug and 2.1m/s initial velocity, 

Equation (2-6) gives an oscillation amplitude of 1.5m measured from its starting loca-

tion. Based on Equation (2-7), the period of these oscillations should be 4.48 seconds.

This test problem was simulated using the Semi-Implicit method of TRAC. The 

results show that the standard solution method fails to simulate the manometer oscil-

lations. Figure 2-18 compares the collapsed water level predicted by TRAC to the 

oscillating water level predicted by Equation (2-6). A comparison of the pressures 

along the manometer arm predicted by TRAC (Figure 2-19) and predicted by Equa-

tion (2-10) (Figure 2-17) reveals that the standard solution method of TRAC dissi-

pates the kinetic energy of the oscillating fluid very quickly. This conclusion is more 

obvious when the net force acting on a given segment of the oscillating fluid 

described by Equation (2-11) is considered. Figure 2-20 compares the net force acting 

on a segment of oscillating fluid contained between 2.5m elevation in one manometer 

PL x t,( ) PR x t,( )– 4x
L
------H t( )=

FIGURE 2-20. The net force on the fluid segment below 2.5m elevation of 
the manometer arms (simulated with the standard method of solution)
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arm to 2.5m elevation in the opposing arm. This comparison concurs that the solu-

tion with the upwind donor method quickly dissipates the kinetic energy of the oscil-

lating fluid. It is therefore concluded that the standard solution method of TRAC, i.e. 

Semi-Implicit method, fails to simulate the oscillating manometer test.

Next, the oscillating manometer is modified to exercise the Z-direction compo-

nent of the three-dimensional field equations in cylindrical coordinates. In the repeat 

simulation, the manometer arms are formed by two concentric cylinders. The flow 

FIGURE 2-21. Schematic of the oscillating manometer formed 
by two 2D concentric cylinders
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areas of the annulus region and the inside cylinder are kept identical. The length of 

the oscillating liquid slug is kept at 10 m by modeling the 1 m section at the bottom 

with two separate one-dimensional volumes as the frequency of manometer oscilla-

tions is a function of the slug length. The initial and boundary conditions for the 

problem remain identical to the conditions of one-dimensional manometer test.

The Semi-implicit method, i.e. the standard method of solving the field equations 

in TRAC, was used to simulate this two-dimensional version of the oscillating 

manometer. Figure 2-22 compares the collapsed water level predicted by the TRAC 

solution to the level obtained analytically from (2-6). While Figure 2-22 can be used to 

argue that the three-dimensional field equations had some limited success in simulat-

ing the oscillating manometer, the deviations from the frequency and amplitude of 

the expected oscillations is a source of concern. In Figure 2-23, the pressures of com-

putational volumes inside the annulus region reveals that the fluid experiences 

bounded oscillations in pressure dissipating its momentum. However, the fluid also 

experiences occasional spike changes in pressure adding to its momentum. The com-

parison of the differential pressure between fluid inside and outside the inner cylinder 

FIGURE 2-22. Collapsed levels of the 2D oscillating manometer test (simulated 
with the standard method of solution)
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at 2.5 m elevation further supports this analysis. Figure 2-22 is therefore a good exam-

ple why one should not judge a method for its ability to simulate the oscillating 

manometer by simply tracing the location of the water level. 

FIGURE 2-23. Pressures along the 2D oscillating manometer arm 
(simulated with the standard method of solution)
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FIGURE 2-24. The net force on the fluid segment below 2.5 elevation of 
the manometer arms (simulated with the standard method of solution)
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Expulsion of Superheated Steam by Subcooled Water

The purpose of this test problem is to study the complications in the solution to 

the six-equation model resulting from failures of the interfacial heat transfer model to 

account properly for the water levels. The problem, which will be referred to as the 

“condensation test” from hereon, consists of a vertical pipe, 3m in height and 1m in 

diameter, initially filled with superheated steam at constant temperature and pressure 

FIGURE 2-25. Schematic of the 1D and 3D condensation tests
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of 163oC and 0.4MPa respectively. The vertical pipe is connected to a very large reser-

voir of steam. The computational model divides the vertical pipe into ten equal com-

putational volumes. A schematic diagram of the test problem is shown in Figure 2-25. 

Also shown in Figure 2-25 is the three-dimensional version of the same test that 

divides the vertical pipe into 80 equal computational volumes. During the test, liquid 

water subcooled at 50oC is injected with 0.5 m/s velocity at the bottom inlet of the 

pipe until it fills the pipe completely.2-7

This test problem was designed to measure the ability of a solution method to 

cope with the difficulties which arise from inaccurate modelling of the computational 

volumes as they are filled by the rising liquid front. Predicting the interfacial heat 

transfer rate in these volumes, and thereof, the condensation of superheated steam in 

contact with the very subcooled water is very critical to the successful simulation of 

this test. There is also an added complexity as a saturated layer of liquid builds up in 

the tail of the rising front that should continuously decrease the condensation rate. A 

solution method without proper care for these details is expected to suffer severely as 

a cell becomes “packed” with liquid water when the method fails to turn off the con-

densation behind the rising liquid front.

The recommended maximum time step size for the simulation of this test is 0.05 

seconds.

The standard solution method of TRAC displays the expected difficulties due to 

water packing and inaccurate modeling of the condensation at the rising liquid front. 

Figure 2-26 shows the pressures at each computation volume along the pipe as the 

subcooled water is injected. The presence of the water packing phenomenon is appar-

ent in this figure. The magnitude of the resulting compression waves from the 

“numerical” water hammer reaches to 2.5 MPa rendering the TRAC solution unus-
59



able. Before drawing a conclusion on the performance of TRAC, the water packing 

option, an optional method that overcomes the fluid packing problem by dampening 

the pressure field, must be engaged in the simulation of the condensation test. Figure 

2-27 shows the pressures along the test pipe recomputed by TRAC with the water 

packing option. Although the amplitude of pressure spikes are several times smaller, 

their mere presence is sufficient to prove that the standard method of solution even 

FIGURE 2-26. Pressures along the condensation test pipe (simulated with 
the standard method of solution)
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FIGURE 2-27. Pressures along the condensation test pipe (simulated with 
the standard option for water packing treatment)
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with the help from a special method is still unable to properly handle the steam con-

densation at the rising liquid front.

Another variable of equal interest is the liquid temperature along the pipe which is 

expected to indicate the build up of a saturated liquid layer behind the rising front. 

Figure 2-28 shows that the liquid temperatures rather closely follow the sub-cooled 

temperature with occasional jumps to the saturation temperature in the vicinity of the 

FIGURE 2-28. Liquid temperatures along the condensation test pipe 
(simulated with the standard method of solution)
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FIGURE 2-29. Steam flow at the top of the condensation test pipe 
(simulated with the standard method of solution)

0 2 4 6 8 10
Time (s)

-200

-100

0

100

200

Fl
ow

 R
at

e 
(k

g/
s)
61



rising front. As sub-cooled water is injected at the bottom, superheated steam is with-

drawn into the pipe at the top replenishing the steam being condensed at such 

extreme rates. Normally, the direction of steam flow should be an outcome of a bal-

ance between the volume rate at which liquid displaces steam and the volume rate at 

which steam is being condensed at the front. However, the compression waves 

induced by the fluid packing dominates the TRAC solution causing high bursts of 

steam flowing out of the test pipe as seen in Figure 2-29. 

It should also be noted here that the water packing option of TRAC, at least, 

achieves a limited success by reducing the severity of the failures mentioned above. 

This limited success is evident in Figure 2-30 that compares the timesteps number as 

function of the simulation time for the two cases: 1) without the water packing 

option, 2) with the water packing option.

The test simulations repeated using a three-dimensional computational mesh 

exhibited similar troubles. First, the standard solution method of TRAC was exer-

cised. Pressures from this exercise are shown in Figure 2-31. The severity of spike 

FIGURE 2-30. Comparison of total time step numbers of condensation 
test simulations (with and without the option for water packing treatment)
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changes in cell pressures is at a minimum in comparison to the one-dimensional ver-

sion of the same test (see Figure 2-26). Water packing does not dominate the simula-

tion of the three-dimensional condensation test because it is a phenomenon mainly 

one-dimensional in nature. Unlike a one-dimensional volume with only two faces, a 

three-dimensional volume has six faces and it hardly becomes “packed.” The pres-

sures shown in Figure 2-32, which are the result of a TRAC simulation repeated with 

FIGURE 2-31. Pressures along the 3D condensation test pipe (simulated 
with the standard method of solution)
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FIGURE 2-32. Pressures along the 3D condensation test pipe (simulated 
with the standard option for water packing treatment)
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the water packing option, support this conclusion as there is very little difference 

between them and the pressures in Figure 2-31. The close-up in Figure 2-32 even sug-

gests that the simulation with the water packing option suffers from more numerical 

troubles which are hinted by the increased level of bounded oscillations. Furthermore, 

the liquid temperatures shown in Figure 2-33 illustrate how the failure of TRAC to 

capture the rising cold front in three dimensions add to the complexity of the simula-

FIGURE 2-33. Liquid temperatures along the 3D condensation test pipe 
(simulated with the standard method of solution)
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tion. For some of the axial levels in Figure 2-33, the adjacent cells registered liquid 

temperatures which were at least 50oC apart behind the rising front. Figure 2-34 com-

pares the number of time steps required to simulate the condensation test with the 

standard solution and with the solution aided by the water packing model. Clearly, the 

water packing model has very little effect on the solution.

In conclusion, TRAC fails to predict the constant rate of condensation along the 

test pipe. As the rising front passes through a cell, the condensation reaches extremely 

high rates due to apparent problems with the interfacial heat transfer between liquid 

and gas fields. The root cause of this failure should be sought in the interfacial heat 

transfer model and its inability to properly describe cells that consist of phases sepa-

rated by a moving phase front.

A Summary of the Simulations with TRAC’s Standard Method of 
Solution

All of the test problems discussed in this chapter are designed to measure the per-

formance of the semi-implicit method of solution to the six-equation model in the 

presence of moving water levels. However, it should also be emphasized that these 

problems are designed to reveal the difficulties of a method and magnify them as 

much as possible, so that these difficulties can be identified and studied further.

The results of the numerical experiments presented in this chapter can summa-

rized as follows:

• All of the tests reveal that the solution method in TRAC fails to predict accurately 

the acceleration of liquid and gas fields in vertical paths when both fields are sep-

arated by a stratified liquid-gas interface. This failure is evident from the figures 

that show the transient behavior of fluid pressure in all tests.
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• The solution methods like the Semi-implicit method, which are equipped with the 

standard upstream donor method in general, are unable to retain the liquid-gas 

interface. The figures that show the void fraction along the test pipes suggest that 

numerical diffusion of fluid mass is very high in the presence of stratified liquid-

gas interface. Unlike the diffusion due to the discrete nature of the solution, the 

root cause of this failure is hidden behind the inability of the upstream donor 

method to recognize that a computational volume consists of two sub-volumes 

separated by a liquid-gas interface.

• The mixture of steam and water poses added complexities due to the inability of 

the interfacial heat transfer model to distinguish the two sub-volumes, which are 

topologically different, separated by the liquid-gas interface. As the interfacial heat 

transfer model determines the heat transfer coefficients based on volume average 

void fraction, the interfacial heat transfer between the two fields is over or under 

predicted for the computational volume that consists of the liquid-gas interface.

• The current measures built into the solution method, e.g. the water packing 

option, have limited success in mitigating the consequences of numerical water 

hammer when the sudden condensation is initiated by moving liquid-gas inter-

faces.
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CHAPTER 3 Tracking Water Levels in 
One-Dimensional Flows
The numerical experiments presented in CHAPTER 2 reveal that the pres-

ence of water levels can severely plague the standard methods of solution to the 

six-equation model. These “thought” experiments also demonstrate that the use 

of an average void fraction for a computational volume can lead to erroneous 

description of a computational volume when it contains of a water level. A short 

analysis of the initial TRAC simulations of these tests reached a conclusion that 

such computational volumes indeed had two sub-volumes separated by the inter-

face and each of these sub-volumes had their own distinct flow topology, e.g. the 

dispersed liquid droplets above the interface and the gas bubbles below. A further 

conclusion was drawn that for more accurate description of these divided compu-

tational volumes, regions above and below the interface ought to be treated sepa-

rately requiring the use of separate void fractions inside each region as the 

outcome of closure models strongly depended on the flow regime and the flow 

regimes were strong functions of the “cell” void fraction.

Not only the void fractions must be known for the regions above and below 

the interface, but also the volumes of each region and the rate at which they 

change. Only when this additional information is known, can one modify a stan-

dard method of solution for the six-equation model such as Semi-Implicit or 
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SETS to accomplish a more accurate description of computational volumes with 

water levels inside them. This strategy of “tracking” to deal with water levels requires 

that the location of a water level, the volumes of regions above and below it, and the 

void fractions inside these regions be known at all times.

