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ABSTRACT 

The ability to design proteins from first principles will provide an efficient way to 

develop stabilized proteins, which could have a profound impact on a variety of biotechnological 

industries. For example, a biosensor made out of stable proteins would be able to be functional in 

harsh environmental conditions, such as the desert, where sensors made from less stable proteins 

would not be effective. Another example is that life-saving vaccines made from stable proteins 

could be stored at ambient temperatures, making it possible to distribute them more effectively to 

developing nations where refrigeration is not always an option. In addition to addressing the 

question of what forces govern thermodynamic stability, the field of protein design can also 

provide insight into the intramolecular interactions that are important for kinetic stability and 

solubility. 

In the first part of this dissertation, the SH3 domain of the Fyn tyrosine kinase (FynSH3) 

was stabilized by the rational design of surface charge-charge interactions.  Analysis of the 

computationally optimized distributions of surface charges showed that the increase in favorable 

energy per substitution begins to level off after five substitutions. One of the sequences with five 

substitutions (four charge reversals and one introduction of a new charge) was selected for 

experimental characterization. Nine additional variants were also characterized to explore the 

stepwise contributions of these substitutions to the stability of FynSH3. The designed sequence 

was found to have an increased thermostability of 12 °C and an increase in the free energy of 

unfolding (ΔG) of 8 kJ/mol, relative to the wild-type protein.  These results suggest that a 

significant increase in stability can be achieved through a small number of amino acid 

substitutions, and argue for a seminal role of surface charge-charge interactions in modulating 

protein stability. 
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The second part of this dissertation addresses the question of how important the unfolded 

state of a protein is for determining its stability and whether it needs to be considered in the 

design approach. Some of the first attempts to address this issue tried to explain the pH-dependent 

changes in stability (ΔG) for several different proteins, where it was found that, in order to 

reproduce experimental data, a statistical (Gaussian polymer chain, GPC) representation of the 

unfolded state needed to be included in the calculations of ΔG. However, incorporation of this 

model into our design approach did not significantly improve our predictions. To determine 

whether this was due to an inability of the Gaussian model to accurately describe the distance 

distributions, and therefore the energies, observed in structural representations of the unfolded 

state, the distance distributions for a GPC were compared to those observed in the excluded 

volume limit (EV) structural libraries of two proteins: ubiquitin and NTL9. For residues that were 

close in sequence, where the unfolded state energies are the largest, it was found that these 

distributions were markedly different between the GPC and EV methods. A possible explanation 

for this observation is that the EV limit does not consider charge-charge interactions when 

creating the large-scale structural libraries. Molecular dynamics (MD) simulations were 

performed on the 2,000 structures in the EV libraries to model the unfolded state in the presence 

of charge-charge interactions, yet the Gaussian model was still unable to accurately reproduce the 

distance distributions of the structural library. However, very little difference was observed in the 

charge-charge interaction energies calculated by the Gaussian model versus directly calculating 

the energies in the post-MD unfolded state structural libraries, suggesting that the statistical 

model may be sufficient for describing the behavior of the unfolded state. Since (1) the overall 

charge-charge interaction energies in the unfolded state are small and (2) our design approach 

focuses on the differences in energies (ΔΔG) rather than absolute energies (ΔG) for selecting 

more stable variants, the overall effect of unfolded state can most likely be ignored without 
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adversely affecting the predictive ability of the algorithm. The implication of these results for a 

protein that has previously been thought to have specific residual interactions in the unfolded 

state is discussed. 

In the third part of this dissertation, the question of how the thermodynamic stabilization 

of proteins redesigned by our approach affects the kinetics of the folding and unfolding reactions 

is addressed. The folding and unfolding kinetics of the wild-type and designed variants of a 

bacterial cold shock protein (CspB), FynSH3, tenascin, and procarboxypeptidase were examined. 

Since the hydrophobic collapse of the protein core is the first step in protein folding, the rate of 

hydrophobic collapse should drive the folding rate.  All of the proteins designed in this study 

contain substitutions on the protein surface, while the core residues remain unchanged. Therefore, 

one would intuitively predict that the folding rates of the wild-type and designed variants of each 

protein should remain the same, so the observed increases in stability must come from much 

slower rates of unfolding. This is a logical conclusion because the designed proteins contain more 

favorable surface  charge-charge interactions than the wild-type proteins, meaning that it would 

take more energy to break these favorable interactions once they had been formed, thus 

decreasing the unfolding rate. For CspB, this was indeed shown to be the case. However, the 

increased stability of the FynSH3, tenascin, and procarboxypeptidase variants appears to be due 

to a faster folding rate, while the unfolding rate remains unchanged relative to the wild-type. 

Based on φ-value analysis data from the literature, it appears that this affect is due to the 

substitutions being made at positions that have native-like structure in the transition state. The 

results of these experiments show that while proteins can be thermodynamically stabilized by the 

same method, the kinetic mechanisms of stabilization can be vastly different. By incorporating 

the results of existing φ-value analyses into the design algorithm, it should be possible to select 

for residues that would decrease the unfolding rate, rather than increase the folding rate. This 
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means that one could potentially design a protein that is not only thermostable, but also 

kinetically stable, which would have profound implications for the development of protein 

therapeutics. 

The fourth part of the dissertation explores the role of surface charges in making proteins 

less susceptible to aggregation. A few recent reports suggest that adding a large number of 

charged moieties to proteins (supercharging) increases solubility and decreases aggregation due 

to thermal denaturation. While this approach seems to be an effective way to combat protein 

aggregation, nothing is known about the thermodynamic effects of supercharging. A 

supercharged variant of ubiquitin was designed by introducing charges at positions that were not 

predicted to have a significant impact on the thermodynamic stability.  Not only was the 

supercharged variant of ubiquitin more soluble than the wild-type at neutral pH, but it also 

showed reversible thermal denaturation under conditions where wild-type ubiquitin aggregates. 

Interestingly, this protein was destabilized relative to the wild-type protein. While the 

supercharged ubiquitin was predicted to have similar thermodynamic stability to the wild-type, it 

is possible that our design approach cannot accurately predict charge-charge interaction energies 

in a highly charged molecule. Further studies on more supercharged proteins should help develop 

a foundation by which we can further understand the thermodynamic mechanisms, and therefore, 

more accurately predict, the effects of supercharging on protein both protein stability and protein 

aggregation. 

In the fifth, and final, part of the dissertation, the effects of pressure on protein 

denaturation are examined. Pressure perturbation calorimetry (PPC) is a new experimental 

method that is being used to study the volumetric properties of proteins. PPC measures the 

coefficient of thermal expansion (α) of a protein in dilute solution when subjected to changes in 

pressure (ΔP ~ 80 psi) under isothermal conditions. By measuring α as a function of temperature, 
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it is possible to measure the volumetric changes (ΔV/V) in proteins upon unfolding.  A novel 

method for analyzing the data using a thermodynamic two-state model of unfolding was 

developed, and was used to analyze PPC data for five model proteins: lysozyme, ribonuclease A, 

ubiquitin, cytochrome c, and eglinC.  It was observed that the volumetric changes upon unfolding 

of all proteins, except cytochrome c, converged at high temperature.  The anomalous behavior of 

cytochrome c is most likely due to the imperfect packing of the protein around the heme group.  

The results discussed in this chapter set a foundation for exploring how the alteration of 

intramolecular interactions such as packing interactions or surface charge-charge interactions will 

affect the volumetric properties of proteins. 
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CHAPTER 1:  GENERAL INTRODUCTION 

 

1.1 .  Introduction to Thermodynamics 
 

The ability to design proteins from first principles will provide an efficient way to 

develop stabilized proteins, which could have a profound impact on a variety of biotechnological 

industries.  For example, a biosensor made out of stable proteins would be able to be functional in 

harsh environmental conditions, such as the desert, where sensors made from less stable proteins 

would not be effective.  Another example is that life-saving vaccines made from stable proteins 

could be stored at ambient temperatures, making it possible to distribute them more effectively to 

developing nations where refrigeration is not always an option.  In order to design or engineer 

proteins with increased stability it is necessary to have a fundamental understanding of the 

intramolecular forces that contribute to stabilizing the various conformations of proteins.  The 

protein core is predominantly stabilized by the hydrophobic interactions between buried nonpolar 

side chains (1-3).  Burial of polar residues in the core is unfavorable due to the high energetic cost 

of desolvation (4, 5).  This energetic penalty can be offset by forming hydrogen bonds with other 

polar groups or buried water molecules.  The core residues are further stabilized by van der Waals 

(packing) interactions (4, 6-8).  Hydrogen bonding and packing interactions in the protein core 

have been demonstrated to be as important as hydrophobicity for stability (8-10).  More recently 

it has been shown that surface residues can also modulate protein stability (11-16). 

The term “protein stability” can have different meanings depending on the focus of the 

research being performed.  Protein stability can refer to the change in Gibbs free energy upon 

unfolding (ΔG), thermostability (Tm), rates of folding or unfolding, in vivo degradation rates, or 

retention of activity after being exposed to harsh chemical or thermal conditions.  The transition 

temperature and Gibbs free energy are measures of thermodynamic stability.  They are 



 

 

2

interrelated in such a way that it is possible to alter the stability (ΔG) of a protein without 

affecting the thermostability (17) and vice-versa (15) (Fig. 1.1).  This is a result of the 

relationship between ΔG, Tm and the other thermodynamic parameters: enthalpy (ΔH), entropy 

(ΔS), and change in heat capacity upon unfolding (ΔCP).  The thermodynamic stability (ΔG) for a 

protein that unfolds via a two state transition, N↔U, can be described by the equilibrium 

constant, Keq, which is the ratio of the fraction of unfolded protein (FU) to the fraction of folded 

protein (FN) in a sample. 
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The change in thermodynamic stability (ΔG) at any temperature, T, can also be related to the 

enthalpy (ΔH) and entropy (ΔS) of unfolding.   

 ( ) ( ) ( )TSTTHTG Δ−Δ=Δ        (1.2) 

By assuming that the change in heat capacity upon unfolding (ΔCP) is temperature independent, 

we can also relate ΔG to the thermostability (Tm) of the protein via the Gibbs-Helmholtz equation. 
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where the transition temperature, Tm, is the temperature at which 50% of the protein molecules 

are unfolded,  ΔH(Tm) is the enthalpy of unfolding at Tm, and ΔCp is the change in heat capacity 

upon unfolding that characterizes the temperature dependence of both the enthalpy and entropy 

functions.  The enthalpy and entropy at any temperature, T, are ΔH(T)=ΔH(Tm)+ΔCp(T-Tm) and 

ΔS(T)=ΔH(Tm)/Tm+ΔCp·ln(T/Tm), respectively.   

The stability function defined by the Gibbs-Helmholtz equation (Eqs. 1.2 and 1.3) is a 

bell-shaped curve (Fig. 1.1 A), because the ΔCp for protein unfolding is positive.  The 

thermodynamic stability of a protein is equal to zero when 50% of the molecules are folded and 
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50% are unfolded.  This occurs at two temperatures: Tm, the heat denaturation transition 

temperature and Tc, the cold denaturation transition temperature (18).  The stability function has a 

maximum (ΔGmax) at the temperature where the entropic contribution is equal to zero (Tmax).  The 

changes ΔH, ΔS, and ΔCp, in response to substitutions within the protein will also affect the 

temperature parameters and will define the thermodynamic mechanism by which changes in 

protein stability can be achieved.   

Figure 1.1 shows three of the possible mechanisms, and the extreme versions of each 

have been modeled to illustrate the differences among them more clearly.  However, one should 

remember that in practice, it is often more appropriate to explain experimental observations using 

combinations of these models (see (19)).  If a protein is stabilized via the first mechanism, a large 

increase in both the maximum stability (ΔGmax) and thermostability (Tm) (Model 1, Fig. 1.1A) will 

be observed (20, 21).  This is caused by a small decrease in the entropy function (Fig. 1.1B), 

while the enthalpy function (Fig. 1.1C) and the change in heat capacity upon unfolding are 

unchanged relative to the reference model.  In the second model, a dramatic decrease in ΔCP upon 

substitution creates a ΔG function with a shallower temperature dependence (22, 23).  This results 

in an increase in the thermostability of the protein without affecting Tmax or the absolute value of 

ΔGmax (Fig. 1.1A).  The third model results in the entire stability function shifting to higher 

temperatures  (15).  This is caused by a large decrease in both the entropy and enthalpy functions, 

without changing their temperature dependencies (i.e. no change in ΔCP).  As a result, Tc, Tm, and 

Tmax increase, while the absolute value of ΔGmax is not affected.  In each of these three models, the 

stability of the protein at room temperature (ΔGRT) is affected differently.  In both the first and 

third mechanisms, ΔGRT changes relative to the reference model – it increases if the protein is 

stabilized via Model 1, but decreases if the protein is stabilized by Model 3 (Fig 1.1A).  The 

second model demonstrates that it is possible to increase the thermostability of a protein without 
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affecting ΔGRT.  With an understanding of the underlying thermodynamic mechanisms of 

stabilization, one should be able to design proteins to meet any desired thermodynamic criteria. 

 

1.2   Protein Stabilization Approaches 
 

The approaches to stabilizing proteins can be grouped into three major categories: 

directed evolution, sequence-based design, and computational design.  Each has its own 

advantages and disadvantages that should be considered when deciding which to use for the 

design of stable proteins.  A few of the factors to be considered include the amount of prior 

information required (i.e. sequence vs. 3D structure) to carry out the design, how quickly the 

result can be obtained, and the universal applicability of the method.  A brief comparison of the 

three design categories in terms of these issues is provided below and summarized in Table 1.1. 

 

1.2.1. Directed Evolution 

 Directed evolution uses random mutagenesis, targeted mutagenesis, or homologous 

recombination to introduce mutations into a gene of interest (24, 25).  Random mutagenesis is the 

simplest approach, in the sense that it requires virtually no prior information about the protein.  

Combining error-prone PCR with screening and selection has been effective for altering the 

function (26), the stability (27), or both (28) of various proteins. Targeted mutagenesis is most 

effective for instances where it would be difficult to find the best mutations using random 

mutagenesis, such as significantly changing the function of a protein (29).  In this case, it is 

necessary to have some structural or biochemical information about the protein so that 

mutagenesis can be directed to the appropriate active site residues.  Homologous recombination 

between genes encoding proteins with a very high sequence identity can be used to introduce 

more diversity into the sequence library than is possible through random mutagenesis.  It has been 
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used to create proteins with improved activity (27, 28, 30, 31), higher thermostability (27, 28, 30, 

32, 33), or entirely new functions (34).  Recombination has been demonstrated to be a successful 

approach not only when used alone (30, 33, 34), but also when applied in combination with 

targeted or random mutagenesis (27, 28, 31, 32).   

Regardless of which directed evolution approaches are used, the first, and arguably most 

important, step is to create a sufficiently diverse library of sequences.  Then selection pressure is 

applied to the library and it is screened for proteins that retain desired properties under the 

selected conditions.  Examples of selection pressure include increasing temperature, antibiotic 

concentrations, or protease concentrations.  Selection can also occur in a thermophilic host, which 

forces the protein to evolve in a biological context (35).  The advantage of this type of selection is 

that the protein will not lose its natural function during the evolutionary process.  Multiple rounds 

of mutation, screening, and selection are often necessary before the best protein variant can be 

identified.   

 Several different proteins have been stabilized using directed evolution (35-38).  

Subtilisins and p-nitrobenzyl esterase (PNE) were stabilized using random mutagenesis and then 

selecting for both stability at high temperatures and function at lower temperatures, with the 

result that thermostable variants maintained activity across a broader range of temperatures than 

naturally evolved enzymes (28, 35).  These experiments suggested that stability and function are 

not mutually exclusive parameters.  In the case of the subtilisin family of proteins, most of the 

stabilizing substitutions that occurred as a result of directed evolution were not found in the 

thermophilic proteins, and therefore would not have been selected using sequence-based 

approaches (35).  One disadvantage of the method used to stabilize the subtilisins and PNE is that 

new functional assays had to be developed for each protein.  A way to circumvent this 

requirement is to link selection directly to the ability of a protein to fold, rather than the ability to 

maintain activity (36-44) .  The PROSIDE method (36), developed by Schmid and coworkers 
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does just that.  It links the protease resistance of a protein to phage infectivity, and relies on the 

assumption that a stable protein will be more resistant to protease.  Three different proteins, 

RNase T1 (36), CspB (37, 43, 45), and Gβ1 (38, 44)  have been successfully stabilized using this 

method.  Recently, a similar phage display approach was used to increase the thermostability of 

an antibody by 9 ºC (42). 

Directed evolution is advantageous over computational design in the sense that no prior 

information about the protein structure is required.  It is only necessary to know the protein 

sequence so it can be cloned appropriately and whether stability can be easily assayed.  

Moreover, as long as appropriate constraints are applied, stability and function can be enhanced 

simultaneously (28).  The major disadvantage is that obtaining the final product can be slow 

because it takes time to construct libraries that are sufficiently diverse and to develop appropriate 

selection criteria and functional assays.  In addition, important properties of the protein can be 

lost if they are not selected for directly (46).  The screening process is also very labor-intensive, 

and often the most time consuming step (35).  Another disadvantage is that due to the 

simultaneous introduction of multiple random substitutions, it is not possible to understand the 

mechanisms by which the protein was stabilized.  In addition, there is no way of knowing 

whether all of the substitutions are important for stability without further study.  As a result, it is 

difficult to learn more about why these particular substitutions were stabilizing for these proteins.  

Furthermore, directed evolution is not a universal approach because a different set of sequence 

libraries and selection criteria must be developed for each individual protein.   

 

1.2.2. Sequence-Based Design 

Sequence-based design refers to approaches that use the information contained in 

multiple sequence alignments to create more stable protein variants.  The premise for these 

methods is that since the primary structure of a protein encodes all the information needed for 
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folding into the native tertiary structure, it also contains information about stability.  In natural 

evolution, proteins tend to primarily be selected for function.  In addition, the proteins need to be 

able to be easily degraded when they are no longer needed, so there is little evolutionary pressure 

for proteins to have high stabilities.  As a result, the consensus sequence that can be obtained 

from a multiple sequence alignment is not always the most stable.  More sophisticated statistical 

analyses, however, have made it possible to identify stabilizing properties from multiple sequence 

alignments (47, 48).   

One of the sequence-based design approaches is based on the hypothesis that since, 

arguably, life originated in an extremely hot environment, the last common ancestor of all 

organisms is hyperthermophilic.  Therefore, substituting a residue that was present in the last 

common ancestor into a modern protein should increase its thermostability (49).  Since the 

ancestral residues are often also the consensus residue for a particular position, it raises the 

question: can the observed changes in stability be explained by the statistical free energy of the 

residue (the consensus approach), or are they due to the presence of an ancestral residue?  To 

address this question, the enzyme 3-isopropylmalate dehydrogenase (IPMDH) was redesigned 

using phylogenetic analysis (49).  The stabilities of twelve protein variants containing single site 

substitutions of amino acids to their ancestral residue were characterized.   Eight of the ancestral 

residues were the same as the consensus and four were not.  However, both categories had the 

same success rates -- half of the substitutions yielded protein variants that were more stable than 

the wild-type (49).  These results suggest that stabilization by ancestral substitutions is not simply 

due to the statistical free energies of the residues. 

Sequence-based approaches have also been used to design stable variants by making 

multiple substitutions simultaneously.  In one example, two Bayesian statistical approaches were 

used to analyze a multiple sequence alignment of the subtilisin protein family.  The first method, 

PROBE (50) identified a set of conserved domains that is characteristic to the protein family.  
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Then Classifier (51) was used to find a smaller subset of important residues based on specific 

sequence motifs.  By coupling PROBE and Classifier, it was possible to identify a sequence motif 

that was present in some of the thermophilic subtilisins, but not the mesophilic proteins.  To test 

whether this sixteen-residue motif was responsible for the increased stabilities of the thermophilic 

enzymes, the sequence was inserted into a mesophilic subtilisin, and the stability and activity of 

the variant were characterized.  The variant had an increased thermostability of 13ºC relative to 

the wild-type enzyme, and was able to retain some activity at 90 ºC, a temperature where the 

wild-type subtilisin is completely inactive (52). 

Sequence-based design methods are advantageous over computational design methods 

because no three-dimensional structure is required for design.  They are also less time-consuming 

than directed evolution because diverse in vivo sequence libraries do not need to be developed 

and multiple rounds of selection do not need to be performed for each protein to be optimized.  

The successful redesign of the two different enzymes described above highlights the potential of 

sequence-based design to be a universal approach to protein stabilization.  One of the 

disadvantages of sequence-based design is that the hypothesis that the ancestral protein is 

hyperthermophilic might not be correct for all proteins.  In this case, the substitutions selected 

based on the ancestral protein sequence may not necessarily lead to increases in thermostability 

since the ancestral sequence is mesophilic.  Another disadvantage of this approach is that the 

statistical analysis of multiple sequence alignments requires a large number of sequences.  If a 

given protein family does not contain enough sequences to generate a statistically meaningful 

alignment, then it might not be possible to appropriately identify the ancestral gene.  As a result, 

the selected substitutions might not actually be present in the ancestral protein sequence and, 

therefore, would not lead to increased thermostability. 
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1.2.3. Computational Design 

Computational design refers to the stabilization of proteins by modeling the contributions 

of different intramolecular interactions from first principles.  This approach is advantageous over 

directed evolution and sequence-based design methods because it has been demonstrated to be 

universal (53).  Computational design, like the sequence-based design approaches, is faster than 

directed evolution because the energetic calculations can be performed more quickly than 

multiple rounds of screening and selection.  It is also possible to qualitatively predict relative 

changes in the stabilities of proteins using computational design (11, 15, 53).  One disadvantage 

of computational design is that three-dimensional structures are required to model the 

intramolecular interactions in the native state, so proteins that are not homologous to any known 

structures cannot be redesigned using computational methods.  However, the advances in 

structural genomics projects are quickly nullifying this issue. 

The contributions of hydrophobic interactions, hydrogen bonds, packing interactions, and 

charge-charge interactions to the stability of the native state of globular proteins have been 

extensively studied.  The core of a globular protein typically contains a large number of nonpolar 

residues and is stabilized by the hydrophobic interactions between them (1-3, 8).  The high 

energetic cost of desolvation of polar residues means that the burial of polar residues is usually 

very unfavorable (4, 5).  However, this energetic penalty can be offset through the formation of 

hydrogen bonds with other polar groups or buried water molecules (4, 5).  All buried residues are 

also stabilized by van der Waals (packing) interactions (4, 6-8).  In fact, hydrogen bonding and 

packing interactions in the protein core have been demonstrated to be as important for protein 

stability as hydrophobic interactions (8-10).   

The results of some early studies on the forces that govern protein stability suggested that 

residues on the surface of the protein do not provide significant contributions to stability.  In one 
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example, a systematic set of mutations were made in T4 lysozyme, and it was observed that 

substitutions at many of the positions that were highly flexible and/or exposed to solvent did not 

have a significant affect on the stability of this protein  (3, 54).  Another example studied the 

interactions between charged surface residues in barnase (55), and found that most interactions 

between the solvent exposed charged residues had only weak contributions to the stability of the 

protein.  These observations were explained by the idea that the residues on the surface of a 

protein are exposed to solvent in both the native and unfolded states, and as such their 

environments do not change significantly upon unfolding.  Therefore the relative contributions of 

surface residues to ΔG would be smaller than for residues in the core.  As a result of this 

hypothesis, the computational protein design field began to focus on optimizing interactions in 

the protein core (56-62).  However, the attempts to stabilize proteins by redesigning the protein 

core have had mixed success (6, 7, 61, 62).   

In general, core substitutions that fill cavities will enhance packing interactions and are 

therefore stabilizing (61, 62), while core substitutions that create cavities, and thus decrease the 

packing interactions are destabilizing (6-8, 17, 62).  However, one should proceed with caution 

when making cavity filling substitutions because large, hydrophobic residues can also be 

destabilizing due to steric clashes within a tightly packed protein core.  De novo attempts to 

redesign the protein core demonstrate how difficult it can be to model which substitutions will be 

stabilizing and which will be destabilizing (6, 7, 56).  One explanation is that the core of the 

protein is very tightly packed, suggesting that the intramolecular interactions within the protein 

core are already optimized.  In order to further improve the interactions within the core, one 

would need extremely precise modeling of the positions of the side chains.  Another issue was 

that most early core redesign methods were modeling interactions using a fixed backbone (6, 61, 

63).  While this assumption was necessary to minimize the search space, and reduce computation 

time, it has been demonstrated that the backbone does indeed shift to accommodate substitutions 
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within the protein core (62, 64).  However, one of the early attempts to incorporate backbone 

flexibility into a core design algorithm did not show significant improvements over fixed 

backbone methods in predicting the effects of core substitutions on protein stability (65).   

One alternative to the computational redesign of the protein core is to focus on 

redesigning interactions on the protein surface.  Although it had been argued that surface residues 

were not important for stability, support for this idea comes from a few sources.  For example, 

when the differences between mesophilic and thermophilic proteins from the same family were 

examined, it was observed that the differences in stability appear to come primarily from an 

increase in electrostatic interactions (15, 66-70), which are more likely to be found on the protein 

surface than in the core.  More evidence was provided by attempts to stabilize proteins using 

directed evolution,  where it was observed that the stabilizing substitutions are often found on the 

surface of the protein (27, 38, 43, 44, 71).  The idea that surface residues can be important for 

stability was also supported by a recent theoretical study on the physical origin of stability (72).  

It was suggested that as a response to evolutionary pressure, mesophilic proteins can evolve high 

thermostability by increasing the number of charged residues (72), and charged residues are much 

more likely to be found on the surface than in the core of the protein.  Finally, experimental 

observations have shown that, in some cases, the interactions between charged surface residues 

have relatively large contributions to stability (73-75).  A number of recent studies have exploited 

this information and shown that it is possible to modulate the stability of a number of proteins 

through altering the charge-charge interactions on the protein surface (11-16, 76-78).  Indeed, the 

optimization of interactions on the protein surface can provide similar increases in stability to that 

obtained through the optimization of the protein core (Table 1.2).   

One of the advantages of redesigning the surface of a protein is that the surface residues 

have greater conformational flexibility than those in the core.  As a result, the modeling of surface 

side chains does not have to be as precise as core side chain modeling in order to obtain a good 
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description of the energetics of interactions.  In addition, the flexibility of the surface side chains 

means that they are generally more tolerant to substitutions than residues in the core.  For these 

reasons, the optimization of surface interactions can be considered a viable alternative approach 

to stabilizing proteins.  The remainder of this chapter will discuss the optimization of surface 

charge-charge interactions and highlight some of the important experimental verifications of this 

method.  

 

1.3 .  Rational Design of Surface Charge-Charge Interactions 
 
The computational approach that will be described here is the rational design of surface charge-

charge interactions.  The first step to stabilizing proteins by this method is to calculate the 

pairwise charge-charge interaction energies in the wild-type protein.  Second, the interaction 

energies are optimized using a genetic algorithm.  The genetic algorithm will identify many 

sequences which are predicted to have increased stabilities relative to the wild-type.  Since it is 

not possible to experimentally test all of these sequences, only a few are selected for 

characterization.  Structures for the selected sequences are created using homology modeling, and 

the charge-charge interaction energies are calculated for the designed variants to better 

understand the details of how the substitutions are predicted to affect the stability.  Finally, the 

stabilities of the selected sequences are characterized experimentally. 

 

1.3.1. Calculating pairwise charge-charge interaction energies 

 The interaction energies between pairs of charges are calculated using the Tanford-

Kirkwood model, corrected for solvent accessibility (TK-SA) (79-82).  In the TK-SA model, the 

protein is represented by a low dielectric sphere that is impenetrable to solvent (Fig. 1.2).  The 

charged groups in the protein are represented by point charges that occupy fixed positions in the 
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protein sphere.  It is assumed that the interactions between charges are the only type of interaction 

between the groups (79).  The energy of the charge-charge interactions between two residues on 

the protein surface, i and j is: 
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where e is the unit charge; b is the radius of the protein sphere and is related to the specific 

volume of the protein; and a is the radius of the ion exclusion boundary.  The terms Aij, Bij, and 

Cij have been previously defined by Tanford and Kirkwood (79).  Aij represents the energy 

between the charges in the low dielectric environment of the protein interior and is a function of 

the protein dielectric constant (εP = 4 for the interior of the protein) and the distance between the 

charges, rij.  Bij reflects the contributions from both the low dielectric environment of the protein 

the high dielectric environment of the solvent that surrounds the protein, and is a function of the 

solvent dielectric constant (εS = 78.5 for water), protein dielectric constant, εP, and the relative 

positions of the charges on the protein surface, which are defined by ri, rj, and θij.  Cij is a function 

of the ionic strength of the solvent and the positions of the charges.  The average solvent 

accessibility of residues i and j is represented by the term SAij and is calculated by the method of 

Richmond as previously described (83, 84).   

The contribution of these pairwise charge-charge interaction energies to the Gibbs free 

energy of unfolding of the protein is determined from the pKa shifts of the ionizable residues in 

the protein relative to model compounds.  At a given pH, the charges on the ionizable residues 

can be represented by a protonation state, χ.  The energy of this protonation state for the folded 

protein molecule is: 
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where R is the universal gas constant; T is the temperature in Kelvin (298K is the standard 

temperature for these calculations); xi and xj represent the protonation of groups i and j and will 

have a value of 0 or 1; qi and qj are the charges of groups i and j in the unprotonated state and 

have a value of -1 or 0; and pKint,i is the intrinsic pKa of group i if all other groups in the protein 

have zero charge.  In this approach, the intrinsic pKa values for the ionizable groups of proteins 

are determined from model compounds and are: Asp = 4.0; Glu = 4.5; His = 6.3; Lys = 10.6; Arg 

= 12.0; N-ter = 7.7; and C-ter = 3.6.   

 There have been several reports that specific interactions between charged residues occur 

in the unfolded state and need to be considered to accurately predict the thermodynamic stability 

of proteins (85-94).  However, the contributions of these interactions are small (~2 kJ/mol for a 

pKa shift of 0.4 units compared to ~20 kJ/mol for the total ΔG of unfolding for a protein) and are 

expected to be even smaller when comparing the unfolded state contributions to ΔΔG (the 

difference in stability between the wild-type and designed protein variants).  Therefore, we 

assume that there are no residual charge-charge interactions in the unfolded state of the protein, 

and as such the energy of the protonation state, χ, in the unfolded state is: 
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These energy functions can then be used to define partition functions for the native (ZN) 

and unfolded (ZU) states of the protein: 
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where ν(χ) is the number of protonated ionizable groups in the χ protonation state.  By using the 

neutral forms of the native (ΔGN(χ) = 0) and unfolded (ΔGU(χ) = 0) states of the protein as 
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reference states for both ZN and ZU, the overall contribution of the charge-charge interactions to 

the Gibbs free energy of unfolding can be described as: 
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 In order to calculate the charge-charge interaction energies, one must know the distances 

between the charged residues, which can be determined from a high-resolution three-dimensional 

structural representation of the protein obtained through either X-ray crystallography or nuclear 

magnetic resonance spectroscopy (NMR).  Structures obtained from X-ray crystallography 

represent static snapshots of one possible configuration of the positions of side chains in a protein 

molecule.  However, in solution, the surface side chains will have certain degree of 

conformational freedom which could alter the relative positions of the ionizable groups compared 

to the crystal structure.  To account for the flexibility of the side chains, an ensemble of structures 

is created by homology modeling using Modeller software package (95).  On the other hand, 

NMR structure determination experiments are performed in solution, and thus, the 

conformational flexibility of surface side chains is to some degree already accounted for in an 

ensemble of NMR structures, so no homology modeling is needed in these cases.  Once the 

structural ensemble has been generated through homology modeling or obtained from NMR 

experiments, the TK-SA calculations are performed on each individual structure, and the results 

are then averaged over the entire ensemble.  The flexibility of surface residues also makes it 

possible to use homology modeling to generate structural representations of proteins whose 

structures have not yet been solved, provided that they have a high degree of sequence similarity 

to known structures.  Indeed, this is the approach that was used to redesign human 

acylphosphatase (16). 