 The idea of tracking water levels is not new. An example is the method which had 

been developed for the BWR version of TRAC to track water levels in BWR simula-

tions. This method in TRAC-BWR, which had been applied to the transient simula-

tions of BWRs with some limited success, permitted the use of very large volumes in 

building computational models of BWR pressure vessels. While tracking water levels 

had increased the solution method’s resolution to locate the vessel penetrations within 

very large computational volumes, the users of TRAC-BWR had to be warned against 

potential flow oscillations, conflicting water levels, and pressure disturbances which 

could result from employing the level tracking method itself. For instance, the simula-

tion of a natural circulation test (6PNC1-6) conducted at the Full Integral Scale Test 

(FIST) facility was cited in one of TRAC-BWR manuals for the problems with the 

level tracking.3-1 Flow instabilities of purely numerical nature caused by the level 

tracking method were reported. In addition to the flow oscillations, spike changes 

were observed in cell pressures each time after a water level crossed across the bound-

aries between computational volumes. The use of level tracking in BWR simulations 

therefore required extreme care to ensure the fidelity of the reactor simulations.

Recently, this level tracking method of TRAC-BWR was incorporated into TRAC† 

as part of a larger effort to consolidate the capabilities of TRAC-BWR to simulate 

BWRs.3-2 The numerical experiments presented in CHAPTER 2 were also repeated 

to test this level tracking method in TRAC. Results from some of these simulations 

†. The reactor safety code referred to as TRAC here is the US NRC Consolidated Thermal-hydraulics Code 
(a.k.a. TRAC-M), and the code referred to as TRAC-BWR is TRAC-BF1/MOD1 of US NRC.
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are included here to illustrate that half measures do not produce satisfactory results 

and that one must consider a full range of issues for a successful level tracking 

method. Figure 3-1 shows the cell pressures predicted by TRAC as it simulated the 

single-phase version of the fill and drain test while the original method of tracking in 

TRAC-BWR was engaged. The figure exhibits spikes and step changes in pressures of 

Cells 4 to 8 along the vertical test pipe as the single-phase column of water rises and 

FIGURE 3-1. Pressures of the single-phase fill and drain test (simulated 
with the original level tracking method of TRAC-BWR)
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returns to its starting location. The root cause of these pressure spikes is the failure of 

the original tracking method to propagate the water level properly across the cell 

boundaries. For instance, the void fraction history of Cell 4 (shown in Figure 3-2) 

reveals that a small pocket of gas is trapped in a cell when the level moves across a 

boundary between two cells. The void fraction of Cell 4 is expected to be zero after 

the water level leaves Cell 4.

Simulations of the remaining “thought” experiments exhibit similar troubles 

caused by the original method of level tracking. TRAC fails to simulate the oscillating 

manometer when the level tracking method is switched on inside the manometer 

arms. It also predicts unreasonably high pressures due to the water packing phenome-

non for the condensation test when the original method of level tracking is engaged. 

While the original method of level tracking was tested only against some laboratory 

experiments, the troubles discussed above were overlooked. For instance, the early 

assessment of the method only evaluated the void fraction data and made no refer-

ence to the pressures predicted by TRAC except noting that there were occasional 

pressure spikes as the water levels crossed the cell boundaries. In contrast, the numer-

ical experiments presented in CHAPTER 2 put the failures of the level tracking 

method under a spot light.

The level tracking method of TRAC-BWR, and thereof TRAC, consists of two 

parts: 1) a decision making step to locate and follow the water levels, 2) modifications 

to the field equations to account for the presence of a water level. The presentation in 

this chapter is organized around these two parts. First, the method of locating the 

water levels is presented. Modifications to the field equations then follow. However, 

there is a third component necessary for a successful level tracking method, mostly 

overlooked in the past. This third component is a systematic approach to propagate 

the water levels across the cell boundaries. A detailed discussion on levels crossing cell 
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boundaries will follow the discussion on modifications to the field equations. These 

discussions present the new ideas and approaches critical to a robust method of level 

tracking.

Level Tracking Method
The search for liquid-gas interfaces is conducted using a series of logical decisions 

that are based on empirical observations. Once it is determined that an interface exists 

inside a computational volume, its location inside the volume and its velocity are com-

puted along with the separated sub-volumes. A computational volume that consists of 

a liquid-gas interface is shown in Figure 3-3. The void fraction profile decreasing with 

increasing height shown in this figure is the simplest case where a stratified interface 

must satisfy either of the following conditions:

(3-1)

L j
∆

x j

αj
-

αj+1

αj-1

αj
+

FIGURE 3-3. A computational volume with the stratified 
liquid-gas interface
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(3-2)

The recommended values for ,  and  are 0.2, 0.005, and 0.7, respec-

tively. There are other void fraction profiles (e.g. decreasing with increasing height, 

reversed void profile above and below obstructions, etc...) for which the liquid-gas 

interfaces must satisfy different conditions. The level tracking logic and the corre-

sponding conditions that must be satisfied for these void fraction profiles are pro-

vided in Appendix C. The void fractions designated for the regions below and above 

an interface, and the volumes of these regions can then be correlated from the com-

putational volume and its void fraction.

 and (3-3)

(3-4)

(3-5)

Subvolumes can be evaluated from (3-4) and (3-5).

(3-6)

In a computational volume with constant flow area, the location of the interface 

can be obtained from (3-6) by dividing both sides by the flow area:

(3-7)
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Next, the velocity of the liquid-gas interface is formulated by taking the time 

derivative of (3-7) as follows:

(3-8)

(3-9)

In Equation (3-8), the time derivative of void fractions are first-order approxima-

tions. The void fractions and the velocity of the liquid-gas interface in Equation (3-9) 

are denoted with a superscript indicating the time step number to which these vari-

ables belong. At the start of time step n+1, the location of the liquid-gas interface 

( ) The location of an interface at the end of a time step can be projected from its 

location and velocity at the beginning of a time step:

(3-10)

When it is determined that a liquid-gas interface exists in a computational volume, 

an integer variable is set to one to flag its existence. Otherwise, the same variable is set 

to zero to indicate that no interface is present.

(3-11)

VL j,
∆xj

αj
+ αj

-–
------------------

td
dαj

+

td
dαj–

Lj

αj
+ αj

-–
------------------

td
dαj

+

td
dαj

-

––=

VL j,
n ∆xj

αj
+( )

n
αj

-( )
n

–
---------------------------------

αj
+( )

n
αj

+( )
n-1

–
∆t

---------------------------------------
αj

n αj
n-1–

∆t
-----------------------–=

Lj
n

αj
+( )

n
αj

-( )
n

–
---------------------------------

αj
+( )

n
αj

+( )
n-1

–
∆t

---------------------------------------
αj

-( )
n

αj
-( )

n-1
–
∆t

------------------------------------––

Lj
n

L̃j
n+1

Lj
n ∆tn+1 VL j,

n
+=

λj
n 1  , for  0 Lj

n ∆xj< <  

0  , otherwise





=

74



 in Equation (3-11) flags the presence of water level at time step n. Another 

flag is set based on the projected location of the liquid-gas interface at time step n+1. 

(3-12)

In the above equations, a tilde signifies that the value of a variable is an estimate 

and not its final value at the end of a time step. It should be emphasized that the 

“expected” location of a liquid-gas interface is not necessarily equal to the “calcu-

lated” location at the end of a time step, i.e.

(3-13)

Modifications To The Field Equations
Once it is determined that a liquid-gas interface is present in a computational cell, 

a new variable, , is defined to specify the distance between the liquid-gas interface 

and the cell boundaries. A second variable, , is defined to specify the void fraction 

of the two-phase fluid convected across the boundaries between two adjacent vol-

umes.

(3-14)
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(3-15)

(3-16)

In the above equations,  is the void fraction at a boundary defined as a weighted 

average of void fractions computed for the cells adjacent to a boundary.

Mass and Energy Equations
When a liquid-gas interface is present in a computational cell, its presence must be 

accounted for by the terms that describe the flux of mass and energy across the cell 

boundaries. The flux terms in (1-21) to (1-26) use an average of properties from adja-

cent cells as an approximation for the state properties, which are defined and calcu-

lated at cell centers by definition, across the cell boundary. Once it is determined that 

a liquid-gas interface is present adjacent to a cell boundary, averaging of the properties 

at the boundary must account for the presence of the interface. The following erde-

fined flux terms account for the presence of an interface by redefining the flow area 

at the cell boundary:

(3-17)

(3-18)
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(3-19)

(3-20)

(3-21)

(3-22)

where the newly defined “phasic” flow areas, i.e.  and , are:

(3-23)

(3-24)

The above equations redefine the flux terms in the mass and energy equations of 

the basic step, i.e. Equations (1-15) to (1-18), accurately in terms of void fractions 

above and below a water level. However, these corrections to the flux terms in the 

basic step equations do not work for the flux terms in the stabilizer step equations, i.e. 

Equations (1-48) to (1-51), as the flux terms in these equations are formulated in 
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terms of  from the basic step, not  of the previous time step. The following 

equations further adjust the “phasic” flow areas so that the flux terms in the stabilizer 

step equations remain consistent with the solution to the basic step equations.

(3-25)

(3-26)

Redefining the macroscopic quantities that are convected across the cell bound-

aries in terms of the void fractions above and below an interface curtails the otherwise 

inadvertent flux of quantities based on cell average void fraction. The modifications 

above are necessary but not sufficient for a successful method of level tracking. Addi-

tional considerations must be given to the other terms which make up the fluxes, i.e. 

the liquid and gas velocities.

Momentum Equations
Equations (1-27) and (1-28) are substituted into (3-17) to (3-22) eliminating the 

velocities as unknowns from the flux terms. Thus, the flux terms consists of two 

components before the iterative solution begins: 1) the known portion in terms of the 

tilde fluid velocities ( ), and 2) the variable portion in terms of the unknown 
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changes in pressures ( ). The flux quantities modified by (3-23) and (3-24) multiply 

both the known and the variable portions of flux terms. It should not be overlooked 

that the product of the tilde velocities and modified flux quantities will be inconsis-

tent unless the momentum equations, i.e. (1-13) and (1-14), are also adjusted to 

account for the presence of liquid-gas interfaces.

This subtle detail pertinent to Equations (1-13) and (1-14) deserves further clerifi-

cation. Equations (1-13) and (1-14) balance the fluid momentum across a staggered 

control volume for liquid and gas fields, i.e. the control volume drawn with thick dot-

ted lines in Figure 3-4 that stretches from the center of Cell j to the center of Cell j+1. 

The use of staggered control volumes allows the expression of the net force due to 

pressure drop across the fluid enclosed by the staggered volume simply as  

without the need for any further approximation. In the meantime, other variables 

such as fluid density and void fraction in (1-13) and (1-14) are approximations since 

these variables are defined at cell centers. From the balance of momentum across a 

δPj
i

FIGURE 3-4. A staggered control volume with the stratified liquid-gas 
interface
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staggered cell, Equations (1-13) and (1-14) are formulated for the liquid and gas 

velocities. Later, the product of these velocities and the flux quantities at cell bound-

aries, depicted by the arrows located at j+½ in Figure 3-4, define the flux of mass and 

energy across the cell boundary. A solution with the standard upstream donor method 

defines the flux quantities at cell boundaries as an average of quantities from the adja-

cent cells. This picture must be revisited when the fluid enclosed by the staggered 

control volume is no longer uniform and it consists of two regions divided by an 

interface. 

In the presence of a liquid-gas interface, the flux terms at cell boundaries given in 

(3-17) to (3-22) are modified by the newly defined phasic flow areas, i.e.  and 

. For the example shown in Figure 3-4, the phasic flow areas correct the flux 

quantities so that the velocities multiply the quantities only that belong to the region 

above the interface, i.e. the white region. On the other hand, Equations (1-13) and 

(1-14) will continue to be formulated for an average fluid mixture of regions below 

and above the interface, i.e. the white and shaded regions, unless properly corrected. 

Corrections to (1-13) and (1-14) must be made so that these equations balance the 

forces acting on the white region above the interface that prevails at j+1/2 and the 

velocities from these equations be consistent with the flux quantities that they multi-

ply.

First, the fluid inertia terms in (1-13) and (1-14) are redefined using the void frac-

tions below and above an interface:

(3-27)
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(3-28)

Second, the pressure gradient term in (1-13) and (1-14) is redefined as

(3-29)

where the correction term to account for the presence of a liquid-gas interface is 

given by the following equation.

(3-30)

While the pressure drop correction given by Equation (3-30) works well for the 

momentum equations of the basic step, the use of the “expected” location of the liq-

uid-gas interface to determine the pressure drop correction does not work for the sta-

bilizer momentum equations, i.e. (1-39) and (1-40). Although the stabilizer 

momentum equations are presented as the first step of a time step, these equations 

constitute the last step that determines the final values of liquid and gas velocities. 

Therefore, the pressure drop correction for these equations must be based on the 

“calculated” location of the liquid-gas interface at the end of a time step, i.e. . 
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(3-31)

It should also be noted that (3-30) yields an accurate pressure drop from the interface 

to the cell boundary not only due to the hydrostatic head of fluid but also due to the 

fluid acceleration. This detail should not be overlooked and it is important for situa-

tions in which an interface accelerates. It should also be emphasized that Equation 

(3-30) yields to the weight of the fluid below the interface between the interface and 

the cell boundary in the hydrostatic limit, i.e. when there is no pressure drop due to 

fluid acceleration . Where neither of  or  is available, such as 

near the boundary of a flow segment, Equation (3-30) assumes that these gradients 

are equal to the hydrostatic head of the fluid in Cell j.