Figure 1.3A shows the results of the TK-SA calculations for ubiquitin (16).  The value of 

ΔGqq for a given residue represents the total energy of the interactions between that residue and 
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every other charged residue in the protein.  Unfavorable interactions are represented by positive 

values of ΔGqq, while favorable interactions are indicated by negative values of ΔGqq.  Note that 

ubiquitin has several charged residues which participate in unfavorable interactions, and therefore 

provide unfavorable contributions to stability.  This general trend has been observed in all 

proteins redesigned by this approach so far (11, 15, 16, 67, 68, 96-98), and leads to the idea that it 

should be possible to increase the stability of these proteins by neutralizing or reversing the 

charges of the residues that participate in unfavorable interactions.  In particular, one would 

expect that the reversal of an existing charge that participates in unfavorable interactions should 

yield greater increases in stability than neutralization.  In fact, this behavior has been observed 

experimentally (11-13). 

 

1.3.2. Optimization of surface charges using the Genetic Algorithm 

While it is possible to make single or double substitutions and observe a significant increase in 

the stability of a given protein (11, 16, 96, 98), those variants are often not representative of the 

most favorable charge distribution for the protein.  The ideal approach for identifying the optimal 

charge distribution for a protein, given its sequence, would be to use an exhaustive search 

algorithm to calculate the energy of every possible ionization state. However, this approach is 

computationally prohibitive for all but the smallest of peptides.  For a protein with n charged 

positions on the surface, there are three possible charged states at each position (-1, 0, +1), and 

therefore, it would take 3n calculations to identify all possible charge distributions.  Even for a 

relatively small protein, such as ubiquitin, with only 23 charged surface residues, 323 ≈ 1011 

calculations would need to be performed.  Assuming one processor can perform 100 TK-SA 

calculations per second, it would take over 31 years to perform the exhaustive search!   An 

excellent alternative to exhaustive calculations is the genetic algorithm (GA) (16, 99, 100).  The 

genetic algorithm is faster than exhaustive calculations because it does not seek to find each and 
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every one of the best charge distributions, but instead identifies some of the sequences that are 

among the most optimal.  For a protein like ubiquitin, only around 5x104 calculations are required 

to identify some of the best sequences using the genetic algorithm.  Once again, assuming that 

one processor can perform 100 TK-SA calculations per second, it would only take a little over 

eight minutes to identify optimized sequences using the genetic algorithm.  This significant 

reduction in computation time makes it possible for the optimization by a genetic algorithm to be 

performed on a standard desktop PC. 

Although the genetic algorithm and its implementation have been described in great 

detail elsewhere (16, 99, 100), a conceptual overview of how it works is important for 

understanding the computational design approach discussed here (see Fig. 1.4).    In our 

implementation of the genetic algorithm, only residues with greater than 50% solvent 

accessibility are included in this optimization.  The surface charge distributions available to a 

protein, given its sequence, are represented in silico by a “chromosome.”  The elements of these 

“chromosomes” are the charged states of the amino acid residues on the surface of the protein.  

An initial population of “chromosomes” is generated that contains a certain number of wild-type 

charge distributions and a certain number of randomly generated distributions (Fig. 1.4A).  The 

“chromosomes” are scored based on their total charge-charge interaction energies, which are 

calculated by the TK-SA model described in the previous section.  The lowest energy 

“chromosomes” are kept for the next generation where “crossover” events are used to finish 

populating the n+1 generation (Fig. 1.4B).  Once this generation has been populated, “point 

mutations” are used to introduce more diversity into the population (Fig. 1.4C).  An energetic 

penalty helps to minimize the number of energetically neutral or weak “mutations” and makes the 

“crossover” events essential for proper sampling of the available charge distributions.  This 

process is repeated iteratively until the lowest energy “chromosomes” have remained identical for 

a predetermined number of cycles (Fig. 1.4D). 
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 The results of the genetic algorithm for ubiquitin are shown in Figure 1.5 and serves to 

demonstrate the effectiveness of the genetic algorithm to appropriately sample the entire sequence 

space available to a given protein (16).  By examining the charge-charge interaction energies as a 

function of the number of amino acid substitutions relative to the wild-type sequence, one can see 

that, in general, an increasing number of substitutions leads to a significant increase in favorable 

charge-charge interactions.  However, after a certain number of substitutions (eight to ten for 

ubiquitin), the increase in favorable energy that is obtained per additional substitution begins to 

level off.  The observation that a large increase in stability can be obtained with a small number 

of substitutions also holds for other proteins (97), suggesting that it is possible to increase protein 

stability via the optimization of surface charge-charge interactions with only a few substitutions.  

 

 1.4 Experimental Verification of Computational Predictions 

One of the most important facets of computational design is to experimentally test the 

predictions.  The experimental characterization of the stabilities of the designed variants serves 

two important purposes.  First, it is the only way to know if the physical model being used to 

make the predictions is appropriate or if it is lacking in some of the fundamental aspects.  Second, 

only by testing this approach on a number of proteins with different sizes, secondary structures, 

and three-dimensional topologies can one determine how universal this approach is and what 

improvements, if any, should be made.  This section will highlight the results of some of the key 

experiments that validated the TK-SA computational design method. 

 

1.4.1. Single site substitutions 

The first test of the hypothesis that optimizing surface charge-charge interactions will increase the 

stability of a protein was performed using ubiquitin as a model system (11).  In this test, three 
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single site substitutions were made to neutralize the charges at positions predicted to contribute 

unfavorably to stability (K6Q, H68Q, and R72Q), three single substitutions were made to reverse 

charges at unfavorable positions (K6E, R42E, and H68E), and three single substitutions were 

made to neutralize charges at favorable positions (K27Q, K29Q, and K29N) to serve as controls 

for these experiments.  The stabilities of these nine ubiquitin variants were measured by 

monitoring changes in secondary structure as a function of denaturant concentration using far-UV 

circular dichroism spectroscopy (CD) (101).  As predicted, the neutralization of unfavorable 

charges was stabilizing.  Furthermore, the reversal of the unfavorable charges resulted in larger 

increases in stability (~1 kJ/mol) than charge neutralization.  In addition, the neutralization of 

charges predicted to contribute favorably to the stability of ubiquitin (K27Q, K29Q, and K29N) 

resulted in variants with significantly decreased stability relative to the wild-type, suggesting that 

the TK-SA model can qualitatively predict the effects of surface substitutions on the stability of 

ubiquitin. 

One of the advantages of computational design methods over other approaches used to 

stabilize proteins, such as directed evolution or sequence-based design, is that it is universal.  In 

other words, since computational design approaches model the energetics of intramolecular 

interactions, one should be able to use the same algorithm to redesign many different proteins 

without developing different selection criteria for each protein.  After it had been demonstrated 

that the TK-SA approach could be used to successfully stabilize one model protein, the next 

important step was to test the robustness of this model.  This was done using several proteins, and 

the results of each test are described in this section.   

Initially, the calculated values of ΔGqq were compared to the experimental stabilities 

reported in the literature for ubiquitin (11), the bacterial cold-shock protein (CspB) (14, 102), 

RNaseSA (12), the peripheral subunit binding domain (psbd41) (13), rubredoxin (103), barnase 

(55, 74, 75, 104), λ-repressor (105), T4 lysozyme (106), the B1 domain of protein G (GB1) (107, 
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108), and the zinc-finger domain (109).  The changes in both the experimentally measured 

thermostabilites (ΔTm) and stabilities (ΔΔGexp) of the variants relative to their wild-type proteins 

were compared to the changes in the charge-charge interaction energy (ΔΔGqq) expected from the 

substitutions (67, 68).  It was observed in all cases that the changes in both thermostability and 

stability for these proteins could be qualitatively predicted based on the calculated changes in 

ΔΔGqq (67, 68).  These results provided the first indication for the robustness of the TK-SA 

design strategy.  More extensive testing was performed by making many substitutions in three 

different model systems: α-lactalbumin (96), ribosomal protein L30e (98), and bacterial cold 

shock protein (CspB) (15, 110). 

α-Lactalbumin is a small calcium binding protein that has recently been observed to bind 

electrostatically to highly basic proteins and histones.  The apo form of the protein was predicted 

to have many unfavorable surface charge-charge interactions (96).  While the presence of calcium 

does create favorable interactions for the residues involved in metal binding, the residues far from 

the binding loop maintained unfavorable interactions.  However, the TK-SA approach was able to 

successfully predict the effects of the single site substitutions on the stability of α-lactalbumin.  It 

was also observed that the changes in the thermostability of α-lactalbumin are in direct 

correlation with the changes in the calcium affinity (96). 

In order to learn more about the extent to which surface charge-charge interactions affect 

stability, the T. celer ribosomal protein L30e was used as a model system (98).  In this study, the 

TK-SA model was used to predict the effects of charge to alanine substitutions at all 26 charged 

positions of this protein.  In addition to eliminating the charges at these positions, the alanine 

substitutions alter other important intramolecular interactions, such as hydrophobicity, secondary 

structure propensity, and side chain packing interactions.  If these other types of interactions 

contribute more to stability than charge-charge interactions at these positions, then one would 

expect the calculated values of ΔΔGqq to incorrectly predict the experimentally observed changes 
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in stability.  However, the experimentally measured changes in stability were predicted correctly 

for 20 of the 26 positions studied.  The remaining six positions were all located at either the N- or 

C-termini of α-helices, and thus, are likely to participate in specific interactions at the ends of the 

helix, and it has been shown previously that the identity of helix-capping residues is very 

important for thermodynamic stability (111-119).  The results of the L30e experiments suggest 

that the non-electrostatic interactions that are important for the helix-capping motifs contribute 

more to stability than the charge-charge interactions at these positions. 

The bacterial cold shock protein, CspB, was used as a model system to gain a better 

understanding of the possible thermodynamic mechanism of stabilization through the rational 

design of surface charges.  The surface charge-charge interaction energies were calculated and 

compared for the CspB proteins from the mesophilic bacterium B. subtilis (CspB-Bs), the 

thermophilic B. caldolyticus (CspB-Bc), and the hyperthermophilic T. maritima (CspB-Tm) (15, 

67).  Although the sequences of these three variants of CspB are highly homologous, the 

distributions of the surface charges are very different (Fig. 1.6).  CspB-Bs has the greatest number 

of unfavorable charge-charge interactions (Fig. 1.6A), whereas CspB-Tm has the most favorable 

charge-charge interactions (Fig. 1.6C).  This trend correlates with the relative thermostabilities of 

these proteins.  To determine whether the high stability of CspB-Tm did indeed come from the 

increased number of favorable surface charge-charge interactions, a cold shock protein (CspB-

TB) was engineered to have the same core residues as CspB-Bs and the same surface charge 

distribution of CspB-Tm (Fig. 1.6D).  The thermal stabilities of CspB-Bs and CspB-TB were 

measured using far-UV CD and it was found that CspB-TB had an increase in thermostability of 

20°C relative to the CspB-Bs protein (15).  This result further supported the idea that the rational 

design of surface charge-charge interactions could be a more effective way to stabilize proteins 

than making single substitutions at unfavorable positions. 



 

 

22

 Because CspB-Bs and CspB-TB are structurally similar, yet have dramatically different 

surface charge distributions, they provided a special opportunity to address two important 

questions regarding protein design.  The first was whether or not charge-charge interactions in the 

unfolded state provide significant contributions to stability.  To answer this question, a number of 

single substitutions were made in each of the proteins (110).  For most of the substitutions, the 

TK-SA approach was able to semi-quantitatively (relative rank order) predict the effects of the 

substitutions on the stability of each protein.  Since most of the positions that were predicted 

incorrectly were located in a β-hairpin of CspB-Bs, it is possible that residual charge-charge 

interactions in the unfolded state could affect the overall contributions of these residues to the 

stability of the native state.  However, when the Gaussian chain model of the unfolded state (93) 

was incorporated into the calculations, no significant improvement in the correlation between the 

calculated and experimental stabilities was observed.  Furthermore, when the putative unfolded 

state structure of CspB-Bs was disrupted, by destabilizing the β2-β3 hairpin, there was also no 

significant improvement between the calculations and experiments (110).  Rather, it was found 

that these residues were part of a complex network of charge-charge interactions that when 

disrupted, led to markedly better agreement between the calculated and experimentally measured 

stabilities (110). 

 At first, the observation that the unfolded state of CspB did not have a significant effect 

on the predictions of the TK-SA model seemed to be in conflict with previous observations that 

consideration of the unfolded state was necessary to accurately predict experimentally measured 

stabilities of a number of different proteins (85-94).  In most of these examples, it seems that 

there were specific non-electrostatic interactions in the unfolded state of the proteins that affected 

the predictions of the thermodynamic stability (ΔG).  However, the TK-SA approach predicts 

ΔΔGqq, or the difference in charge-charge interaction energies between a wild-type protein and its 

designed variant.  In the absence of specific interactions in the unfolded state, the high dielectric 
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of the solvent, to which most of the protein is exposed, will screen out interactions between 

charges separated by more than ten residues.  Even for residues that are much closer in sequence, 

the calculated charge-charge interaction energies in the unfolded state are smaller than for 

interactions in the native state of the protein.  Since the unfolded state contributions of non-

specific interactions are small, even in terms of ΔGqq, they would be expected to have even 

smaller contributions to ΔΔGqq.  This idea, combined with the CspB results, would suggest that 

including the unfolded state charge-charge interactions is not always necessary to improve the 

correlation between the predicted and experimental stabilities.   

The second question that the CspB proteins were uniquely suited to address is whether 

the surface substitutions affect interactions other than the charge-charge interactions.  Ideally, to 

analyze only the effects of altered charge-charge interactions on protein stability, one would make 

substitutions that perturbed only the charge of the side chain, without affecting other factors such 

as size, hydrophobicity, and/or packing interactions (13).  Incorporating non-natural amino acids 

into the protein sequence is an effective way to accomplish this goal (13), but it is only 

experimentally possible for small proteins.  Furthermore, the relatively small number of naturally 

occurring amino acids offers only limited options for reversing or neutralizing charges in 

proteins.  As such, it is often easier to use the natural amino acids lysine or glutamic acid for 

charge reversals and glutamine for charge neutralizations.  Although this approach simplifies the 

design process, it is possible that observed changes in stability are actually due to changes in 

other important properties such as hydrogen bonding patterns, hydrophobicity, secondary 

structure propensity, or packing.   

It is also possible that the charge reversals/neutralizations could alter short-range (i.e. salt 

bridges) rather than long-range charge-charge interactions.  Short-range and long-range 

interactions are affected differently by changes in the ionic strength of a solution – long-range 

interactions tend to get weaker with increasing salt concentrations, whereas short-range 
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interactions tend to persist (120-122) – making it possible to determine which interactions 

contribute more to the observed increases in stability.  To address this issue, the same 

substitutions were made at the same surface positions in the different electrostatic environments 

of CspB-Bs and CspB-TB.  If the substitutions affect primarily long-range charge-charge 

interactions, then one would expect an inverse correlation between changes in stability and 

changes in the halophilicity of the proteins (14, 41, 66).  Indeed, for most of the substitutions, this 

behavior was observed (110).  The surface substitutions that did not display an inverse correlation 

between stability and halophilicity occurred at the same position, V20 in CspB-Bs and K20 in 

CspB-TB.  The introduction of charge at V20 in CspB-Bs results in a protein that is both less 

stable and less halophilic, while the introduction of a hydrophobic residue at K20 in CspB-Tb 

results in a protein with increased stability and halophilicity, suggesting that hydrophobic 

interactions are much more important than charge-charge interactions at this position (110). 

 

1.4.2. Rational design of surface charge-charge interactions using a genetic algorithm 

The studies on the proteins described above provided strong evidence that the rational 

design of surface charge-charge interactions could be successful for many different proteins.  

Furthermore, the studies with the engineered CspB-TB protein not only gave important insights 

into the nature of how proteins are stabilized by this approach, but also led to the idea that it 

should be possible to computationally optimize the entire surface charge distribution for any 

given protein.  To optimize the surface charge-charge interactions, a genetic algorithm (GA) was 

used to simultaneously select multiple sites for substitution.  The TKSA-GA approach to stabilize 

proteins was tested using seven model proteins: ubiquitin, procarboxypeptidase, the Fyn SH3 

domain, acylphosphatase, tenascin, U1A, and CDC42.  These proteins all have different sizes, 

three-dimensional topologies, secondary structural composition, and surface charge distributions 

(16, 97, 110) (Fig. 1.7).  The surface charge-charge interaction energies were calculated for each 
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protein using the TK-SA model, and then the optimal surface charge distributions were identified 

using the genetic algorithm.  The results discussed in this section are summarized in Table 1.3. 

One of the first proteins redesigned by this approach was ubiquitin (Fig. 1.7A).  In this 

study, the stabilities of two variants with single substitutions at unfavorable positions (Ubq-6, 

K6E, and Ubq-72, R74E) and one variant with charge reversals at both positions (Ubq-6/72, 

K6E/R74E) were characterized as a reference for the magnitude of ΔΔG expected when charge-

charge interactions were optimized using the genetic algorithm.  It was observed that both Ubq-6 

and Ubq-72 were more stable than wild-type ubiquitin (ΔΔGDes-WT = 3.3 kJ/mol and 1.7 kJ/mol, 

respectively), and Ubq-6/72 was more stable than either single variant (ΔΔGDes-WT = 5.2 kJ/mol) 

(16).  Once again, this demonstrates that reversing the charges at unfavorable positions can lead 

to significant increases in stability.  The next step was to see if the optimization of surface 

charges using the genetic algorithm would provide even larger increases in stability.  Figure 1.5 

shows an analysis of the results of the genetic algorithm for ubiquitin.  In general, there is an 

increase in favorable charge-charge interaction energy with an increasing number of substitutions.  

However, after eight to ten substitutions, the increase in favorable charge-charge interaction 

energy gained per additional substitution begins to level off (Fig. 1.5B).  As a result, it should be 

possible to obtain significant increases in stability with just a few mutations.   

 Three of the sequences that were predicted to increase the stability of ubiquitin were 

selected for further characterization.  Figure 1.3A provides a comparison of the results of the TK-

SA calculations for wild-type and designed variants of ubiquitin.  One of the variants only 

optimized existing charges (Ubq-GA2 – four substitutions, 5.3% of the sequence), while the other 

two variants also allowed for neutral polar residues on the surface to be included in the 

optimization (Ubq-GA1 – five substitutions, 6.6% of the sequence; Ubq-GA3 – 6 substitutions, 

7.9% of the sequence).  From Figure 1.3A, it can be seen that several positions that have 

unfavorable contributions to stability in the wild-type protein are now predicted to contribute 
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favorably in each of the designed variants.  Indeed, when the stabilities of these three designed 

sequences were characterized using urea-induced unfolding, it was found that, not only were they 

much more stable than the wild-type (ΔΔGUbqGA1-WT = 13.2, ΔΔGUbqGA2-WT = 18.4, and ΔΔGUbqGA3-

WT = 17.7 kJ/mol), but all three variants also had much larger increases in stability than one 

obtains by focusing only on one or two unfavorable positions (16).  

Two of the sequences of procarboxypeptidase (Fig. 1.7B) that were predicted to be more 

stable than the wild-type were also selected for experimental characterization.  One sequence 

contained five substitutions (6.9% of the sequence) and one contained seven substitutions (9.7% 

of the sequence).  Both designed sequences had significantly increased stabilities relative to the 

wild-type protein (ΔΔGDes-WT = 4.1 and 10.7 kJ/mol) (16).  Two designed variants of 

acylphosphatase (Fig. 1.7C) were also studied.  The first variant (Acp-GA1) contained four 

substitutions (4.1% of the sequence) and was stabilized by 7.0 kJ/mol relative to the wild-type 

(16).  The second variant (Acp-GA2) contained 5 substitutions (5.1% of the sequence) and was 

stabilized by 11 °C relative to the wild-type (123).   

Four sequences of the FynSH3 domain (Fig. 1.7D) were selected for characterization to 

understand the step-wise effects of the optimization of charge-charge interactions on protein 

stability (97). One of the variants contained five substitutions (Fyn5; 8% of the sequence) and the 

others contained one (Fyn1; 1.6% of the sequence), two (Fyn2; 3.2% of the sequence), or three 

(Fyn3; 4.8% of the sequence) of those five substitutions in their sequences.  Each of the four 

variants was more stable than the wild-type (ΔΔGFyn1 = 4.7 kJ/mol, ΔΔGFyn2 = 2.3 kJ/mol, ΔΔGFyn3 

= 6.7 kJ/mol, ΔΔGFyn5 = 7.1 kJ/mol) (97).  Importantly, the TK-SA model was able to predict the 

relative rank order of the stabilities of these variants.  The ubiquitin, procarboxypeptidase, 

acylphosphatase, and FynSH3 results demonstrate how the flexibility of this approach allows for 

large increases in stability to be obtained with two or three different designed sequences.  This 

was an important observation because it suggested that it should be possible to choose sequences 
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that do not make substitutions in or near the active/binding site of proteins, thus providing a way 

to increase their stability without significantly affecting their function.   

Only one optimized sequence each of tenascin (Fig. 1.7E) and U1A (Fig. 1.7F) were 

selected for further characterization (16).  The designed sequence for each of these proteins had 

four substitutions (~4% of each sequence). Once again, for each of these proteins, the designed 

variants were significantly more stable than the wild-type (ΔΔGDes-WT = 5.4 and 4.1 kJ/mol, for 

tenascin and U1A, respectively).  Moreover, this was the first successful stabilization of the U1A 

ribosomal protein.  The largest protein redesigned by this approach was CDC42 (190 amino 

acids, Fig. 7G).  With only eight amino acid substitutions (4.2% of the sequence), it was possible 

to thermostabilize CDC42 by 10 °C (123), which is quite remarkable for such a large protein. 

These results highlight how the rational design of surface charge-charge interactions is a 

universal approach for stabilizing proteins of different sizes and structures. 

 

1.4.3. Effects of stabilization on enzymatic activity 

In order for any design approach to be useful for practical applications, the protein must 

retain its activity.  To determine if this was indeed true for proteins which were stabilized by 

optimizing the surface charges, activity assays were performed on three of the proteins: CspB, 

acylphosphatase, and CDC42.  The activities of each designed variant were compared to their 

respective wild-type proteins.   

CspB-Bs is expressed by B. subtilis when it is exposed to cold temperatures and protects 

cells from these conditions by acting as an RNA chaperone.  CspB can also bind polypyrimidine 

single-stranded DNA (ssDNA) sequences (124-126).  The interactions between both CspB-Bs 

and CspB-TB (23°C more thermostable than CspB-Bs) with ssDNA templates were measured 

using fluorescence spectroscopy.  Not only could CspB-TB bind ssDNA at higher temperatures 

(37°C) than CspB-Bs, but it also bound ssDNA with a higher affinity than CspB-Bs at lower 
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temperatures (25°C) (15).  Based on the findings of these functional studies, the structure of CspB 

in complex with pT7 was solved (127, 128).   

Acylphosphatase is an enzyme that binds its charged substrate, acylphosphate, and 

catalyzes the hydrolysis to produce carboxylate and inorganic phosphate.  The hydrolysis of 

benzoylphosphate by the acylphosphatase variants was measured using a continuous UV 

absorption assay (129, 130).  The Acp-GA1 variant was found to be inactive, and examination of 

its sequence revealed that one of the stabilizing substitutions was in the active site of the enzyme.  

As a result, a sequence was selected that contained only substitutions that were distant from the 

active site (Acp-GA2).  Not only was the designed Acp-GA2 enzyme 10 °C more stable than 

Acp-WT, but was also able to maintain similar catalytic activity at room temperature (kcat,WT = 

(1.0 ± 0.2) x 10-4 s-1; kcat,GA2 = (2.3 ± 0.2) x 10-4 s-1; KM,WT = (1.0 ± 0.1) x 103 M; KM,GA2 = (0.9 ± 

0.1) x 103 M) (123).   

CDC42 is an important cell signaling protein that binds GTP and catalyzes the hydrolysis 

of GTP to GDP + Pi.  This activity can be monitored using a colorimetric assay to detect the 

amount of free phosphate released upon hydrolysis.  Since the thermal inactivation/denaturation 

of CDC42 is not reversible, the functional properties were characterized as the residual activity 

after incubation at high temperatures (~10 °C higher than the T1/2 of wild-type CDC42).  Once 

again, it was observed that the designed variant was not only able to retain activity at 

temperatures where the wild-type enzyme was inactivated, but it was also as active as the wild-

type at room temperature (kcat,WT = (2.8 ± 0.1) hr-1; kcat,GA1 = (2.6 ± 0.1) hr-1; kcat,GA2 = (3.1 ± 0.2) 

hr-1; KM,WT = (8.2 ± 0.9) x 10-3 M; KM,GA1 = (8.2 ± 0.9) x 10-3 M; KM,GA2 = (8.2 ± 0.9) x 10-3 M) 

(123). 

The functional studies of the three proteins discussed in this section support two 

important conclusions.  First, it is possible to stabilize proteins through the rational design of 

surface charge-charge interactions without perturbing activity.  Second, it provides a strong 
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argument against the idea that a dichotomy exists between protein stability and function.  

Historically, it was believed that if a protein was thermostable, then it must be rigid at lower 

temperatures.  Since proteins and enzymes need some flexibility to function properly, an idea 

developed that if a protein were stabilized, it would become more rigid, and therefore, less active 

at lower temperatures.  This idea was supported by observations that proteins isolated from 

thermophilic organisms were not as active at lower temperatures as they were at higher 

temperatures (28, 131-134).  However, proteins that exist in thermophilic organisms are under no 

evolutionary pressure to function at decreased temperatures.  This does not mean per se that 

stability and flexibility/function should be mutually exclusive.  Indeed, the results presented here 

show that by optimizing surface charge interactions at regions of the protein that are far from the 

active site, it is possible to increase stability and maintain activity at both higher and lower 

temperatures. 

 

1.5 Practical Considerations  

As evidenced in this chapter, the TK-SA method provides a simple model that is still 

effective for determining the qualitative changes in charge-charge interactions on the protein 

surface.  However, there are a few assumptions that go into the model that must be taken into 

consideration when it is applied to the rational design of stable proteins.  First, the model assumes 

that the protein is spherical.  For globular proteins, this assumption does not appear to have 

adverse affects, even when the shape of the protein somewhat deviates from a sphere.  For 

example, tenascin (Fig. 1.7D) is more cylindrical than spherical, but this approach was still able 

to successfully predict stabilizing substitutions (16).  Second, the model assumes that the 

interactions between charges are the only electrostatic interactions that occur in the native state.  

This assumption could pose the biggest challenge for accurate predictions since it is known that 
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hydrogen bonding and partial dipoles also provide significant contributions to electrostatic 

interaction energies.  To ameliorate this issue, surface side chains that are involved in 

intramolecular hydrogen bonds are not included in the optimization procedure described here.  

Third, it has been reported that this model ignores important parameters such as self-energy and 

solvation (135-137).  While this is true, when the results of the TK-SA calculations for surface 

residues are compared to the results of calculations on surface residues using other continuum 

electrostatic models such as the finite difference solution of the Poisson-Boltzmann equation 

(FDPB/UHBD) (Fig. 3B) (138, 139), the Multi-Conformer Continuum Electrostatic model 

(MCCE) (Fig. 3C) (140, 141), the Microenvironment Modulated Screened Coulomb Potential 

model (MM_SCP) (Fig. 3D) (142), or the Langevin dipole model (PDLD) (135, 143, 144), they 

are qualitatively similar for all models.  The only advantage of TK-SA over the continuum 

models is that it is less computationally demanding.   

Another potential pitfall to the rational design of surface charges is that it is currently not 

possible to quantitatively predict the protein stabilities.  This is largely due to the fact that only 

interactions between charges in the native state of the protein are being considered.  While it has 

been shown that the unfolded state effects do not seem to be significant for the proteins 

redesigned by this approach, unfolded state effects have been demonstrated to be important for 

other proteins (87-89, 145), and we have not considered them in any of the designs described 

here.  In addition, other important factors for protein stability, such as side chain hydrophobicity, 

secondary structure propensity, hydrogen bonding, packing interactions, and helix capping 

interactions are not considered (4, 5, 8, 9, 64, 78, 116, 117, 146-148).  Nevertheless, the TK-SA 

model does provide excellent qualitative predictions of protein stability.  In order to obtain 

quantitative predictions, the other factors mentioned here will need to be included in the 

computational optimization approach.  Important questions that will need to be addressed in the 

development of a quantitative algorithm are:  which of these interactions are the most important 
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for modulating stability, and how quantitative should the algorithm be to be practical?  It seems 

likely that incorporating just a few of the factors mentioned here will give the algorithm the 

ability to predict the stability of designed sequences within the errors of experimental techniques. 
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Table 1.1 Comparison of the different approaches used to design/engineer stable proteins 

 

 Directed  Evolution Sequence-Based Design Computational 
Design 

3D Structure No No Yes 

Speed Slow Fast Fast 

Labor Intensive Yes No No 

Guaranteed 
Results Maybe No No 

Universal No Maybe Yes 

Mechanism of 
stabilization 

Kinetic 
Thermodynamic 

Kinetic 
Thermodynamic Thermodynamic 
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Table 1.2 Comparison of Different Computational Design Approaches 

 

Design Method Protein Name # Mutations 
(Total Residues) 

ΔTm and/or 
ΔΔG 

Location of 
Substitutions 

Rosetta Procarboxypeptidase 
(60) 

48 
(71) 

 
30 kJ/mol Surface & Core 

ORBIT Engrailed 
Homeodomain (149) 

24 
(51) 

33°C 
 Surface & Core 

ORBIT Thioredoxin (150) 3 
(104) 

 
10 kJ/mol Core 

Rosetta Yeast cytosine 
deaminase (61) 

3 
(158) 10°C Core 

Rosetta Procarboxypeptidase 
(151) 

4 
(71) 

 
16kJ/mol Surface 

TK-SA 

Fyn, Ubq, U1A, 
Procarb, Acp, 

CDC42, Ten (53, 
152) 

4 - 7 
(72 - 190) 

4 - 12ºC 
4 - 18 kJ/mol Surface 

Poisson-
Boltzmann psbd41 (13) 1 

(41) 
9-12°C 

3  kJ/mol Surface 

Altered 
Coulombic 
interactions 

RnaseT1, RnaseSa 
(12) 

1 
(96-104) 

2-7°C 
2-5 kJ/mol Surface 

Sequence-based 
design CspB-Bs (14) 2 

(67) 
13-21°C 

8.8-14 kJ/mol Surface 

 
 
A comparison of different protein design approaches.  The first two rows of the table highlight 
instances where the Rosetta and ORBIT algorithms were used to increase the stability of proteins 
by much more than what has been demonstrated to be possible by stabilizing proteins using only 
surface interactions.  However, in both of these instances, over half of the protein sequence was 
subjected to substitution, resulting in optimization of both core and surface interactions.  When 
Rosetta and ORBIT were used to make only a small number of substitutions in the protein core, 
similar increases in both thermodynamic stability (ΔG) and thermostability (Tm) relative to the 
surface redesign approaches were observed.  The results highlighted in this table demonstrate that 
surface interactions can be as important as interactions in the protein core for modulating the 
stability of proteins. 
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Table 1.3 Summary of TK-SA/GA Results 

 

Protein Name Number of Substitutions 
(% of Sequence) 

ΔΔG or Tm 

Ubiquitin 
GA1 
GA2 
GA3 

 
5/76 (6.6%) 
4/76 (5.3%) 
6/76 (7.9%) 

 
13.2 kJ/mol 
18.4 kJ/mol 
17.7 kJ/mol 

Procarboxypeptidase 
GA1 
GA2 

 
5/72 (6.9%) 
7/72 (9.7%) 

 
4.1 kJ/mol 

10.7 kJ/mol 
Acylphosphatase 

GA1 
GA2 

 
4/98 (4.1%) 
5/98 (5.1%) 

 
7 kJ/mol 

11°C 
Fyn SH3 Domain 

Fyn1 
Fyn2 
Fyn3 
Fyn5 

 
1/62 (1.6%) 
2/62 (3.2%) 
3/62 (4.8%) 
5/62 (8%) 

 
4.7 kJ/mol 
2.3 kJ/mol 
6.7 kJ/mol 
7.1 kJ/mol 

Tenascin 
GA1 

 
4/90 (4.4%) 

 
5.4 kJ/mol 

U1A Protein 
GA1 

 
4/100 (4%) 

 
4.1 kJ/mol 

CDC42 
GA1 

 
8/190 (4.2%) 

 
10°C 
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Figure 1.1  Three thermodynamic mechanisms of thermostabilization, reprinted from (15) with 
permission from Elsevier.  To highlight the differences more clearly, these model functions 
represent extreme examples of each mechanism of stabilization.  In each panel, different 
thermodynamic models are represented by the following lines: solid -- Reference Model; dashed -
- Model 1; dash-dot-dashed -- Model 2; dash-dot-dot-dashed -- Model 3.  A. The Gibbs free 
energy (ΔG) as a function of temperature.  B.  The temperature dependence of the entropic term 
(TΔS).  C.  The temperature dependence of the enthalpy function (ΔH). 