Third, the gradients of liquid and gas velocities across the cell boundary are set to 

zero based on an assumption that the changes in fluid velocity across the interface will 

not contribute to the pressure drop across the staggered control volume. For exam-

ple, the gas bubbles that reach the liquid-gas interface rise at a terminal velocity. The 

velocity of gas escaping from the interface is generally much smaller than the terminal 

rise velocity of gas bubbles below the interface. However, this sudden slowdown of 

gas across the interface, which is due to continuity, should not cause additional pres-

sure changes across the staggered cell. Similarly, the liquid droplets entrained into the 

region above the interface may have higher velocity than the continuous liquid region 

below the interface. Any additional pressure drop due to this change of liquid velocity 
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across the staggered cell is incorrect, too. Therefore, the velocity gradient of a field at 

any cell boundary is set to zero when a liquid-gas interface is present in the upstream 

direction of that field. The correction to the gradients of liquid and gas velocities are 

formulated into Equations (1-13) and (1-14) as follows:

 when (3-32)

 when (3-33)

As the level tracking method and the necessary modifications to the field equa-

tions described (3-1) to (3-33) are incorporated, the numerical experiments presented 

in CHAPTER 2 must be simulated to test the method and the modifications to the 

field equations. A thorough testing is critical to a successful implementation of the 

level tracking method. Figure 3-5 shows the cell void fractions along the test pipe of 

the single-phase fill and drain test. Comparing it to Figure 2-4, the results indicate sig-

nificant improvements. The rising water levels fills the computational volumes as 

expected and a sharp front is retained. However, a close up of the cell void fractions 

in Figure 3-5 shows that small amounts of gas is trapped in the tail of the “ascending” 

liquid-gas interface. The void fraction in these cells behind the interface approach to 

zero asymptotically as the trapped gas is convected out continuously in smaller 

amounts. As the pressure gradient behind the water level is adjusted by the level track-

ing method, the “trapped” gas accelerates rapidly causing the pressure spikes 

recorded in Figure 3-6.
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The results from the repeat simulation of the two-phase fill and drain test indicate 

similar troubles. In Figure 3-7, a close up of the void fractions shows that small frag-

ments of liquid is left behind the “descending” water level. The void fraction in these 

cells approach to one asymptotically as the liquid is convected out in smaller amounts. 

More trouble is evident in Figure 3-8 that shows the cell pressures. The pressures 

FIGURE 3-5. Void fractions of the single-phase fill and drain test 
(simulated with the level tracking and no treatment for boundary crossing)
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FIGURE 3-6. Pressures of the single-phase fill and drain test (simulated 
with the level tracking and no treatment for boundary crossing)
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indicate pressure waves “traversing” the column of liquid and gas mixture initiated by 

pressure spikes following the crossing of water level across cell boundaries.

As seen in Figure 3-9 and Figure 3-10, the troubles of simulating these two exper-

iments are sufficient to make the solution fail to simulate the oscillating manometer 
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FIGURE 3-7. Void fractions of the two-phase fill and drain test 
(simulated with the level tracking and no treatment for boundary crossing)
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FIGURE 3-8. Pressures of the two-phase fill and drain test (simulated 
with the level tracking and no treatment for boundary crossing)
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test. The simulation fails into the second cycle of oscillations. The cause of failure is 

the pressure spikes that occur and apparent from the driving force in Figure 3-10 as 

the liquid-gas interface moves across the cell boundaries. 

These simulations demonstrate their significance to the testing of interface track-

ing methods as they magnify the troubles hidden in results which otherwise might be 
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FIGURE 3-9. Water level of the oscillating manometer (simulated 
with the level tracking and no treatment for boundary crossing)
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FIGURE 3-10. The net force on the fluid segment below 2.5m 
elevation of the manometer arms (simulated with the level tracking and no 

treatment for boundary crossing)
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regarded as minute details. This oversight has often been the case in the past. For 

instance, the simulations of the fill and drain test would not reveal these troubles had 

they been simulating a rising and falling water level ten times slower. Figure 3-11, 

which contrasts Figure 3-6, demonstrates this point in which the pressures along the 

test pipe of the two-phase fill and drain test show no signs of trouble but very small 

spikes that can be regarded acceptable.

As it is evident from these simulations, a special care must be given to a solution 

method modified by the level tracking method, which is described in Equations (3-1) 

to (3-33), to counter for situations when liquid-gas interfaces cross over cell bound-

aries.

Level Crossing Cell Boundaries
The reason why the previous section makes no attempt to improve the solution in 

situations when levels crossing cell boundaries is to emphasize strongly the impor-

tance of special care given to these situations in order to counter for the adverse 

FIGURE 3-11. Pressures of the “prolonged” two-phase fill and drain test 
(simulated with the level tracking and no treatment for boundary crossing)
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imprint of level crossing. This section discusses in detail the special care that must be 

given to the solution method of TRAC to achieve a robust method of level tracking. 

Although some discussion detailing the steps to modify the semi-implicit method will 

be unique for TRAC, most of its substance is applicable to similar methods of solu-

tion for the six-equation model.

First, the method should determine when the liquid-gas interface will cross the 

cell boundary. Equations (3-1) to (3-33) are applied to search and locate liquid-gas 

interfaces at the end of time steps. Once a liquid-gas interface is located, a critical time 

step size is projected for an interface to cross the cell boundary in the direction of its 

propagation based on its current location and velocity.

(3-34)

This critical time step size is then compared to the next time step size to determine 

whether the interface will cross the cell boundary at the end of the new time step and 

a new variable is defined to flag the direction of interface crossing across the cell 

boundary.

(3-35)

The root causes of the troubles reported in the previous section were not well rec-

ognized at the time when the level tracking method of TRAC-BWR was developed 
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and later incorporated into TRAC. Nevertheless, some attempts were made to ease 

the adverse effects of level crossing cell boundaries. The level tracking method of 

TRAC-BWR forced an exchange of liquid and gas phases between the two cells adja-

cent to a boundary at time steps when it is determined that a level will cross the 

boundary:

 and (3-36)

The sole purpose of exchanging liquid and gas between the two cells adjacent to a 

boundary, given by Equations (3-36), was to prevent the interface location from oscil-

lating between the two cells. An oscillation of this kind was thought to be the cause of 

pressure spikes. Figure 3-1 and Figure 3-2 are the proof of failure of this ad hoc 

αj+1 αj+1 δα+−→ αj αj
Volj+1 ρl j+1, ρg j+1,–( )

Volj ρl j, ρg j,–( )
--------------------------------------------------------δα±→

FIGURE 3-12. The stratified liquid-gas interface crossing a cell boundary
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approach. There is absolutely a need for a better and more systemic approach to deal 

with the root cause of troubles associated with levels crossing cell boundaries.

Let us first consider a situation where a rising liquid-gas interface is about to cross 

a cell boundary. Figure 3-12 pictures the interface near a cell boundary before and 

after it crosses the cell boundary. Three close-ups shown in bubbles are sequenced 

from back to the front. The close-up in the middle shows the interface before it 

crosses. The close-up in the foreground shows the interface after it crosses. The root 

cause of troubles associated with levels crossing cell boundaries is hidden in the 

switching of the void fraction at cell boundary, i.e. , from  to  after it is deter-

mined that the interface will be located in the cell above at the end of a time step.  

can be set to  either before or after the time step in which the interface crosses the 

cell boundary. Both choices can have adverse consequences. If  is set to  

before the interface crosses the boundary at j+1/2, the fluid enclosed by  will 

not be convected out of Cell j and be averaged into the fluid of Cell j at the end of 

time step. If  is set to  after the interface crosses, more fluid of void frac-

tion  by as much as  will be convected out of Cell j than there is 

actually enclosed by . One way to overcome this trouble is by reducing the time 

step to reasonably small sizes so that  would be very small. However, this option 

is not always acceptable since reducing the time step size can be too costly and cause 

other types of numerical instabilities. 

Another way is to recognize that the flux terms in Equations (3-17) to (3-22) con-

sist of two parts: 1) the fluid enclosed by  before the interface crosses, i.e. the 
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space enclosed by the dashed lines in the middle close-up, 2) the fluid within the 

region below interface after the interface crosses, i.e. the space enclosed by the dashed 

lines in the foreground close-up. So, the flux terms can be reformulated momentarily 

in terms of these two parts. To illustrate this approach, the gas mass flux term in 

(3-17) is used as an example below:

(3-37)

where  and  are the macroscopic gas densities above and below the 

interface, respectively. Equation (3-37) is not suitable to be implemented into the 

solution of two-field equations described by (1-31) to (1-31). First, let us rewrite 

(3-37) in terms of field velocities above and below the interface, i.e.  and , as 

follows:

(3-38)

where the following assumption is made.

(3-39)

Equation (3-39) implies that the momentum equations at j+1/2 must be set up to 

solve for the field velocities of the region below the interface. Next, variable  in 

(3-38) is eliminated in favor of other variables that contribute only to the left hand 

side of (1-36) by substituting the “jump condition” that relates the phasic velocities to 

the interface velocity. Starting from the continuity of the gas field across the liquid-gas 
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interface in a frame of reference moving with the interface velocity, one can derive the 

following jump condition at the discontinuity.

(3-40)

(3-41)

where the velocity in the frame of reference moving with the interface is given by 

 and the superficial velocity by . Assuming that the gas den-

sity is constant in the vicinity of the interface, (3-40) is rewritten in terms of macro-

scopic density.

(3-42)

Substituting the left hand side of (3-42) into (3-38) to yields,

(3-43)

The second term of (3-43) describes the total mass of gas that would be con-

vected across j+1/2 if  were zero at the time step when the interface is expected 

to cross the boundary at j+1/2. Since  can be zero only when the interface is 

located precisely at the cell boundary, which is an unlikely event, the first term of 

(3-43) subtracts the extra mass convected due to this erroneous assumption.
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Equation (3-44) is obtained by performing a similar analysis to derive the equiva-

lent of (3-43) for the situation when the liquid-gas interface is crossing the boundary 

at j+1/2 from Cell j+1 to Cell j.

(3-44)

Equations (3-43) and (3-44) can then be combined into a final form that redefines 

the total flux of gas mass over time step :

(3-45)

where the volume correction for the gas field is defined as follows:

(3-46)

Equation (3-45) can be readily incorporated into the solution. Following the same 

analysis, the other flux terms are reformulated as follow:
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(3-48)

(3-49)

(3-50)

(3-51)

where the volume correction for the liquid field is given by:

(3-52)

In summary, the flux terms in Equations (1-15) to (1-18) are redefined by Equa-

tions (3-45), (3-47), (3-48), (3-49), (3-50) and (3-51) along with the volume correction 

given by Equations (3-45) and (3-46). By applying this correction to the flux terms, 

the level tracking method eliminates the erroneous fluxes induced by levels crossing 

cell boundaries. It should be noted that the above corrections apply only to the flux 

terms in the basic step, i.e. a liquid-gas interface should switch to the other cell at the 

end of a basic step if it is expected to cross a cell boundary. Therefore, no corrections 

are needed to the stabilizer step equations. If the void fractions at the end of a basic 

step do not evolve as expected and the liquid-gas interface remains in the same cell, a 
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time step back up is forced to restart the time step expecting that the interface will 

remain in the same cell.

There is one more detail that needs to be addressed for the cases where the void 

fraction below the interface is absolutely zero, i.e. no bubbles, before the numerical 

experiments with moving water levels can be simulated again. As indicated in CHAP-

TER 1, the solution method of TRAC switches to the mean equation set when the 

void fraction of a computational cell approaches to zero or one. When the liquid-gas 

interface is about to enter or leave a cell, the solution should determine whether it 

should switch to the mean equation set and reset the void fraction to zero or one. 

Otherwise, the iterative solution fails to converge when interfaces cross across cell 

boundaries prompting a time step size reduction and the backup of a time step. The 

following equation resets the void fraction into the first iteration of the semi-implicit 

solution.

(3-53)

There is no better way to demonstrate the success of the approach outlined in this 

section, which allows water levels cross cell boundaries without causing any troubles, 

than simulating the rising/falling water level and the oscillating manometer tests 

again. Significant improvements stand out immediately when the new results are com-

pared to the results presented in the previous section. Figure 3-13 shows the cell void 

fractions along the test pipe of the single-phase rising and falling level test. It is evi-

dent from this figure that the void fraction of a cell becomes 1.0 as the liquid-gas 

αj
n+i

i 0=

0.0 ,  if  
αj

n ωg j-1/2, ∆t ωg j+1/2, ∆t–( )+ 0=

XL j+1/2, 0>



1.0 ,  if   
αj

n ωl j-1/2, ∆t ωl j+1/2, ∆t–( )– 0=

XL j-1/2, 0<













=

95



interface descends to the lower adjacent cell. Previously shown in Figure 3-7, the close 

up of void fractions revealed that a fragment of liquid would be left behind as the 

interface descended into the lower cell. The spike changes in cell pressures of the 

same test pipe, previously seen in Figure 3-8, are also gone in Figure 3-14. The two-

phase fill and drain test also shows none of the troubles that were reported in the pre-

FIGURE 3-13. Void fractions of the single-phase fill and drain test (simulated 
with the level tracking method)
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FIGURE 3-14. Pressures of the single-phase fill and drain test (simulated with 
the level tracking method)
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vious section. For example, the troubling cell void fractions from 0 to 5 seconds seen 

in Figure 3-5 are no longer present in Figure 3-15. Previously, the cell void fractions 

approached to zero which was well below the expected value of void fraction for the 

bubbly mixture of liquid and air simulated in this experiment. The cell pressures 

reported previously for the same test in Figure 3-6 suffered from spike changes and 

oscillations as the water level crossed the cell boundaries. The cell pressures shown in 

FIGURE 3-15. Void fractions of the two-phase fill and drain test (simulated 
with the level tracking method)
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FIGURE 3-16. Pressures of the two-phase fill and drain test (simulated with 
the level tracking method)
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Figure 3-16 are clean and from these spike changes and oscillations. It should be 

noted that the sudden drop in cell pressures as the bubbly mixture of liquid and gas 

reverses direction is due to the fluid acceleration in the opposite direction of gravity.