 

 

36

 

 
Figure 1.2 Schematic representation of the Tanford-Kirkwood model of the interactions between 
charged residues.  The protein is represented by a hard sphere with low dielectric (εP) of radius b 
from the center of mass (CM).  It is surrounded by a larger sphere of radius a, which is the ion 
exclusion boundary.  These spheres are immersed in water, represented by high dielectric (εS).  
The other parameters in the TK-SA model are the identity of charges on the protein surface, 
represented by the small spheres i and j and the distance between them, rij. 
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Figure 1.3 Surface charge-charge interaction energies (ΔGqq) for wild-type and designed variants 
of ubiquitin at pH 5.5, reprinted with permission from (53).  Copyright 2006 by the American 
Chemical Society.  The charge-charge interactions were calculated using four different models.  
A. TK-SA B. FDPB-UHBD C. MMCE D. MM_SCP.  Each bar represents the total energy of 
charge-charge interactions of the corresponding residue with every other residue in the protein, 
averaged over an ensemble of 11 structures.  Positive values of ΔGqq are indicative of unfavorable 
interactions, while negative values correspond to favorable interactions.  Black bars -- wild-type 
ubiquitin.  Dark grey bars -- UBQ-GA#1; light grey bars -- UBQ-GA#2; and white bars -- UBQ-
GA#3 represent designed sequences that were identified by the genetic algorithm.  UBQ-GA#1 
and UBQ-GA#3 included uncharged polar residues in the optimization, while UBQ-GA#2 did 
not. 
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Figure 1.4 A schematic representation of the genetic algorithm.  The steps of the algorithm are 
described in detail in the text.  In each “chromosome,” black boxes are representative of positive 
charges, grey boxes of negative charges, and white boxes indicate neutral residues.  The large 
“X” in (A and D) indicates sequences whose energies were above the cutoff (-5 kJ/mol in this 
example), and were therefore not kept for the n+1 generation.  The black arrows in (B) show the 
“crossover” events that are used to finish populating the n+1 generation.  The stars in (C) indicate 
“point mutations” that are used to introduce more diversity into the population.  The 
chromosomes in (D) that have energies below the pre-determined cutoff will be kept for the next 
generation, and these steps will be repeated iteratively until the sequences in population of 
“chromosomes” have reached convergence. 
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Figure 1.5 Analysis of the ability of the genetic algorithm to find the optimal sequence of 
ubiquitin, reprinted with permission from (53).  Copyright 2006 by the American Chemical 
Society.  The charge-charge interaction energies were calculated at pH 5.5 using the TK-SA 
model.  Each sequence is characterized by the energy, net charge, and number of substitutions 
relative to the wild-type protein.  A.  The ability of the genetic algorithm to effectively sample the 
sequence space searched by more exhaustive calculations is assessed.  The open black circles 
represent results of exhaustive calculations.  The grey crosshair represents the genetic algorithm.  
The light grey hash marks (energies below -19 kJ/mol) represent the results of the genetic 
algorithm when previously uncharged surface residues were also included in optimization.  B. 
The relationship between the number of substitutions in the sequence and the energy of the lowest 
sequence with that number of substitutions.  The open circles correspond to the grey crosshairs in 
A, while the open squares represent the grey hash marks in A.  The numbers within the symbol 
are the net charges of those sequences at pH 5.5. 
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Figure 1.6 Comparison of charge-charge interaction energies for CspB-Bs, CspB-Bc, CspB-Tm, 
and CspB-TB, reprinted from (15) with permission from Elsevier.  Each bar represents the total 
energy of charge-charge interactions of the corresponding residue with every other charged 
residue in the protein, averaged over an ensemble of 11 structures.  Positive values of ΔGqq are 
indicative of unfavorable interactions, while negative values correspond to favorable interactions.  
Of the wild-type proteins, CspB-Bs has the largest number of unfavorable interactions, while 
CspB-Tm has the greatest number of favorable interactions.  CspB-TB was engineered to have 
the same core as CspB-Bs, but a similar surface charge distribution to CspB-Tm. 
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Figure 1.7 Cartoon representations of the seven proteins that have been redesigned using the TK-
SA model.  The surface charge-charge distribution of each protein was optimized using the 
genetic algorithm.  The different sizes, shapes, secondary structures, and three-dimensional 
topologies of these proteins provide a good test of the robustness of this rational design approach.  
The PDB codes for the structures are A. 1UBQ (153) (ubiquitin), B. 1AYE (154) (activation 
domain of human procarboxypeptidase), C. 2ACY (155) (acylphosphatase), D. 1FYN (156) (Fyn 
SH3 domain), E. 1TEN (157) (tenascin), F. 1URN (158) (ribosomal U1A protein), and G. 1A4R 
(159) (CDC42). 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Mutagenesis, Protein Expression, and Purification 

2.1.1 Fyn SH3 domain variants 

The FynSH3 domain mutations were generated using a PCR-based strategy. Competent 

E. coli BL21(DE3) strains were transformed by appropriate recombinant plasmid constructs 

(pET21d(+) vector) coding for Fyn SH3 domain variants fused to a C-terminal hexahistidine 

(6xHis) tag encoded by the vector. The nomenclature of the variants made is as follows: Fyn-

E11K, Fyn-D16K, Fyn-H21K, Fyn-N30K, Fyn1 (E46K), Fyn2 (E11K-E46K), Fyn3 (E11K-

D16K-E46K), Fyn4 (E11K-D16K-H21K-E46K), and Fyn5 (E11K-D16K-H21K-E46K-N30K).  

Protein expression was induced by the addition of IPTG to a final concentration of 1.5 mM to the 

culture media, and purification was carried out through nickel affinity column chromatography 

using Ni-NTA affinity matrix (Qiagen Canada, Mississauga, ON) under denaturing conditions 

(6M GuHCl), as previously described (160). Proteins were subsequently refolded through 

equilibrium dialysis in 50 mM sodium phosphate, 100 mM NaCl buffer.  The purity of the Fyn 

variants was confirmed using SDS-PAGE.  Protein concentrations for all experiments were 

determined spectrophotometrically, using a molar extinction coefficient calculated from amino 

acid composition (161, 162), of ε280nm = 18,450 M-1cm-1 for all variants. 

 

2.1.2 Tenascin and procarboxypeptidase variants 

The wild-type tenascin (Ten-WT), its designed variant (Ten-GA1), and all 

procarboxypeptidase variants (Pc-WT, Pc-GA1, and Pc-GA2) used in the kinetics experiments 

were cloned, expressed, and purified as previously described (16).  The purity of the tenascin and 

procarboxypeptidase variants was confirmed using SDS-PAGE.  The protein concentrations for 
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equilibrium denaturation and kinetic experiments were determined spectrophotometrically, using 

molar extinction coefficients calculated from amino acid composition (161, 162), of ε280nm = 

9,970 M-1cm-1 for the tenascin variants and ε280nm = 6,990 M-1cm-1 for the procarboxypeptidase 

variants. 

 

2.1.3 Ubiquitin variants 

Recombinant wild-type human ubiquitin (Ubq-WT) with an N-terminal 6xHis tag and a 

Tev protease (Tev) cleavage site in the T7 expression vector was purchased from Blue Heron® 

Biotechnology (Bothell, WA).  The supercharged ubiquitin variant (Ubq-SC) was cloned using 

assembly PCR.  E. coli BL21(DE3)pLysS cells were transformed with each plasmid, and the 

transformed cells were incubated in 1 L of 2YT media at 37 °C, 130 rpm, to an OD600 of 0.8. 

Protein expression was induced by adding IPTG to a final concentration of 1.5mM and incubating 

for five hours at 37 °C, 225 rpm.  The proteins were purified by Ni-NTA affinity chromatography 

under denaturing conditions (8M urea) as previously described (16).    Protein concentrations for 

all experiments were determined spectrophotometrically, using a molar extinction coefficient 

(161, 162), of ε280nm = 1,490 M-1cm-1 for both variants.   

The N-terminal 6xHis tags were removed by either cyanogen bromide (CNBr) cleavage 

or Tev protease cleavage.  CNBr cleaves at the C-terminal side of methionine residues, resulting 

in the removal of the 6xHis-Tag, including the N-terminal methionine of the ubiquitin constructs.  

CNBr cleavage was performed by dissolving 40mg of lyophilized protein powder in 40mL of 

70% formic acid.  A 0.66 M solution of CNBr in 80% formic acid was freshly prepared, and 

40mL of this solution was added to the protein/70% formic acid mixture under N2.  The reaction 

was incubated in the dark at room temperature for 24 hours.  To stop the reaction, the 

CNBr/protein mixture was diluted 5x with water and lyophilized.  Once dry, the protein powder 

was dissolved in 8 M urea, 100 mM sodium phosphate, 10 mM Tris-HCl, pH 8.0.  The cleaved 
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protein was separated from uncleaved protein using Ni-NTA purification under denaturing 

conditions as described above. The flow-through was collected, dialyzed into 5% acetic acid, and 

lyophilized.  The purity of the CNBr cleaved variants (Ubq-WT-CNBr and Ubq-SC-CNBr) was 

confirmed using SDS-PAGE.   

The recognition sequence for Tev protease is –ENLYFQG– and cleavage occurs at the 

C-terminal side of the glutamine residue.  Tev cleavage of the ubiquitin constructs removes 

the 6xHis-tag, while leaving a glycine residue and the N-terminal methionine residue on the N-

terminus of ubiquitin constructs.  Tev cleavage of Ubq-SC was performed at 4 °C in 50 mM Tris, 

1 mM EDTA, 1 mM DTT, pH 8.0 buffer overnight.  The cleavage of Ubq-WT was less efficient, 

so cleavage was performed at 4 °C in 50 mM Tris, 1 mM EDTA, 1 mM DTT, pH 8.0 buffer for 

10 days, with one round of dialysis after five days.  The cleavage reactions were then dialyzed 

extensively into 100 mM sodium phosphate, 10 mM Tris, pH 8.0 buffer to remove the EDTA and 

DTT.  The cleaved proteins were separated from any uncleaved protein in the sample by Ni-NTA 

purification under denaturing conditions as described above.  The flow-through was collected, 

dialyzed into 5% acetic acid, lyophilized, and the purity of the Tev cleaved variants (Ubq-WT-

Tev and Ubq-SC-Tev) was confirmed with SDS-PAGE.     

 

2.1.4 Purification of proteins for PPC experiments 

The ribonuclease A (RNaseA), lysozyme, ubiquitin and cytochrome c proteins used for 

pressure perturbation calorimetry experiments were purchased from Sigma-Aldrich (St. Louis, 

MO) and used without further purification. Wild-type eglinC (EgC) was purified as previously 

described (16, 163).  Protein concentrations for all experiments were determined 

spectrophotometrically, using a molar extinction coefficient (161, 162), of ε280nm = 10,008 M-1cm-

1 for RNaseA, ε280nm = 38,460 M-1cm-1 for lysozyme, ε280nm = 1,280 M-1cm-1 for bovine ubiquitin 
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(Ubq), ε590nm = 11,220 M-1cm-1 for cytochrome c, and ε280nm = 14,440 M-1cm-1 for eglinC.  The 

purity of eglinC was confirmed using SDS-PAGE. 

 

2.2 MALDI-TOF Mass Spectrometry 

The identities of the purified protein variants were confirmed using matrix-assisted laser 

desorption/ionization-time of flight (MALDI-ToF) mass spectrometry (Voyager DE-PRO, 

PerSeptive Biosystems/Applied Biosystems).  Samples were prepared for MALDI-ToF by 

diluting the protein stock solution (stock concentrations varied between 0.5 and 1.4 mg/mL) 1:10 

with matrix.  The matrix solution was prepared by washing 10mg of sinapinic acid with hexane to 

remove impurities, and then dissolving in 1 mL of MilliQ™ H2O containing 30% acetonitrile and 

0.1% TFA. After vortexing 1-2 minutes, the solution was centrifuged at 2500 g for one minute to 

pellet any undissolved matrix components.  Three spectra were accumulated and averaged for 

each of the FynSH3 variants, and the averaged data were processed using Data Explorer, version 

4.0 (Applied Biosystems; Penn State College of Medicine Macromolecular Core Facility).  Data 

for the remaining proteins were also the average of three spectra, collected on a MALDI-ToF/ToF 

instrument at the RPI Mass Spectrometry Core Facility, and were processed using the Micromass 

ToF Spec 2E Mass Spectrometer software suite (RPI Mass Spectrometry Core Facility). The 

experimentally measured masses were compared to the theoretical masses, based on amino acid 

composition, calculated by the ExPASy proteomics server (164).  The experimentally measured 

molecular masses of all protein variants were all within 3-5 Da of the masses calculated from the 

amino acid sequence. 
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2.3 Differential Scanning Calorimetry (DSC) 

2.3.1 Fyn SH3 domain variants 

The DSC experiments were performed using a VP-DSC instrument (MicroCal, 

Northampton, MA), at a scan rate of 90 ºC/hr as previously described (165).  The Fyn variants 

were prepared for DSC by dialyzing extensively against 50mM sodium phosphate buffer, pH 7.0, 

containing 100 mM NaCl.  The partial specific volume of the protein was calculated from amino 

acid composition as previously described (166).  The values used were: 0.717 cm3/g for Fyn-WT; 

0.719 cm3/g for all single variants; 0.720 cm3/g for Fyn2; 0.723 cm3/g for Fyn3; 0.725 cm3/g for 

Fyn4; and 0.727 cm3/g for Fyn5.  Reversibility of unfolding of the variants was determined by 

stopping the DSC scan just after the transition, and then rescanning the same sample.   

 

2.3.2 Ubiquitin variants 

Experiments to test the reversibility of thermal denaturation of the Ubq-WT and Ubq-SC 

variants were performed under several different conditions.  The partial specific volumes of each 

of the proteins were calculated from amino acid composition as previously described (166).  The 

values used were: 0.747 cm3/g for Ubq-WT-CNBr and Ubq-WT-Tev and 0.757 cm3/g for Ubq-

SC-CNBr and Ubq-SC-Tev.  Experiments with the CNBr cleaved proteins (Ubq-WT-CNBr and 

Ubq-SC-CNBr) were performed at pH 7.0 in the presence and absence of salt (50 mM sodium 

phosphate buffer, 100 mM NaCl, pH 7.0 or 50 mM sodium phosphate buffer, pH 7.0).  Both 

variants were reversible under all pH 7.0 conditions, so additional experiments were performed in 

50mM sodium acetate buffer, pH 5.0.  Experiments with the Tev cleaved proteins (Ubq-WT-Tev 

and Ubq-SC-Tev) were performed at both pH 5.0 and pH 7.0 in the absence of salt.  A full 

thermodynamic characterization of Ubq-SC-Tev was obtained by performing more DSC scans 

using 50mM sodium acetate buffer (pH 3.5, pH 4.0, and pH 4.5). 
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2.3.3 Analysis of DSC experiments using a two-state model of unfolding 

DSC measures the partial molar heat capacity of a protein as a function of temperature 

( ( )TCP
exp

Pr, ), which can be obtained by measuring the apparent difference in heat capacity 

( ( )TC app
PΔ ) between  two identical cells – one containing only buffer (reference) and one 

containing a dilute protein/buffer solution (sample) (165, 167): 

( ) ( )
Mm

TCV
V

C
TC

pr

app
P

pr
buf

bufp
P

Δ
−= ,exp

Pr,       (2.1) 

where Cp,buf is the partial molar heat capacity of the buffer; bufV  is the partial molar volume of the 

buffer; prV  is the partial molar volume of the protein; mPr is the mass of the protein in the cell, 

which can be calculated from the protein concentration (c) and the volume of the calorimetric cell 

(Vcell); and M is the molecular mass of the protein.   

 The excess heat capacity function ( ( )TC exc
P ) describes the heat absorbed by the protein 

during the unfolding reaction.  It can be obtained by subtracting the progress heat capacity 

function ( ( )TC prg
P ) from the experimentally measured heat capacity: 

 ( ) ( ) g
PP

exc
P CTCTC Prexp −=        (2.2) 

where ( )TC prg
P  is defined by the fraction of native (FN) and unfolded (FU) protein in the sample: 

 ( ) ( ) ( ) ( )TCFTCTFTC UPUNPN
prg
P ,, ⋅+⋅=      (2.3) 

where CP,N(T) and CP,U(T) are the partial molar heat capacities of the native and unfolded states, 

respectively.  The change in heat capacity upon unfolding (ΔCP = ΔCP,U - ΔCP,N) defines the 

temperature dependence of the enthalpy of unfolding (ΔH).  Therefore, the change in enthalpy 

upon unfolding (ΔHcal(Tm)) can be defined as the area under the excess heat capacity profile: 
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 ( ) ( )∫
∞

=Δ
0

dTTCTH exc
Pmcal        (2.4) 

Another way to determine the enthalpy of unfolding in a calorimetric experiment is to determine 

the van’t Hoff enthalpy (ΔHvH(Tm)) (168): 

 ( ) ( )( )
( )

( )
( )mcal

mPmeq
mvH TH

TCRT
Td

Kd
RTH

Δ
=−=Δ

max24
/1

ln
    (2.5) 

where ( )mP TC max  is the maximum value of ( )TC exc
P .  For a protein that undergoes two-state 

unfolding ( UN ⇔ ), the values of ΔHvH to ΔHcal should be within 5% of each other (5, 168).   

 All DSC profiles were analyzed according to a two-state transition model.  In-house 

scripts of the non-linear regression routine, NLREG, were used to perform global fits of the data, 

keeping the native and unfolded state baselines and ΔCP the same for all experiments performed 

with the same protein or set of protein variants.  The fitted parameters were ΔH(Tm), ΔCp, and Tm.  

Using these parameters, the Gibbs free energy of unfolding (ΔG (T)) is calculated by: 

 ( ) ( ) ( ) ( )TSTTHKRTTG eq Δ−Δ=−=Δ ln      (2.6) 

  ( ) ( ) ( )∫ −Δ+Δ=Δ=Δ oPoP TTCTHdTCTH      (2.7) 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+Δ=

Δ
=Δ ∫

o
Po

P

T
TCTSdT

T
C

TS ln      (2.8) 

By defining the reference temperature (To), as Tm, it is possible to define ΔHo as ΔH(Tm).  For a 

two-state transition, the fractions of native and unfolded protein at Tm are equal (Keq = 1), so: 

 ( ) ( ) ( )mmmm TSTTHTG Δ−Δ==Δ 0       (2.9) 

 which means that it is also possible to define the change in entropy upon unfolding (ΔS(To)) in 

experimentally accessible terms: 

 ( ) ( )
m

m
m T

TH
TS

Δ
=Δ         (2.10) 
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Therefore, Eqs. 2.7 and 2.8 can be represented as: 

 ( ) ( ) ( )∫ −Δ+Δ=Δ=Δ mPmP TTCTHdTCTH      (2.11) 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+Δ=

Δ
=Δ ∫

m
Pm

P

T
TCTSdT

T
C

TS ln      (2.12) 

 

2.4 Spectroscopic Characterization of Protein Stability 

2.4.1 Thermal denaturation – circular dichroism spectroscopy (CD) 

The thermal unfolding of the Fyn variants was monitored by following the changes in the 

ellipticity at 220nm on an Aviv Circular Dichroism spectrometer Model 62A DS (Aviv 

Associates), as previously described (160).  The thermal unfolding of the tenascin and 

procarboxypeptidase variants used in the kinetics studies were monitored using a Jasco-715 

spectropolarimeter in 50 mM sodium phosphate buffer, pH 7.0, as previously described (16).  The 

protein concentrations for the Fyn, tenascin, and procarboxypeptidase variants were 0.05 mg/mL.  

The unfolding of the tenascin and procarboxypeptidase variants were measured by monitoring 

changes in ellipticity at 230 nm (tenascin) or 222 nm (procarboxypeptidase) as a function of 

temperature.  The protein concentrations were 0.05 mg/mL for each protein sample.  The 

ellipticity was measured every 1 °C from 5 °C to 95 °C, with a scan rate of 1 °C per minute.  The 

temperature was maintained in 1 cm rectangular quarts cuvettes using a Jasco PTC 424S/15 

Peltier cell holder.   Reversibility of unfolding was checked by allowing the samples to cool and 

equilibrate at 5 °C and measuring the far-UV CD spectra of the refolded proteins. 

 

2.4.2 Analysis of thermal denaturation data  

The spectroscopic thermal denaturation data were fit to a two-state model of unfolding 

using the nonlinear regression software, NLREG (169).  The changes in mean residue ellipticity 
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([Θ]) as a function of temperature can be represented by the fraction of native (FN) and unfolded 

(FU) protein in the sample (110): 

[ ]( ) ( ) [ ] ( ) ( ) [ ] ( )TTFTTFT UUNN Θ⋅+Θ⋅=Θ      (2.12) 

where [Θ]N(T) and [Θ]U(T) are the mean residue ellipticities of the native and unfolded states, 

respectively. The relative fraction of native protein at a given temperature is: 

 ( ) ( ) ( )TK
TFTF

eq
UN +

=−=
1

11       (2.13) 

From Eq. 2.6, Keq can also be represented as: 

 ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ Δ
−=

RT
TGTKeq exp        (2.14) 

The thermodynamic parameters of Tm, ΔG(T), ΔH(Tm), and ΔCP can then be obtained by 

incorporating Eqs. 2.6-2.9 into the analysis. 

 

2.4.3 Urea-induced denaturation (CD & fluorescence spectroscopy) 

 Equilibrium urea-induced denaturation of the tenascin and procarboxypeptidase variants 

were monitored using a Jasco-715 spectropolarimeter in 50 mM sodium phosphate buffer, pH 7.0 

as previously described (16).  The unfolding of the tenascin variants was monitored by following 

changes in ellipticity at 230 nm, 37 ºC, while the procarboxypeptidase variants were monitored at 

222 nm, 25 ºC.  The protein concentrations used in all experiments were 0.05 mg/mL, with an 

initial volume of 2 mL of the protein/buffer solution in a 1 cm rectangular quartz cuvette.  Small 

volumes of 0.05 mg/mL protein in 9 M urea/buffer solution were titrated into the sample using 

the Jasco ATS-429S/15 automatic titration system, controlled by scripts contained in the Jasco 

software.  The samples were allowed to equilibrate by stirring for 15 minutes before the change in 

ellipticity was recorded at 230 nm for tenascin and 222 nm for procarboxypeptidase. 
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 Urea denaturation of the tenascin and procarboxypeptidase variants were also studied by 

following changes in intrinsic tryptophan fluorescence using a FluoroMax fluorimeter in 50 mM 

sodium phosphate buffer, pH 7.0.  These experiments were also performed at 37 ºC for the 

tenascin variants and 25 ºC for the procarboxypeptidase variants.  The protein concentrations 

used for these experiments were 5 μM protein, with an initial volume of 2 mL protein/buffer 

solution in a 1 cm cuvette.  A MicroLab500 automatic titration system, controlled by scripts in 

the FluoroMax software, was used to titrate small volumes of a stock solution of 5 μM protein in 

a 9 M urea/buffer solution into the cuvette.  The samples were allowed to equilibrate for 20 

minutes before the spectra were acquired using an excitation wavelength of 290 nm and 

monitoring the emission from 310-450 nm. 

 

2.4.4 Analysis of urea denaturation data using linear extrapolation method  

 The stabilities of the tenascin and procarboxypeptidase variants due to urea denaturation 

were determined using the linear extrapolation method (101, 170).  For a protein that unfolds via 

a two-state mechanism, the equilibrium constant (Keq) can be represented by: 

 [ ]( ) [ ]( ) [ ]( )
[ ]( ) [ ]( )UreayUreay

UreayUreay
UreaK

U

N
eq −

−
=       (2.15) 

where y([Urea]) is the experimental observable (mean residue ellipticity for CD or intensity for 

fluorescence) at a given urea concentration, yN([Urea]) is the value of that observable in the 

native state of the protein, and yU([Urea]) is the value of the observable in the unfolded state of 

the protein.  The mid-point of the transition, cm, is the concentration of urea where Keq = 1.  By 

substituting this representation of Keq into Eq. 2.6, it is possible to determine the stability of the 

protein as a function of urea concentration.  ΔG varies linearly with [Urea], making it possible to 

determine the stability of the protein in the absence of denaturant by extrapolating the data to 0 M 

[Urea] (ΔGH2O) (170): 
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 [ ]UreamGG OH ⋅−Δ=Δ
2

       (2.16) 

where the slope of the line (m-value) represents the strength of the denaturant, and has been found 

to be proportional to the amount of surface area exposed upon unfolding (171). 

 

2.5 Analytical Ultracentrifugation (AUC) 

Analytical ultracentrifugation experiments were performed on a Beckman XLA 

ultracentrifuge. The absorbances of the wild-type (Fyn-WT) and designed (Fyn5) Fyn variants 

were monitored at 280 nm and samples were allowed to equilibrate at three different rotor speeds 

(22,000, 28,000 and 37,000 rpm) at 20 °C.  The Fyn variant experiments were performed in 50 

mM sodium phosphate, 100 mM NaCl buffer, pH 7.0.  For Ubq-WT-CNBr and Ubq-SC-Tev, the 

absorbances were monitored at 276 nm and the samples were allowed to equilibrate at three 

different rotor speeds (20,000, 25,000, and 37,000 rpm) at 20 °C.  The ubiquitin experiments 

were performed in 50 mM sodium phosphate buffer, pH 7.0.  Absorbance data were globally 

fitted to a single species model: 
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where A(r) is the absorbance at a given radius r; Ao is the absorbance at a reference radius ro; M is 

the molecular mass of the species in the cell; E is the baseline offset; v  is the partial specific 

volume (0.717 cm3/g for Fyn-WT, 0.727 cm3/g for Fyn5, 0.747 cm3/g for Ubq-WT-CNBr and 

0.757 cm3/g for Ubq-SC-Tev); calculated according to (166); ρ is the density of the solution 

(assumed to be 1g/ml); and ω is the rotor angular velocity.   
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2.6 Generation of Unfolded State Ensembles 

2.6.1 Random-coil library (RC) 

The random-coil libraries of ubiquitin (16,000 structures), apomyoglobin (8,000 

structures), and staphylococcal nuclease (5,000 structures) were generated by the method of 

Sosnick and co-workers as previously described (172).  Briefly, a library of backbone dihedral 

angles is generated based on the frequency of occurrence in the PDB.  All dihedrals that are 

contained in, or are adjacent to, regions of regular secondary structural elements (i.e. α-helices, β-

sheets, or turns) are not included in the library.  Dihedral angles are assigned to each amino acid 

based on the probabilities that the φ/ψ angles exist in the library. The statistical potential also 

includes a parameter to account for nearest neighbor effects due to the adjacent residues.  Steric 

overlap that can occur due to building the backbone by successively adding one residue to the C-

terminus of the chain is removed by nudging the φ /ψ angles slightly.  To account for potential 

steric clashes between backbone, and side chains of the protein, the side chains are modeled as a 

soft sphere with 90% of the volume of the original side chain, and possible rotameric 

conformations are sampled.  After the lowest energy backbone conformations are built, the side 

chains are added using homology modeling. 

 

2.6.2 Excluded-volume limit library (EV) 

The excluded-volume limit libraries of ubiquitin (2,000 and 100,000 structures), 

apomyoglobin (20,000 structures), tenascin (2,000 structures), and ribosomal N-terminal L9 

protein (NTL9, 2,000 structures) were generated by the method of Pappu and co-workers, as 

previously described (173).  In this model of the unfolded state, all intramolecular interactions are 

ignored with the exception of excluded volume requirements.  The polypeptide chain is assigned 

random, sterically allowed torsional angles.  In each step of Metropolis Monte Carlo simulation, 
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one residue is randomly selected to have either its side chain or backbone torsional angles altered.  

If this rotation minimizes the excluded volume energy function, then the change is kept for the 

next round of simulation, otherwise the residue reverts to the configuration in which it started the 

simulation step.  This process is repeated iteratively until the simulations have converged.  For 

the purposes of these simulations, convergence is determined by calculating the ensemble 

averaged radius of gyration (<Rg>) and asphericity (<δ>) as a function of the number of 

structures.  When <Rg> and <δ> no longer change with the addition of more structures to the 

ensembles, then convergence has been reached. 

 

2.7 Calculation of Charge-Charge Interactions in the Unfolded State  

The charge-charge interactions in the unfolded state were calculated using Debye-Hückel 

theory: 
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where qi and qj are the charges of residues i and j; εo is the dielectric constant of the solvent, taken 

to be 78.5 for water; κ is a constant related to the ionic strength of the solvent (I) and is equal to 

I1/2/3.04 A-1 at room temperature; and r is the distance between charges.  The charge-charge 

interactions were calculated for each individual structure in the library.  The pairwise charge-

charge interaction energies of each structure were averaged over the entire population of 

structures the library (Eij,wavg) by weighting each pairwise energy (Eij) by the probability that Eij 

occurs in the population (P(E)): 
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The average energies of charge-charge interactions calculated based on the structures in the EV 

limit library were compared to the energies expected based on the Gaussian polymer chain model 

of the unfolded state (93): 
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π ; d is the root mean square distance, defined as d = 

7.5l1/2 + 5, where l is the number of residues separating i and j; x = κd/61/2, where κ is related to 

the ionic strength of the solvent, as described above; and erfc(x) is the complementary error 

function. 

 

2.8 Molecular Dynamics Simulations (MD) 

The molecular dynamics simulations of individual structures in the ubiquitin, 

tenascin, and NTL9 EV limit libraries were performed using the AMBER99SB (174) 

force-field contained in the AMBER9 molecular dynamics software package (175).  

Simulations were run using the GB-SA solvent model (176) at an ionic strength of 

100mM.  The low pH limit (“pH 2” in Section 4.2) was modeled by neutralizing the 

charges on all acidic residues (including the C-terminus) and protonating the histidines.  

The high pH limit (“pH 14” in Section 4.2) was modeled by neutralizing the charges on 

all basic residues (including the N-terminus).  The neutral pH structures (“pH 7” in 

Section 4.2) were modeled by charging all residues and termini and deprotonating the 

histidines.  The radius of gyration (Rg) of each structure was calculated as a function of 

simulation time using scripts in AMBER9.  These values were then averaged over the 
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population of the library, and simulations were run until the average Rg did not change 

significantly as a function time.  The Rg of the EV limit library of 2,000 ubiquitin 

structures appeared to converge after 300 ps of simulation time.  Therefore, all 

subsequent simulations were run for 300 ps.  The calculations were run on the 

supercomputer available through RPI’s Computational Center for Nanotechnology 

Innovations (CCNI).  Using 50 nodes of four 2.6 GHz AMD Opteron processors, it was 

possible to run 300 ps simulations for 100 structures in 10-12 hours for a total of 20,000 

to 24,000 processor hours of computational time and 600 ns of simulation time per 2,000 

structure library.   

 

2.9 Kinetic Measurement of Protein Folding and Unfolding Reactions 

2.9.1 Stopped-flow fluorescence and circular dichroism spectroscopy 

Stopped-flow experiments were performed on a Jasco-815 spectropolarimeter with a 

BioLogic SFM300 stopped-flow mixer attachment.  The photodetector can be set up in either 

fluorescence mode or CD mode.  All fluorescence experiments were performed in 50 mM sodium 

phosphate buffer, pH 7.0, while all CD experiments were performed in 10 mM sodium phosphate 

buffer, pH 7.0.  For experiments performed in fluorescence mode, a solution of 10 μM protein 

was diluted 1:11 with buffer and 8 M urea in buffer to a final concentration of 1 μM.  For CD 

experiments, a 2-5 mg/mL solution of protein was diluted 11-fold with buffer and urea to a final 

concentration of 0.2-0.5 mg/mL.  More concentrated protein solutions yield better signal to noise 

ratios in the CD mode.  Protein stock solutions for the refolding arm of the chevron were made by 

directly dissolving the lyophilized protein powder into 8 M urea, 10 mM or 50 mM sodium 

phosphate buffer, pH 7.0.  For the unfolding arm of the chevron, the protein stock solutions were 
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made by dissolving the protein into 5% acetic acid, and then dialyzing extensively into the 

appropriate buffer solution. 