The next test simulated in this section is the oscillating manometer. As shown in 

Figure 3-9 and Figure 3-10, the solution method with the level tracking failed to simu-

late this test prior to the additional considerations made for the liquid-gas interface 

FIGURE 3-17. Water level of the oscillating manometer (simulated with the 
level tracking method)
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FIGURE 3-18. The net force on the fluid segment below 2.5m elevation of 
the manometer arms (simulated with the level tracking method) 
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crossing the cell boundaries. The leading cause of this failure to simulate the oscillat-

ing manometer was the pressure spikes caused by the interface crossing cell bound-

aries. Figure 3-18 shows none of these pressure spikes. Thus, the water level of the 

manometer arm oscillates without any sign of decay as expected in Figure 3-17. Fur-

ther, the simulated cell pressures below the oscillating water level in Figure 3-19 com-

pare almost perfectly to the pressures predicted analytically in Figure 2-17. These 

results for the oscillating manometer test are as close as a discrete solution can be to 

the analytical solution for the oscillating manometer, which is a point that demon-

strates the success of the approach outlined in this section to propagate interfaces 

across cell boundaries.

Corrections to The Closure Models
The modifications to the field equations and the extra measures taken to ensure 

that the water levels cross the cell boundaries without harming the solution are not 

sufficient alone for a successful level tracking method. Although it was not discussed 

in the previous sections, a correction was necessary to the definition of the interfacial 

FIGURE 3-19. Pressures along the oscillating manometer arm (simulated with 
the level tracking method)
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drag coefficient in terms of fluid properties at a cell boundary when a liquid-gas inter-

face was present in either cell adjacent to the boundary. This correction to the interfa-

cial drag coefficient is explained here along with another correction to the interfacial 

heat transfer coefficient that is necessary to simulate the condensation test described 

in CHAPTER 2.

Interfacial Drag
Let us first consider the interfacial drag coefficient,  in (1-12). This coefficient 

relates the drag force between the separated field to the relative velocity of one field 

to another. Therefore, it is a strong function of the flow regime The void fraction that 

is used to determine the flow regime for any given staggered cell (see Figure 3-4) is an 

average of void fractions from half-cells that make up the staggered cell. As empha-

sized in discussions on modifications to the momentum equations, the use of an aver-

age void fraction for the entire staggered volume is not consistent with the 

corrections made to the flux terms of conservation equations. The conclusion from 

these discussions is that the balance of forces acting on the fluid should represent the 

conditions prevailing at cell boundaries, i.e. the center of staggered cell. In view of this 

Ci

FIGURE 3-20. Interfacial drag coefficients at cell boundaries of the 
single-phase fill and drain test (simulated with the level tracking method)
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conclusion, the interfacial drag coefficient in (1-12) is evaluated in terms of fluid con-

ditions that prevail at the cell boundary when a liquid-gas interface is present in either 

of cells adjacent to the boundary.

(3-54)

Figure 3-20 shows the interface drag coefficients at cell boundaries (i.e. cell faces) 

along the test pipe of the single-phase rising and falling test. The sharp change in the 

drag coefficient is expected as the water level crosses the cell boundaries. It should be 

noted here that it is a common practice among the methods like semi-implicit to 

impose limits on the rate at which drag coefficients change. Such limits are set to pre-

vent numerical instabilities due to explicit nature of these coefficients. In the case of 

an interface crossing the cell boundary, however, no limit should be imposed on the 

interfacial drag coefficient since a sharp change is expected and the remainder of 

equations are already preconditioned to account for sharp changes and to remain sta-

Ci j+1/2,

C αE j+1/2,( )    ,    if  λE j+1/2, 0≠

C α〈 〉 j+1/2( )    ,    if  λE j+1/2, 0=



=

FIGURE 3-21. Interfacial drag coefficients at cell boundaries of the 
two-phase fill and drain test (simulated with the level tracking method)
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ble. Contrary to the other cases, imposing any such limit renders the solution unstable 

in this case.

The interfacial drag coefficients at cell faces along the test pipe of the two-phase 

rising and falling test exhibit sharp changes, as expected, as the mixture level crosses 

the cell boundaries. In addition to the expected sharp changes, the interfacial drag 

coefficients in Figure 3-21 also show how strongly the drag coefficient depends on 

the void fraction that prevails at the cell boundary along with the relative motion of 

fields against each other. In this figure, the decreasing drag coefficient at a cell bound-

ary realizes the slight depression of void fraction in the adjacent cells, already seen in 

Figure 3-15, as the column of bubbly liquid and gas mixture rises above a cell bound-

ary. This behavior is physically sensible since the void fraction of a bubbly liquid-gas 

mixture is expected to decrease under an increasing weight of the rising mixture col-

umn.

Interfacial Heat and Mass Transfer
The closure model for the interfacial heat transfer (IHT) between the liquid and 

gas fields must account for the presence of water levels in computational cells. A brief 

description of the IHT model in TRAC is therefore appropriate here before discuss-

ing how the IHT model should be adjusted. The following two equations describe the 

heat transfer to and from liquid and gas at the phase interface.

(3-55)

(3-56)

qg qig qdg+=

Ps
P
-----HCHTI Tg Tsv–( )

Pa
P
------HCHTA Tg Tl–( )+=

ql qil qdl+=

HALVE Tl Tsv–( ) HALV Tl Tsat–〈 〉†+[ ]
Pa
P
------HCHTA Tl Tg–( )+=
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where

. (3-57)

In the above equations,  is the steam partial pressure,  the non-condensable par-

tial pressure,  the total pressure (i.e. ),  the saturation temperature at the 

steam partial pressure, and  the saturation temperature at the total pressure. 

Equation (3-55) assumes that the gas field is a homogeneous mixture of water vapor 

and non condensable gas in thermodynamic equilibrium. The first term in (3-55) 

accounts for heat transfer to or from the interface ( ) and is converted to or 

released as latent heat through phase change. The second term in (3-55), which has 

the  multiplier, is the direct sensible heat exchange between the liquid and the 

gas fields. Similarly, the first term in (3-56) corresponds to the sensible heat trans-

Tl Tsat–〈 〉†
0 if  Tl Tsat≤

Tl Tsat– if  Tl Tsat>



=

Ps Pa

P Ps Pa+ Tsv

Tsat
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FIGURE 3-22. Interfacial HT terms designated for a computational 
volume with the stratified liquid-gas interface
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ferred to or from the interface, which is converted to or released as latent heat. The 

second term in (3-56) is the direct sensible heat exchange between the liquid and the 

gas fields. It should be noted that the liquid to interface term has two heat transfer 

coefficients,  and , for condensation and evaporation. Evaporation 

occurs if  and flashing occurs if . Equations (3-55) and (3-56) 

are added to calculate the total rate of heat exchange at the phase interface where the 

direct sensible heat transfer terms,  and , cancel out.

(3-58)

When there is a water level inside a computational cell, the IHT coefficients must 

be determined for each region above and below the level along with the coefficients 

that describe the heat transfer at the level as follows:

(3-59)

(3-60)

The heat transfer coefficients for regions above and below the interfaces can be 

easily determined using the same procedures that apply to an entire computational 

cells. However, it should be noted that the field temperatures are assumed identical 

above and below the interface. This is an assumption which may lead to significant 

errors. Another area of concern is the description heat transfer at the level. In the 

presence of a strong condensation, the temperature of stratified liquid near the level 

may be very close to the saturation temperature, and thus, create a resistance to fur-

ther condensation. As this may sound like a subtle detail, it is a situation which should 

be considered very carefully and accounted for by the IHT terms “from” and “to” the 

HALV HALVE

Tsv Tl Tsat< < Tl Tsat>

qdg qdl

Vol hfg Γi⋅ qig qil+=

qg qig
 - qdg

 -+( ) qig
L qdg

L+( ) qig
+ qdg

++( )+ +=

ql qil
 - qdl

 -+( ) qil
L qdl

L+( ) qil
+ qdl

++( )+ +=
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saturation interface at the water level, i.e.  and . For the purpose of this thesis, 

these two terms will be determined using TRAC’s special treatment for the computa-

tional volumes that represent the accumulator or pressurizer of a nuclear plant while it 

is noted that evaluating these two terms accurately requires an investigation of its 

own. 

The results from the repeated condensation test, after the corrections in (3-59) 

and (3-60) are incorporated into the interfacial heat transfer model, demonstrate sig-

nificant improvements to the simulation. First, the cell pressures along the test pipe 

show none of the spikes and other problems that had been recorded previously in 

Figure 2-26 and Figure 2-27. Previously, this test was simulated without and with the 

water packing model of TRAC to illustrate the difficulty of simulating this test. A 

comparison of the required number of time steps as a function of the simulation time 

from the two simulations in Figure 2-30 had revealed a limited success with the water 

packing. When the water packing model of TRAC was engaged, the total number of 

time steps was reduced from 3000s to just below 1000. The adjustments made to the 

qig
L qil

L

FIGURE 3-23. Pressures along the condensation test pipe (simulated with 
the level tracking method)
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IHT model reduces the total number of time steps to 500. Figure 3-24 compares the 

number of time steps required to simulate the condensation test with the standard 

solution, with the solution aided by the water packing model, and with the solution 

improved by the level tracking method. It is clear from Figure 3-24 that no additional 

time steps are needed as the moving front crosses the cell boundaries when the level 

tracking method is engaged. The time step number as function of simulation time 

from the water packing exercise is compared to the repeated simulation following the 

changes to IHT in Figure 3-24 where the total number of time steps is reduced to 

500. Figure 3-24 shows that the solution spends no extra time steps as the moving 

water level fills up the cells with liquid water. This improvement is expected since the 

water packing model is a remedy for troubles after a cell is already “packed” while the 

level tracking method predicts the “packing” before it happens and adjusts the initial 

conditions of a time step to avoid the “packing.”

As discussed in CHAPTER 2, the superheated steam is withdrawn into the test 

pipe at the top to replenish the steam being condensed at it meets the subcooled 

water at the interface. Previously, large rates of steam flow were recorded in Figure 

FIGURE 3-24. Comparison of total time step numbers of the condensation 
test simulations
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2-29 because of erroneous condensation taking place inside the test pipe. Figure 3-25 

shows that the steam flow rate is much smaller and orderly when the solution is 

improved by the level tracking method. However, an irregular change in condensation 

is observed as the water level traverses the “inlet” and “exit” computational volumes 

of the test pipe. This inaccurate behavior is due to an inconsistent treatment of the 

FIGURE 3-25. Steam flow at the top of the condensation test pipe 
(simulated with the level tracking method)
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FIGURE 3-26. Liquid temperatures along the condensation test pipe 
(simulated with the level tracking method)
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end cells of one-dimensional flow segments defined within TRAC, and not due to the 

level tracking method. 

One of difficulties stated for this exercise was the added complexity due to the 

build-up of a saturated layer of liquid at the tail of the moving water level. As this layer 

builds up, it should continuously decrease the rate at which the steam condenses at 

the surface. While there is no assurance yet for the accuracy of TRAC’s ability to pre-

dict the condensation at the interface, a slight and gradual decrease in the condensa-

tion is observed as the water level traverses the “interior” cells of the test pipe. This is 

a result of gradual increase in liquid temperatures near the interface (see Figure 3-26), 

that reflects the build up of a warmer liquid layer. While a comparison of the liquid 

temperatures in Figure 3-26 to the temperatures previously recorded in Figure 2-28 

leaves no doubt about the improvements to TRAC realized by the level tracking 

method, it is extremely important to assess TRAC’s ability to predict the interfacial 

heat transfer rate at the surface of liquid-gas interfaces by simulating an experiment 

with available data. The desired capability for TRAC is to predict the “correct” rate of 

condensation and the build-up of warmer liquid layer only due to the IHT at the sur-

face of the water level.
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CHAPTER 4 Tracking Water Levels in 
Three-Dimensional Flows
The numerical experiments in CHAPTER 2 clearly demonstrate the need for 

a robust method in TRAC to handle the moving water levels when the flow is 

simulated using three-dimensional field equations. The troubles of TRAC’s solu-

tion method certainly applies to most solution methods of the same class seen in 

other TH codes. There is a viable cure for these troubles. Modifications to 

TRAC’s one-dimensional field equations described in CHAPTER 3 demonstrate 

that a robust method for tracking water levels is attainable. The results also prove 

that there is a strong correlation between the successful simulations of the 

numerical experiments presented in CHAPTER 3, and the consistency within the 

modifications made to the field equations to achieve this success. This correlation 

reemphasizes the already known fact that half measures do not produce satisfac-

tory results when the field equations are modified to augment the solution meth-

ods of TH codes. As proven by the results presented in CHAPTER 3, this 

argument certainly holds true for the changes made to the field equations whose 

purpose is to account for the divided nature of computational volumes that con-

sist of water levels. Considering the full implications of extending the modifica-

tions to the field equations becomes even more critical to attain a robust method 

that works for the three-dimensional field equations of TRAC.
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The picture of a computational volume that consists of two sub-volumes, each 

with its own distinct flow topology, separated by an interface, suits well the use of 

one-dimensional field equations to simulate vertical two-phase flows. When the liq-

uid-gas interface is confined into a computational volume, no assumption needs to be 

made with respect to its surface topology or the evolution of its shape. Approximat-

ing the state of fluid inside the regions above and below the interface is sufficient to 

redefine the fluid motion across cell boundaries. Redefining the fluid motion hence 

stops the inadvertent flux of quantities across a cell boundary from the sub-volume 

on the opposite side of a divided cell, i.e. the region below an interface for the upper 

cell boundary and the region above an interface for the lower cell boundary. However, 

it becomes necessary to assume a shape for the interface as the evolving conditions 

inside a computational volume set the interface on a path to cross across a cell bound-

ary. Assuming that the liquid-gas interface is simply a flat surface reduces the interface 

into a moving point of discontinuity along the one-dimensional axis of flow and 

allows the tracking method to propagate it instantly across a cell boundary. The pre-

sentation in CHAPTER 3 proves that this approach works well for TRAC’s one-

dimensional field equations. However, it is critical to develop a rigorous understand-

ing of how this approach works so well before it can be extended for vertical flows 

simulated using three-dimensional field equations.