 

2.9.2 Manual mixing 

The unfolding rates of the tenascin variants were too slow (>1,000 sec) to be monitored 

using the stopped-flow method.  Therefore, unfolding kinetics of the tenascin variants at 37 ºC 

were monitored using manual mixing.  The samples were excited at a wavelength of 295 nm and 

changes in the emission fluorescence at 350 nm were followed as a function of time in a 1 cm 

cuvette.  A concentrated stock solution of 9 M urea in 50 mM sodium phosphate buffer, pH 7.0 

was diluted with buffer, inverted five times to mix, and placed in the fluorimeter to measure a 

buffer blank.  The buffer was allowed equilibrate to the experimental temperature of 37 ºC by 

stirring for 1 minute.  A buffer baseline spectrum was then collected for 1 minute.  After 

acquisition of the buffer spectrum, 20 μL of the urea/buffer mixture was removed, and the same 

volume of a concentrated stock solution of protein in 50 mM phosphate buffer, pH 7.0 was added 

to the solution for a final protein concentration of 5 μM.  The protein solution was mixed by 

pipetting up and down repeatedly, and then the emission at 350 nm was followed as a function of 

time for 600-1200 seconds.  Each data point in the chevron represents the average of three 

individual experiments. 

 

2.9.3 Analysis of kinetic data 

The tenascin stopped-flow and manual mixing data were fit to a single exponential for 

unfolding and a double exponential for the refolding data points, as previously described (177).  

The procarboxypeptidase stopped-flow data were fit to single exponentials for both the unfolding 

and refolding experiments.  In order to obtain the folding and unfolding rates in the absence of 
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denaturant, the chevrons for the tenascin and procarboxypeptidase variants were fit to a two-state 

model, as previously described (178): 

[ ]( ) [ ]( )( )UreamkUreamkk uOHufOHfobs −+−= expexplnln
22 ,,   (2.21) 

where kobs is the experimentally observed rate constant at a given urea concentration ([Urea]); 

kf,H2O is the folding rate constant in the absence of denaturant; ku,H2O is the unfolding rate constant 

in the absence of denaturant; mf is the slope of the refolding arm of the chevron; and mu is the 

slope of the unfolding arm of the chevron. 

 

2.10 Pressure Perturbation Calorimetry (PPC) 

Ribonuclease A (RNaseA), hen egg white lysozyme (HEWL), horse heart cytochrome c 

(CytC), and bovine ubiquitin (Ubq) were purchased from Sigma-Aldrich (St. Louis, MO).  Wild-

type eglinC (EgC), Tev-cleaved supercharged ubiquitin (Ubq-SC-Tev), and CNBr cleaved human 

ubiquitin (Ubq-WT-CNBr) were purified as described in section 2.1.   

Parallel DSC experiments were performed on all proteins studied by PPC, except eglinC 

which had been previously characterized (163).  All experiments were performed in 20-100 mM 

glycine buffer, pH 2.4-3.6, with a protein concentration of 0.6-1.0 mg/mL.  In order to examine 

what cold denaturation would look like with PPC, DSC experiments were performed to screen for 

conditions where Ubq-SC-Tev would cold denature while still giving a good signal.    These 

experiments were performed in 50 mM glycine (pH 2.6-3.4) or 50 mM sodium acetate buffer (pH 

3.5-4.75).  It was found that pH 3.5 would be the best condition for studying the cold denaturation 

of Ubq-SC-Tev by PPC.  The partial specific volume of the proteins were calculated from amino 

acid composition as previously described (166).  The values used were: 0.721 cm3/g for RNaseA, 

0.729 cm3/g for lysozyme, 0.783 cm3/g for cytochrome c, 0.747 cm3/g for Ubq, and 0.734 cm3/g 

for eglinC. 
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PPC experiments for RNase, HEWL, and Ubq were performed in 50 mM glycine buffer, 

pH 2.2-3.4.  CytC experiments were performed in 50 mM glycine, pH 2.4-3.4 and 100 mM 

glycine, pH 3.6.  EgC experiments were performed in 20 mM glycine, pH 2.5-3.5 to compare 

with previously published data (163).  The Ubq-SC-Tev experiment was performed in 50 mM 

sodium acetate, pH 3.5 to determine a cold denaturation profile for pressure perturbation 

calorimetry.  The Ubq-WT-CNBr experiment was performed in 50 mM NaPO4 buffer, pH 7.0 to 

determine the shape of the PPC native state baseline over a broad temperature range.   

The PPC experiments were performed on a MicroCal VP-DSC with a PPC attachment 

(MicroCal, LLC, Northampton, MA).  The protein solutions were dialyzed extensively against the 

corresponding buffers at 25 °C using Spectrapor3 dialysis membranes with a 3.5 kDa molecular 

weight cutoff.  Samples were centrifuged at 13,000 rpm in an Eppendorf 5417R microcentrifuge 

for 20-30 minutes at 25 °C to remove insoluble material present in the solution after dialysis.  The 

experiments were performed using protein concentrations between 0.8 and 4.0 mg/mL.  The 

partial specific volumes of the proteins were calculated as previously described (166).  The values 

used were: 0.721 cm3/g for RNaseA, 0.729 cm3/g for HEWL, 0.783 cm3/g for CytC, 0.747 cm3/g 

for Ubq, 0.734 cm3/g for EgC, 0.757 cm3/g for Ubq-SC-Tev, and 0.747 cm3/g for Ubq-WT-

CNBr. 

 In order to calculate the coefficient of thermal expansion (αPr) for a protein, the 

expansion effects of water and buffer salts must be taken into account.  Therefore, control runs of 

water/water, buffer/water, and buffer/buffer were also performed before each experiment.  The 

temperature range for the control experiments was 5 °C – 110 °C, with data collected every 5 °C.  

The protein/buffer experiments were also performed in the temperature range of 5 °C – 110 °C, 

with data collected every 5 °C in the baseline range, and every 2 °C in the transition region, 

which was determined by corresponding DSC experiments.   
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 Although the foundations for analyzing data from a PPC experiment have already been 

described (179), a brief overview of the thermodynamic relationship between changes in pressure, 

volume, and heat, will help make the analysis presented in Chapter 7 more clear.  A PPC 

experiment measures small changes in the heat absorbed/released by the solution in the 

calorimetric cell as small perturbations in pressure (ΔP) are applied.  Starting from the second law 

of thermodynamics, and differentiating with respect to pressure, we can represent this change as: 
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where dS is the change in entropy at temperature, T, for a reversible change in heat, dQ.  The 

Maxwell relationship 
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, makes it possible to express the pressure-induced 

changes in heat to the change in the volume (V) of the system: 
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where α is the coefficient of thermal expansion and equal to 
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.  Integrating Eq. 2.23 

yields: 

 PTVQ Δ−= α          (2.24) 

For a solution containing mPr grams of protein, and mS grams of solvent, the total volume of the 

system, VTot, can be represented by: 

 SSprprTot vmvmV ⋅+⋅=        (2.25) 

where prv  is the partial specific volume of protein in the cell, and vS is the specific volume of 

buffer.  Differentiating Eq. 2.25 with respect to temperature and substituting into Eq. 2.23 yields: 
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By integrating Eq. 2.26 over a small pressure range, we can obtain an expression for the thermal 

expanssivity coefficient of the protein (αPr) at temperature, T, in terms of the thermal expansion 

of the buffer (αS), the change in the heat of the calorimetric cell (ΔQ) and the change in the 

pressure (ΔP) of the system: 
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The thermal expansion coefficient of the buffer is determined from the buffer/water scans in a 

similar manner: 
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where Vcell is the volume of the calorimetric cell.  The water/water scans, mentioned above, 

determine the value of the thermal expansion coefficient of water (αH2O). The raw data from the 

PPC experiments were processed using the scripts in the Origin PPC data analysis software 

supplied by MicroCal (Northampton, MA) to obtain values for αPr as a function of temperature.  

The novel analysis of the αPr(T) profiles to obtain the volumetric changes upon unfolding is 

presented in detail in Chapter 7. 
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CHAPTER 3: COMPUTATIONAL DESIGN OF THE FYN SH3 
DOMAIN WITH INCREASED STABILITY THROUGH THE 

OPTIMIZATION OF SURFACE CHARGE-CHARGE 
INTERACTIONS 

 

3.1 Introduction 

The design of proteins with improved thermodynamic stability has been the focus of 

many protein engineering studies.  Due to the widely accepted notion that the interactions in the 

core of a protein play a major role in determining protein stability (2, 5), most design approaches 

have been focused on optimizing interactions in the core and, as a result, the protein surface had 

often been ignored in such studies.  However, core optimization algorithms have challenges 

associated with accurately modeling interactions in the tightly packed interior of proteins (6, 7, 

62).  The protein surface, on the other hand, offers a much smaller set of interactions to be 

optimized but was largely ignored in design procedures due to the belief that residues on the 

surface do not contribute significantly to stability, since their solvent exposure in the native and 

unfolded states are similar.  However, in the native state of a protein, surface residues do 

participate in a number of tertiary interactions, such as hydrogen bonding or long-range 

electrostatic interactions.  Residues that participate in these types of interactions will contribute 

differently to the stability of the native and the unfolded states of a protein.  Since surface 

residues are more amenable to substitution than those in the core, they should provide effective 

means to manipulate the stability of a protein without affecting the structural integrity of the 

protein.  Indeed, it has been demonstrated that surface charge-charge interactions can be 

successfully exploited to modulate protein stability.  For example, it has been shown that 

neutralizing or reversing the charges of individual residues with unfavorable interaction energies 

successfully enhances the stability (11-14, 67, 96, 98, 110).  In addition, it has been shown that 
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further increases in stability can be gained by optimizing the entire surface charge distribution 

(16).   

SH3 domains are small protein-protein interaction modules that have been the subject of 

numerous folding studies.  Structurally, the SH3 domains are comprised of two three-stranded β-

sheets, orthogonally packed against one another (Fig. 3.1A).  The folding of SH3 domains is well 

approximated by a simple two-state reaction, where a polypeptide chain folds into its native state 

by passing through a high energy transition state barrier in the absence of populated folding 

intermediates (180-184).  In the present study, the Fyn SH3 domain is used as a model system for 

the rational optimization of surface charge-charge interactions to increase the stability of this 

protein.  The Fyn SH3 domain with increased stability serves an important purpose.  The wild-

type Fyn SH3 domain has a higher calculated energy of charge-charge interactions (ΔGqq), 

compared to any other protein previously optimized by this approach (11, 15, 16, 96, 98, 110) 

hereby providing insights into how much stability can be gained through the optimization of 

proteins possessing highly unfavorable charge-charge interaction energies.  Furthermore, the 

kinetics of the folding and unfolding reactions of the FynSH3 domain is well characterized, 

providing an excellent model system for understanding how the optimization of surface charge-

charge interactions affects the folding kinetics of proteins.  In this chapter, the results of the 

experimental thermodynamic studies on the stabilities of the computationally redesigned variants 

of Fyn SH3 domain with optimized surface charge-charge interactions are presented.   

 

3.2 Results and Discussion 

3.2.1 Modeling charge-charge interactions in Fyn SH3 domain 

To explore the possibility of optimizing surface charge-charge interactions in the Fyn 

SH3 domain, we first evaluated the energetics of the charge-charge interactions in this protein.  
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Figure 3.1C shows the energies of charge-charge interactions for the wild-type Fyn SH3 domain 

(Fyn-WT), as calculated using the TK-SA model (84).  These results indicate that the wild-type 

protein has many unfavorable charge-charge interactions, defined by positive values of ΔGqq, 

suggesting that the charge-charge interactions of Fyn are not fully optimized.  The neutralization 

or reversal of the existing charges should lead to the unfavorable interactions becoming favorable.  

Additional favorable interactions can also be gained by introducing new charges at previously 

uncharged positions on the protein surface.  To find the most favorable combinations of surface 

charges, a genetic algorithm of search (16, 100) combined with the TK-SA model for calculation 

of energy of charge-charge interactions was used as previously described (16).  In addition to the 

existing charged residues, three neutral polar positions on the surface of the Fyn SH3 domain 

(Q27, N30, and Q53) were included in the optimization algorithm.   

The dependence of the predicted energy of the charge-charge interactions on the number 

of the total substitutions made is shown in Figure 3.2.  It is evident that the interaction energy 

initially becomes more favorable with increasing the number of substitutions, but begins to level 

off after five substitutions.  One of the sequences with five substitutions (Fyn5 - 

E11K/D16K/H21K/N30K/E46K, see also Fig. 3.1B) that was predicted to have favorable charge-

charge interactions, was selected for further experimental characterization.  In the Fyn5 variant, 

four of the substitutions were at existing charged residues, while the fifth introduced a new charge 

at N30.  Structurally, most of these sites are found in the loop regions of the protein (Fig. 3.1A).  

E11, D16, and H21 are all located in the distal loop, between the first and the second β-strands, 

D16 is located near the β-turn in this region, while E11 is closer to the first β-strand, and H21 is 

near the second β-strand.  N30 is the first residue in the turn region between the second and third 

β-strands.  E46 is considered to be the N-terminal residue of the fourth β-strand.  The effect of the 

substitutions on the predicted energy of charge-charge interactions (on a per residue basis) in the 

optimized sequence, Fyn5, is compared to that of the wild-type in Figure 3.1C.  It is evident that 
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the E11, D16, and E46 residues have unfavorable interaction energies in the wild-type protein 

that are predicted to become favorable upon charge reversals in the optimized Fyn5 variant.  The 

H21 residue is already favorable in the wild-type protein but is expected to become much more so 

in the context of the other substitutions in the Fyn5 variant.  The positive charge introduction at 

the N30 position is also predicted to contribute favorably to the total ΔGqq of the Fyn SH3 

domain.   

In order to examine the additivity of the contributions of the E11K, D16K, H21K, N30K 

and E46K substitutions to the stability of the designed Fyn SH3 domain, we also characterized all 

single variants containing these substitutions (E11K, D16K, H21K, N30K, and E46K (Fyn1)), as 

well as Fyn2 - E46K/E11K, Fyn3 - E46K/E11K/D16K, and Fyn4 – E46K/E11K/D16K/H21K 

(see also Fig. 3.1B).  The stepwise contributions of the five substitutions in Fyn5 were examined 

starting with the Fyn1 variant, which contains only one substitution: E46K.  This position is 

unfavorable in the wild-type protein, so reversing the charge at this position is expected to cause 

the interaction energies to become favorable (See Fig. 3.1C).  The Fyn2 construct has two 

substitutions: E11K/E46K, and is predicted to have favorable interaction energies at both 

positions, as illustrated in Figure 3.1C.  The increase in the overall favorable energy of charge-

charge interactions, however, is not predicted to be significantly different between the Fyn1 and 

Fyn2 variants (Fig. 3.2).  The Fyn3 variant has three substitutions: E11K/D16K/E46K and 

exhibits favorable predicted interaction energies at all three positions, unlike the WT protein that 

possessed unfavorable interactions at these positions (Fig. 3.1C).  This construct is also predicted 

to have a much more favorable overall energy of charge-charge interactions compared to both 

Fyn1 and Fyn2 variants (Fig. 3.2).  Fyn4 contains four substitutions: E11K/D16K/H21K/E46K, 

and is predicted to be more stable than Fyn3 (Fig. 3.2).  Therefore, we predict that the 

experimentally measured stabilities of the Fyn variants examined in this study will conform to the 

following rank order: Fyn5 > Fyn4 > Fyn3 > Fyn2 ≈ Fyn1 > WT. 
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3.2.2 Experimental evaluation of the role of charge-charge interactions in the stability of the 

Fyn SH3 domain 

The predicted rank order in stability for the designed variants of Fyn SH3 domain was 

experimentally tested using several biophysical methods, as described below.  For clarity, Figure 

3.3 only shows the differential scanning calorimetry (DSC) profiles of the wild-type Fyn SH3 

domain with four of the designed variants, obtained at neutral pH.  The data for the remaining 

variants are given in Table 3.1.  These profiles clearly show that the variants have increased 

thermostability relative to the WT protein, as evidenced by an increase in the temperature of the 

heat absorption maximum (See Fig. 3.3 and Table 3.1).  The Fyn4 and Fyn5 variants have the 

highest transition temperatures (Tm), which is consistent with the predictions based on the 

calculations of charge-charge interactions (Fig. 3.2).  Interestingly, it appears that the effects of 

the substitutions in Fyn4 and Fyn5 can be explained by the principles of additivity (ΔGadd, Table 

3.1).  The stabilities measured by DSC are in good agreement, within experimental error, with 

those predicted by summing the stabilities of the single variants comprising Fyn4 and Fyn5.  

Although Fyn5 was predicted to be more stable than Fyn4, the experimentally measured Tm and 

ΔG values of these variants were actually quite similar.  This result can be explained by the 

experimental observation that the single variant containing the N30K substitution appears to have 

little effect on the stability of Fyn (Table 3.1).  The Fyn1 and Fyn2 variants also have similar 

transition temperatures (Tm), which is in agreement with the prediction results given in Figure 3.2, 

suggesting that they do not possess significantly different charge-charge interaction energies.  

The similar stabilities of Fyn1 and Fyn2 can also be explained by the principles of additivity 

because the E11K single substitution has very little effect on the stability of the protein (Table 

3.1).  Furthermore, the experimentally obtained Tm of the Fyn3 construct conforms to the 

predicted order of stability based on the computed energies of charge-charge interactions.  
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Importantly this result can also be explained by additivity because the D16K substitutio has a 

fairly significant contribution to stability on its own (Table 3.1).   

The observed increase in the transition temperature of Fyn variants could be due to the 

optimized energetics of charge-charge interactions, but it might also result from changes in the 

structure and/or oligomerization state of the protein due to the substitutions.  The structural 

properties of the designed variants of Fyn were characterized by circular dichroism (CD) 

spectroscopy.  The CD spectra of the wild-type and designed variants were similar, illustrating 

that the substitutions did not have a significant effect on the protein structure (Fig 3.4).  

Analytical ultracentrifugation experiments were carried out to eliminate the possibility that the 

amino acid substitutions changed the oligomerization state of the proteins.  Analysis revealed that 

proteins remain monomeric under experimental conditions (Fig. 3.5).  Therefore, the observed 

differences in the transition temperature cannot be attributed to changes in the structure or in the 

oligomerization state of the Fyn variants. 

In addition to the transition temperature (Tm) values, DSC scans can also provide insight 

into whether the two-state folding mechanism of the WT protein is retained in the designed 

variants.  For this purpose, DSC profiles were fit to a two-state unfolding model, and the validity 

of this model was tested in two ways. First, the van’t Hoff enthalpies (ΔHVH) extracted from 

fitting the data were compared to the calorimetric enthalpies (ΔHcal) that are measured directly by 

DSC (Table 3.1).  The ΔHVH and ΔHcal are within the experimental error of 5% for each variant, 

suggesting that these proteins do unfold via a two-state mechanism (185), as previously noted for 

WT Fyn SH3 domain (180-182).   Second, the thermal unfolding of each of the designed variants 

was monitored using far-UV circular dichroism spectroscopy and demonstrated that the transition 

temperature (Tm) obtained from these experiments are similar to the Tm value measured by DSC.  

The far-UV CD unfolding experiments monitor changes in the secondary structure upon 

unfolding, while the DSC experiments measure the energetics of global changes in the protein 
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conformation.  If the Fyn variants unfold via a two-state mechanism, then the stabilities and Tm 

measured by CD and DSC should be similar.  Comparison of the fractions of unfolded proteins as 

a function of temperature obtained from CD and DSC experiments (Fig. 3.3, inset) shows that 

they are indeed similar, providing further evidence that the two-state unfolding model is valid for 

all Fyn variants analyzed in this study. 

In order to obtain a clearer picture of the mechanism of stabilization of the designed 

sequences, we also measured and compared the changes in heat capacity upon unfolding (ΔCp) of 

the Fyn variants to that of the WT protein.  The change in heat capacity of a protein defines the 

temperature dependence of the enthalpy of unfolding of the protein, ΔCp= (dΔH/dT).  

Empirically, it has been noted that ΔCp is defined by the amount of polar and non-polar surface 

area that is buried in the native state (5, 171).  Consequently, substitutions on the surface of the 

Fyn SH3 domain are not expected to have a large effect on the ΔCp value of the domain.  Figure 

3.6 shows the temperature dependence of the enthalpies of unfolding ΔH(Tm) for all Fyn variants.  

It appears that the enthalpies of unfolding of all variants follow the same function, suggesting that 

the ΔCp value is the same for all the of the Fyn variants used in this study.  The ΔCp estimated 

from the slope of this function is 3.4 ± 0.4 kJ/mol·K, which is consistent with ΔCp values of other 

proteins of similar size (16, 84).  Moreover, it corresponds well to two previous estimates of ΔCp 

for the WT Fyn, 3.3±0.4 kJ/mol·K (186) and 3.5 kJ/mol·K (160).  This consistency in the ΔCp 

value of the Fyn SH3 variants, together with the similar enthalpy of unfolding function, suggests 

that enthalpic effects are not the primary mechanism of stabilization. 

 

3.2.3 Comparison between theory and experiment 

To obtain quantitative insight into the additivity of the contribution of charge-charge 

interactions to the experimentally measured changes in stability one needs to compare the change 
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in stability upon stepwise substitutions.  The Gibbs free energy of unfolding for each variant was 

calculated at the Tm of the wild type using the Gibbs-Helmholtz equation: 
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where the enthalpy of unfolding (ΔH) is represented by ΔH(Tm) + ΔCP·(T-Tm) and the entropy of 

unfolding (ΔS) is equal to (ΔH(Tm)/Tm) + ΔCP·ln(T/Tm).  Figure 3.7 compares the experimentally 

measured differences in stability, ΔΔGexp = ΔGvar- ΔGWT, with the calculated differences in 

stability expected from changes in the energy of charge-charge interactions, ΔΔGqq = ΔGWT,qq - 

ΔGvar,qq.  Interestingly, two of the single variants (E11K and N30K) were slightly destabilizing, 

relative to the wild-type, which is not what was predicted from our calculations.  This is probably 

due to the fact that the TK-SA model only considers interactions between charges.  The deviation 

of the experimentally measured stabilities from our predictions suggests that other intramolecular 

interactions such as hydrophobic interactions, secondary structure propensity, or packing 

interactions are more important than charge-charge interactions for stability at these positions.  

However, the effects of the E11K and N30K substitutions in the context of the Fyn2, Fyn3, Fyn4, 

and Fyn5 variants were very well predicted by the TK-SA model.  These results suggest that 

multiple charge reversals offset the potential effects of other intramolecular interactions that 

destabilized the E11K and N30K single variants relative to Fyn-WT.  In fact, the experimental 

data from all other variants correlate very well with the calculations (R=0.88), suggesting that the 

optimization of surface charge-charge interactions is a valid approach to stabilizing proteins.  The 

deviation of the slope of the best-fit line from unity (m = 0.74) suggests that the calculated 

changes in the energies of charge-charge interactions describe the overall changes in stability 

qualitatively but not quantitatively.  The data presented in Figure 3.7 also suggest that changes in 

thermostability can be qualitatively predicted using this computational approach, evidenced by 
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the very good correlation between computed ΔΔGqq and experimentally measured differences in 

thermostability (ΔTm = Tm,var - Tm,WT) for all variants except Fyn-E11K and Fyn-N30K.   

The correlations between the experimental stability data (ΔΔGexp) and the theoretical 

calculations (ΔΔGqq) are generally not quantitative.  This can be attributed to the simplicity and 

insufficient accuracy of the computational model used to calculate the energetics of charge-

charge interactions.  In addition, this computational model does not attempt to quantify the effects 

of other types of interactions that are also important for stability such as side chain 

hydrophobicity and secondary structure propensity.  However, the correlation between the results 

of calculations and experiments (Fig. 3.7) signals for a seminal role of charge-charge interactions 

in determining the stability of the Fyn SH3 protein.  It is also evident that the experimental 

stability data conforms to the relative rank-order of the variants stability observed in the 

calculations.  Furthermore, the computational modeling has been able to successfully predict both 

the sign and, to a reasonable degree, the magnitude of the contribution of charge-charge 

interactions to the total protein stability.  Of particular interest, the calculations predicted that the 

Fyn1 and Fyn2 variants would have comparable stabilities (Fig. 3.2) and the experimentally 

measured stabilities for these pairs were found to be similar within the experimental error (Fig. 

3.7, Table 3.1).   

Finally, it has been demonstrated that it is possible to computationally identify a more 

energetically favorable combination of surface charge-charge interactions that leads to a 

significant increase in thermostability (stability) of over 12 ºC (~8 kJ/mol).  More importantly, 

the data presented here suggest that an increase in stability of such magnitude can be achieved 

with a small number of substitutions, as only four or five surface residues have been substituted 

in the most stable designed variants of the Fyn SH3 domain.   

While previously published design approaches have reported larger increases in stability 

than we observed here, these studies substituted over half of the amino acid residues of the 
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protein in their design (60, 149).  Such dramatic changes in the sequence sometimes lead to 

unexpected consequences.  For example, it is reported that one of the these designed proteins was 

a dimer at the experimental concentrations and, hence, the dimerization of the protein partly 

contributed to the observed increase in the stability (151).  In the case of the Fyn SH3 domain, the 

designed variant is monomeric in solution as determined by the analytical ultracentrifugation 

experiment and appears to be have very similar structure to the wild-type protein (Fig. 3.4 and 

Fig. 3.5).  These data collectively suggest that the stabilization observed in the designed variant of 

the Fyn SH3 protein is likely to stem from the optimization of surface charge-charge interactions 

and is not from an altered dimeric state or a dramatic change in the protein structure.  More 

interestingly, the magnitude of the increase in Tm of the designed sequences relative to the wild-

type sequence with only a few surface mutations observed in this work (and elsewhere (16)) is 

comparable to studies that have engineered stability through making a few substitutions in the 

hydrophobic cores of model proteins (reporting increases in stability of 10 ºC (61) or 10 kJ/mol 

(150)).  These observations serve to further support the idea that the rational design of surface 

charge-charge interactions is an effective strategy to complement core optimization algorithms to 

enhance protein stability.  

 

3.3 Implications for Protein Design Strategies 

In the present work, the rational optimization of charge-charge interactions successfully 

increased the thermostability of the Fyn SH3 domain sequence with only four or five 

substitutions.  Furthermore, it was possible to qualitatively predict the stepwise effects of 

substitutions on the stability of each variant.  For Fyn, the energy of favorable charge-charge 

interactions was predicted to decrease after thirteen substitutions (Fig. 3.2).  A similar trend has 
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also been observed for ubiquitin:  exhaustive calculations performed on every ionizable residue in 

ubiquitin indicate that the favorable energy begins to decrease after ten substitutions (16).   

The finding that the increase in favorable interactions begins to level off suggests that 

there is a limit to the amount of stability that can be gained for a protein through the optimization 

of surface charge-charge interactions.  This limit is a result of the fact that the native topology 

defined by a given protein sequence occupies a finite space.  The addition of new charges into 

this space will always involve the introduction of both favorable and unfavorable interaction 

energies.  If the substitution sites are chosen appropriately, the energy of favorable interactions 

will be larger than the unfavorable interaction energy.  However, when the charge density 

increases beyond a certain point, the introduction of a new charge into the limited space of the 

native topology will lead to a balance between favorable and unfavorable interactions and no 

further increase in stability will be observed.  Eventually, the charge density will become such 

that the introduction of new charges can only be unfavorable, so the energy of favorable charge-

charge interactions (and predicted stability) will decrease.  As a result, only a few sequences will 

produce optimal surface charge-charge interactions.  To increase the stability of a protein beyond 

what is possible through optimization of surface charge-charge interactions, it would be necessary 

to optimize other types of interactions, such as hydrogen bonding, packing, or hydrophobicity. 
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Table 3.1: Thermodynamic parameters of unfolding for the Fyn variants at pH 7.0.   
 

 
ΔG (T=71.6 ºC) and ΔG (T=25 ºC) represent the stabilities of each of the variants at the transition 
temperature of wild-type Fyn and at 25 ºC, respectively.  ΔGadd(71.6 ºC) represents the stability 
you would expect for each designed variant based on the stabilities of the single variants at that 
temperature.  These values were calculated using a ΔCP value of 3.4 ± 0.4 kJ/(mol·K) obtained 
from the temperature dependence of ΔH(Tm) vs. Tm.  The thermodynamic parameters have the 
following estimated errors:  Tm: ± 0.1 ºC, ΔH(Tm): ± 5%, ΔG (T=71.6ºC): ± 1.2 kJ/mol, and ΔG 
(T=25ºC): ± 2.2 kJ/mol.   
 

Amino Acid 
Substitutions 

Tm 
(ºC) 

ΔHcal(Tm)  
(kJ/mol) 

ΔHVH(Tm) 
(kJ/mol) 

ΔG 
(71.6 ºC) 
(kJ/mol) 

ΔGadd 
(71.6 ºC) 
(kJ/mol) 

ΔG 
(25 ºC) 

(kJ/mol) 
Fyn Wild-type 71.6 232 239 0 - 19.5 

 E11K 70.6 234 236 -0.7 - 19.6 
 D16K 77.1 256 259 3.9 - 23.4 
 H21K 76.6 249 252 3.4 - 22.3 
 N30K 71.2 224 227 -0.3 - 18.4 

Fyn
1 E46K 77.7 261 260 4.4 - 24.2 

Fyn
2 E11K/E46K 76.2 246 252 3.1 3.7 21.8 

Fyn
3 

E11K/D16K/ 
E46K 81.9 272 270 7.4 7.6 26.2 

Fyn
4 

E11K/D16K/ 
H21K/E46K 84.5 269 274 8.9 11.0 25.9 

Fyn
5 

E11K/D16K/ 
H21K/N30K/ 

E46K 
83.3 274 262 8.3 10.7 26.6 
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Figure 3.1 Primary sequence and the tertiary structure and charge-charge interaction energies of 
Fyn.  A. Cartoon representation of the three dimensional structure of the Fyn SH3 domain 
(1FYN).  The sites selected for substitution are represented with the ball-and-stick model.  B. The 
sequence alignment of the Fyn variants with the selected substitution sites highlighted in yellow.  
C. Comparison of the energies of charge-charge interactions in the wild-type and five designed 
sequences of Fyn at pH 7.0.  Each bar represents the total energy of charge-charge interactions for 
that residue with all other charged residues in the protein, averaged over the ensemble of eleven 
structures.  The error bars represent the standard deviations of the averaged values.  Favorable 
interactions have negative values of ΔGqq, while positive values represent unfavorable ones.  
Black bars - wild-type, Red bars - Fyn1, Green bars - Fyn2, Yellow bars - Fyn3, Blue bars – 
Fyn4, and Purple bars – Fyn5 (see text for construct nomenclature). 



 

 

75

 
 
 

Figure 3.2 Evaluation of the effectiveness of the genetic algorithm to find favorable charge 
distributions at pH 7.0 with increased favorable charge-charge interaction energies relative to 
wild-type Fyn.  The interactions energies are calculated by the TK-SA model.  Each sequence, 
represented by black crosshairs, is characterized by the energy of charge-charge interactions and 
the number of substitutions relative to the wild-type protein.  Note that the more favorable 
energies have smaller values of ΔGqq.  The designed (Fyn1-Fyn5) and wild-type sequences that 
were characterized experimentally are represented by white circles.   
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Figure 3.3 Comparison of stabilities of the Fyn variants.  DSC profiles of Fyn variants at pH 7.0.  
The open symbols represent experimental data (circles - wild-type; triangles - Fyn1; diamonds - 
Fyn2; squares - Fyn3; inverted triangles - Fyn5).   Only every fifth data point is shown, for 
clarity.  The solid lines represent the global fit of the data to a two-state unfolding model.  Inset: 
The fraction of unfolded protein (FU) as a function of temperature for CD (symbols, same as 
above) and DSC (solid lines). 
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Figure 3.4 Far-UV (260-190 nm) Circular Dichroism Spectroscopy was used to determine 
whether the substitutions in the designed Fyn variants altered the secondary structure of the 
protein.   The spectrum of each variant is represented in the following colors: black - WT Fyn, red 
- Fyn1, green - Fyn2, yellow - Fyn3, blue - Fyn5 (see text for construct nomenclature). 
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Figure 3.5 Results of Analytical Ultracentrifugation experiments for A. WT Fyn and B. Fyn5.  
The symbols represent the experimental data obtained at three speeds: circles - 22,000 rpm; 
inverted triangles - 28,000 rpm; squares - 37,000 rpm.  The solid lines represent the global fit of 
the data to a single species model.  The molecular weights measured by these experiments were 
9.2 ± 0.5 kDa and 9.6 ± 0.5 kDa for WT Fyn and Fyn5, respectively, suggesting that the 
substitutions do not affect the oligomerization state of the protein. 
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Figure 3.6 Dependence of the enthalpy of unfolding, ΔH(Tm), on the transition temperature, Tm, 
for the Fyn variants measured at pH 7.0.  The error bars represent the estimated error of 5% for 
ΔH(Tm).  The solid line is the linear regression of the data.  The slope of this line corresponds to 
the heat capacity change upon unfolding, ΔCP=3.4 ± 0.4 kJ/mol.   
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Figure 3.7 Comparison of experimentally measured changes in stability ΔΔGexp or thermostability 
(ΔTm) with those predicted by the TK-SA calculations, ΔΔGqq.  The solid line represents the line 
of best fit disregarding the E11K and N30K substitutions and has a slope of 0.74 and a correlation 
coefficient of 0.88.  The dashed line represents the line of best fit through all points and has a 
slope of 0.84 and a correlation coefficient of 0.71. 
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CHAPTER 4:  DETERMINING THE IMPORTANCE OF RESIDUAL 
UNFOLDED STATE CHARGE-CHARGE INTERACTIONS FOR 

PROTEIN DESIGN STRATEGIES 
 
 
4.1 Introduction 

One aspect of the protein folding problem that remains poorly understood is the role of 

the unfolded state ensemble in protein stability.  Besides contributing to our fundamental 

knowledge of how proteins fold into and maintain their three-dimensional structures, a 

comprehensive model of how residual unfolded state interactions contribute to the Gibbs free 

energy of unfolding (ΔG) could greatly improve the accuracy of computational design algorithms.  