Redefining the gas fraction of a fluid (i.e. void fraction) convected across the 

boundaries of a vertical cell that consists of a water level is a direct and efficient way 

to stop the inadvertent flux of quantities, i.e. Equations (3-15) and (3-16). However, 

these newly defined void fractions across cell boundaries must be propagated to every 

applicable term in the field equations in order to maintain the consistency within the 

field equations. While it is relatively straightforward to maintain this consistency in 

TRAC’s one-dimensional field equations, repeating the same success with its three-

dimensional field equations is a more daunting task. Figure 4-1 compares the picture 
110



of two vertical flow models. The model on the left is a section of the one-dimensional 

fill and drain test pipe while the one on the right is a section of the two-dimensional 

fill and drain test pipe. Assuming a flat shape for the liquid-gas interface suits well the 

one-dimensional model since the fluid motion is modified only at Junctions j-1/2 and 

j+1/2. However, the flat shape assumption requires that additional details be worked 

out before it can be implemented in the three-dimensional model. For instance, one 

must ensure that the modifications to stop the inadvertent flux of quantities in the Z-

direction do not have unintended consequences on the fluid motion in the lateral 

directions (i.e. in the R-Θ plane). Therefore, a set of rules must be developed which 

can form the basis for modifications to the field equations in the R- and Θ-directions. 

These rules should help the fluid motion in the R-Θ plane to recognize the discontin-

uous nature of the fluid in the Z-direction. Thus, the field equations in the R- and Θ-

directions can remain consistent while the field equations in all three directions are 
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FIGURE 4-1. 1D and 3D computational volumes with the liquid-gas 
interface
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modified to account for the presence of a liquid-gas interface with an “assumed” flat 

shape.

A road map to a robust level tracking method for TRAC’s three-dimensional field 

equations begins with implementing the modifications of the one-dimensional field 

equations, already described in CHAPTER 3, into the Z-direction component of the 

three-dimensional field equations. Thus, the modifications to the one-dimensional 

field equations will form the basis for modifications to the three-dimensional field 

equations. Equations (3-1) to (3-12) will continue to be used to determine the condi-

tions that favor the presence of a liquid-gas interface in a three-dimensional volume. 

Next, the field equations in the R- and Θ-directions will be modified to account for 

the discontinuous nature of the fluid in the Z-direction.

Modifications to the Z-Direction Field Equations
Once the level tracking method (Equations (3-1) to (3-12)) determines that a 

stratified liquid-gas interface is present in a three-dimensional computational volume, 

a new variable, , is defined to specify the distance between the liquid-gas interface 

(with an assumed flat shape) and the cell boundaries in the Z-direction. A second 

variable, , is defined to specify the void fraction of the two-phase fluid to be con-

vected across the axial boundaries.

(4-1)

λzE

αzE

λ̃zE i j k+1/2, ,
n+1

L̃i j k+1, ,
n+1

, if  λ̃i j k+1, ,
n+1

= 1

L̃i j k, ,
n+1

∆zk– , if  λ̃i j k, ,
n+1

= 1

0 , otherwise







=
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where  is set to one to flag the existence of a water level in cell i,j,k or to zero 

when there is no level water level. It should be noted that this variable is based on the 

projected location of the liquid-gas interface at time step n+1.

(4-2)

(4-3)

In the above equations,  is the void fraction at a boundary defined as an average of 

void fractions computed for the cells adjacent to a boundary.

The Z-Direction Components of Mass and Energy Equations
Averaging of the properties at the axial faces, i.e. Faces 5 and 6, are modified by 

redefining the flow areas of these cell faces in Equation (1-75) as follows.

(4-4)
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where m =5,6 and the new definition of flow area in the gas and liquid terms accounts 

for the presence of an interface in either of axial cells adjacent to Faces 5 and 6.

For m =1,2,3,4, the flux terms are defined by Equation (1-75) until the flux terms of 

these faces are modified.

(4-5)

(4-6)

(4-7)

(4-8)
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The above equations redefine the Z-direction component flux terms in the mass 

and energy equations of the basic step. However, these corrections to the flux terms 

in the basic step equations do not work for the flux terms in the stabilizer step equa-

tions as the flux terms in these equations are formulated in terms of  from the 

basic step, not  of the previous time step. Similar to Equations (3-25) and (3-26) of 

the one-dimensional field equations, the following equations are used to adjust the 

“phasic” flow areas at Faces 5 and 6 so that the flux terms of these faces in the stabi-

lizer step equations remain consistent with the solution to the basic step equations.

(4-9)

(4-10)

(4-11)
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(4-12)

Redefining the macroscopic quantities that are convected across Faces 5 and 6 of 

three-dimensional cells curtails the otherwise inadvertent flux of quantities in the 

Z-direction of the flow. As they were for the one-dimensional field equations, the 

modifications above are necessary but not sufficient for a successful method of level 

tracking. Liquid and gas velocities in Equation (4-4) must also be adjusted to agree 

with the prevailing fluid conditions at Faces 5 and 6.

Just as it was important to counter the situation when a liquid-gas interface 

crossed over a cell boundary, the same special care must be given to the Z-direction 

component of the field equations in order to achieve a robust method of level track-

ing. 

First, a critical time step size must be projected for an interface to cross the cell 

boundary in the direction of its propagation based on its current location and velocity.

(4-13)

This critical time step size should then be compared to the next time step size to 

determine whether the interface will cross the cell boundary within the new time step 
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and a new variable is defined to flag the direction in which the interface is about to 

cross a cell boundary.

(4-14)

The following equations, which are analogous to Equations (3-34) to (3-44), are 

applied to redefine the flux terms of Face 6 in a time step when a liquid-gas interface 

is expected to cross this cell boundary.

(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

(4-20)

where the volume correction for the liquid and gas fields are given by:
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(4-21)

(4-22)

As argued for the one-dimensional flows in CHAPTER 3, these corrections are 

applied only in the basic step and the back up of a time step is enforced if the void 

fractions of a basic step do not evolve as expected letting the interface remain in the 

same cell. The initial guess for the void fraction of a cell must also be reset in the basic 

step when an interface leaves or enters it.

(4-23)

The Z-Direction Momentum Equations
The same argument made for modifications to the momentum equations of the 

one-dimensional field equations is valid here for modifications to the Z-direction 

momentum equations. Corrections to Equation (1-66) and its counterpart for the liq-

uid phase are needed to predict the change in fluid motion inside the region (either 

above or below an interface) that prevails across an axial cell face. 

First, the fluid inertia terms are redefined using the void fractions below and 

above an interface.
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(4-24)

(4-25)

Second, the pressure gradient term in (1-65) and its counterpart for the liquid 

field is redefined as

(4-26)

where the correction term is given by the following equation.

(4-27)

As argued for the one-dimensional stabilizer momentum equations, the pressure drop 

correction given in the above equation can not be applied to the Z-direction stabilizer 

momentum equations. The pressure drop correction for the Z-direction stabilizer 

momentum equations must be based on the “calculated” location of the liquid-gas 

interface at the end of a time step, i.e. , using an equation analogous to Equation 

(3-31).
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(4-28)

Third, the gradients of liquid and gas velocities across Faces 5 and 6 are set to 

zero based on an assumption that the changes in fluid velocity across the liquid-gas 

interface will not contribute to the pressure drop across these faces. The arguments 

made for Equations (3-29) and (3-30) are valid for the Z-direction momentum equa-

tions and the corrections to the axial momentum flux terms are given by the follow-

ing equations.

 when (4-29)

 when (4-30)

Lastly, the wall and the interfacial drag force terms in the Z-direction momentum 

equations must be evaluated in terms of the variables that describe the prevailing flow 

region (i.e. either the sub-region above or below a liquid-gas interface), i.e. for cell 

faces m =5,6

(4-31)
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The modifications to the field equations in the Z-direction were tested by simulat-

ing the oscillating manometer formed by two concentric cylinders shown in Figure 

2-21. While this version of the manometer is a two-dimensional model, it exercises 

only the Z-direction components of the three-dimensional field equations since there 

is no fluid flow in the R-direction. Therefore, it is an ideal test to exercise the modifi-

cations to the Z-direction component of the field equations described above.

FIGURE 4-2. Collapsed levels of the oscillating 2D manometer test (simulated 
with the level tracking method)
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FIGURE 4-3. Pressures along the arm of the 2D oscillating manometer
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Figure 4-2 compares the oscillating water level simulated by TRAC to the level 

predicted by Equation (2-6). Similarly, in Figure 4-3 and Figure 4-4, the pressures 

inside the outer ring of the 2D manometer and the net force acting on the segment of 

the fluid that occupies the space below 2.5m elevation of both arms simulated by 

TRAC are compared to the closed form predictions of Equations (2-10) and (2-11). 

All of these comparisons demonstrate the improvement made to TRAC by simply 

incorporating the level tracking method into its Z-direction component of the three-

dimensional field equations.

Modifications to the R- and Θ-Direction Components of the 3D Field 
Equations 

The next step for a robust method that works for truly three-dimensional flows is 

to factor the “assumed” discontinuous nature of the fluid in the Z-direction into the 

fluid motion defined in the R- and Θ-direction components of the field equations. 

There are many ways to accomplish this goal. Some of them can be very complex 

FIGURE 4-4. The net force acting on the fluid segment below 2.5m 
elevation of the 2D oscillating manometer
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approaches, e.g. the use of complex algorithms to determine a surface shape based on 

the distribution of fluid in adjacent computational volumes. However, the purposes of 

more complex approaches and the simplest of all, i.e. the flat shape surface, are to 

achieve the same goal in the end. That is to stop the inadvertent flux of quantities in 

the vertical direction. Those with long experience in developing models for TH codes 

have learned that the successful solutions to the problems of TH codes always come 

in as evolutionary ideas and incremental steps.4-1 Therefore, a flat shape for the liq-

uid-gas interface will be assumed here to develop the modifications for the R- and 

Θ-direction components of the field equations.

The R- and Θ-Direction Components of Mass and Energy Equations
While assuming a flat shape for the interface reduces it into a moving point of dis-

continuity in the Z-direction, it is still a flat surface in the (R-Θ) plane. The fluid 

motion in the lateral directions must be redefined based on the location of this flat 

surface with respect to the centers of computational volumes as the lateral motion of 

the fluid is defined on a grid that links these volume centers across the (R-Θ) plane. 

Simply, the fluid from the region above an interface should be convected out in the 

lateral directions if the center of a volume is above the interface, or the fluid from the 

region below an interface should be convected out if the center is below the interface. 

Similar to the void fraction defined at the cell boundaries in the Z-direction, i.e. , 

two new void fractions,  and , are introduced to define the void fraction of the 

fluid convected out of a three-dimensional volume in the lateral directions. Unlike 

, these two void fractions are not defined at the cell boundary and they are sub-

scripted with even integers.

αzE

αr αθ

αzE
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 (4-32)

(4-33)

Next, the above void fractions are used to define the “phasic” flow areas in Equa-

tion (4-4) for Faces 1 to 4.

(4-34)

(4-35)
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(4-36)

(4-37)

Analogous equations hold for the liquid flow areas. These equations redefine the flux 

terms in the mass and energy equations of the basic step. As before with the Z-direc-

tion component of the field equations, these corrections to the flux terms do not 

work for the flux terms in the stabilizer step equations as the flux terms in these equa-

tions are formulated in terms of  from the basic step, not  of the previous 

time step. Therefore, the “phasic” flow areas for Faces 1 to 4 must be readjusted to 

maintain the consistency of the stabilizer step equations with the corrections to the 

basic step equations.