One of the major assumptions of computational design methods is that there are no residual 

charge-charge interactions in the unfolded state.  This assumption has not adversely affected the 

predictions of most methods, including the TK-SA algorithm, where it has been demonstrated 

that the relative changes in thermodynamic stability (ΔΔG = ΔGDES - ΔGWT) of most proteins 

redesigned by the TK-SA approach were correctly predicted on a qualitative (sign of ΔΔG) or 

semi-quantitative (relative rank order) level (11, 15, 16, 97, 110, 187). 

There are, however, several reports of proteins for which such an assumption might not 

be valid.  For a number of proteins, including the N-terminal ribosomal L9 protein (NTL9) (88-

90, 188, 189), chymotrypsin inhibitor 2 (CI2) (190), barnase (87), ovomucoid third domain 

(OMTKY3) (86), RNaseA (94), RNase T1 (94), and hen egg white lysozyme (HEWL) (138, 191, 

192), it was found that the extended linear chain or model compound representations of the 

unfolded state could not successfully predict the effects of pH on their thermodynamic stabilities 

(ΔG).  However, when simple structural (92) or statistical (93, 193-199) models of the unfolded 

state were used, significant improvement in the agreement between the calculations and 

experimental data were observed.  In fact, the existence of residual charge-charge interactions in 

the unfolded state of NTL9 was exploited to engineer a stable variant of this protein (90).   
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When it was observed that there was a set of CspB variants for which the TK-SA model 

did not correctly predict the effects of substitutions on the stability of the protein (110), we 

incorporated two different unfolded state models – the Gaussian polymer chain model developed 

by Zhou (93)  and a structural model developed by Elcock (92) – to determine if residual 

unfolded state charge-charge interactions were responsible for the disagreement between the 

predicted and experimentally measured ΔG values.   In the Gaussian polymer chain model, the 

unfolded state is represented by a Gaussian chain, where the distance between charges is 

distributed according to the probability function: 
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where r is the distance between charges and d is the root-mean-squared distance, defined as d = 

7.5l1/2+5.0, where l is the number of peptide bonds separating the two residues (93).  The charge-

charge interaction energies between residues i and j are then calculated as: 
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       (4.2) 

where κ is a screening constant proportional to the ionic strength (I) of the solvent (κ = I1/2/3.04 

Å-1 at room temperature; and ε is the dielectric constant of the solvent, taken to be 78.5 for water.  

When this model of the unfolded state was incorporated into the TK-SA algorithm, it was found 

that the discrepancy between the predicted stabilities of the CspB variants and their 

experimentally measured stabilities could not be explained by unfolded state interactions as 

described by the Gaussian polymer chain model (110).   

The observation that the Gaussian model of the unfolded state did not significantly affect 

the TK-SA predictions of the relative stabilities of proteins raised the question of how well 

statistical models actually describe the unfolded state.  One reason that the Gaussian model might 

not properly describe residual charge-charge interactions in the unfolded state is that the Gaussian 
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model assumes that the unfolded polypeptide chain behaves like an ideal polymer in a good 

solvent.  The term “good solvent” refers to conditions where interactions between the polypeptide 

chain and the solvent are more favorable than interactions between the atoms comprising the 

polypeptide chain.  While this might be an appropriate assumption when a protein is denatured 

using urea or guanidinium, it might not be appropriate for acid/base denaturation or thermal 

denaturation.  Proteins fold because water is a “poor solvent” for the unfolded protein.  In other 

words, the interactions between the polypeptide chain and the solvent are less favorable than the 

intrachain interactions.  Therefore, the assumption that the unfolded state behaves as a chain in 

good solvent might not be an appropriate model for the unfolded state in aqueous environments 

(200-202).  Furthermore, real polypeptide chains have constraints to the conformations they can 

assume due to the steric limitations imposed by the side chains, so the assumption that the 

unfolded state can be modeled by an ideal chain without such constraints might not be valid. 

Structural models of the unfolded state, such as those described by Elcock (92), provide a 

possible solution to this problem by providing a structural basis for the contributions of charge-

charge interactions in the unfolded state.  This model of the unfolded state uses the native state 

structure of the protein as a starting point for the simulations.  The van der Waals radii of each 

atom in the protein are artificially increased by 6 Å to essentially “explode” the protein molecule 

and remove most secondary structural elements and tertiary contacts(92).  This process was 

performed in 1 Å increments, with an energy minimization of the new protein structure after each 

step.  Since the 6 Å increase in van der Waals radii severely strains the structure of the protein, a 

final round of energy minimization is performed using the original van der Waals radii to allow 

bond lengths to return to appropriate values (92).  However, this model was also unable to 

improve the TK-SA model predictions of the stabilities of the set of CspB variants (110).  One 

possible explanation is that Elcock’s model might also be inappropriate for describing the 

structure of the unfolded state ensemble.  This model does not seem to remove turn structures, 
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and so therefore, might not provide a complete representation of the unfolded state, especially for 

proteins such as CspB which have primarily β-sheet secondary structural composition.  

Furthermore, only one unfolded structure is generated per starting structure from this approach.  

However, in reality, the unfolded state ensemble is comprised of many structures, and therefore, 

is likely to be much more amorphous. 

It is possible that the inability of existing unfolded state models to improve the 

predictions of the TK-SA model is due to the fact that these models do not accurately describe the 

structures, and therefore the interactions in the unfolded state ensemble.  To test this hypothesis, 

detailed structural representations of the unfolded state were created by generating libraries of 

2,000 – 100,000 structures based on two different theoretical interpretations of the unfolded state 

– the random coil approach (RC) (172) and the excluded volume limit (EV) (173).  Several 

different protein sequences of different lengths were used to characterize the behaviors of the 

libraries.  The RC approach was used to generate unfolded state libraries of ubiquitin (16,000 

structures), apomyoglobin (8,000 structures), and staphylococcal nuclease (5,000 structures).  The 

EV limit was used to generate libraries of ubiquitin (2,000 structures & 100,000 structures), 

apomyoglobin (20,000 structures), and NTL9 (2,000 structures).  The differences between the 

principles guiding the generation of an RC library versus EV limit library of unfolded state 

structures are discussed in Chapter 2.7.  Briefly, in the RC approach, the backbone dihedral 

angles are assigned based on the probability of their occurrence outside regions of regular 

secondary structural elements, based on the Ramachandran plot.  Once the entire backbone has 

been built, the side chains are added using homology modeling.  The EV limit, on the other hand, 

starts with the entire polypeptide chain (including side chain atoms) in a random, sterically 

allowed conformation.  The backbone and side chain dihedral angles are chosen such that they 

minimize an excluded volume energy function.   
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Once the libraries were generated, the polymeric behavior of these unfolded state 

ensembles were compared to each other and to the Gaussian chain model in order to determine 

whether the Gaussian model is accurately representing the distance distributions of “real” 

polymer chains.  Since the interactions between charges are not considered in generating either 

the RC or the EV libraries of the unfolded state, molecular dynamics (MD) simulations were used 

to “turn on” these effects, and were run for each structure in the EV libraries of ubiquitin (UBQ) 

and NTL9.  The polymeric behavior of the post-MD libraries were compared to their respective 

starting libraries and the Gaussian polymer chain model of the unfolded state.  Finally, the 

charge-charge interaction energies for the EV library and the post-MD libraries were compared to 

those calculated by Zhou’s Gaussian model (Eqs. 4.1 & 4.2) (93).  The implications for the results 

of these calculations for protein design strategies are discussed. 

 

4.2 Results & Discussion 

4.2.1 Comparison of RC and EV structural libraries 

 One of the first questions we had regarding the RC and EV libraries was whether two 

fundamentally different approaches to generating structural representations of the unfolded state 

produced similar results in terms of pairwise distance distributions and charge-charge interaction 

energies.  We also wanted to see how similar these parameters were to the Gaussian polymer 

chain (GPC) model of the unfolded state.  Figure 4.1 shows the distance distributions for four 

pairs of charged residues in the RC and EV structural libraries of ubiquitin, as well as the GPC 

model.  Interestingly, although the principles governing the generation of structural libraries by 

the RC or EV methods are very different, the resulting distance distributions for a given pair in 

the same protein are quite similar.  The slight shift of the mean of the distribution to smaller 

distances for the RC library suggests that this method generates slightly more compact structures.  
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This is most likely due to the fact that the side chains are not modeled in great detail when 

building the backbone conformation of the protein, whereas in the EV method, the side chains are 

always present.   

For pairs of residues that are close in sequence (Fig. 4.1A), the RC and EV distance 

distributions are clearly different from that of the GPC model.  As the sequence separation 

between residues increases (Fig. 4.1B and Fig 4.1C), the distance distributions of the RC and EV 

structural libraries become more like the GPC distributions.  At extremely large sequence 

separations (Fig. 4.1D), the distance distributions of the structural libraries behave like those of 

the GPC.  This observation suggests that there is a characteristic length limit below which “real” 

unfolded state structures do not behave as ideal chains.  In fact, for residues that are close in 

sequence, the identities of the residues in the pairs can have a significant effect on the shape and 

width of the distribution (Fig. 4.2A).  However, after the pair of interest is separated by only 15 

residues, the distance distributions were no longer dependent on the identities of the residues (Fig. 

4.2B).   

In order to determine whether the sequence of residues separating the charge-charge pair 

of interest would affect the distance distributions, the distance distributions for several K/E pairs 

in RC libraries of ubiquitin, apomyoglobin, and staphylococcal nuclease were also compared.  

Figure 4.3 demonstrates that the behavior of the distance distributions is largely independent of 

protein sequence, even for residues that are close together, confirming previous observations that 

the RC and EV libraries exhibit polymeric properties (172, 173, 203).  These results also suggest 

that it should be possible to generalize the behavior of one protein sequence to describe the 

unfolded state ensembles of many proteins. 

The observation that distance distributions for residues close in sequence in the RC and 

EV libraries are markedly different from those represented by the GPC highlights a potentially 

significant problem with using the GPC model to determine the effects of residual charge-charge 
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interactions in the unfolded state.  Namely, the interaction energies between pairs of charges (Eij) 

have the largest magnitude for pairs that are close together in sequence (Fig. 4.4), where the GPC 

does not accurately describe what is observed in the structural libraries.  At separations where the 

EV and RC distance distributions begin to agree with those of the GPC, the interaction energies 

are negligible.  It is possible that this discrepancy in distance distributions between GPC and the 

RC and EV models could have significant effects on the predicted magnitude of the charge-

charge interactions in the unfolded state.   

The observation that the EV and RC libraries had very similar properties in terms of their 

distance distributions implies that they should be similar in all other structural descriptors.  For 

this reason, the remainder of this chapter will discuss only the differences between the EV library 

and the GPC model.  In order to determine the effects of the different distance distributions on the 

unfolded state charge-charge interactions, the pairwise charge-charge interaction energies were 

calculated for the EV libraries and compared to those calculated using the GPC model.  Figure 

4.5 shows the total charge-charge interaction energies (Eint,unf) on a per-residue basis for each 

charged residue in ubiquitin calculated using the GPC and EV models of the unfolded state.  

Although the distance distributions for residues close in sequence are different for the GPC model 

versus the structural libraries, there seems to be very little effect on the Eint,unf of each residue or 

of the entire protein.  One explanation for this result is that the EV model does not account for the 

interactions between charges while building the unfolded state ensembles.  It is possible that an 

unfolded state ensemble that includes a realistic representation of the interactions between 

charges in the structural libraries would yield better models for predicting the existence and 

effects of residual charge-charge interactions in the unfolded state. 
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4.2.2 Modeling charge-charge interactions using molecular dynamics (MD) simulations 

 Molecular dynamics (MD) simulations were used to “turn on” the interactions between 

charges.  The size of an unfolded polypeptide chain precludes using explicit solvent models due 

to the limitations of currently available computational resources.  For this reason, the MD 

simulations were run using the AMBER99SB force-field (174) and the generalized Born implicit 

solvent model, corrected for solvent accessibility (GB-SA) (176) available in the AMBER9 

software package (175).  Each step in a MD simulation represents the changes in atomic position 

(ri) as a function of time by altering intramolecular interactions in a stepwise fashion.  

Trajectories are generated first by determining the force (Fi) on an atom based on the change in 

energy (E) between its current position and a position a small distance away.  Knowing the force 

and mass (mi) of an atom, it is possible to calculate the atomic acceleration (ai): 

 ii
i

i am
dr
dEF =−=         (4.3) 

From the acceleration, it is then possible to obtain the atomic velocities (vi) and positions at each 

step of the simulation: 

 
∫
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The energy function E(R) used in the AMBER99SB force field contains terms to account for 

bond energies; torsional energies, which consists of two terms (angles and dihedrals); van der 

Waals energies (Lennard-Jones 6-12 potential); and electrostatic energies (175, 204), and takes 

the form: 
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where R is the set of Cartesian coordinates describing the positions of all atoms in the protein.  

The “bonds” term is comprised of Kr, which is an empirically determined bond force constant, r 

is the internal coordinates for a given bond, and req is the empirically determined reference value 

for bonds.  The “angles” term is comprised of the empricially determined bond angle force 

constant (Kθ), the bond angle (θ), and the bond angle reference value (θeq).  The “dihedrals” term 

is comprised of Vn, which is a dihedral force constant; n, which is the dihedral periodicity; and γ, 

which is a phase of the dihedral angle (φ).  The Lennard-Jones 6-12 potential is a function of the 

interatomic distances (Rij) and the Lennard-Jones constants Aij = 4ϵσ12 and Bij = 4ϵσ6 which are 

functions of depth of the potential well (ϵ) and the finite distance where the potential is equal to 

zero (σ).  The electrostatic energy term is a function of the charges on atoms i (qi) and j (qj); the 

dielectric constant (ε), taken to be 78.5, and the interatomic distances (Rij). 

To represent the solvation effects using the implicit GB-SA model (176), the following 

term is added to Eq. 4.5: 

( )∑ +
atoms

ij ij
gb

ji A
Rf

qq
σ         (4.6) 

where the polar contribution to solvation free energy is represented via the f gb function, as 

previously described (176), and the second term represents the nonpolar contribution of the 

solvation free energy and is proportional to the solvent accessible surface area, A.  To account for 

possible effects of long-range charge-charge interactions on the behavior of each structure, an 

essentially infinite cutoff distance (300 Å) was used in the electrostatic term of Eq. 4.1.  The ionic 

strength of the solvent was set to 100 mM in the GB-SA term (Eq. 4.2) of all simulations.   

We also tested the possible effects of pH on the behavior of the library by performing 

simulations under conditions that would model the extremes of pH.  In the low-pH (“pH 2”) 

simulations, the charges on all acidic residues, including the C-terminus, were neutralized.  The 

neutral pH (“pH 7”) simulations allowed all residues, except His, and including both termini to be 
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charged.  All basic residues, including the N-terminus, were neutralized for the high-pH (“pH 

14”) simulations.  MD simulations were performed on each structure in an EV library of 2,000 

ubiquitin structures, until the population averaged radius of gyration (<Rg>) converged (300 ps, 

Fig 4.6A).  To explore the possible effects of long-range charge-charge interactions on a protein 

believed to have residual structure in the unfolded state, MD simulations were also run on an EV 

library of 300 NTL9 structures until <Rg> converged (300 ps, Fig. 4.6B).  The calculations were 

run on the supercomputer available through the RPI Computational Center for Nanotechnology 

Innovations (CCNI).  The overall simulation time for the 2,000 structure ubiquitin library was 

almost 1 μs and almost 100 ns for the 300 structure NTL9 library.  These time scales are on the 

order of the time scales of formation of regular secondary structural elements such as loops (~ 50 

ns), α-helices (~20 – 200 ps), and β-turns (~ 20 ns) (for a review, see (205)).  Therefore, the 

simulations are long enough to detect whether residual structure due to charge-charge interactions 

can be formed in the unfolded state ensembles of these proteins. 

Figure 4.6 shows how <Rg> changes as a function of simulation time at pH 2, pH 7, and 

pH 14 for ubiquitin (Fig. 4.6A) and NTL9 (Fig. 4.6B).  At the beginning of the simulations, <Rg> 

decreases rapidly as a function of time as the unfolded state ensembles of both proteins respond to 

the folding conditions defined by the implicit solvent model. Eventually, the change in <Rg>(T) 

begins to level off, such that after 200 ps, very little change in the population averaged radius of 

gyration is observed.  The simulations were run for an additional 100 ps to ensure that <Rg> was 

indeed converged.   From intrinsic viscosity experiments on unfolded proteins, it is expected that 

the charge repulsions that are present at the extreme pH values will cause the unfolded state to 

become more expanded than the unfolded state at pH 7 (206-210).  Although, the pH-dependent 

size difference is not very dramatic, this behavior is exactly what is observed for ubiquitin, which 

has a similar number of acidic and basic residues.  Interestingly, the NTL9 unfolded state 

ensemble is most compact at pH 14 (Fig. 4.6B).  This is most likely due to eliminating the charge 
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repulsions present at both pH 2 and pH 7 due to a series of Lys residues extremely close in 

sequence.  Indeed, if the NTL9 structural ensemble is altered so that all charges are reversed 

(NTL9rev, Fig. 4.6B), the ensemble becomes more compact at pH 2 than at pH 7 or pH 14. 

Contact maps for the post-MD structural libraries of ubiquitin and NTL9 were examined 

to determine whether the collapse of the unfolded state ensembles going from the good solvent 

conditions of the EV limit to the poor solvent conditions of an aqueous environment resulted in 

the formation of residual structure.  Figure 4.7 compares the contact maps of the post-MD 

libraries with the EV libraries and native structures of each protein.  To minimize noise in the 

contact maps of the unfolded state ensembles, the average distances between pairs of residues 

separated by less than four residues were not plotted.  It can be seen from the contact maps that, 

although the native contacts of UBQ and NTL9 are very different, there is very little difference 

between proteins in the average pairwise distances of the EV and post-MD unfolded state 

ensembles.  This observation suggests that the polymeric nature of the EV libraries is maintained 

in the collapsed ensembles present after 300 ps in an aqueous environment.  Furthermore, there is 

no evidence of specific contacts being formed in the contact maps of the post-MD ensembles, 

demonstrating that the collapse of the ensembles upon exposure to poor solvent does not 

necessarily indicate the residual structure in the unfolded state.   

 

4.2.3 Polymeric nature of the unfolded state under folding conditions 

Although the collapse of the unfolded state ensemble in an aqueous environment does not 

appear to cause the formation of specific contacts, we wanted to explore how the polymeric 

properties of the post-MD ensembles compared to the EV limit ensembles.  We compared the 

behavior between the EV limit libraries and the post-MD libraries of ubiquitin and NTL9 in terms 

of three structural descriptors – Kratky profiles, interchain scaling, and the correlation between 

solvent accessible surface area (ASA) and Rg (P(ASA,Rg)).   
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4.2.3.1 Kratky profiles 

Figure 4.8 shows a comparison of the Kratky profiles for the ubiquitin and NTL9 chains 

in the EV limit, after the MD simulations, and in the native state.  Kratky profiles, also known as 

scattering profiles, are powerful structural descriptors because they can be used to directly relate 

the results of simulations to the scattering measurements obtained with small-angle x-ray 

scattering (SAXS) experiments.  These profiles essentially measure the density of the polypeptide 

chain across a specific length scale (211).  In a scattering experiment, Kratky profiles plot 

scattering intensity Is as a function of the scattering angle θ, which can be represented by the 

wave number, q ( ⎟
⎠
⎞

⎜
⎝
⎛=

2
sin4 θ

λ
πnq , where λ is the wavelength of incident light and n is the 

refractive index of the solution), in the form q2Is(q) vs. q.  The unfolded state ensemble can be 

converted to scattering intensity by calculating the ensemble averaged form factor, <P(q)>, which 

is directly proportional to Is(q): 
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where Nres is the number of residues in the sequence; q are wave numbers in units of Å-1; Nat is 

the number of atoms in the protein; and rij represents the pairwise distances between atoms.  A 

natively folded protein will have large peaks at low to mid-q values (0 ≤ q ≤ 0.5), indicating 

densely packed, compact structures (211).  The native state profiles of ubiquitin and NTL9 are 

slightly different in this regime, with ubiquitin having a slightly larger peak at low-q than NTL9, 

suggesting that ubiquitin is more tightly packed.  The native state profiles also have small 

differences at high-q values (q > 0.5), indicating the local structural propensities of these proteins 

are different in the native state (203).  If a polypeptide chain is loosely structured, one would 

expect the Kratky profile to have a flatter dependence of K(q) in the low- to mid-q range.  Indeed, 
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this is what is observed for both ubiquitin and NTL9 in the EV limit.  Interestingly, the EV limit 

profiles of ubiquitin and NTL9 are the same over the entire q range, providing further support to 

the observations discussed in the previous sections that the unfolded states of different proteins 

behave similarly in the EV limit.  The small peak in the low q range of the Kratky profiles of 

ubiquitin and NTL9 after 300ps in an aqueous environment indicate that the polypeptide chain 

has collapsed and become more densely packed than in the EV limit, though not to the extent of 

the native state.  The profile in the high q range also changed relative to the EV limit profiles, 

indicating a change in local structural propensity of the ensembles.  However, the behavior of the 

UBQ and NTL9 post-MD libraries were still more similar to each other than the UBQ and NTL9 

native state profiles.  The observation that the post-MD profiles of UBQ and NTL9 are also 

remarkably similar to each other provides further evidence that the unfolded state ensembles of 

proteins in the initial stages of folding are also sequence independent, and therefore, little or no 

residual structure is present in the unfolded state ensembles of these proteins under folding 

conditions.     

 

4.2.3.2 Interchain scaling 

Another property of polypeptide chains in the EV limit is that the correlations of several 

properties are scale invariant (173, 211).  For example, the ensemble averaged interchain 

distances between two residues, <Rij>, will scale like the average end-to-end distances of an 

ensemble of polypeptide chains with different lengths.  In other words, the interchain distances 

should behave as υjiRij −∝ , where |i-j| is the number of residues separating residues i and j, 

and υ ≈ 0.59 for polypeptides in the EV limit.  This correlation only holds for pairs that are 

separated by more than 7 residues, which is the length scale where the specific amino acids of 

residues i and j becomes important (173, 203).  If the post-MD libraries still behave as 
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polypeptide chains in a good solvent, then one would expect a plot of ln(Rij) vs. ln(|i–j|) to have a 

slope of ≈ 0.59 (173).  Figure 4.9 shows the interchain scaling behavior of the ubiquitin and 

NTL9 in the EV limit and after 300ps in folding conditions.  It can be seen that the interchain 

scaling behavior of the polypeptide chains becomes more similar to what would be expected for a 

polymer in poor solvent (υ ≈ 0.33), which is consistent with the idea that water is a poor solvent 

for the unfolded state of proteins.  Interestingly, the same interchain scaling behavior of the UBQ 

and NTL9 libraries that exists in the EV limit ensembles is retained under folding conditions, 

confirming the notion that the specific protein sequence is not important at larger separation 

distances. 

 

4.2.3.3 Correlation between ASA and Rg 

 Figure 4.10 shows the correlation between solvent accessible surface area (ASA) and Rg 

for ubiquitin and NTL9 in the EV limit, after 300ps under folding conditions, and in the native 

state.  For both proteins in the EV limit, there is very little correlation between ASA and Rg.  The 

Rg distribution is broader than the ASA distribution over the population, demonstrating that the 

size fluctuations of unfolded proteins in the EV limit do not correlate with burial of surface area, 

which is consistent with the idea that the EV limit models polymers in a good solvent.  At the 

other extreme, the native state of each protein shows a narrower distribution around Rg, such that 

small changes in Rg can result in fairly large changes in ASA.  The narrower distribution around 

Rg demonstrates the limited conformational flexibility of proteins in the folded state compared 

with those in the unfolded state.  After 300 ps under folding conditions, the collapse of the 

ubiquitin and NTL9 populations starts to shift the ASA vs. Rg correlations more toward those of 

the natively folded proteins.  The size of the chains, as described by Rg decreases and the 

distribution becomes narrower than in the EV limit.  However, the ASA distribution is much 

broader than either the EV limit or the native state, such that small changes in Rg cause large 



 

 

95

changes in ASA.  The changes in the three structural parameters described here corroborate the 

observations of the previous section that the polypeptide chain collapses after 300ps under 

folding conditions.  Furthermore, the collapse causes the polypeptide chain to behave as a 

polymer in a poor solvent, which is consistent with the idea that water is a poor solvent for the 

unfolded state of proteins.   

 

4.2.4 Effects of collapse on unfolded state charge-charge interactions 

Since the unfolded state ensembles of ubiquitin and NTL9 are more collapsed under 

folding conditions than in the EV limit, and since their Kratky profiles (Fig. 4.8), interchain 

scaling (Fig. 4.9), and P(ASA,Rg) (Fig. 4.10) behaviors are dramatically different between the EV 

limit, the folding conditions, and the Gaussian polymer chain, we wanted to determine if there 

would be any dramatic differences between the unfolded state charge-charge interactions 

calculated using each model of the unfolded state.  First we examined how the electrostatic 

contact maps for ubiquitin (Fig. 4.11) and NTL9 (Fig. 4.12) at pH 2, pH 7, and pH 14 changed 

due to the MD simulations.  A comparison of the charge-charge contacts predicted by the GPC 

and EV limit will make it possible to determine if any specific charge-charge interactions contacts 

arise as a result of placing the unfolded polypeptide chain under folding conditions.  The pH 2 

and pH 14 contact maps are primarily made up of unfavorable charge-charge interactions for both 

the Gaussian chain and the post-MD chains, which is to be expected since only like charges are 

present under these conditions.  The pH 7 contact maps contain both favorable and unfavorable 

interactions for both proteins.  Interestingly, there are no significant differences in the pairwise 

charge-charge interactions among these three models of the unfolded state.  Essentially all of the 

observed charge-charge interactions of a given residue are with its nearest neighbors (less than 

four residues apart).  Furthermore, the consistent decrease in the magnitude of the interaction 

energy as the separation between residue pairs increases suggests that there are no specific 
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residual charge-charge interactions present in these unfolded state models.  An examination of the 

total charge-charge interaction energies of each charged residue with every other residue in the 

protein (Eint,unf, Fig. 4.5) demonstrates that there is also very little difference in the contribution of 

each residue to the total charge-charge interactions in the unfolded state between the Gaussian 

model, the EV limit or the post-MD structural libraries.  These results suggest that the charge-

charge interactions in the unfolded state are too weak to be the force responsible for organizing 

residual structure.  If any structure in the unfolded state does in fact exist, then residual charge-

charge interactions are the consequence, not the cause, of such structure.  The results further 

imply that statistical models, like the Gaussian polymer chain, are as good as more detailed 

structural models for calculating the charge-charge interactions in the unfolded state. 

If the Gaussian polymer chain model is sufficient for predicting the effects of charge-

charge interactions in the unfolded state, then why does it not significantly improve the 

predictions of the TK-SA model?  One explanation is that in our design approach, we seek to 

determine the difference in stabilities between the designed variant and the wild-type protein 

(ΔΔGqq = ΔGVAR – ΔGWT) rather than the absolute stability of the designed variant (ΔGVAR).  The 

effect of substitutions on charge-charge interactions in the unfolded state is likely to be much 

smaller than the magnitude of the same contributions in the native sate of proteins.  For example, 

the difference in Eint,Gauss between sequences as different as UBQ and NTL9 is less than 2 kJ/mol, 

regardless of pH (Fig. 4.5), which is on the order of the error in experimental measurements.  