(4-38)
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n+1

0>( )

A4
αθ i j+1 k, ,
αi j+1 k, ,

----------------------- , if λ̃zE i j+1 k-1/2, ,
n+1

0>( ) and Ṽg4
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(4-39)

(4-40)

(4-41)

After implemented, the above redefinition of the macroscopic quantities that are 

convected across Faces 1 to 4 curtails the inadvertent flux of quantities in the lateral 

directions from above and below a liquid-gas interface. However, these modifications 

further require that the liquid and gas velocities in Equation (4-4) for Faces 1 to 4 

must be adjusted to agree with the prevailing fluid conditions as well.

The R- and Θ-Direction Momentum Equations
Just as the Z-direction momentum equations are modified to predict the fluid 

motion inside the sub-region (i.e. above or below an interface) that prevails at a cell 

face, the R- and Θ-direction momentum equations must be modified to predict the 

changes in fluid motion across the grid that links the cell centers in the (R-Θ) plane. 
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αρg〈

1 α–( )ρl〈 〉2
n =
Otherwise, the liquid and gas velocities in Equation (4-4) will be inconsistent with the 

adjusted quantities (i.e. the quantities multiplied by the phasic flow areas) that they 

multiply. First, the fluid inertia terms are redefined using the void fractions below and 

above an interface. While the below equations describe the changes to the momentum 

equation of Face 2, analogous equations are applied to the momentum equations of 

Faces 1, 3, and 4.

(4-42)

(4-43)

Second, the pressure gradient term in (1-65) and its counterpart for the liquid 

field is redefined by Equation (4-44). While only the equation for Face 2 is given 

below to avoid repetition, analogous equations are applied to correct the pressure gra-

dient terms in the momentum equations of Face 1, 3, and 4.

(4-44)
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PLδ
where the correction term is given by the following equation

(4-45)

As discussed previously, the pressure drop correction given in the above equation 

does not work well for the R- and Θ-direction stabilizer equations. The pressure drop 

correction for the stabilizer momentum equations of these directions must be based 

on the “calculated” location of the liquid-gas interface at the end of a time step, i.e. 

.

And finally, the wall and the interfacial drag force terms in the R- and Θ-direction 

momentum equations are modified so that they are evaluated in terms of the variables 

that describe the prevailing flow region (i.e. either the sub-region above or below a liq-

uid-gas interface) at the center of computational volumes. This correction is consis-

tent with the “redefined” fluid motion in the lateral directions based on the location 

of the flat liquid-gas interface with respect to the centers of computational volumes as 

the lateral fluid motion is defined on a grid that links the volume centers across the 

(R-Θ) plane. For faces m=1,2,3, and 4, the following function redefines the drag 

terms in the R- and Θ-direction momentum equations.

(4-46)

2 i+1/2 j k, ,

PL6 i j k, ,δ , if L̃i j k, ,
n+1

0.5∆zk>( ) and L̃i+1 j k, ,
n+1

0=( )

PL6 i+1 j k, ,δ– , if L̃i j k, ,
n+1

0=( ) and L̃i+1 j k, ,
n+1

0.5∆zk>( )

PL6 i j k, ,δ PL6 i+1 j k, ,δ– , if L̃i j k, ,
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0.5∆zk>( ) and L̃i+1 j k, ,
n+1

0.5∆zk>( )

0.0 , otherwise







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Li j k, ,
n

fm

F αi j k, ,
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F αi j k, ,( )            , if  λzE i j k-1/2, , =0







=
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The success of the above modifications to the R- and Θ-direction components of 

the field equations will be measured by simulating the two- and three-dimensional 

versions of the fill and drain test described in CHAPTER 2. Each version of the test 

is repeated with the single-phase liquid and two-phase air-water mixture. The initial 

results obtained by simulating these tests with the standard solution method of TRAC 

revealed serious deficiencies of the standard approaches to solving the six-equation 

FIGURE 4-5. Void fractions of the 2D single-phase fill and drain test (simulated 
with the level tracking method)
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FIGURE 4-6. Pressures of the 2D single-phase fill and drain test (simulated 
with the level tracking method)
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model. A comparison of the void fractions in Figure 4-5 to the ones in Figure 2-8 

demonstrates the effectiveness of the level tracking in simulating the two-dimensional 

single-phase fill and drain test. Disparity between the void fractions of Cells 1 and 2 

(see Figure 2-7) at every VESSEL component level are no longer seen in Figure 4-5. 

Previously in Figure 2-8, the void fractions indicated that the liquid trail behind the 

descending water level was spread over Levels 4 to 7 during the drain phase of the 

FIGURE 4-7. Void fractions of the 2D two-phase fill and drain test (simulated 
with the level tracking method)
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FIGURE 4-8. Pressures of the 2D two-phase fill and drain test (simulated 
with the level tracking method)
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test, i.e. 7 seconds into the transient. While some disparity between Cells 1 and 2 of 

every level is expected since the fluid is injected into Cell 1 of Level 1 to make the test 

more challenging to simulate, the results shown in Figure 2-8 are not expected at all. 

Coupled with the problems in predicting void fractions were the pressure spikes and 

oscillations shown in Figure 2-9. Figure 4-6 shows none of these problems. A similar 

improvement is seen in Figure 4-7 and Figure 4-8 for the two-phase fill and drain test. 

FIGURE 4-9. Void fractions of the 3D single-phase fill and drain test (simulated 
with the level tracking method)
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FIGURE 4-10. Pressures of the 3D single-phase fill and drain test 
(simulated with the level tracking method)
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Both void fractions and pressures of this test exhibit none of the problems previously 

recorded in Figure 2-10 and Figure 2-11 respectively.

Next step in testing the modifications to the R- and Θ-direction components of 

the field equations was to simulate the three-dimensional fill and drain test (see Figure 

2-7). Again, Figure 4-9 and Figure 4-10 demonstrate the effectiveness of the level 

tracking in handling the discontinuous nature of the fluid in the Z-direction due to 

FIGURE 4-11. Void fractions of the 3D two-phase fill and drain test (simulated 
with the level tracking method)
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FIGURE 4-12. Pressures of the 3D two-phase fill and drain test (simulated 
with the level tracking method)
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the moving water level during the fill and drain phases of the test. Both figures are sig-

nificant improvement over Figure 2-12 and Figure 2-13 respectively. The most notice-

able improvement is seen in the void fractions of the two-phase version of the 

three-dimensional fill and drain test. A comparison of the void fractions in Figure 

4-11 to the almost “chaotic” void fractions in Figure 2-14 is a real measure for the 

success of the modifications to the three-dimensional field equations described in this 

chapter.

Interfacial Heat and Mass Transfer
The interfacial heat and mass transfer terms of the three-dimensional computa-

tional volumes must also be modified in the same way which the terms of the one-

dimensional computational volumes were described by Equations (3-59) and (3-60). 

The three-dimensional condensation test (see Figure 2-25) is the benchmark for mea-

suring the success of these modifications.

The simulated pressures along the three-dimensional pipe that consists of 80 

computational volumes (as opposed to the 10 volumes of the one-dimensional test 

FIGURE 4-13. Pressures along the 3D condensation test pipe (simulated 
with the level tracking method)
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pipe) exhibit the expected linear increase in Figure 4-13 as the cold water fills the test 

pipe. Previously in Figure 2-31, the pressures exhibited large spikes and oscillations. 

Even a special treatment for the “packed” cells4-2 could not eliminate these pressure 

spikes (see Figure 2-32). Clearly, the simulated pressures in Figure 4-13 constitute a 

significant improvement over the ones in both Figure 2-31 and Figure 2-32.

FIGURE 4-14. Liquid temperatures along the 3D condensation test pipe 
(simulated with the level tracking method)
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FIGURE 4-15. Comparison of total time step numbers of the 3D 
condensation test simulations
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The temperatures of 40 cells, i.e. 8 cells per level, are plotted in Figure 4-14. The 

temperatures at each level switch instantaneously from the temperature of the super-

heated gas above the liquid-gas interface to the temperature of the subcooled liquid 

below the interface. Unlike the temperatures recorded previously in Figure 2-33 for 

the simulation with the standard method of solution, the temperatures in Figure 4-14 

exhibit no signs of trouble as the liquid-gas interface fills up the cells at any given 

level. 

Another evidence for the trouble-free simulation of the three-dimensional con-

densation test is the total number of time steps required to complete the simulation. 

As shown in Figure 4-15, it takes little over 500 time steps for TRAC to finish the 

simulation, i.e. a time step size of 0.05 seconds on the average which is the recom-

mended time step size for this benchmark test.4-3
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CHAPTER 5 Summary and Conclusions
The purpose of this study was to develop a cure for thermal-hydraulic codes 

which suffer severely from their inability to handle moving water levels. First, a 

set of “thought” experiments was proposed. These tests were then simulated with 

a well-known solution method for the six-equation model, i.e. the Semi-Implicit 

and SETS methods (of the TRAC code). The results of these simulations revealed 

the shortcomings of TRAC’s standard solution method in computing fluid vol-

umes that consisted of water levels. Some results were bordering on an almost 

“chaotic” behavior (see Figure 2-14). Even after engaging a special model 

designed to alleviate the symptoms induced by moving water levels, the troubles 

in these benchmark simulations continued, i.e. the water packing option in TRAC 

(see Figure 2-27). The TRAC simulations of the numerical experiments were 

instrumental in unveiling the root cause of the symptoms, which was the solution 

method’s inability to recognize the divided nature of a computational volume 

when “stratified” liquid-gas interfaces were present.

Modifying the field equations to recognize the regions above and below a liq-

uid-gas interface in a “divided” computational volume was recognized as the 

strategy to develop a cure for this deficiency. This strategy required that the loca-

tion of a liquid-gas interface, the volumes of regions above and below it, and the 
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void fractions inside these regions be known at all times. Since the idea of tracking 

water levels was not new, the level tracking method of TRAC-BWR was incorporated 

into TRAC.† The crux of the cure was to modify the field equations systematically 

based on the whereabouts of a water level.

The field equations were modified in several steps. For instance, the modifications 

to the one-dimensional field equations of TRAC excluded the measures critical for 

precision handling of the event in which a water level crosses the boundary of a com-

putational volume. Repeating the simulations with the incomplete modifications to 

the field equations demonstrated the need for extreme care whenever the field equa-

tions had to be modified. While the intent was not a complete coverage of the past 

attempts to implement a level tracking method in TRAC, simulations of some numer-

ical experiments were also performed and presented here in an effort to put the spot 

light on the mistakes of these past attempts. Figure 5-1 and Figure 5-2 compares the 

†. The reactor safety code referred to as TRAC here is the US NRC Consolidated Thermal-hydraulics Code 
(a.k.a. TRAC-M), and the code referred to as TRAC-BWR is TRAC-BF1/MOD1 of US NRC.

FIGURE 5-1. A comparison of void fractions in Cell 4 during the “fill” 
phase of the single-phase fill and drain test from various simulations
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void fraction for Cells 4 and 7 of the fill and drain test pipe (see Figure 2-2) during the 

fill and drain phases simulated with the standard method of TRAC, the original level 

tracking in TRAC, and the new tracking method developed here. The accompanying 

pressures of these cells can be seen in Figure 3-1. The close ups in Figure 5-1 and Fig-

ure 5-2 revealed small amounts of gas trapped behind the ascending water level and 

the fragments of liquid trailing the descending level. Coupled with the modifications 

made to the pressure field by the original tracking method, these small errors mani-

fested themselves as sudden changes in cell pressures. This observation enforces the 

already known fact that half measures do not produce satisfactory results when the 

field equations are modified to augment the solution methods of thermal-hydraulic 

codes, and that one must consider the full implications of any change to the field 

equations. The method developed in this study owes its success to the attention it 

paid in details which is evident in the close ups of void fractions in Figure 5-1 and Fig-

ure 5-2.

The modifications to the three-dimensional field equations were implemented in 

steps as well. First, the Z-direction component of the field equations was modified 

FIGURE 5-2. A comparison of void fractions in Cell 7 during the “drain” 
phase of the single-phase fill and drain test from various simulations
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based on the changes made to the one-dimensional field equations. These modifica-

tions were tested immediately by simulating the two-dimensional version of the oscil-

lating manometer test (see Figure 2-21). Next, the “assumed” discontinuous nature of 

the fluid in the Z-direction was incorporated into the R- and Θ-direction components 

of the field equations. The results from the simulations repeated with the new method 

demonstrated significant improvements in TRAC’s ability to handle moving water lev-

els. These improvements can be judged best by comparing the “improved” void frac-

tions in Figure 4-11 to the almost “chaotic” void fractions in Figure 2-14 of the two-

phase fill and drain test conducted with an 8x10 noding of the test pipe (see Figure 

2-7).

It is recommended that TRAC’s ability to predict the interfacial heat transfer rate 

at the surfaces of liquid-gas interfaces be assessed by simulating experiments with 

available data. The desired capability for TRAC is to predict the “correct” rate of con-

densation and the build-up of warmer liquid layer at the surface of the water level in 

Figure 3-26.

The method presented here has been implemented in the US NRC Consolidated 

Thermal-hydraulic Code (a.k.a. TRAC-M).5-1 Some features of the method were also 

incorporated in RELAP5 which is the other thermal-hydraulic code of the US NRC. 