This observation suggests that changes in the unfolded state charge-charge interaction energies 

between a wild-type protein and a designed variant with only a few substitutions will be 

negligible.  Therefore, while consideration of the unfolded state might be important for 

predictions of the absolute ΔG of a protein, for the purposes of protein design, where we are more 

interested in predicting ΔΔG, it is not necessary to consider the unfolded state. 
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4.3 Future Directions 

Although the results of this study suggest that detailed consideration of the unfolded state 

is not important for protein design approaches, there are still many characteristics of the unfolded 

state that can be further studied with the existing ensembles.  One of the most interesting aspects 

to pursue would be the mechanism of collapse of the unfolded state in the folding process.  Our 

short, 300 ps simulations provide an excellent starting point for studying these effects.  It is 

unlikely that all structural descriptors of the unfolded state ensemble will respond to exposure to 

folding conditions on the same time scale.  We can get an idea of how the polymer is changing by 

analyzing the full 300 ps trajectory of the ubiquitin and NTL9 MD simulations (which were saved 

in 1 – 5 ps snapshots) in terms of a variety of descriptors, such as end-to-end distance 

distributions, bond vector correlations, Kratky profiles, interchain scaling, and P(ASA, Rg), as a 

function of time.  A large scale analysis such as this will make it possible to determine the rates at 

which different features of an unfolded polypeptide chain respond to folding conditions.  In 

addition, it has been experimentally determined that the time scale of full hydrophobic collapse is 

on the order of 4 – 50 μs (205), so it might eventually be necessary to run longer simulations to 

get a full structural description of the mechanism of hydrophobic collapse, but further analysis of 

the simulations performed here will allow us to see how structural descriptors begin to change 

once an unfolded polypeptide chain is exposed to folding conditions.  MD simulations of this 

nature are essential tools for understanding mechanisms of protein folding by identifying states in 

the folding pathway that are not easily accessible by current experimental techniques. 
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Figure 4.1 Comparison of distance distributions of three different representations of the unfolded 
state of ubiquitin.  In all panels of the figure, the black line represents the Gaussian polymer chain 
(GPC) model, light grey lines represent 16,000 structure RC library, and dark grey lines are the 
2,000 structure EV library.  A.  K6-K11 (| i – j | = 5) B. K6-D32 (| i – j | = 26) C. K6-R42 (| i – j | 
= 36) D. K6-R74 (| i – j | = 68).  For residue pairs close in sequence, the distance distributions are 
not accurately described by the Gaussian polymer chain model.  However, as the sequence 
separation between the pairs increases, the Gaussian model can more accurately describe the 
distance distributions of real polymer chains. 
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Figure 4.2 Effect of sequence separation on distance distributions for several types of interacting 
pairs in ubiquitin and apomyoglobin.  A. When residues are very close in sequence (| i – j | = 1), 
the identity of the interacting pair significantly effects the mean and shape of the distance 
distribution.  B. When residues are further apart (| i – j | = 15), the identity of the pair becomes 
less important. 
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Figure 4.3 Comparison of distance distributions for K/E pairs in three different proteins.  In all 
panels of the figure, the black lines represent staphylococcal nuclease, the light grey lines 
represent apomyoglobin, and dark grey lines represent ubiquitin.  A. | i – j | = 5; B. | i – j | = 11; 
C. | i – j | = 18; D. | i – j | = 43.  At all ranges of sequence separation, the distance distributions for 
K/E pairs are remarkably similar, regardless of the specific sequence of the protein. 
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Figure 4.4 Energy of ubiquitin unfolded state charge-charge interactions as a function of 
sequence separation, calculated using the Gaussian polymer chain model of the unfolded state 
(93).  The contribution of unfolded state interactions is largest for residues that are close in 
sequence and becomes negligible for pairs that are further than 20-25 residues apart. 
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Figure 4.5 Total unfolded state charge-charge interaction energies per residue for A. ubiquitin 
and B. NTL9 at pH 2, pH 7, and pH 14.  Each bar represents the sum of the interaction energy of 
residue X with every other residue in the protein.  Black bars represent the Gaussian model.  Light 
grey bars are the energies calculated using the EV library, and are averaged over 2,000 structures 
for both ubiquitin and NTL9.  Dark grey bars represent the energies calculated on the final 
structural libraries after 300ps of MD simulation, and are averaged over 2,000 structures for 
ubiquitin or 300 structures for NTL9.  Positive values of Eint,unf indicate unfavorable interactions, 
while negative values represent favorable interactions. 
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Figure 4.6 Population averaged radius of gyration (<Rg>) as a function of simulation time.  A. 
Ubiquitin simulations:  black line – pH2; light grey line – pH7; dark grey line – pH14.  B. NTL9: 
black line – pH2; light grey line – pH7; dark grey line – pH14; black circles – NTL9rev pH2; 
light grey triangles – NTL9rev pH7; dark grey squares – NTL9rev pH14.  The <Rg> changes 
rapidly within the first few picoseconds (ps) of simulation.  After 200ps, very little change is 
observed in the average Rg of the population.  Furthermore, the pH-dependent behavior seems to 
correlate with the relative numbers of acidic and basic residues in each protein.   
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Figure 4.7 Contact maps for ubiquitin (A-C) and NTL9 (D-F) in the EV limit (A & D), after 300 ps MD simulation (B & E), and in the 
native state (C & F).  The color of each box represents the probability that the residues are within 3.5 Å of one another.  Darker boxes 
represent lower probabilities of contact than whiter boxes.  Although more contacts are made in the post-MD population than in the EV limit, 
there is no evidence of the ordered contacts observed in the native state of either protein.  
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Figure 4.8 Kratky profiles for ubiquitin (black lines and circles) and NTL9 (light grey lines and 
triangles) in the EV limit (solid lines), after 300 ps MD simulation (dashed lines), and in the 
native state (symbols).  The small peak at low q values of the post-MD populations of both 
ubiquitin and NTL9 is indicative of a structure that is more collapsed and densely packed than the 
chains in the EV limit, but not to the extent of the native proteins. 
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Figure 4.9 Log-log plot of pairwise interchain distances (Rij) as a function of their sequence 
separation (| i – j|) for ubiquitin (●) and NTL9 (▼) in the EV limit (●,▼) and after 300 ps MD 
simulation (○, ).  The EV limit models a polymer in a good solvent, so the slope of this line (υ) 
is expected to be around 0.59.  After 300ps of MD simulation in an aqueous environment, the 
chains start to adopt scaling indicative of a polymer in a poor solvent, which would have an 
expected scaling of υ ≈ 0.33. 
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Figure 4.10 Contour plots of solvent accessible surface area (ASA) vs. radius of gyration (Rg) for 
A. ubiquitin and B. NTL9 in the EV limit, after 300 ps MD simulation, and in the native state.  In 
both panels, the EV limit libraries display a broad distribution around Rg, such that the unfolded 
polypeptide chains maintain a similar ASA regardless of the size of the chain.   In contrast, in the 
native states of ubiquitin and NTL9, small fluctuations in Rg will lead to relatively large changes 
in ASA.  After 300 ps in an aqueous environment, a correlation between ASA and Rg begins to 
develop as the chain collapses toward the Rg of the native state. 
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Figure 4.11 pH-dependent electrostatic “contact” maps for three unfolded state models of 
ubiquitin.  The squares represent the pairwise charge-charge interactions in the unfolded state.  
Red squares indicate unfavorable interactions, while blue squares are favorable interactions.  The 
bar graph to the side of each contact map represents the total interaction energy of a given residue 
with every other charged residue in the protein.  There are no significant differences between 
interaction energies predicted by the Gaussian model (GPC), the EV limit, or the post-MD 
structures at any pH.  There are also no indications of significant residual charge-charge 
interactions for any residue. 
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Figure 4.12 pH-dependent electrostatic “contact” maps for three unfolded state models of NTL9.  
The squares represent the pairwise charge-charge interactions in the unfolded state.  Red squares 
indicate unfavorable interactions, while blue squares are favorable interactions.  The bar graph to 
the side of each contact map represents the total interaction energy of a given residue with every 
other charged residue in the protein.  There are no significant differences between interaction 
energies predicted by the Gaussian model (GPC), the EV limit, or the post-MD structures at any 
pH.  There are also no indications of significant residual charge-charge interactions for any 
residue, except for the positively charged Lys51 and the negatively charged carboxyl group that 
exists on this C-terminal residue. 
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CHAPTER 5:  EFFECTS OF PROTEIN STABILIZATION 
THROUGH THE RATIONAL DESIGN OF SURFACE CHARGE-
CHARGE INTERACTIONS ON THE KINETICS OF PROTEIN 

FOLDING AND UNFOLDING REACTIONS 
 
 
 
5.1 Introduction 

In order to gain a more complete understanding of the mechanisms by which the rational 

design of surface charge-charge interactions stabilizes proteins, the effects of stabilization on the 

folding and unfolding kinetics of the protein need to be studied.  If it is possible to predict the 

effect that optimizing surface charge-charge interactions has on the kinetics of folding and 

unfolding, then it might be possible to incorporate selection for kinetic stability into the TK-SA 

model.  The term “kinetic stability” is typically used to describe proteins that have extremely 

slow unfolding rates  (212-215).  These proteins are not necessarily thermostable (high Tm) or 

thermodynamically stable (high ΔG), but they unfold slowly enough that this process is rarely 

observed.  Understanding the forces that drive the kinetic stabilization is of great importance in 

the pharmaceutical industry, because kinetic stabilization of proteins will not only extend the 

shelf lives of protein-based therapeutics or vaccines, but could also increase the in vivo half-lives 

of such drugs, leading to more effective treatments. 

By studying how the folding and unfolding kinetics are affected for proteins that have 

been stabilized by the optimization of surface charge-charge interactions, we can begin to 

understand the intramolecular interactions that are important for defining kinetic stability.  

Interactions in the protein core are known to be important for folding, and it has been 

demonstrated how dramatically substitutions in the core can affect the stability and structure of a 

protein (3, 6-8, 17, 62, 147, 216).  It is also believed that the first step in protein folding is the 

hydrophobic collapse of the protein core, and that the interactions between surface residues can 
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begin to occur only after the core is formed.  Conversely, for a protein to unfold, the surface 

interactions would need to be disrupted before the core can fully unfold.  For a protein that 

undergoes two-state unfolding, the thermodynamic stability, defined by the Gibbs free energy of 

unfolding (ΔG), at a given temperature, T, can be represented by: 

( ) ( )eqKRTTG ln−=Δ         (5.1) 

where R is the gas constant and Keq is the equilibrium constant, which can be represented by the 

folding (kf) and unfolding (ku) rates, such that Eq. 5.1 becomes: 
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Substitutions that increase the stability (ΔG) of a protein can either significantly decrease 

the unfolding rate, resulting in kinetically stable proteins, or increase the folding rate.  It is also 

possible for a combination of these two mechanisms to occur.   

One of the fundamental assumptions in the interpretation of folding and unfolding 

kinetics is that the substitutions do not significantly perturb the unfolded state structure of the 

protein.  Therefore, all substitutions are assumed to exert their effects either in the native state, 

the transition state, or both.  Figure 5.1A shows how a designed protein can be stabilized such 

that the unfolding rate is decreased (ku,DES < ku,WT), with no effect on the folding rate (kf,DES = 

kf,WT).  This mechanism would occur if substitutions did not perturb the interactions in either the 

unfolded state or transition state ensembles (ΔG‡,DES→U = ΔG‡,WT→U).  The stabilizing interactions 

are only present in the native state and provide a favorable contribution to the free energy of the 

system.  The energy barrier between the native state and the transition state increases due to these 

favorable interactions (ΔGN,DES→‡,DES > ΔGN,WT→‡,WT), resulting in a much slower unfolding rate of 

the designed protein relative to the wild-type.   
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Alternatively, a protein can be stabilized in such a way that the folding rate is increased 

(kf,DES > kf,WT) with no effect on the unfolding rate of the protein (ku,DES = ku,WT) (Fig. 5.1B).  In this 

case, the stabilizing interactions are present in both the transition state and the native state of the 

protein, while the unfolded state ensemble is not affected.  By having the stabilizing interactions 

present in the transition state, the energy barrier between the unfolded state ensemble and the 

transition state ensemble is decreased (ΔG‡,DES→U < ΔG‡,WT→U), resulting in a faster folding rate.  

The free energy of the native state of the designed protein is decreased by the same amount 

(ΔGN,DES→‡,DES = ΔGN,WT→‡,WT), relative to the wild-type, so the unfolding rates remain unchanged.   

The primary method for experimentally determining whether interactions are present in 

the transition state ensemble of a protein is Φ-value analysis.  The Φ-value of a protein is usually 

determined by substituting the position of interest to alanine.  The folding and unfolding kinetics 

of the Ala variant are measured and compared to that of the wild-type: 
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where UN
WTG →Δ and UN

AlaG →Δ are the energy differences between the native and unfolded states of 

the wild-type protein and the Ala variant, respectively; U‡→Δ WTG and U‡→Δ AlaG are the energy 

differences between the transition states (‡) and unfolded states of the wild-type and Ala variant, 

respectively; kf
WT and kf

Ala are the folding rates of the wild-type and alanine variant; and ku
WT and 

ku
Ala are the unfolding rates of the wild-type and alanine variant, respectively.  Ideally, Φ-values 

should have a value of either 0 or 1 (217).  A Φ-value of 0 indicates that the residue does not 

participate in native-like interactions in the transition state, which describes the kinetic 

mechanism shown in Fig. 5.1A.  A Φ-value of 1 means that native-like interactions are 
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present in the transition state, and would indicate a kinetic mechanism like that shown in Fig. 

5.1B.  In practice, however, fractional Φ-values between 0 and 1 are often observed (182, 218-

225).  The standard interpretation of such Φ-values is: 0.7 < Φ ≤ 1 indicates strong native-like 

interactions are present in the transition state ensemble; 0.2 < Φ ≤ 0.7 indicates weak native-like 

interactions in the transition state; and 0 < Φ ≤ 0.2 indicates that the residue does not participate 

in native-like interactions in the transition state.  Φ-values less than zero and greater than one 

have also been shown to occur (220), and are typically taken to mean that strong non-native 

contacts are formed in the transition state ensemble. 

If the first step in folding is driven by interactions between residues in the protein core, 

then one would expect that substitutions in the protein core would be more likely to affect folding 

rates than unfolding rates.  Conversely, if the interactions between surface residues are not 

involved in the first steps of folding, and are only present after the protein core has formed, then 

substitutions on the surface should be more likely to affect the unfolding rates.  In other words, a 

protein that is stabilized through the optimization surface charge-charge interactions should have 

a kinetic mechanism similar to that shown in Fig. 5.1A.  This hypothesis was supported by 

several studies on the folding kinetics of CspB variants from mesophilic (CspB-Bs), thermophilic 

(CspB-Bc) and hyperthermophilic (CspB-Tm) organisms, which differ primarily in their surface 

charge distributions (15).  CspB-Bs has the least favorable distribution of surface charges, while 

CspB-Tm has the most favorable distribution.  It was found that the more stable CspB-Bc and 

CspB-Tm variants, have unfolding rates that are 20-fold and 220-fold slower than CspB-Bs, 

while the folding rates were both similar to that of CspB-Bs (66).  This result suggests that not 

only do optimized surface charge-charge interactions define the unfolding rate of the CspB 

variants, but also that these interactions are not present in the CspB folding transition state. 

To examine whether a CspB variant that was engineered to have optimized surface 

charge-charge interactions had similar behavior to the naturally occurring CspB variants, the 
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folding and unfolding kinetics of CspB-TB were measured.  CspB-TB has the same core residues 

of CspB-Bs, but the surface charge distribution of CspB-Tm (15).  It was found that CspB-TB did 

have the same kinetic mechanism of stabilization as the naturally occurring proteins – its 

unfolding rate was found to be 50-fold slower than the mesophilic CspB-Bs, while the folding 

rate was similar to that of CspB-Bs (226).  This observation provides further support to the 

hypothesis that charge-charge interactions are not present in the folding transition state.  These 

results also raised the question of whether slower unfolding rates is the general kinetic 

mechanism for proteins that are stabilized by the rational design of surface charge-charge 

interactions.  To address this question the folding and unfolding kinetics were characterized for 

the wild-type and designed variants of the Fyn SH3 domain (Fyn) (Chapter 3, (97)), 

procarboxypeptidase (Pc) (16), and tenascin (Ten) (16).  These three model systems provide an 

excellent starting point to address this question because all three wild-type proteins have been 

very well characterized kinetically (177, 180, 182, 220, 222-224, 227-230). 

 

5.2 Results & Discussion 

The effects of the substitutions made in each of the Fyn variants to their thermodynamic 

stabilities has been previously discussed (Chapter 3, (97)).  Except for two of the single 

substitution variants, all designed proteins had significantly increased thermostabilities (Tm) and 

thermodynamic stabilities (ΔG(25 °C)) compared to Fyn-WT (Table 5.1).  The designed variants 

of Pc and Ten also have significantly increased Tm and ΔG relative to their wild-type proteins 

(16).  In order to directly compare the results of the kinetics experiments described here to 

previous equilibrium experiments, the thermal denaturation of Pc-WT, Pc-GA1, Pc-GA2, Ten-

WT, and Ten-GA1 was measured using CD spectroscopy (Fig. 5.2).  The changes in mean 

residue ellipticity as a function of temperature were monitored at 222 nm for the Pc variants and 
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230 nm for the Ten variants.  The shifts in the midpoint of the transitions of the designed variants 

of Pc (Fig. 5.2A) and Ten (Fig. 5.2B) to higher temperatures, indicate that the Tm of the designed 

variants were higher than the respective wild-type proteins (Table 5.1), and the results are in good 

agreement to those obtained previously (16).   

Equilibrium urea denaturation experiments were performed to corroborate the ΔG values 

obtained from extrapolation of the thermal denaturation data.  We were unable to perform these 

experiments for the Fyn variants because none of them are unfolded at saturating urea 

concentrations.  The urea denaturation of the Pc and Ten variants were measured using CD 

spectroscopy at 25 °C and 37 °C, respectively.  It has previously been shown that tenascin 

unfolds extremely slowly at room temperature (177), so the higher temperature was used to 

ensure that the reaction reached equilibrium within the time constraints of the instrumentation.  

The results of the urea denaturation of all Pc variants are shown in Fig. 5.3A.  Both Pc-GA1 and 

Pc-GA2 show increased stability relative to the wild-type, although the magnitude of this increase 

was slightly different between the urea denaturation and thermal denaturation experiments (Table 

5.1).  The small discrepancy between these experiments could be due to errors associated with 

defining the unfolded state baseline of the thermal denaturation data, which would cause large 

errors in the extrapolation of the data to obtain ΔG(25 °C).  Importantly, the equilibrium 

denaturation experiments demonstrate that the designed Pc variants are more stable than their 

respective wild-type proteins at room temperature.  The results of the urea denaturation of the Ten 

variants are shown in Fig. 5.3B.  The fit of the data to a two-state model of unfolding show that 

Ten-GA1 is more stable than Ten-WT at 37 °C.  Furthermore, the results of the urea denaturation 

of the Ten variants is in excellent agreement with the thermal denaturation results (Table 5.1). 

The refolding kinetics of the Fyn, Pc-WT, Pc-GA1, and Ten variants were measured by 

fluorescence stopped-flow at 25 °C (Fyn & Pc) and 37 °C (Ten).  The Fyn variants did not unfold 

completely in saturating concentrations of urea at 25 °C, so the unfolding rates of these proteins 
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were calculated by solving Eq. 5.2 for ku, using the ΔG values obtained from DSC experiments.  

The Ten variants unfolded extremely slowly, so the kinetics of their unfolding reactions were 

measured by monitoring changes in the intrinsic tryptophan fluorescence of manually mixed 

solutions, as described in Chapter 2.9. The Pc-GA2 variant had a very small change in 

fluorescence upon unfolding, so the folding and unfolding kinetics of all Pc variants were also 

measured using CD stopped-flow. 

The results of the kinetics experiments for the Fyn variants are given in Table 5.2.  

Interestingly, it appears the primary kinetic mechanism of stabilization for the designed variants 

Fyn2 and Fyn5 is an increase in the folding rates, while the Fyn3 variant appears to be stabilized 

primarily through a 7-fold slower unfolding rate than Fyn-WT.  To explore the sources of the 

different kinetic mechanisms of stabilization for the designed Fyn variants, the folding kinetics of 

five single variants, each containing one of the substitutions in Fyn5, were characterized.  

Analysis of the single variants indicated that the two substitutions that did not significantly affect 

thermodynamic stability had very different effects on the folding and unfolding kinetics.  The 

remaining three substitutions had significant effects on both thermodynamic stability and either kf 

or ku (Table 5.2).   

The E11K substitution appears to have little effect on either the stability or the folding 

and unfolding rates of Fyn.  The observation that the folding rates of Fyn-E11K and Fyn-WT are 

similar suggests that E11 does not participate in native-like charge-charge interactions in the 

transition state ensemble of Fyn.  Since the folding rates and thermodynamic stabilities of Fyn-

E11K and Fyn-WT are similar, the unfolding rates of these two proteins must also be similar (Eq. 

5.2).  The N30K substitution also has very little effect on the stability of Fyn (ΔΔG = -1 kJ/mol at 

25 °C).  The slight decrease in stability of Fyn-N30K relative to Fyn-WT seems to be primarily 

due to a 3-fold faster unfolding rate.  The similar folding rate of Fyn-N30K relative to Fyn-WT 

suggests that this residue does not participate in native-like interactions in the transition state 
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(Fig. 5.1A).  Therefore, the destabilizing interactions of N30K must only be present in the native 

state, which decreases ΔGN→‡, resulting in faster unfolding rates.  The remaining single variants: 

Fyn-D16K, Fyn-H21K, and Fyn-E46K all have significant effects on the stability of Fyn.  For 

D16K and H21K, the change in stability appears to be primarily due to 3.6-fold and 2.4-fold 

slower unfolding rates, respectively. The folding rates of both of these variants are similar to Fyn-

WT (Table 5.2), suggesting that stabilizing interactions are not present in the transition state 

ensemble.  Rather, it appears that the decreased unfolding rates of Fyn-D16K and Fyn-H21K are 

most likely due to the alleviation of the electrostatic repulsion caused by the E15-D16-D17 

sequence present in Fyn-WT.  The E46K substitution provides an example where stabilization 

can occur through a combination of changes in kf and ku.  The folding rate of Fyn-E46K is 3-fold 

faster than Fyn-WT, and the unfolding rate is 2-fold slower.  The significant increase in the 

folding rate of Fyn-E46K could be due to favorable interactions with E24 upon substitution, and 

suggests that the effects of these favorable interactions are also present in the transition state 

ensemble. 

The thermal denaturation of the Fyn2 variant (E11K/E46K) was discussed in Chapter 3 

and showed that the effects of these substitutions are additive (ΔΔGFyn2-WT = ΔΔGE11K-WT + 

ΔΔGE46K-WT).  The additivity of thermodynamic stabilities can mean that the folding and unfolding 

rates are also additive, but it is also possible for the folding and unfolding rates change in 

opposite directions.  Interestingly, Fyn2 has a folding rate similar to Fyn-E46K and an unfolding 

rate similar to Fyn-E11K and Fyn-WT, suggesting that the effects of these substitutions on the 

folding kinetics are additive.  Therefore, the increased folding rate of Fyn2 relative to Fyn-WT 

must be due to the presence of native-like interactions at position E46 in the transition state.  The 

stabilization of the Fyn3 variant (E11K/D16K/E46K) has also been shown to be additive in terms 

of ΔG (see Chapter 3).  If this additivity is also present in the folding kinetics of Fyn3, then we 

would expect kf,Fyn3 to be 3-fold faster than kf,WT because the E46K substitution is the only one that 
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affects kf.  In addition, ku,Fyn3 should be approximately 7-fold slower than ku,WT due to the 

combination of the E46K (2-fold decrease) and D16K substitutions (3.6-fold decrease).  The 

results of the kinetics experiments shown in Table 5.2 show that the effects of these three 

substitutions are indeed additive.  The increased thermodynamic stability of Fyn3 appears to be 

due to an unfolding rate that is 7-fold slower than Fyn-WT and a folding rate that is 2-fold faster.  

The five substitutions in the Fyn5 variant (E11K/D16K/H21K/N30K/E46K) have also been 

shown to be additive in terms of ΔG (see Chapter 3).   In contrast with the Fyn2 and Fyn3 

variants, however, the Fyn5 variant provides an example of how substitutions can be additive in 

terms of ΔG, yet seem to have a synergistic effect in terms of the folding and unfolding kinetics.  

Based on the principles of additivity, one would expect the folding rate of Fyn5 to be 

approximately 3-fold faster than Fyn-WT because the E46K substitution is the only one that has 

any effect on the folding rate of Fyn.  Moreover, the unfolding rate of Fyn5 should be 

approximately 15-fold slower than Fyn-WT due to the D16K (3.6-fold decrease in ku), H21K (2-

fold decrease in ku), and E46K (2-fold decrease in ku) substitutions.  Instead, we observe that the 

folding rate is 8.5-fold faster and the unfolding rate is 2-fold slower than Fyn-WT, suggesting that 

these substitutions have synergistic effects in terms of the folding and unfolding kinetics.  

Importantly, the observation that Fyn2, Fyn3, and Fyn5 all had increased folding rates relative to 

Fyn-WT argues that it is possible for long-range native-like charge-charge interactions to be 

present in the transition state ensemble of proteins.  The effects of rationally designed surface 

charge-charge interactions on the folding/unfolding kinetics of Fyn do not support the hypothesis, 

based on the CspB data, that optimization of surface charge-charge interactions will result in 

slower rates of unfolding.  In order to determine the source of the different kinetic behavior 

between the Fyn and CspB variants, the folding and unfolding kinetics of designed variants of Pc 

and Ten were also characterized.   
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Figure 5.4A compares the results of the kinetics experiments performed on the Pc 

variants using both CD and fluorescence spectroscopy.  The natural log of the observed 

folding/unfolding rate (ln kobs) is plotted as a function of urea concentration, which results in a U-

shaped plot known as a chevron plot.  The CD and fluorescence data were fit to a two-state 

model: 

[ ]( ) [ ]( )( )UreamkUreamkk uOHufOHfobs −+−= expexplnln
22 ,,   (5.4) 

where kf,H2O and ku,H2O are the folding and unfolding rates at 0 M urea, respectively; and mf and mu 

are the slopes of the folding and unfolding arms of the chevron, respectively.  From Fig. 5.4A, it 

can be seen that the data obtained for Pc-WT and Pc-GA1 using fluorescence (open symbols) are 

in good agreement with the CD data (filled symbols).  Indeed, the fits of the data to a two-state 

model of unfolding give results for kf and ku that are in good agreement between the fluorescence 

and CD kinetics experiments (Table 5.2).  Furthermore, the thermodynamic stabilities of the Pc 

variants based on the folding and unfolding rates (ΔGkin) are within experimental error of the 

stabilities measured by equilibrium urea denaturation (ΔGeq) (Table 5.2).  

 Although Pc-GA1 is more thermostable than Pc-WT (Table 5.1), the equilibrium urea 

denaturation experiments suggested that these two variants would have similar stabilities.  This is 

precisely what was observed with the kinetics experiments, where the folding and unfolding rates 

of Pc-GA1 were both increased 4-fold relative to Pc-WT.  Since the ratio of ku and kf are the same 

for Pc-WT and Pc-GA1, then according to Eq. 5.2, the thermodynamic stabilities will also be 

similar.  The equilibrium unfolding of Pc-GA2 showed that this protein is both more thermostable 

and more thermodynamically stable than Pc-WT.  The kinetic mechanism of this stabilization 

appears to be more similar to that of Fyn5 than CspB-TB; i.e. optimization of surface charge-

charge interactions results in changes in the folding rate rather than the unfolding rate.  The 

folding rate of Pc-GA2 was increased 11-fold, relative to Pc-WT (Table 5.2), providing another 
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example of the presence of native-like long-range charge-charge interactions in the transition 

state ensemble of proteins.   

In order to determine if any of the positions subjected to substitution in the Pc-GA1 and 

Pc-GA2 variants were structured in the transition state, we examined Φ-values measured by 

alanine-scanning mutagenesis that have been reported in the literature (220).  Typically, high Φ-

values (0.71 – 1) indicate native-like structure in the transition state, medium values (0.21 – 0.7) 

indicate weak native-like interactions, and low values (0 – 0.2) indicate no structure in the 

transition state ensemble (220, 227).  Only four of the eleven positions selected for substitution in 

Pc-GA1 and Pc-GA2 had been characterized, but Φ-values for the neighboring residues were 

available for three other positions.  From the results presented in table 5.3, it can be seen that one 

position in Pc-GA1 (S65) and three positions in Pc-GA2 (Q23, Q60, and S65) are structured in 

the transition state ensemble.  The remaining positions that were measured appear to be 

unstructured in the transition state ensemble.  However, it is not always appropriate to infer the 

behavior of a given residue based solely on the Φ-value of one neighbor.  For example, position 

51 in Pc-WT is not structured in the transition state ensemble, while position 52 has some native-

like structure (220).  Although, the Φ-value analysis for the substitutions selected by TK-SA is 

incomplete, the results presented here suggest that the dramatic increase in the folding rate of Pc-

GA2 could be explained by some of the substitutions being made at positions known to 

participate in native-like interactions in the transition state ensemble. 

The folding and unfolding kinetics were also measured for the wild-type and one 

designed variant of tenascin.  Based on the equilibrium denaturation experiments, Ten-GA1 is 

expected to be both more thermostable and more thermodynamically stable than Ten-WT.  Figure 

5.4B shows the results of the fluorescence kinetics experiments for the Ten variants.  The 

symbols represent the experimental data and the solid lines are the fits of the data to a two-state 

model of unfolding.  The fitted kinetic parameters are given in Table 5.2, where it can be seen 
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that both the folding and unfolding rates of the Ten variants are orders of magnitude slower than 

the Fyn and Pc variants.  Based on the values for kf and ku, Ten-GA1 is more stable than Ten-WT 

by 7.3 kJ/mol, which is in good agreement with the ΔΔG value obtained from the equilibrium 

unfolding experiments.  Furthermore, the stabilization of Ten-GA1 has the same kinetic 

mechanism as the designed Fyn and Pc variants:  Ten-GA1 has a folding rate that is 50-fold faster 

than that of Ten-WT, while their unfolding rates are very similar.   

To determine whether this dramatic increase in kf is due to selecting positions for 

substitution known to be structured in the transition state ensemble, the previously reported Φ-

values measured by alanine scanning-mutagenesis (223) were examined (Table 5.4).  Although, 

only one of the exact positions (L29) was characterized in this study, both neighboring residues of 

the remaining three positions (Q7, D49, and T89) were also characterized.  If both neighbors of a 

given residue participate in native-like interactions in the transition state, then it is assumed that 

the residue of interest must also participate in these interactions, and vice versa.  From the results 

shown in Table 5.4, it appears that only one residue, D49, has native-like structure in the 

transition state.  However, when the four substitutions are made simultaneously, it appears that 

the net effect is the presence of long-range native-like charge-charge interactions in the transition 

state ensemble of Ten. 

The results of the experiments on Fyn, Pc, and Ten raise the question: why does the 

rational design of surface charge-charge interactions result in increased folding rates, when the 

CspB studies suggested that optimization of these interactions should result in slower unfolding 

rates?  One potential answer to this question is that the substitutions affect the transition state 

ensembles of these four proteins differently.  If Fyn, Pc, and Ten all had substitutions at positions 

known to be structured in the transition state, then perhaps the CspB substitutions occur at 

positions that do not participate in native-like interactions in the transition state.  In order to test 

this hypothesis, we examined the Φ-value analyses of the CspB-Bs and CspB-Bc variants 
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measured by alanine-scanning mutagenesis (225, 231).  Out of the 15 substitutions that were 

made to create CspB-TB, 11 had been characterized in these studies.  Table 5.5 shows that six of 

these residues (E3, N10, E12, E19, E42, and S48) have medium to high Φ-values, indicating that 

they are structured in the transition state, whereas only one or two of the positions in Fyn, Pc, or 

Ten had native-like structure.  This result does not support the hypothesis that the substitutions in 

CspB should occur at positions that are unstructured in the transition state.   

Furthermore, the CspB Φ-value analysis conflicts with the mechanisms proposed by 

Figure 5.1, where substitutions at positions that have native-like structure in the transition state 

should only affect the folding rates.  However, the conflicting results could be due to the nature of 

extrapolating results from alanine-scanning Φ-value analysis to the effects of charge-charge 

substitutions.  Alanine substitutions perturb a variety of intramolecular interactions such as 

hydrogen bonding, secondary structure propensity, hydrophobic interactions and packing 

interactions.  It is possible that perturbation of all of these forces simultaneously could make it 

appear that a particular residue is not structured in the transition state.  However, if only one type 

of interaction was perturbed (i.e. charge-charge), it might be more evident that a given residue 

participates in native-like charge-charge interactions, even though the residue is not structured.  

For example, the Φ-value analysis based on alanine-scanning mutations in Fyn suggested that 

N30 is structured (227), while E46 is not (227, 229).  Yet when the substitutions are to a lysine 

rather than alanine, the E46 position does have native-like interactions and N30 does not.  It 

might be necessary, then, to determine the presence of long-range charge-charge interactions in 

the transition state ensembles by performing an analysis on the CspB, Pc, and Ten variants using 

charged residues, as was done here with Fyn.   

Another potential explanation for the different kinetic mechanisms of CspB and the other 

proteins is that the CspB-TB variant was designed based on the sequences of naturally occurring 

stable proteins, whereas the Fyn, Pc, and Ten designs were not.  It is possible that the 
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evolutionary determinants of protein stability are different than what can currently be modeled 

and selected for computationally.  One can imagine that if life originated in a hot environment 

and then organisms had to adapt to a gradually cooling environment, the folding rate might be 

less important to adaptation than the unfolding rate.  Such a mechanism would be especially 

important for regulatory proteins, which must be degraded when they are no longer needed.  For a 

protein like CspB, which is activated in response to cell stress caused by cold temperatures, 

adaptation to a cooling environment would make it necessary to degrade this protein quickly, so 

evolution would favor faster unfolding rates.  The result is that the ancestral thermostable protein 

has a much slower unfolding rate than its more modern mesophilic counterpart.  Since it is not 

currently clear how one could computationally model evolutionary determinants to stability, it is 

possible that this is the source of the different kinetic mechanisms.  To test this hypothesis, one 

would need to characterize a sequence of CspB that was selected for by the TK-SA model and 

compare its folding/unfolding kinetics to that of the CspB-TB variant, which was designed based 

on naturally occurring sequences.  If the folding mechanism of the TK-SA designed CspB variant 

was the same as the CspB-TB variant, then it is possible that evolution favors different kinetic 

mechanisms to stabilize regulatory proteins versus non-regulatory proteins, such as Fyn, Pc, and 

Ten.  However, if the folding mechanisms between the TK-SA designed CspB and CspB-TB 

were different, then it would suggest that the computational model is not capturing evolutionary 

pressures to stability. 

It is also possible that the fundamental assumption in Φ-value analysis – namely, that the 

substitutions do not affect the unfolded state ensemble – is flawed (189).  Although the data 

presented in Chapter 4 supports the conclusion that it is not necessary to consider the presence of 

residual charge-charge interactions in the unfolded state to predict changes in thermodynamic 

stability (ΔΔG), it is possible that the unfolded state is extremely important for predicting the 

effects of substitutions on the level of kinetic stability.  For example, the D16K substitution in 
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Fyn seems to stabilize the protein primarily by introducing favorable charge-charge interactions 

into the -E15-D16-D17- sequence.  Since this residue engages in favorable interactions with 

neighboring residues, it would be incorrect to assume that these effects are not also present in the 

unfolded state ensemble.  In order to see whether incorporating the unfolded state effects into the 

model might be important for determining kinetically stabilizing substitutions, we examined the 

total energy of unfolded state charge-charge interactions using the Gaussian chain model 

(Eunf,Gauss) for the wild-type and optimized variants of CspB, Fyn, Pc, and Ten. Table 5.6 shows 

that the CspB variants with optimized native state charge-charge interactions result in 

unfavorable unfolded state charge-charge interactions.  On the other hand, the designed Fyn, Pc, 

and Ten variants all have more favorable unfolded state charge-charge interactions.   

Figure 5.5 demonstrates how incorporating the unfolded state effects into the unfolding 

reaction scheme can affect the interpretation of kinetic experiments.  Only two extreme points are 

modeled for clarity, although in practice, a combination of these mechanisms is also likely to 

occur.  The first mechanism represents what could happen with the CspB variants (red lines), the 

energy of the unfolded state ensemble of the designed protein (UDES > UWT) is increased relative 

to wild-type, while the energy of the native state is decreased (NDES < NWT).  This results in a 

larger thermodynamic stability for the designed variant relative to the wild-type.  In order to 

maintain similar folding rates (kf,DES = kf,WT), the transition state must also be destabilized relative 

to the wild-type protein (TSDES > TSWT).  The destabilization of the transition state would also 

increase the energy barrier between the native state and the transition state, resulting in slower 

rates of unfolding for the designed variant (ku,DES < ku,WT).   

The second mechanism represents a possible explanation for the data from the Fyn, Pc, 

and Ten variants (green lines).  In this case, the substitutions decrease the free energy of both the 

native (NDES < NWT) and unfolded states (UDES < UWT).  However, the magnitude of the decrease in 

the free energy of the unfolded state must be smaller than that of the native state, since the 
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difference between N and U must be larger for the more stable designed variant than the wild-

type protein.  In order to maintain similar unfolding rates between the wild-type and designed 

variant (ku,DES = ku,WT), the free energy of the transition state must also be decreased by the same 

amount as the native state.  This will ultimately result in a smaller energy barrier between the 

unfolded state and the transition state, resulting in faster rates of folding for the designed variant 

(kf,DES > kf,WT).  In terms of kf and ku, both of these mechanisms have very similar results to those 

described in Fig. 5.1, but the underlying cause of the changes is vastly different.   

The qualitative correlation between the changes unfolded state charge-charge interaction 

energies and the changes in kf and ku suggests that these energies could be important in our design 

approach, not for selecting thermodynamically stable protein sequences, but for selecting 

kinetically stable proteins.  This hypothesis can be tested in two ways.  First, we can characterize 

the folding and unfolding kinetics of the existing designed variants of ubiquitin, acylphosphatase, 

and U1A.  Based on the unfolded state charge-charge interaction energies (Eunf,Gauss,WT = -3.37 

kJ/mol; Eunf,Gauss,GA1 = -3.48 kJ/mol; Eunf,Gauss,GA2 = -1.47 kJ/mol; Eunf,Gauss,GA3 = -1.52 kJ/mol), we 

would hypothesize that Ubq-GA1 should fold faster than Ubq-WT because the unfolded state 

energy becomes more favorable.  On the other hand, Ubq-GA2 and Ubq-GA3 should unfold more 

slowly because their unfolded state energies are less favorable than Ubq-WT.  The designed 

variants of both acylphosphatase (Acp-GA1) and U1A (U1A-GA1) would also be expected to 

fold faster than their respective wild-type proteins because the unfolded state charge-charge 

interaction energies of Acp-GA1 (Eunf,Gauss,GA1 = -7.41 kJ/mol) and U1A-GA1 (Eunf,Gauss,GA1 = -3.60 

kJ/mol) are more favorable than that of Acp-WT (Eunf,Gauss,WT = -6.43 kJ/mol) or U1A-WT 

(Eunf,Gauss,WT = -2.75 kJ/mol), respectively.  The second way to test the hypothesis is to perform 

negative design of the unfolded state by using the TK-SA model to select sequences of Fyn, Pc, 

Ten, Acp, and U1A that are identified by the genetic algorithm to be more stable than the 

respective wild-type proteins, but that have unfavorable unfolded state charge-charge interaction 
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energies.  If the results of these experiments support the hypothesis that the unfolded state 

energies are important for determining the direction in which kf and ku will change, then we will 

be able to add another layer of selection – for kinetic stability – into our design approach. 

   

5.3 Concluding Remarks 

The results presented in this chapter challenge a long-standing notion that long-range 

charge-charge interactions are not present in the transition state of proteins.  We have shown three 

examples of model systems with different sizes and secondary structural content that all have 

long-range native-like charge-charge interactions present in their transition state ensembles.  

However, several issues need to be addressed before we will be able to incorporate selection for 

kinetic stability into our design algorithm.  The ability to rationally design kinetically stable 

proteins will be of particular importance to the pharmaceutical industry, where the extended 

shelf-life or in vivo half-life that should accompany kinetically stable proteins can overcome 

many of the current limitations to protein-based therapeutics. 

As mentioned in the previous section, it is possible that the lack of correlation between 

changes in kf and ku and the Φ-values of the positions subjected to substitution could be due to 

probing the presence of native-like interactions in the transition state ensemble with alanine.  The 

alanine substitutions disrupt not only electrostatic interactions, but can also perturb hydrophobic 

interactions, secondary structure propensity, and packing interactions.  By making the charge-

charge substitutions, we can probe only the effects due to altering the charge at a given position.  

In order to get a clearer picture of the role of charges in the transition state ensemble of proteins, 

it will be necessary to characterize the Φ-values of single variants of all substitutions made in Pc-

GA2, Ten-GA1, and CspB-TB.   
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To address the question of whether or not our computational model is implicitly 

accounting for evolutionary determinants of stability, it would be very interesting to redesign 

Fyn, Pc, and Ten based on naturally occurring sequences of these proteins, and see if the results 

are similar to those obtained with CspB.  Conversely, it would also be important to 

computationally design CspB using only the TK-SA model, and see if the kinetic mechanism of 

stabilization is the same as for Fyn, Pc, and Ten.  The results of such experiments might begin to 

give us some insight into the differences between proteins that are stabilized evolutionarily versus 

those stabilized computationally.   

The experiments mentioned above might also help us test the hypothesis about the 

importance of the unfolded state in kinetic stability.  It is possible that stable proteins engineered 

from naturally occurring stable sequences could bias the selection toward sequences that 

simultaneously stabilize the native state and destabilize the unfolded state, resulting in proteins 

that are both thermodynamically and kinetically stable.  Conversely, our design approach 

considers only the native state, which is why none of the three proteins tested as part of this 

chapter were found to be kinetically stable.  By measuring the folding and unfolding kinetics of 

the other proteins that were rationally designed using the TK-SA model, we can gain a better 

understanding of the roles of the transition and unfolded states in protein folding. 
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Table 5.1 Thermostabilities of proteins redesigned by TK-SA approach 

Protein Substitutions ΔTm 
(°C) a 

ΔΔGThermal 
(kJ/mol)b 

ΔΔGUrea 
(kJ/mol)c Ref. 

Fyn WT - - - (97) 

 E11K -1.0 0.1 n.d.d  
 D16K 5.5 3.9 n.d. d  
 H21K 5.0 2.8 n.d. d  
 N30K -0.4 -1.1 n.d. d  
 E46K 6.1 4.7 n.d. d (97) 

Fyn2 E11K/E46K 4.6 2.3 n.d. d (97) 
Fyn3 E11K/D16K/E46K 10.3 6.7 n.d. d (97) 
Fyn5 E11K/D16K/H21K/N30K/E46K 11.7 7.1 n.d. d (97) 

Pc WT - - - (16) 

Pc-GA1 Q2E/H42E/S65K/M67K/D70K 3.9 4.1 0.9 (FL) 
1.0 (CD) (16) 

Pc-GA2 Q19E/Q23K/K32E/E39K/Q60K/
S65K/E69K 9.8 10.7 7.3 (CD) (16) 

Ten WT - - - (16) 

Ten-GA1 Q7K/L29K/D49K/T89K 10.0 8.8 8.5 (FL) 
6.5 (CD) (16) 

 
a ΔTm = Tm, mut – Tm, WT, measured by DSC for all Fyn and Ten variants and by CD for all PC 
variants. 
 
b ΔΔGThermal = ΔGmut – ΔGWT, calculated by extrapolating data from thermal denaturation 
experiments to 25 °C for Fyn and PC and to 37 °C for Ten. 
 
c ΔΔGUrea = ΔGmut – ΔGWT, measured by equilibrium urea denaturation experiments at 25 °C for 
PC and at 37 °C for Ten.   
 
d Urea denaturation experiments were not performed for the Fyn variants because they do not 
unfold at saturating urea concentrations at 25 °C. 
 
(FL) urea denaturation followed by fluorescence spectroscopy 
 
(CD) – urea denaturation measured by CD spectroscopy. 
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Table 5.2 Kinetic parameters of Fyn, Pc, and Ten variants 
 

Protein kf (s-1) mf  
(kJ/mol M) ku (s-1)a mu 

(kJ/mol M) 
ΔGkin 

(kJ/mol) 
ΔGeq 

(kJ/mol) 

Fyn-WT 76 b 3.22 b 0.029 - - 19.5 c 

Fyn-E11K 84 b 3.39 b 0.031 - - 19.6 c 

Fyn-D16K 102 b 3.13 b 0.008 - - 23.4 c 

Fyn-H21K 97 b 3.43 b 0.012 - - 22.3 c 

Fyn-N30K 105 b 3.22 b 0.062 - - 18.4 c 

Fyn-E46K 232 b 3.43 b 0.013 - - 24.2 c 

Fyn2 218 b 3.64 b 0.033 - - 21.8 c 

Fyn3 155 b 3.01 b 0.004 - - 26.2 c 

Fyn5 648 b 3.72 b 0.014 - - 26.6 c 

Pc-WT 668 b 
1056 d 

2.79 b 
3.06 d 

0.198 b 
0.396 d 

1.76 b 
1.06 d 

20.2 b 
19.5 d 

16.0 b 
16.0 d 

Pc-GA1 2246 b 
2295 d 3.03 e 0.817 b 

1.036 d 1.35 e 19.6 b 

19.1 d 
16.9 b 
17.0 d 

Pc-GA2 7581 d 3.07 d 0.643 d 0.87 d 23.2 d 23.3 d 

Ten-WT 0.401 b 3.84 b 0.001 b 0.85 b 15.4 b 16.3 b 
12.7 d 

Ten-GA1 5.29 b 4.25 b 0.00078 b 1.04 b 22.7 b 24.9 b 
19.2 d 

 
a Unfolding of Fyn variants was calculated from the folding rates and the ΔG values measured by 
DSC. 
 
b Parameters measured by fluorescence spectroscopy. 
 
c Parameters measured by DSC. 
 
d Parameters measured by CD spectroscopy.  
 
e Pc-GA1 CD and fluorescence stopped-flow data were fit globally to minimize errors from the 
noise in the CD experiment. 
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Table 5.3 Φ-value analysis of selected Pc positions based on alanine-scanning data* 
 

Position kf (s-1) ku (s-1) ΔGkin 
(kJ/mol) Φ a Pc variant 

WT # 757 0.48 18.4 - - 

Q2 - - - n.d. b GA1 

Q19 (G) 488 1.43 14.2 0.22 ± 0.01  
(pos. 20) c GA2 

Q23 (V) 403 0.27 18.0 9.3 ± 31.0 GA2 

K32 (G) 963 1.23 16.3 0.00 ± 0.10  
(pos. 31) c GA2 

E39 (L) 518 11.0 9.6 0.11 ± 0.05 GA2 

H42 330 - 403 n.d. d 8.7 ~ 0 
(pos. 41) c GA1 

Q60 (G) 757 0.84 4.3 0.48 ± 0.07 GA2 

S65 192 1.63 11.7 0.43 ± 0.02 GA1  
GA2 

M67 - - - n.d. b GA1 

E69 - - - n.d. b GA2 

D70 (V) 446 3.6 12.1 0.21 ± 0.03  
(pos. 71) c GA1 

 
 
* unless otherwise noted. 
 
# The wild-type Pc variant studied by (220) was not His-tagged, so the previously measured 
folding and unfolding rates differ slightly from our measurements.  The data are included here as 
the reference state for these mutations. 
 
a Data from Ref. (220), measured at 25 °C.   
 
b Neither the exact position, nor a neighboring position was available for analysis. 
 
c Although the status of a neighboring position does not always indicate the behavior of a given 
residue in the transition state ensemble (see (220)), when it was available, this information was 
included as a reference. 
 
d Unfolding rate was too fast to be accurately determined. 
 



 

 

131

Table 5.4 Φ-value analysis of selected Ten positions based on alanine-scanning data* 
 

Position kf (s-1) a ku (s-1) b ΔΔGkin 
(kJ/mol) a Φ a 

WT # 5.4 1.7 x 10-5 - - 

Q7 4.6 
4.3 

1.9 x 10-5 
5.5 x 10-5 

-11.4 
-0.8 

0.04 ± 0.01 (pos. 5) 
0.10 ± 0.01 (pos. 8) 

L29 4 1.0 x 10-4 -5.8 0.13 ± 0.03 

D49 0.47 
0.65 

1.9 x 10-4 
1.7 x 10-4 

-9.2 
-12.5 

0.67 ± 0.09 (pos. 48) 
0.42 ± 0.02 (pos. 50) 

T89 2.02 
2.96 

1.9 x 10-5 
4.8 x 10-5 

-22.7 
-14.4 

0.11 ± 0.01 (pos. 88) 
0.11 ± 0.01 (pos. 90) 

 
 

* unless otherwise noted. 
 
a Φ-values, kf and ΔΔG values from refolding in urea at 25 °C (223).  The ΔΔG values (ΔGVAR – 
ΔGWT) are based on equilibrium denaturation experiments.  When the exact positions were not 
available, neighboring positions are listed as a reference.  The analysis given in the text is based 
on the assumption that when both neighboring residues are (un)structured in the transition state, 
then the residue in question is also (un)structured. 
 
b ku obtained from GuSCN denaturation at 25 °C (224). 
 
# These experiments were performed at a different temperature than ours.  As a result, the folding 
and unfolding rates are slightly different from what we measured.  The data are given here as a 
reference state for the Φ-values. 
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Table 5.5 Φ-value analysis of selected CspB positions from alanine-scanning data* 
 

Position kf (s-1) ** ku (s-1) ** ΔΔGkin 
(kJ/mol) a Φ b Ref. 

Bs# 
Bs-WT 

Bc 

1090 
253 

2253 

1.60 
9938 
462 

- - 
(225) 
(231) 
(231) 

L3# 

E3 
(E) 
(R) 

477 
1434 

1.77 
1538 

-4.5 
10.3 

0.44 
0.48 

(225) 
(231) 

N10# 259 2.28 -4.3 0.79 (225) 

E12# 1230 1.71 0.2 1.50 (225) 

E19# 1190 1.50 0.4 0.50 (225) 

V20 - - - n.d.  

G35 - - - n.d.  

G36 - - - n.d.  

E42# 257 
862 

22.4 
3.22 

-9.7 
-2.2 

0.31 (pos. 41) 
0.27 (pos. 45) (225) 

S48 - - - 0.21-0.7 c  (231) 

N55 - - - n.d.  

N62# (G) 
 

636 
519 

49.9 
157 

-9.5 
-12.1 

0.14 (pos. 60) 
0.09 (pos. 63) (225) 

V64 (T) d 2041 d 642 d 0.3 d 0.23 d (231) 

K65 - - - n.d. (231) 
E66 
L66 

(L) 
(E) 

488 
1575 d 

1050 
1997 d 

8.3 
0.7 d 

0.23 
0.23 d (231) 

67A d 2520 d 512 d 0 d 0 d (231) 

 
* unless otherwise noted. 
 
** The folding and unfolding rates were measured at 70°C in Ref. (231) and 15°C in Ref. (225). 
 
a ΔΔG = ΔGVAR - ΔGWT 
 
b Φ-value analysis of positions in CspB-Bs that are substituted in CspB-TB.  When the exact residue had not been 
characterized, the neighboring residues are shown for reference.  As in Table 5.3, if data for both neighboring residues 
are available, and both are (un)structured in the transition state, then it is assumed that the intervening residue is also 
(un)structured in the transition state. 
 
# This CspB-Bs variant is pseudo-wild-type; it has a leucine at position 3 
 
c Graphical data was published for this residue in Ref. (231), where it was only indicated that the Φ-value fell in the 
medium range, defined as 0.21 ≤ Φ ≤ 0.70.  A Φ-value in this range generally indicates that the residue is weakly 
structured in the transition state. 
 
d CspB-Bc is the reference state for this position.  
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Table 5.6 Correlation of folding/unfolding rates with unfolded state charge-charge interaction 
energies 

 

Protein Eunf,Gauss (kJ/mol) kf (s-1) ku (s-1) 

Fyn-WT 0.64 76 0.029 

Fyn5 -5.49 648 0.014 

Pc-WT -1.27 668 0.198 

Pc-GA1 -4.01 2246 0.817 

Pc-GA2 -4.16 7581 0.643 

Ten-WT 3.30 0.401 0.001 

Ten-GA1 -1.83 5.29 0.0008 

CspB-Bs 1.11 689 9.93 

CspB-Bc 1.65 1370 0.64 

CspB-Tm 3.69 565 0.018 

CspB-TB 3.39 154 0.2 
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Figure 5.1 Two possible kinetic mechanisms of stabilization.  A. The substitutions in the 
designed protein (DES) stabilize the native state, relative to the wild-type (WT), resulting in a 
slower unfolding rate(ΔGN→‡,DES > ΔGN→‡,WT).  B.  The folding transition state of the designed 
protein (TSDES) is stabilized by the same amount as the native state, relative to WT (ΔG‡,DES→U,DES 
< ΔG‡,WT→U,WT), resulting in a faster folding rate.  For the purposes of this illustration, the 
designed proteins depicted in both A and B are stabilized by the same amount. 
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Figure 5.2 Thermal denaturation of procarboxypeptidase (Pc) and tenascin (Ten) variants, 
monitored by CD spectroscopy.  A. The unfolding transitions of Pc-WT (○), Pc-GA1 (�), and 
Pc-GA2 (□) were monitored at a wavelength of 222 nm. B. The unfolding transitions of Ten-WT 
(○) and Ten-GA1 (�) were monitored at a wavelength 230 nm. In both A and B, the symbols 
represent the experimental data, and the solid lines represent the fits of the data to a two state 
model of unfolding.   
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Figure 5.3 Urea denaturation of Pc and Ten variants, monitored by CD spectroscopy.  A. The 
unfolding transitions of Pc-WT (○), Pc-GA1 (�), and Pc-GA2 (□) were monitored at a 
wavelength of 222 nm. B. The unfolding transitions of Ten-WT (○) and Ten-GA1 (�) were 
monitored at a wavelength 230 nm. In both A and B, the symbols represent the experimental data, 
and the solid lines represent the fits of the data to a two state model of unfolding.   
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Figure 5.4 Chevron plots for Pc (A) and Ten (B) variants.  The open symbols represent the data 
from fluorescence experiments, the closed symbols represent data from CD experiments, and the 
solid lines are the fits of the data to a two-state model of unfolding.  A. Pc-WT (○,●), Pc-GA1 (�, 
▼), and Pc-GA2 (■).  B. Ten-WT (○), Ten-GA1 (�). 
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Figure 5.5 Two kinetic models of unfolding if substitutions can affect denatured state ensemble.  
In both models, the thermodynamic stability is increased relative to the reference state (black 
lines), but the effects on the folding and unfolding rates are very different.  The red model 
provides a schematic explanation of how the optimization of CspB affected the folding and 
unfolding kinetics due to substitutions forming favorable interactions in the native state and 
unfavorable interactions in the unfolded state.  The green model provides a diagram to explain 
how the optimization of the Fyn, Pc, and Ten variants could affect folding and unfolding kinetics 
due to the increase in favorable interactions in both the native and unfolded states.  See the text 
for a detailed explanation of the models. 
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CHAPTER 6:  RATIONAL DESIGN OF SURFACE CHARGES 
PROTECTS PROTEINS FROM AGGREGATION UPON THERMAL 

DENATURATION 
 

6.1 Introduction 

It is well established that both short- and long-range surface charge-charge interactions 

can contribute favorably and significantly to protein stability (11-13, 15, 16, 41, 68, 97, 103, 119, 

187, 232).  Indeed, the increased presence of charged residues on the protein surface seems to be 

one of the primary differences between thermophilic proteins and their mesophilic counterparts 

(48, 72, 233, 234).  The preceding chapters of this thesis have discussed in great detail how the 

surface charge-charge interactions can be modulated to change both the thermodynamic and 

kinetic stabilities of many different proteins. 

The solubility of a protein is another aspect of protein chemistry where charged residues 

on the surface of the protein are important (233, 235-237).  This empirical knowledge has been 

used to modulate the solubility of proteins in several different ways (236, 238-243).  Short 

peptide tags comprised primarily of Lys or Arg residues, have been used to improve the solubility 

of hydrophobic proteins and peptides by as much as 6-fold (241, 242).  Several groups also used 

structural-based engineering approaches to increase the solubility of proteins (237-240, 243), in 

one case making a membrane protein soluble in water (240).  These observations suggested it 

might also be possible to decrease the propensity for aggregation upon denaturation by increasing 

the net charge of a protein, in a process that has come to be called “supercharging”.  Indeed, 

increasing the number of charged residues on the protein surface was shown to be a viable 

approach to decrease aggregation propensity by Lawrence, et al (243), who engineered 

“supercharged” variants of three different proteins known to be prone to aggregation: 

streptavidin, glutathione-S-transferase (GST), and green fluorescent protein (GFP).  The 

supercharged variants of each protein were created by substituting a number of surface positions 
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with either basic residues (net charge at least +30) or acidic residues (net charge at least -25).  

Supercharging appeared to have small effects on the function of these proteins, as the streptavidin 

variants were still able to form tetrameric structures and interact with biotin, although the binding 

capacity was decreased (243).  The GST variants were also able to dimerize after supercharging 

and to retain function, with similar KM and kcat values as the wild-type protein.  The supercharged 

variants of both streptavidin and GST showed no detectable aggregation upon heating.  

Furthermore, the recovery of some enzymatic activity upon cooling of the supercharged GST 

variants indicated that the unfolding was reversible (243). 

The supercharged GFP variants were also significantly less prone to aggregation upon 

thermal denaturation (243).  However, when the GuHCl-induced denaturation of wild-type GFP 

and its supercharged variants were characterized, it was discovered that the supercharged variants 

were significantly less stable than the wild-type protein (243).  It is possible that this was due to 

the engineering procedure, which selected residues for substitution based solely on the apparent 

solvent accessibility of the side chain in a crystal structure.  The contribution of charges at these 

positions to the Gibbs free energy of unfolding (ΔG) was not considered.  One way to ameliorate 

this issue is to use a rational design approach to select for supercharged variants that contain 

substitutions at positions that do not have significant contributions to the stability.  This should 

result in a protein that is more soluble without sacrificing stability.  The ability to prevent protein 

aggregation has exciting implications for the biotechnology field, although it will be the most 

useful if aggregation can be prevented without losing stability.  This chapter discusses the rational 

design of a supercharged variant of ubiquitin (Fig. 6.1A), which is predicted to have improved 

solubility, relative to the wild-type molecule, without a significant loss of stability.   

 

 

 



 

 

141

6.2 Results & Discussion 

 

6.2.1 Design of supercharged ubiquitin 

The TK-SA model (11, 15, 16, 67, 97, 110, 187) was used to rationally design a 

supercharged variant of ubiquitin (Ubq-SC).  In the original TKSA-GA method, the selection of 

sequences using the genetic algorithm (GA) is based solely on an increase in favorable charge-

charge interaction energies.  To adapt this algorithm for rationally designing a supercharged 

protein with increased solubility (SCTKSA-GA), the selection in based on two criteria: the 

energy of charge-charge interactions should be at least as favorable as in the WT, and the net 

charge of the protein at a given pH must be larger than a preset value.  Figure 6.2 shows the plot 

of the total energy of charge-charge interactions (ΔGqq) versus the net charge of the protein at pH 

7.5.  Each symbol represents one of the sequences identified by SCTKSA-GA as satisfying both 

criteria.  From Fig. 6.2, it is clear that there are many sequences that have both more favorable 

ΔGqq than that of wild-type ubiquitin (Ubq-WT, -12.4 kJ/mol) and a net charge that is larger than 

the ~0 net charge of Ubq-WT.  From this figure, it is also evident that the number of sequences 

identified as having a much higher net charge than Ubq-WT, but more favorable ΔGqq, decreases 

with increasing net charge.  In fact, at a net charge of ~ +11.5 there are only a handful sequences 

that have more favorable ΔGqq than Ubq-WT.   

Figure 6.1B shows a sequence alignment of the sequences that were identified to have a 

more favorable ΔGqq than Ubq-WT at a net charge of ~ +11.5.  The number of substitutions (15 – 

17) in each sequence is also indicated in this figure.  From Figure 6.1B, it can be seen that most 

of the sequences have substitutions at the same positions, so as the very first test of the idea that 

we should be able to make ubiquitin less prone to irreversible aggregation by increasing the net 
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charge, we selected sequence #5, which contained 15 amino acid substitutions.  For the remainder 

of this chapter, this ubiquitin variant will be referred to as supercharged ubiquitin (Ubq-SC).  

The Ubq-SC variant selected for experimental characterization contains four Glu and 11 

Lys substitutions on the protein surface, resulting in a net charge of +12 at pH 7.0 (Fig. 6.1A & 

B).  In contrast, wild-type ubiquitin has no net charge at pH 7.0.  An examination of ΔGqq on a per 

residue basis (Fig. 6.1C) indicates that these substitutions are often more unfavorable than the 

wild-type residue.  However, there are a few positions where the substitution increases the 

favorable charge-charge interaction energies, which results in a similar total energy of charge-

charge interactions for Ubq-WT and Ubq-SC.  Based on the results of these calculations, we 

predict that Ubq-SC should be more soluble and less prone to aggregation upon unfolding than 

Ubq-WT, without adversely affecting the stability.   

 

6.2.2 Experimental characterization of supercharged ubiquitin 

Due to the large number of substitutions on the protein surface, there is a possibility that 

Ubq-SC could have an altered oligomeric state, relative to Ubq-WT.  Analytical 

ultracentrifugation (AUC) was performed to determine whether Ubq-SC retained the monomeric 

behavior of Ubq-WT (Fig 6.3).  The sedimentation equilibrium experiments were performed at 

three different speeds, and the data for each variant were globally fit to a single species model.  

The molecular masses measured by AUC (WT – MAUC = 7.5kDa, SC – MAUC = 9.9kDa) are 

similar, within experimental error, to those expected based on amino acid composition (WT – 

MTH = 8.4kDa, SC – MTH = 8.9kDa), indicating that both proteins are indeed monomeric.  

Another possible effect of making such a large number of substitutions as in Ubq-SC, is 

that these substitutions can alter the structure of the protein.  Far-UV circular dichrosim (CD) 

spectroscopy was used to obtain low resolution information about the secondary structural 

content of Ubq-WT and Ubq-SC.  The CD spectra of the wild-type and supercharged ubiquitin 
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variants are shown in Figure 6.4.  From this figure, it can be seen that the far-UV CD spectra of 

both ubiquitin variants are quite similar, suggesting that the secondary structure is not affected by 

the large number of substitutions in the supercharged variant.    

Thermal denaturation of the ubiquitin variants were characterized using DSC at pH 5.0 

and pH 7.0 in order to characterize both the stability and aggregation propensity of Ubq-SC 

relative to Ubq-WT.  The heat capacity profiles of Ubq-WT at pH 5.0 and pH 7.0 both show an 

interesting behavior (Fig. 6.5).  The temperature dependence of the partial molar heat capacity 

indicates that wild-type ubiquitin is soluble up to 70 °C.  However, as soon as the thermally 

induced unfolding transition starts, wild-type ubiquitin begins to aggregate.  Aggregation in DSC 

profiles is manifested as a sharp decrease in the heat capacity due to a dramatic release of heat 

upon the formation of aggregates.  It appears that Ubq-WT is slightly less prone to aggregation at 

pH 5.0 (Fig. 6.5A) than at pH 7.0 (Fig. 6.5B) because the aggregation occurs later in the 

unfolding transition.  In contrast, the Ubq-SC variant, does not aggregate upon thermal 

denaturation at either pH.  The reversibility of the unfolding of Ubq-SC was tested by rescanning 

the sample after cooling to 5 °C.  It can be seen from Fig. 6.5 that most of the original signal is 

recovered in the rescanned sample, indicating that the thermal denaturation of Ubq-SC is also 

highly reversible.  The dramatic increase in reversibility that is observed in the Ubq-SC variant is 

consistent with the prediction that supercharging should increase the solubility of ubiquitin.  The 

increase in solubility appears to have a more pronounced effect on the unfolded state, as the 

mechanism of the thermally induced irreversibility of wild-type ubiquitin is related to the 

aggregation of the unfolded state.   

Figure 6.5 reveals another interesting and important feature of the stability of the 

supercharged ubiquitin variant:  the Tm of Ubq-SC is lower than the aggregation temperature of 

Ubq-WT.  Since the aggregation appears to occur before Ubq-WT is fully unfolded, this 

observation would suggest that Ubq-SC is destabilized relative to wild-type ubiquitin.  This result 
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contrasts with our predictions based on the TK-SA model.  The calculated charge-charge 

interaction energies of Ubq-WT and Ubq-SC are very similar (Fig. 6.1B), suggesting that these 

variants should have similar stabilities.  Since this is the first time when relative changes in the 

stability of a designed variant were not correctly predicted by the TK-SA model, we performed 

further studies on the thermal unfolding of Ubq-SC.   

In order to determine the thermodynamic mechanism that causes the destabilization of 

Ubq-SC, DSC experiments were performed at pH 3.5, pH 3.75, and pH 4.5 (Fig. 6.6).  The 

destabilization of Ubq-SC is even more evident under acidic pH conditions, where the heat 

capacity profiles indicate that Ubq-SC is not fully folded, even at low temperatures.  In contrast, 

wild-type ubiquitin is fully folded at low temperatures, with a high Tm under these conditions 

(244).  Figure 6.7 shows the dependence of the calorimetric enthalpies of unfolding (ΔHcal) as a 

function of transition temperature (Tm) for Ubq-WT (data from (244)) and Ubq-SC.  The slope of 

the ΔHcal(Tm) function represents the change in heat capacity upon unfolding (ΔCP).  From Fig. 

6.7, it can be seen that the ΔCP for Ubq-SC is similar to that of Ubq-WT, within experimental 

error.  This is to be expected because these two proteins differ only in the residues on the protein 

surface, while the residues that are buried in the core of the native states of Ubq-WT and Ubq-SC 

are the same.  Since the exposure of buried residues is what largely defines the values of ΔCP, the 

slopes of the ΔHcal(Tm) versus Tm plots shown in Figure 6.7 should be similar.   

Interestingly, the enthalpy of unfolding of Ubq-SC is significantly (over 50 kJ/mol) lower 

than that of Ubq-WT (Fig. 6.7).  A similar dramatic decrease in the enthalpy of unfolding has 

been previously observed for the CpsB-Bs and CspB-TB pair (15), which also differ primarily in 

the number of charged residues on the protein surface.  In particular, the magnitude of the change 

in the net charge going from CspB-Bs (-5) to CspB-TB (+3), is remarkably similar to the 

magnitude of the relative change in net charge going from Ubq-WT (~0) to Ubq-SC (+11).  

However, the substitutions in CspB-TB resulted in an increase in thermostability (Tm) such that 
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the dramatic decrease in enthalpy resulted in thermodynamic stabilities (ΔG(25°C)) that were 

similar for CspB-Bs and CspB-TB.  In the case of Ubq-SC, however, the large change in the net 

charge of the protein resulted in a decreased thermostability, which ultimately manifests as a 

lower thermodynamic stability at room temperature (ΔG(25°C)WT = 30.5 kJ/mol vs. ΔG(25°C)SC = 

5.2 kJ/mol, based on pH 3.5 data).  Based on the these results, the destabilization of Ubq-SC 

appears to be primarily enthalpic in nature (ΔHcal,SC < ΔHcal,WT), with very little affect on ΔCP. 

The observation that Ubq-SC is destabilized relative to Ubq-WT contradicts our 

predictions that the substitutions should have little effect on the stability of the protein (Fig. 6.1 & 

Fig. 6.2).  One explanation for this behavior stems from the fact that there are 15 substitutions in 

Ubq-SC, relative to Ubq-WT, with four residues substituted to Glu and 11 to Lys.  Homology 

modeling was used to generate structures of Ubq-SC for calculating charge-charge interaction 

energies using the TK-SA model.  It is possible that homology modeling fails to correctly predict 

the positions of the surface residues due to the large number of substitutions in Ubq-SC.  