The measures to counter the water levels crossing cell boundaries were not available 

to the public and not implemented in RELAP5. Currently, an effort is underway to 

implement these features of the method in RELAP5.5-2 The Semi-Implicit methods 

of TRAC and RELAP5 are very common applications of the six-equation model. 

Therefore, the method developed in this study can be applied readily to the other 

thermal-hydraulic codes solving similar variations of the six-equation model such as 

ATHELET,5-3 CATHARE,5-4 and COBRA-TF.5-5
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Anyone attempting to implement this method must pay a close attention to the 

“time step” synchronization of the variables involved in implementing it, e.g. when a 

water level crosses boundaries between computational volumes or the centers of 

computational volumes. While it was not possible to include these “programming” 

details here, a careful programming to capture these details is utterly important for a 

successful implementation.

References

5-1. Aktas, B. “A Level Tracking Method for TRAC-M,” Infomration Systems 

Laboratories, Inc., ISL-NSAD-NRC-01-005 (December 2001).

5-2. Mortensen, G., personal communication.

5-3. ATHLETE reference

5-4. Bestion, D., et al., " Methodology, Status and Plans for Development and 

Assessment of CATHARE code," OECD/CSNI Workshop on Trans. Ther-

malhydr. and Neutr. Code Req., Annapolis, USA, Nov., (1996).

5-5. Thurgood, M.J, George, M.J., “COBRA/TRAC – A Thermal-Hydraulic Code 

for Transient Analysis of Nuclear Reactor Vessels and Primary Coolant Sys-

tem,” NUREG/CR-3046, Vol. 1-4, (March 1983).
140



APPENDIX A Implementation of the Semi-
Implicit Method in TRAC-M
In the following pages, a Mathematica session derives the one-dimensional field 

equations of the Semi-Implicit method as they are implemented in TRAC-M. The 

variable names used here match the Fortran variables in TRAC. For those who are not 

familiar with the Fortran source code of TRAC, the equations provided in the follow-

ing pages can bridge the gap between the Semi-Implicit method presented in CHAP-

TER 1 and its implementation in Subroutine TF1DS of TRAC.

Mathematica is a software developed by Wolfram Research, Inc 

(see http://www.wolfram.com for further information).
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h xn, yn, zn

n zn 1
z ;

0 ,

1 pj ;

j g pj
i, Tg,j

i

i Tg,ji 1
Tg,j ,

,j ,

pj
i, Tg,j

i

pji 1
pj

eg pj
i, Tg,j

i

i Tg,ji 1
Tg,j ,
Various substitutions and linearized fluid quantities

In[266]:= taylorExp h_ x_n 1, y_n 1, z_n 1

h xn, yn, zn
x h xn, yn, zn

n xn 1
x

y h xn, yn, zn

n yn 1
y

z

cancel2nd x_ y_ 0, x_ x_ 0, x_ x_ y_

x_ y_ y_ 0, x_ x_ x_ 0 ;

subKdelta Tg_,j_ Tg,j, j_ j, pj_ pj ;

deldp pj_ 1 pj_ pj 1 pj , pj_ pj_ 1 pj

linearQuantities

g j_
n 1

g j
i

g pj
i, Tg,j

i
j j

i pj g pj
i, Tg,j

i

i pji 1
pj j

i Tg,

1 l j_
n 1 1 l j

i
l pj

i, Tl,j
i

j

1 j
i pj l pj

i, Tl,j
i

i pji 1
pj 1 j

i Tl,j l pj
i, Tl,j

i

i Tl,ji 1
Tl

g eg j_
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g eg j
i

g pj
i, Tg,j

i eg pj
i, Tg,j

i
j

j
i eg pj

i, Tg,j
i pj g pj

i, Tg,j
i

i pji 1
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i pj eg
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i eg pj
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i Tg,j g pj
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1 l el j_
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1 j
i el pj
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i pj l pj
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,j
i

,j
i

Tl,j
 

1 j
i

l pj
i, Tl,j

i pj el pj
i, Tl,j

i

i pji 1
pj 1 j

i el pj
i, Tl

Tl,j l pj
i, Tl,j

i

i Tl,ji 1
Tl,j 1 j

i
l pj

i, Tl,j
i Tl,j el pj

i, Tl

i Tl,ji 1

;

newTime j_
n 1

j
i

j , pj_
n 1 pj

i pj ;

xvset g,j_ g j
n 1 1 g j

n ,

1 l,j_ 1 l j
n 1 1 1 l j

n,

e g,j_ g eg j
n 1 1 g eg j

n ,

1 e l,j_ 1 l el j
n 1 1 1 l el j

n ,

j_ j
n ,

1 j_ 1 j
n ;

Cell-edge flux quantities: mass, energy and volume
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j 1
n 1 ;

pj
n 1 ;

1 2 pj
n 1, pj 1

n 1 ;

j 1 2 pj 1
n 1, pj

n 1 ;
n 1, pj 1

n 1 ;

1
n 1, pj

n 1 ;

l,j 1 2 pj
n 1, pj 1

n 1 ;

Vl,j 1 2 pj 1
n 1, pj

n 1 ;

j 1
n 1 ;

, pj
n 1 ;
  

In[2]:= g,j 1 2 wg,j 1 2 g,j 1 wg,j 1 2 g j 1
n Aj 1 2 Vg,j 1 2 pj

n 1, p

g,j 1 2 wg,j 1 2 g j 1
n 1 wg,j 1 2 g,j Aj 1 2 Vg,j 1 2 pj 1

n 1,

l,j 1 2 wl,j 1 2 1 l,j 1 wl,j 1 2 1 l j 1
n Aj 1 2 Vl,j

l,j 1 2 wl,j 1 2 1 l j 1
n 1 wl,j 1 2 1 l,j Aj 1 2 Vl,

g,j 1 2 wg,j 1 2 e g,j 1 wg,j 1 2 g eg j 1
n Aj 1 2 Vg,j 1 2 pj

g,j 1 2 wg,j 1 2 g eg j 1
n 1 wg,j 1 2 e g,j Aj 1 2 Vg,j 1 2 pj

l,j 1 2 wl,j 1 2 1 e l,j 1 wl,j 1 2 1 l el j 1
n Aj 1 2 V

l,j 1 2 wl,j 1 2 1 l el j 1
n 1 wl,j 1 2 1 e l,j Aj 1 2

g,j 1 2 wg,j 1 2 j 1 wg,j 1 2 j 1
n Aj 1 2 Vg,j 1 2 pj

n 1, pj 1
n 1 ;

g,j 1 2 wg,j 1 2 j 1
n 1 wg,j 1 2 j Aj 1 2 Vg,j 1 2 pj 1

n 1, pj
n 1 ;

l,j 1 2 wl,j 1 2 1 j 1 wl,j 1 2 1 j 1
n Aj 1 2 Vl,j 1 2 pj

n 1, p

l,j 1 2 wl,j 1 2 1 j 1
n 1 wl,j 1 2 1 j Aj 1 2 Vl,j 1 2 pj 1

n 1

TRAC variable substitutions
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vdpx,j 1 2 ;

Pj ;

,

vj 1 2 ,

1
n faArlj 1 2 ,

j_
n faArlj 1 2 ,

faArevj 1 2 ,

faArevj 1 2 ,

l j_ 1
n faArelj 1 2 ,

l l j_
n faArelj 1 2 ,

,

aLiqFracj 1 2 ,

aLiqFracj 1 2 ;
 

In[3]:= tracDp t V
x_,j 1

2

0,1
pj 1
n , pj

n dvdpx,j 1 2, t V
x_,j 1

2

0,1
pj
n, pj 1

n d

tracDonor1 Aj_ wg,j_ faWvMj ,

Aj_ 1 wg,j_ faWvPj , Aj_ wl,j_ faWlMj , Aj_ 1 wl,j_ faWl

tracDonor2 faWvMj_ 1 2 g j_
n faWvPj_ 1 2 g j_ 1

n faArvj 1 2

faWvMj_ 1 2 g j_ 1
n faWvPj_ 1 2 g j_

n faAr

faWlMj_ 1 2 1 l j_
n faWlPj_ 1 2 1 l j_

faWlMj_ 1 2 1 l j_ 1
n faWlPj_ 1 2 1 l

faWvMj_ 1 2 eg g j_
n faWvPj_ 1 2 eg g j_ 1

n

faWvMj_ 1 2 eg g j_ 1
n faWvPj_ 1 2 eg g j_

n

faWlMj_ 1 2 1 el l j_
n faWlPj_ 1 2 1 el

faWlMj_ 1 2 1 el l j_ 1
n faWlPj_ 1 2 1 e

faWvMj_ 1 2 j_
n faWvPj_ 1 2 j_ 1

n faVapFracj 1 2 ,

faWvMj_ 1 2 j_ 1
n faWvPj_ 1 2 j_

n faVapFracj 1 2

faWlMj_ 1 2 1 j_
n faWlPj_ 1 2 1 j_ 1

n f

faWlMj_ 1 2 1 j_ 1
n faWlPj_ 1 2 1 j_

n f
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In[4]:= g,j 1 2 Collect Distribute g,j 1 2 . xvset . tracDonor1, ;

g,j 1 2 Collect Distribute g,j 1 2 . xvset . tracDonor1, ;

l,j 1 2 Collect Distribute l,j 1 2 . xvset . tracDonor1, ;

l,j 1 2 Collect Distribute l,j 1 2 . xvset . tracDonor1, ;

g,j 1 2 Collect Distribute g,j 1 2 . xvset . tracDonor1, ;

g,j 1 2 Collect Distribute g,j 1 2 . xvset . tracDonor1, ;

l,j 1 2 Collect Distribute l,j 1 2 . xvset . tracDonor1, ;

l,j 1 2 Collect Distribute l,j 1 2 . xvset . tracDonor1, ;

g,j 1 2 Collect Distribute g,j 1 2 . xvset . tracDonor1, ;

g,j 1 2 Collect Distribute g,j 1 2 . xvset . tracDonor1, ;

l,j 1 2 Collect Distribute l,j 1 2 . xvset . tracDonor1, ;

l,j 1 2 Collect Distribute l,j 1 2 . xvset . tracDonor1, ;

In[5]:= g,j 1 2 Collect g,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

g,j 1 2 Collect g,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

l,j 1 2 Collect l,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

l,j 1 2 Collect l,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

g,j 1 2 Collect g,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

g,j 1 2 Collect g,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

l,j 1 2 Collect l,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

l,j 1 2 Collect l,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

g,j 1 2 Collect g,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

g,j 1 2 Collect g,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

l,j 1 2 Collect l,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;

l,j 1 2 Collect l,j 1 2, V_ p_
n 1, p_

n 1 . tracDonor2 ;
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pj
n 1 ;

t

pj 1 pj ;

pj 1 pj ;

pj pj 1 ;

pj pj 1 ;
 

Liquid/gas mass and energy equations

In[6]:= GM0 g j
n 1

g j
n volj g,j 1 2 g,j 1 2 t ;

LM0 1 l j
n 1 1 l j

n volj l,j 1 2 l,j 1 2 t ;

GE0 g eg j
n 1

g eg j
n volj

g,j 1 2 g,j 1 2 t j
n 1

j
n volj g,j 1 2 g,j 1 2 t

LE0 1 l el j
n 1 1 l el j

n volj l,j 1 2 l,j 1 2

j
n

j
n 1 volj l,j 1 2 l,j 1 2 t pj

n 1;

Mixture mass and energy equations

In[7]:= MM0 GM0 LM0; ME0 GE0 LE0;

Liquid and gas velocities as functions of new time pressures

In[8]:= Vg,j 1 2 pj
n 1, pj 1

n 1 Vg,j 1 2 pj
n, pj 1

n
pj 1

Vg,j 1 2 pj
n, pj 1

n

n pj 1
n 1

Vl,j 1 2 pj
n 1, pj 1

n 1 Vl,j 1 2 pj
n, pj 1

n pj 1
Vl,j 1 2 pj

n, pj 1
n

n pj 1
n 1

Vg,j 1 2 pj 1
n 1, pj

n 1 Vg,j 1 2 pj 1
n, pj

n pj Vg,j 1 2 pj 1
n, pj

n

n pjn 1

Vl,j 1 2 pj 1
n 1, pj

n 1 Vl,j 1 2 pj 1
n, pj

n pj Vl,j 1 2 pj 1
n, pj

n

n pjn 1

TRAC variable substitutions
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faWvInVvSum ,

faWvInVvSum ,

faWlInVlSum ,

faWlInVlSum ,

fluxSum 1 ,

fluxSum 2 ,

fluxSum 3 ,

fluxSum 4 ,

vapVolFluxSum ,

liqVolFluxSum
 

In[216]:= tracFlux1

faWvMj 1 2 Vg,j 1 2 pj
n, pj 1

n faWvPj 1 2 Vg,j 1 2 pj 1
n, pj

n

faWvPj 1 2 Vg,j 1 2 pj 1
n, pj

n faWvMj 1 2 Vg,j 1 2 pj
n, pj 1

n

faWlMj 1 2 Vl,j 1 2 pj
n, pj 1

n faWlPj 1 2 Vl,j 1 2 pj 1
n, pj

n

faWlPj 1 2 Vl,j 1 2 pj 1
n, pj

n faWlMj 1 2 Vl,j 1 2 pj
n, pj 1

n

faArvj 1 2 Vg,j 1 2 pj
n, pj 1

n faArvj 1 2 Vg,j 1 2 pj 1
n, pj

n

faArlj 1 2 Vl,j 1 2 pj
n, pj 1

n faArlj 1 2 Vl,j 1 2 pj 1
n, pj

n

faArevj 1 2 Vg,j 1 2 pj
n, pj 1

n faArevj 1 2 Vg,j 1 2 pj 1
n, pj

n

faArelj 1 2 Vl,j 1 2 pj
n, pj 1

n faArelj 1 2 Vl,j 1 2 pj 1
n, pj

n

faVapFracj 1 2 Vg,j 1 2 pj
n, pj 1

n faVapFracj 1 2 Vg,j 1 2 pj 1
n , pj

n

faLiqFracj 1 2 Vl,j 1 2 pj
n, pj 1

n faLiqFracj 1 2 Vl,j 1 2 pj 1
n , pj

n

;

tracFlux2

volj faWvInVvSum t xvolv ,

faWvInVvSum t volj xvolv ,

volj faWlInVlSum t xvoll ,

faWlInVlSum t volj xvoll

;

tracFlux3

xvolv g
1,0 pj

i, Tg,j
i

j
i darvp ,

xvolv g pj
i, Tg,j

i darva ,

xvolv g
0,1 pj

i, Tg,j
i

j
i darvt ,

xvoll j
i 1 l

1,0
pj
i, Tl,j

i darlp ,

xvoll 1 j
i

l
1,0

pj
i, Tl,j

i darlp ,

xvoll l pj
i, Tl,j

i darla ,

xvoll j
i 1 l

0,1
pj
i, Tl,j

i darlt ,

darla j
i 1 xvoll 1 l j

i

;
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nd,

p;

x2 , _

nd,

p;

x2 , _

. cancel2nd ,

j .

. cancel2nd ,

t . tracFlux1 ,
  

In[221]:= GM1 Collect Expand GM0 . deldp . linearQuantities . cancel2

_ , , 1 , Simplify . tracFlux1 . tracFlux2 . tracD

GM2 Collect FullSimplify GM1 1, 2, 3, 4, 7, 8, 9 . tracFlu

FullSimplify GM1 5, 6 . tracFlux3;

LM1 Collect Expand LM0 . deldp . linearQuantities . cancel2

_ , , 1 , Simplify . tracFlux1 . tracFlux2 . tracD

LM2 Collect FullSimplify LM1 1, 2, 3, 4, 7, 8, 9 . tracFlu

FullSimplify LM1 5, 6 . tracFlux3;

MM2 Collect GM2 LM2, _ , FullSimplify ;

GE1 Collect Expand GE0 . deldp . linearQuantities . newTime

_ , pj
_, , Simplify . tracFlux1 . tracFlux2 ;

GE2 Collect FullSimplify GE1 1, 2, 3, 4, 5

Expand Simplify GE1 6, 7 . tracFlux2

GE1 10, 1 Expand Collect Map Distribute, GE1 10, 2 , 2 ,

j

_
, _ pj

i, T_,j
i e_

1,0 pj
i, T_,j

i , e_ pj
i, T_,j

i
_
1,0 pj

i, T_,
i

tracFlux2 FullSimplify GE1 8, 9

. tracFlux2 . tracFlux3 . tracDp , _ , Simplify ;

LE1 Collect Expand LE0 . deldp . linearQuantities . newTime

_ , pj
_, , Simplify . tracFlux1 . tracFlux2 ;

LE2 FullSimplify LE1 1, 2, 3, 4, 5 LE1 10, 1

Collect Simplify Collect Expand Collect LE1 10, 2 ,
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T_,j
i .

_,j
i

, 9 .

j
i

g pj
i, Tg,j

i ;

oll , Simplify .

, 2, 3

pj
i, Tl,j

i el pj
i, Tl,j

i ;
 

j

_
, _ pj

i, T_,j
i e_

1,0 pj
i, T_,j

i , e_ pj
i, T_,j

i
_
1,0 pj

i,

tracFlux2 . tracFlux3 , xvoll e_ p_
i, T_,j

i
_
1,0 pj

i, T

Collect Expand Simplify LE1 6, 7 . tracFlux2 ,

_ , _
0,1 pj

i, T_,j
i , Simplify FullSimplify LE1 8

tracFlux2 . tracDp . tracFlux2 . tracFlux3 . tracFlux3 ;

ME2 Collect GE2 LE2, _ , FullSimplify ;

In[320]:= GasMass

Drop GM2, 3 Collect Take GM2, 3 , xvolv . GM2 2, 2

LiquidMass Drop LM2, 3 Collect Take LM2, 3 , xvoll .

LM2 2, 2 1 j
i

l pj
i, Tl,j

i ;

GasEnergy Drop GE2, 4 Collect Take GE2, 4 , xvolv .

GE2 3, 2 j
i

g pj
i, Tg,j

i eg pj
i, Tg,j

i ;

MixtureEnergy Drop ME2, 5 Collect Take ME2, 5 , xvolv, xv

ME2 5, 2, 1 1 j
i

l pj
i, Tl,j

i el pj
i, Tl,j

i , ME2 10, 2

1 j
i

l pj
i, Tl,j

i el pj
i, Tl,j

i , GE2 3, 2 1 j
i

l

Two fluid matrix equations as implemented into TRAC

In[303]:= GasMass

Out[303]= darvp pj darva j darvt Tg,j

dvdpg,j 1
2

pj 1 pj faArvj 1
2

faWvMj 1
2

j
i

g pj
i, Tg,j

i
g j

n

dvdpg,j 1
2

pj 1 pj faArvj 1
2

faWvPj 1
2

j
i

g pj
i, Tg,j

i
g j

n

t fluxSum 1 xvolv j
i

g pj
i, Tg,j

i
g j

n
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1 l j
n

1 l j
n

eg g j
n

eg g j
n

vp eg pj
i, Tg,j

i

 

In[304]:= LiquidMass

Out[304]= darlp pj darla j darlt Tl,j

dvdpl,j 1
2

pj 1 pj faArlj 1
2

faWlMj 1
2

1 j
i

l pj
i, Tl,j

i

dvdpl,j 1
2

pj 1 pj faArlj 1
2

faWlPj 1
2

1 j
i

l pj
i, Tl,j

i

t fluxSum 2 xvoll 1 j
i

l pj
i, Tl,j

i 1 l j
n

In[305]:= GasEnergy

Out[305]= j volj pj
i darva eg pj

i, Tg,j
i dvdpg,j 1

2
pj 1 pj

faVapFracj 1
2
pj
i faArevj 1

2
faWvMj 1

2
j
i eg pj

i, Tg,j
i

g pj
i, Tg,j

i

dvdpg,j 1
2

pj 1 pj

faVapFracj 1
2
pj
i faArevj 1

2
faWvPj 1

2
j
i eg pj

i, Tg,j
i

g pj
i, Tg,j

i

Tg,j darva eg
0,1 pj

i, Tg,j
i

j
i darvt eg pj

i, Tg,j
i

pj darva eg
1,0 pj

i, Tg,j
i

j
i vapVolFluxSum t volj j

i
j
n dar

vapVolFluxSum t volj j
n

j
i pj

i t fluxSum 3

xvolv j
i eg pj

i, Tg,j
i

g pj
i, Tg,j

i eg g j
n
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dpl,j 1
2

faLiqFracj 1
2
pj
i

1 el l j
n

aLiqFracj 1
2
pj
i

1 el l j
n

Tl,j
i

darvp eg pj
i, Tg,j

i

Tl,j
i

Tg,j , Tl,j ;
 

In[321]:= MixtureEnergy

Out[321]= j darva eg pj
i, Tg,j

i darla el pj
i, Tl,j

i

pj 1 pj dvdpg,j 1
2

faVapFracj 1
2
pj
i faArevj 1

2

faWvMj 1
2

1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i eg g j
n dv

faArelj 1
2

faWlMj 1
2

1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i

pj 1 pj dvdpg,j 1
2

faVapFracj 1
2
pj
i faArevj 1

2
faWvPj 1

2

1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i eg g j
n dvdpl,j 1

2
f

faArelj 1
2

faWlPj 1
2

1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i

Tg,j darva eg
0,1 pj

i, Tg,j
i

j
i darvt eg pj

i, Tg,j
i

Tl,j

darlt el pj
i, Tl,j

i xvoll 1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i el
0,1

pj
i,

pj darva eg
1,0 pj

i, Tg,j
i

j
i liqVolFluxSum vapVolFluxSum t

darlp el pj
i, Tl,j

i xvoll 1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i el
1,0

pj
i,

liqVolFluxSum vapVolFluxSum t pj
i t fluxSum 3 fluxSum 4

xvolv 1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i eg g j
n

xvoll 1 j
i el pj

i, Tl,j
i

l pj
i, Tl,j

i 1 el l j
n

In[16]:= LinearAlgebra`MatrixManipulation`;

In[15]:= tf1ds LinearEquationsToMatrices

GasMass, LiquidMass, GasEnergy, MixtureEnergy , pj , j ,



APPENDIX B A Program for Solving an 
Oscillating Manometer
The following Fortran program computes the position of the water level and the 

pressures inside the manometer arms based on Equations (2-6) to (2-11):

   PROGRAM mano

   REAL*8 Ps,L,V0,T,time,dt,rho
   REAL*8 :: pi
   REAL*8, PARAMETER :: g = 9.8066 ! m/s2
   REAL*8, DIMENSION(6) :: dx,pL,pR,dP

   H(time,T,V0) = 0.5*V0*T/pi*SIN(2.0*pi*time/T) ! meter

   pi = 4.0*ATAN(1.0)

   OPEN (UNIT=20,FILE='manoP.dat')
   OPEN (UNIT=21,FILE='manoDP.dat')
   OPEN (UNIT=22,FILE='manoL.dat')

   dt = 0.05 ! graphics timestep size in secs
   Ps = 1.0010e+05 ! surface pressure in pascal
   L = 10.0 ! length of the oscillating water slug in meters
   V0 = 2.1 ! initial velocity of the water slug in m/s
   rho = 988.8 ! density of the liquid water in kg/m3

   dx=(/0.5,1.5,2.5,3.5,4.5,5.5/) ! elevations of cell centers
   p=Ps

   T = 2.0*pi*SQRT(0.5*L/g) ! period of the oscillating manometer

   time = 0.0
   DO WHILE(.TRUE.)
    time = time+dt
!
!  compute pressures
!
    DO i=1,6
     IF (dx(i).LT.L/2.0+H(time,T,V0)) THEN
!                      left manometer arm
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      pL(i) = Ps+(L/2.0+H(time,T,V0)-dx(i))            &
   &   *(1.0-2.0*H(time,T,V0)/L)*rho*g
     ELSE
      pL(i) = Ps ! water level is below this elev
     ENDIF
     IF (dx(i).LT.L/2.0-H(time,T,V0)) THEN
!                      right manometer arm
      pR(i) = Ps+(L/2.0-H(time,T,V0)-dx(i))            &
   &   *(1.0+2.0*H(time,T,V0)/L)*rho*g
     ELSE
      pR(i) = Ps ! water level is below this elev
     ENDIF
     dP(i) = pL(i)-pR(i)  ! the net force acting on the fluid
    ENDDO
!
    IF (time.GT.50.0) EXIT
    WRITE (20,99) time, (pL(i),i=1,6)
    WRITE (21,99) time, (dP(i),i=1,6)
    WRITE (22,99) time, 5.0+H(time,T,V0)
  99  FORMAT(1x,1p,7e12.4)
   ENDDO

   STOP
   END PROGRAM mano
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APPENDIX C Level Tracking Logic For 
Reversed and Normal Void 
Fraction Profiles
Determine void profile 
condition for cell j

Is flow restriction at 
bottom of cell j ?

Is  ?αj-1 αj δα>–

Is flow restriction at top 
of cell j ?

Is  ?αj αj+1 δα>–

A

B

B

A

C

Yes

Yes

Yes

Yes

Cell j is above a void 
profile inversion

Cell j is below a void 
profile inversion
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Level detection for cell j 
above inverted void profile

Does a level already 
exist in cell j?

Is  

and ?

αj+1 αj– ∆αcut>

αj+1 αlev>

A

Yes

Yes

Yes

Yes

Perform level calculation

No level in cell j

Initiate level calculation

Initiate level calculation

No level in cell j

Is  

and ?

αj 0.001– ∆αcut>

αj+1 αlev>

Does a level already 
exist in cell j+1?
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Level detection for cell j 
above inverted void profile

Does a level already 
exist in cell j?

Is ?0.999 αj– ∆αcut>

B

Yes

Yes

Yes

Yes

Perform level calculation

No level in cell j

Initiate level calculation

Initiate level calculation

No level in cell j

Is ?αj αj+1– ∆αcut>

Does a level already 
exist in cell j-1?
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Level detection for cell j 
normal void profile

Does a level already 
exist in cell j?

Is  
 

and  ?

αj+1 αj– ∆αcut>

αj+1 αlev>

C

Yes

Yes

Yes

Yes

Perform level calculation

No level in cell j

Initiate level calculation

Initiate level calculation

No level in cell j

Does a level already 
exist in cell j+1?

Yes No level in cell j

Is  
 

and  ?

αj αj-1– ∆αcut>

αj+1 αlev>

Does a level already 
exist in cell j-1?
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