Although the far-UV CD spectra of Ubq-WT and Ubq-SC suggest that the structures of these two 

proteins are similar, it is important to mention that far-UV CD only probes the secondary 

structural composition of the protein.  It is possible for two proteins to have similar secondary 

structures, as measured by far-UV CD, while having different tertiary contacts.  The TK-SA 

model calculates the charge-charge interaction energies based on the distances between charged 

residues, and for long-range interactions, these distances will be primarily determined by the 

tertiary structure of the protein, rather than the secondary structure.  Therefore, it is possible that 

such a large number of substitutions alter the structure of the protein in a way that is not possible 

to detect by far-UV CD spectroscopy.  If the structure of Ubq-SC is indeed different from the 

structure generated with homology modeling, then the TK-SA model might not correctly predict 

how the substitutions will affect the stability of Ubq-SC. 
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Another explanation for the decreased stability of Ubq-SC is that the overall net charge of 

Ubq-SC is +12, compared to a net charge of zero for Ubq-WT.  It is likely that this high positive 

charge density results in charge-charge repulsions that decrease the stability of the protein.  In 

other words, after a certain number of substitutions, the environment of the protein surface was 

such that the addition of more charged residues to the protein surface created only unfavorable 

interactions.  Perhaps it will be necessary to supercharge proteins in such a way that the total 

number of charged residues is increased, but the net excess charge density is lower.  If the overall 

net charge is reduced, then the repulsive interactions due to having large numbers of like-charges 

could also be decreased.  This could make it possible to make a protein more soluble without 

sacrificing stability (236).   

It is also possible that increasing the solubility of any protein will inherently make it less 

stable.  The basis for this hypothesis is that one of the major forces contributing to protein 

stability is the hydrophobic effect.  In other words, proteins fold in aqueous environments due to 

the significant entropic penalty that is associated with water organizing itself around hydrophobic 

components of proteins, combined with the favorable energetics of the hydrophobic parts of 

proteins interacting with each other.  It is possible that the increased number of surface charges 

will also have effects on the energetic of the unfolded state ensemble.  If the charges are spaced 

along the sequence in such a way that there is less hydrophobic surface area exposed in the 

unfolded state, then the unfavorable entropy of the unfolded state due reorganizing bulk water 

will be decreased.  In this case, solubilizing proteins by increasing the number of charges on the 

surface could decrease the effective strength of the hydrophobic effect as a driving force for 

protein folding and stability.  Coupling the weakened hydrophobic effect with the repulsive 

charge-charge interactions that are likely to occur in the native state of a highly charged protein, 

could explain why all supercharged protein variants characterized to date are destabilized relative 

to their wild-type counterparts (243). 
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6.3 Concluding Remarks 

The results presented in this chapter highlight the complex relationship between protein 

stability and solubility.  Understanding the mechanisms driving both phenomena is important for 

gaining a full understanding of how proteins fold and interact with their environments.  In this 

very first attempt, we were able successful in designing a soluble protein.  We were, however, 

unable to do so without adverse effects on the stability.  Nevertheless, these results help dispel a 

common belief that proteins aggregate because they are not stable, as they clearly demonstrate 

that the thermodynamic stability of a protein does not define its aggregation propensity and vice 

versa.  Rather, the physico-chemical forces that govern the intramolecular interactions within a 

protein and define its stability likely have a different hierarchy of importance than those that 

govern protein-solvent interactions and define protein solubility.   

To gain a better understanding of the forces that dictate stability and solubility and the 

relationship between the two, it will be necessary to study this problem in greater detail.  For 

example, we have decreased the aggregation propensity of Ubq-WT by supercharging with basic 

residues, but it has been shown that supercharging proteins with acidic residues is also an 

effective way to increase their solubility (243).  It is possible that rationally designing solubility 

with negatively charged residues could decrease the error of our predictions because the side 

chains of negatively charged residues are shorter with fewer degrees of freedom than the side 

chains of basic residues.  If the error in our stability predictions is primarily caused by incorrect 

predictions of the relative positions of the side chains in such a heavily charged protein, then 

using shorter, less flexible side chains could alleviate this problem.  Furthermore, supercharging 

proteins with negatively charged residues provides a way to increase solubility under a wider 

variety of conditions than would be possible if only positively charged residues were used.   
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To address the question of whether or not homology modeling is sufficient for predicting 

the structure of a protein with a large number of substitutions to charged residues, it will be 

important to use higher resolution methods, such as NMR spectroscopy to solve the structure of 

Ubq-SC.  If increasing the net charge on a protein really does have a dramatic effect on its tertiary 

structure which is not accurately predicted with homology modeling, then a high resolution 

structure of Ubq-SC would allow us to have a better template for understanding how increasing 

the net charge on a protein affects its structure.  A high resolution structure could also provide a 

better template for understanding the effects of supercharging on the structures of other proteins, 

which would help improve the accuracy of our predictions. 

If we can determine how to decrease the aggregation propensity of proteins without 

affecting their stabilities or functions, then supercharging could also provide a new method for 

studying the mechanisms and kinetics of aggregation.  For example, by making a series of single, 

double, triple, or higher order variants of Ubq-WT based on the substitutions in Ubq-SC, we 

might be able to determine which residues are important in the aggregation pathway of ubiquitin 

versus those that are important for stability.  By performing a similar analysis on several other 

proteins, it might be possible to develop a general set of rules for selecting residues that 

contribute to solubility and not stability.  If similar studies were also performed on proteins or 

peptides that aggregate with regular structures, Aβ peptide, it might also be possible to determine 

what dictates aggregation in the form of fibril formation versus the “amorphous” aggregates of 

proteins like ubiquitin.  A comprehensive understanding of the forces dictating protein 

aggregation is likely to be necessary for developing the most effective treatments to diseases 

caused by this behavior. 
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Figure 6.1 Results of SCTKSA-GA predictions for supercharged ubiquitin.  A. Cartoon 
representation of ubiquitin (PDB code: 1UBQ).  The side chains that were subjected to 
substitution are shown as line representations.  B. Sequence alignment of wild-type ubiquitin and 
12 candidate sequences for supercharged ubiquitin.  All sequences have 15 to 17 substitutions, 
resulting in net charges between 11.5 and 11.7 at neutral pH.  Substitutions to acidic residues 
(Glu) are represented by yellow squares; substitutions to basic residues (Lys) are highlighted by 
light blue squares, and substitutions to neutral polar residues (Gln) are indicated by grey squares.  
All 12 candidate sequences had similar charge-charge interaction energies (ΔGqq) to each other, 
and to the wild-type, so as the first test of the model, sequence #5 (bold text) was selected for 
further characterization.  C.  The energy of charge-charge interactions on a per residue basis.  The 
black bars represent Ubq-WT, and the grey bars represent Ubq-SC.  The error bars are calculated 
from an average of 11 structures.   Favorable contributions to the energy of charge-charge 
interactions are denoted by negative values of ΔGqq.   
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Figure 6.2 Total energy of charge-charge interactions (ΔGqq) as a function of the net charge of 
the sequence.  The number of sequences that are identified by the SCTKSA-GA algorithm as 
satisfying both selection criteria decreases as the net charge of the sequence increases.  
Furthermore, as the net charge of a sequence increases, the ΔGqq seems to become less favorable.  
However, all sequences represented here have more favorable ΔGqq than Ubq-WT.   
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Figure 6.3 Analytical Ultracentrifugation profiles for A. Ubq-WT and B. Ubq-SC.  The data were 
collected at three speeds: 20,000 rpm (●), 25,000 rpm (▼) and 37,000 rpm (■) and globally fit to 
a single species model.  The resulting molecular weights suggest that both Ubq-WT and Ubq-SC 
are monomeric. 
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Figure 6.4 Far-UV CD spectra of Ubq-WT (black line) and Ubq-SC (grey line).  The CD spectra 
were measured at 25 °C in a 1 mm barrel cuvette, with protein concentrations of 0.05 mg/mL.  
The spectrum of Ubq-SC is similar to that of Ubq-WT, suggesting that the large number of 
substitutions in Ubq-SC do not perturb the secondary structural content of the protein. 
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Figure 6.5 Heat capacity profiles measured by DSC for the thermal unfolding of Ubq-WT (black 
lines) and Ubq-SC (grey lines) at A. pH 5.0 and B. pH 7.0.  Ubq-WT undergoes irreversible 
unfolding under both experimental conditions, whereas, Ubq-SC unfolds reversibly (dark grey 
lines). 
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Figure 6.6 pH-dependent heat capacity profiles for Ubq-SC at pH 3.5 (○), pH 3.75 ( ), and pH 
4.5 (□).  The symbols represent the experimental data, shown every 5°C for clarity.  The solid 
lines represent the fits of the data to a two-state model of unfolding.  Ubq-SC shows evidence of 
cold denaturation under acidic conditions. 
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Figure 6.7 The calorimetric enthalpies of unfolding (ΔHcal) as a function of the transition 
temperature (Tm) of Ubq-WT (●, taken from ref. (244)) and Ubq-SC (▼).  The slopes of the lines 
represent the ΔCP of unfolding of the proteins, and are similar, within the error of the experiment 
(3.3 ± 0.3 kJ/mol K for Ubq-WT and 3.6 ± 0.2 kJ/mol K for Ubq-SC).  This suggests that the 
destabilization of Ubq-SC is enthalpic in nature. 
 



156 

 

CHAPTER 7:  THERMODYNAMIC CHARACTERIZATION OF 
GLOBULAR PROTEINS USING PRESSURE PERTURBATION 

CALORIMETRY 
 
 
7.1 Introduction 

Understanding the forces that govern protein stability and solubility is the focus of this 

thesis.  The work discussed in the previous chapters has addressed the questions of how surface 

charges play a role in both the stability and solubility of proteins in solution; how protein 

stabilization affects the kinetics of folding and unfolding reactions; and the role of the unfolded 

state in protein stability.  However, there are still some aspects regarding the thermodynamic 

characterization of protein stability which have yet to be extensively studied, such as the response 

of proteins to pressure and the volumetric changes that occur upon unfolding.  A more complete 

understanding of how intramolecular interactions govern protein stability can only be obtained 

once these areas are as well studied as other biophysical responses, such as thermal denaturation. 

The study of the transfer free energies of model compounds from liquid hydrocarbons to 

water has been very successful in helping to understand the relative contributions of 

intramolecular interactions, such as the hydrophobic effect, to thermal and chemical denaturation 

(i.e. urea- or GuHCl-induced) of proteins (1, 166, 245-256).  Unfortunately, these studies failed to 

explain the volumetric changes that should occur upon isothermal pressure-induced denaturation 

(257).  Based on model compound data, the solvation of polar groups and the transfer of nonpolar 

groups from a hydrophobic to an aqueous environment were both expected to contribute 

negatively to the changes in the specific volume of a protein upon unfolding (1, 258-260).  The 

change in the intrinsic void volume (volume of cavities) of proteins was also expected to have a 

negative contribution to the volumetric changes upon unfolding.  As a result of these 

measurements, it was believed that the unfolding of proteins should be accompanied by a large 

decrease in their specific volumes.  However, in most cases, only small decreases, or even small 
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increases, in the partial specific volume of proteins upon unfolding were observed (179, 258, 261-

263).   

Chalikian and Breslauer (261) were the first to try to resolve this issue by introducing the 

concept of thermal volume, such that the specific volume of a protein ( pv ) is actually made up of 

three components: 

thydp vvvv +Δ+= int         (7.1) 

where vint is the intrinsic volume of the protein, which is a sum of the van der Waals volumes of 

all atoms in the protein and the internal cavities; Δvhyd is the volume change in the solvent due to 

the hydration of the solvent accessible surface of the protein; and vt is the thermal volume that 

results from the thermally induced molecular vibrations of the protein and solvent.  The effect of 

the thermal volume is to expand the solvent away from the surface of the protein, such that 

solvent-free volume element forms around the protein.  It is possible then, that the negative 

contribution of Δvhyd for hydrophobic residues measured in the model compound studies is simply 

a reflection of the lower thermal volume of water compared to nonpolar solvent (261).  In 

addition, the protein interior is most likely denser and more heterogeneous than a nonpolar 

solvent, providing another explanation for why the model compound studies were unable to 

accurately describe the volumetric changes in proteins upon unfolding  (261, 262).  Chalikian and 

Breslauer (261) also demonstrated how the thermal volume of the solvent can compensate for the 

negative changes in vint and Δvhyd in such a way that the overall pvΔ  is only slightly negative.  

Furthermore, if these three contributions to specific volume respond differently to changes in 

temperature or pressure, then it is possible that the protein could react such that pvΔ can also be 

positive (261).  Indeed, such behavior has been observed for a number of proteins (137, 179, 261, 

264).   
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The idea that pv  can change with response to pressure, as well as temperature, led to the 

development of methods to study various aspects of proteins at high pressure, which makes it 

possible to stabilize conformational states that are not usually populated enough to be studied 

under standard conditions (i.e. atmospheric pressure, ~ 14.7 psi).  These methods have been 

successfully used to study the structures of kinetic intermediates and protein aggregation 

pathways (for a review, see (265)).  However, one of the aspects of the pressure-volume 

relationship that is difficult to measure using the high-pressure techniques of densitometry, FITR, 

or SAXS was the thermal expansivity coefficient, α(T).  This parameter is the temperature 

derivative of the V(T) function, so methods that measure only the volume of a protein will 

inherently have large errors in α(T).   

Pressure perturbation calorimetry (PPC) is a relatively new experimental method that 

overcomes the problems associated with indirect measurements of α.  In a PPC experiment, α is 

measured directly as the difference between the heats produced by a calorimetric cell containing 

dilute protein solution and that of a cell containing only buffer as they are subjected to rapid 

changes in pressure (~ 80 psi) under isothermal conditions.  By performing PPC at a series of 

different temperatures, it is possible to measure α as a function of temperature (179).  A few PPC 

experiments on several different proteins have demonstrated how this valuable biophysical 

technique can be used, not only to measure α and ΔV, but also to give information about the 

interactions between the solvent and proteins in their native and unfolded states. 

The first PPC studies focused on developing a framework for understanding pressure-

induced protein denaturation.  Studying the pressure responses of small molecules (179, 266), 

single amino acids (179, 266), and tripeptides (266) in water showed how sensitive α(T) is to the 

hydrophobicity of the solute.  For example, the polar amino acids tend to have a large, positive 

value of α at lower temperatures, which decreases as a function of T, eventually leveling off at 

higher temperatures.  In contrast, the hydrophobic amino acids tend to have large, negative values 
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of α at low T, which increase as a function of temperature, and also level off at high T (< 100 ºC).  

The studies on single amino acids and tripeptides provided another explanation for how model 

compound studies could fail to predict the volumetric changes upon unfolding.  The α(T) profiles 

for a single amino acid, X, and its G-X-G tripeptide, were remarkably different, and these 

differences appear to be due to the glycine residues effectively separating the charges of the N- 

and C- termini of  -X- (266).  Since α is the temperature derivative of V, the dramatic differences 

between the α(T) profile of a single amino acid and a tripeptide,  demonstrate how the 

extrapolation of model compound data to a full-length protein could fail to predict the magnitude 

(and/or sign) of ΔV. 

PPC experiments have also been performed on several model protein systems (179, 263, 

266, 267).  In addition to measuring the volumetric changes of the proteins upon unfolding, these 

studies provided insight into what defines the expansivity, α(T) of the native and unfolded states 

of proteins (for an example of α(T) profile, see Fig. 7.1 or Fig. 7.2).  The general observations 

from these studies are that proteins with large numbers of hydrophilic residues on the surface 

have a larger α(T) values and a steeper temperature dependence of α(T) at lower temperatures 

(263, 266).   It also appears that the absolute value and temperature dependence of α(T), and 

resulting ΔV, are highly dependent on the nature of the co-solvent (179, 266, 267).  For example, 

in the presence of denaturant, the absolute value of α(T) at low temperatures is smaller than in 

water, and the temperature dependence is shallower.  The measured ΔV also changes sign under 

these conditions (179). 

It has been discussed that one of the advantages of PPC compared to other methods (i.e. 

(264)) is that it does not rely on the validity of a two-state model for unfolding for interpreting the 

data, and as such, can be used to measure volumetric changes upon unfolding in a model-

independent manner (179).  In the current analysis of PPC data, the user defines the native and 

unfolded state baselines, and a progress baseline is extrapolated between them using a 4th order 
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polynomial function.  The volumetric change upon unfolding (ΔV/V) is then determined by 

calculating the area between the baseline and the experimental α(T) profile.  While a model-

independent method might produce similar results to those obtained by other high pressure 

methods that use a two-state model of unfolding to analyze data (179, 264), there are instances, 

such as broad unfolding transitions or cold denaturation, where the baselines are impossible to 

define given the experimental data.  Furthermore, the model-independent method could make it 

difficult to reproduce results for proteins where ΔV/V is small, and therefore more sensitive to the 

baselines.  In this chapter, a two-state model is developed for analyzing PPC experiments, and it 

will be shown that this model is valid for several model systems: hen egg white lysozyme 

(HEWL), ribonuclease A (RNaseA), ubiquitin (Ubq-WT and Ubq-SC), cytochrome c (CytC), and 

eglinC (EgC).  By analyzing PPC data in the context of a two-state model of unfolding, it 

becomes possible to analyze pressure effects in cases where baselines are difficult to define, and 

to directly fit the PPC data to get a more complete thermodynamic description of unfolding. 

 

7.2 Description of the Two-State Model for Analyzing PPC Data 

 The concepts used to analyze the data from PPC experiments are analogous in many 

ways to those used to analyze the experimental data from DSC.  In other words, the relationship 

of α to ΔV/V is akin to the relationship between CP and ΔH.  Figure 7.1 highlights some of the 

similarities and differences between PPC and DSC experiments, and demonstrates some of the 

considerations that need to be addressed in the analysis of the experimental data.  In this figure, 

the fits of experimental PPC and DSC data for Ubq-WT (Fig. 7.1A) and CytC (Fig. 7.1B) at pH 

3.0 are shown.  For both Ubq-WT and CytC, the α(T) profiles suggest negative volumetric 

changes, although the magnitudes of ΔV/V are markedly different.  Notice that the peak of the CP 

profile measured by DSC occurs at a similar temperature to the minimum of the α(T) profile 
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measured by PPC, suggesting that the Tm values measured by each technique are comparable.  

The area under the CP(T) profile is the enthalpy of unfolding (ΔH), while the area under the α(T) 

profile represents the change in volume upon unfolding (ΔV/V). 

Since the results of PPC experiments are analogous to those obtained from DSC, and 

since the analysis of DSC data has is well stabled, it should be relatively straightforward to 

analyze the PPC data in the context of a two-state model of unfolding, which has two major 

advantages.  First, it provides a standard method to analyze experimental results, which could 

make it possible to decrease the current errors in the measurement of ΔV/V that most likely stem 

from how the experimental baselines are defined (see (179, 264)).  Since the temperature 

dependent behaviors of the native and unfolded state baselines are vital for determining the area 

under the α(T) profile, and hence the volumetric changes upon pressure denaturation, it is 

important to develop an analysis that will decrease the errors associated with user-defined 

baselines.  The second advantage of developing a two-state model for analyzing experimental 

data is that such a model will make it possible to fit data in circumstances where current methods 

fail, such as cold denaturation.  This section will describe important features of the two-state 

model of unfolding that we developed to be able to analyze data from PPC experiments under a 

wide variety of conditions (also see Fig. 7.2). 

 

7.2.1 Defining experimental baselines 

The first step in fitting the data for a PPC experiment is to define the native and unfolded 

state baselines (Fig. 7.2A).  These baselines are important for defining the αprogress(T) profile (Fig 

7.2B), and for calculating the volumetric changes upon pressure-induced denaturation (Fig 7.2C).  

In order to define an appropriate function for the unfolded state baseline (αU(T)), its shape was 

characterized in two different ways: from amino acid composition based on the α(T) profiles of 

amino acid side chains in water measured by Brandts and co-workers (179), and from a PPC 
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experiment performed on Ubq at pH 3.0. The native state baseline was characterized using CNBr 

cleaved Ubq (Ubq-WT-CNBr) which is very thermostable and unfolds reversibly at neutral pH, 

making it possible to monitor the shape of the native baseline over a broader temperature range. 

In order to model the unfolded state baselines based on the amino acid composition of 

proteins, it is important to remember that the molar expansivity coefficient is not strictly additive 

(i.e. αP ≠ Σαi.).  Indeed, if αP = (1/VP)(∂VP/∂T), and we assume that the partial volume of the 

protein is properly described by the sum of the partial volumes of its amino acids (i.e. VP = Σvi) 

(166), then: 
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Since it is known that the specific volumes of proteins also have temperature dependent behavior 

(166), an accurate representation of αU(T) will also take the temperature dependence of pv  into 

account.  Once again, we will utilize the relationship αi = (1/Vi)(∂Vi/∂T) to derive a temperature 

dependent function for Vi (Vi(T)): 
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Brandts and co-workers demonstrated that the α(T) profiles for individual amino acids could be 

represented by a cubic function (α(T) = a + bT + cT 2 + dT 3) (179).  It follows, then that: 
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where ai, bi, ci, and di are the coefficients for a given amino acid, given in (179), and αi,o is an 

arbitrary constant of integration.  The other half of Eq. 7.3 is given by: 
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,ln +=∫         (7.5) 

By combining Eq. 7.3 and 7.4, we can solve for Vi as a function of temperature: 
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where Fi = αi,o + Vi,o.  The partial molar volumes of the amino acids at 25°C were used to define 

Fi: 
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By incorporating Eqs. 7.6 & 7.7 into Eq. 7.2, we were able to develop a model for the 

temperature dependence of αU(T).   

Figure 7.3 shows the αU(T) profiles for the six proteins studied in this chapter, calculated 

based on the amino acid composition, as described above.  From this figure, it can be seen that 

the calculated unfolded state baselines for all proteins are remarkably similar over the entire 

temperature range.  There is only a slight deviation in the positions of the baselines at higher 

temperatures.  Furthermore, these baselines fit well to a cubic polynomial function (solid lines, R2 

= 0.99).  In order to determine the accuracy of the calculated unfolded state baselines, we 

compared the experimentally measured α(T) profile Ubq at pH 3.0 (Fig. 7.3, grey circles) to the 

baselines calculated from amino acid composition.  From Fig. 7.3, it can be seen that the 

calculated unfolded state baselines at high temperatures are in good agreement with the unfolded 

state baseline of the Ubq α(T) profile.  Future PPC experiments to characterize the α(T) profiles 

of natively unfolded proteins, such as apo-CytC or apomyoglobin, will be necessary to validate 

low temperature behavior of the calculated unfolded state baselines.  
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The shape of the native state baseline was determined using CNBr cleaved wild-type 

ubiquitin (Ubq-WT-CNBr) because it unfolds reversibly at pH 7.0, where the Tm is 87 °C.  This 

makes it possible to observe the native state baseline at temperatures up to 65 °C.  The native 

state baseline (αN(T)) for this experiment is shown in Fig. 7.3 (white circles).  The αN(T) profile 

also fits well to a cubic polynomial (R2 = 0.75), suggesting that the overall shapes of the native 

and unfolded state baselines are similar.  Therefore, we propose that both the native and unfolded 

state baselines should be represented by a 3rd order polynomial as a function of temperature (Fig. 

7.2A): 

( )32
, )()()( mNmNmNrefNN TTDTTCTTBT −+−+−+= αα    (7.8) 

( )32
, )()()( mUmUmUrefUU TTDTTCTTBT −+−+−+= αα    (7.9) 

where αN,ref and αU,ref are the values of αN(T) and αU(T), respectively, at the transition temperature, 

Tm.  For most of the proteins studied here, we found that the simplest scenario, where BN = BU, CN 

= CU, and DN = DU was sufficient to describe αN(T) and αU(T).  However, in some instances, it 

was necessary to have different values for BN, BU, CN, CU, DN, and DU to more accurately describe 

the nature of the baselines.   

 

7.2.2 Derivation of a two-state model for analysis of PPC data 

Now that we have a good description for how to represent the native and unfolded state 

baselines in the analysis of a PPC experiment, we can derive the rest of the two-state model.  A 

representation of αexp(T) that unfolds via a two-state mechanism has been previously derived by 

Rösgen and Hinz (264) using temperature independent representations of αN and αU.  The two-

state analysis of their data provided measurements of ΔV/V that were within 10-20% of the model 

independent analysis performed by Brandts and co-workers  (179).  The temperature independent 

representations of αN and αU stem from the fact that Rösgen and Hinz were determining α(T) by 
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taking the temperature derivative of the specific volumes of proteins measured by densitometry.  

In the densitometry experiments, it was not possible to observe a significant temperature 

dependence of α below the Tm of the protein, so temperature independent values were used.  

However, the discussion of baselines provided in the previous section demonstrates that this is 

not quite an accurate representation of the behavior of αN(T) and αU(T), and could be the source of 

the small discrepancies between their results and those measured by Brands and co-workers 

(179).  The following is a derivation of αexp(T) which includes a description for the temperature 

dependence of the baselines.  The thermodynamic parameters of ΔH and Tm are obtained by 

performing parallel DSC experiments on each protein, and are used to fit for the volumetric 

changes upon unfolding (ΔV/V).   

The relationship between α and ΔV has been previously described (179) and is equal to: 

T
V

V
P

P
p ∂

∂
=

1α          (7.10) 

where VP is the partial volume of  the protein.  Therefore, the change in volume can be obtained 

by calculating the area under the experimental α(T) curve ((αexp(T), Fig. 7.2A), which is made up 

of two components: 

 ( ) ( ) ( )TTT excess
P

progress
PP ααα +=exp       (7.11) 

where ( )Tprogress
Pα  (Fig. 7.2B) is defined by the fraction of native (FN) and unfolded (FU) protein 

in the sample: 

 ( ) ( ) ( )TFTFT UUNN
progress
P ααα ⋅+⋅=      (7.12) 

where αN(T) and αU(T) are defined by equations 7.8 and 7.9, respectively.  Subtracting 

( )Tprogress
Pα  from ( )TP

expα  gives the ( )Texcess
Pα  profile (Fig. 7.1C).  The area under this curve is 

equal to ΔV/V, and we will now derive the relationship between ( )Texcess
Pα  and ΔV/V for a protein 

that undergoes two-state unfolding. 
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For a two-state system, the Gibbs free energy (ΔG) of unfolding is equal to: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=Δ

N

U
eq F

F
RTKRTTG lnln      (7.13) 

where R is the universal gas constant and Keq is the unfolding equilibrium constant, FN is the 

fraction of folded protein and FU  is the fraction of unfolded protein in the population.  The Gibbs 

free energy can also be related to the changes in enthalpy (ΔH) and entropy (ΔS) upon unfolding 

via the Gibbs-Helmholtz relationship: 

 ( ) ( ) ( )TSTTHTG Δ−Δ=Δ        (7.14) 

where ΔH(T) = ΔH(Tm) + ΔCP·(T-Tm) and ΔS(T) = ΔH(Tm)/Tm + ΔCP·ln(T/Tm).  Combining Eqs. 

7.13 and 7.14 and solving for Keq yields: 
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Knowing that Keq = (FU/FN) and that FU + FN = 1, we can solve for FU: 
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If we assume that ∂VP is temperature independent, then ( )Texcess
Pα  is related to the fraction of 

unfolded protein in the sample (Fig. 7.2C), in such a way that Eq. 7.10 becomes: 

 ( ) ( ) ( )U
P

P
PU

P

excess
P F

TV
VVF

TV
T

∂
∂Δ

=∂⋅
∂
∂

=
1α     (7.17) 

To obtain the complete relationship between ( )Texcess
Pα  and ΔVP, we take the derivative 

of Eq. 7.17 with respect to temperature: 
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Substituting Eq. 7.19 into Eq. 7.17 gives the relationship between ( )Texcess
Pα  and ΔVP: 

 ( ) ( ) P

P

eq

eqexcess
P V

V
RT

H
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T ΔΔ

+
= 221

α       (7.20) 

Finally, by incorporating Eqs. 7.12 and 7.20 into equation 7.11, we obtain the following 

representation for ( )TP
expα , which  fits the PPC data to a two-state model of unfolding (Fig. 

7.2D): 

( ) ( ) ( ) ( ) P

P

eq

eq
UUNNP V

V
RT

H
K

K
TFTFT ΔΔ

+
+⋅+⋅= 22

exp

1
ααα     (7.21) 

where αN(T) and αU(T) are in the form given by Eqs. 7.8 and 7.9, respectively, and ΔH(T) = 

ΔH(Tm) + ΔCP·(T-Tm).  From Eq. 7.21, we can see that placing PPC data in the context of a two-

state model of unfolding makes it possible to directly fit the data, not only for ΔV/V, but also for 

ΔH, ΔCP, and Tm.  This provides the potential to get a full thermodynamic description of protein 

unfolding in with a single PPC experiment.   
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7.3 Results & Discussion 

 

7.3.1 The two-state model is a robust method for analyzing PPC data 

One of the first aspects of the two-state model that we tested was to see if it was really 

necessary to define the ΔH and Tm values based on the DSC data, or if we could simultaneously 

fit PPC data for ΔV/V and these thermodynamic parameters.  Indeed, it is possible to fit the PPC 

data with both ΔH and Tm as parameters.  This will typically result in a fitted PPC Tm that is 

within 2-3 °C of the DSC Tm. However, the fitted ΔH values based solely on PPC data can differ 

from the DSC measurements by as much as 15%.  This occurs mostly because fewer 

experimental points are collected in a PPC experiment, where data points are collected every 5 °C 

outside the transition range and every 2 °C in the transition range, than in a DSC experiment, 

where data points are collected every 0.1 °C.  As a result, the temperature dependence of the 

equilibrium constant, and consequently the enthalpy of unfolding, cannot be defined with the 

same accuracy in PPC analysis as in DSC analysis.  The combinations of these errors could result 

in erroneous estimates of the volumetric changes (ΔV/V) upon unfolding (Table 7.1), which might 

then result in an incorrect interpretation of experimental data.  This was especially evident for 

proteins like CytC (Fig. 7.1B), where ΔV/V is smaller than ΔV/V of ubiquitin (Fig. 7.1A). For 

these reasons, it is recommended to always perform a corresponding DSC experiment so the Tm 

and ΔH parameters can be properly constrained in the PPC data analysis. 

The next aspect of our model that we tested was whether different protein concentrations 

would yield significantly different measurements of ΔV/V.  Figure 7.4 shows the data for PPC 

experiments performed on ribonuclease A (RNaseA) at four different concentrations.  This figure 

clearly demonstrates that in the concentration range of 1-4 mg/mL, protein concentration has very 

little effect on the experimental results.  It has been previously argued that increasing 
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concentration will change the baselines (and potentially the measurement of ΔV/V) because 

increased intermolecular interactions will affect the hydration properties of the native state (266).  

However, these effects were only observed for protein concentrations above 5 mg/mL.  It seems 

that as long as the protein concentration is less than 5 mg/mL, there should be very little 

dependence of αexp(T) or ΔV/V on protein concentration.  This is an important observation because 

it means that it is possible to perform accurate PPC experiments with lower protein 

concentrations than previously been used or recommended. 

It is also necessary to test whether our two-state model for analyzing PPC data can be 

used on a number of different proteins that are known to exhibit two-state unfolding.  Figure 7.5 

shows the results of PPC experiments performed on five proteins with different sizes, shapes and 

secondary structural compositions: hen egg-white lysozyme (HEWL Fig. 7.5A), ribonuclease A 

(RNaseA, Fig. 7.5B), ubiquitin (Ubq, Fig. 7.5C), cytochrome c (CytC, Fig. 7.5D), and eglin C 

(EgC, Fig 7.5E).  The temperature dependence of the thermal expansion coefficient was measured 

at three to five different pH values for each protein.  It was possible to fit all five proteins to our 

two-state model of unfolding, even when the volumetric changes switched signs (CytC), 

demonstrating that this is a robust method for analyzing PPC data. 

 

7.3.2 High temperature convergence of ΔV/V   

The pH-dependent αexp(T) profiles also made it possible to analyze the volumetric 

changes of different proteins as a function of transition temperature.  Figure 7.6 shows a plot of 

ΔV/V vs. Tm for the six proteins mentioned above.  HEWL, RNaseA, Ubq, and EgC all exhibit 

similar behaviors, in the sense that ΔV/V is always negative and varies linearly with Tm.  In 

addition, the volumetric changes of these proteins appear to converge at high temperatures.  

Interestingly, the temperature of convergence appears to be similar for ΔS (~ 110 °C), ΔH (~ 130 

°C), and ΔV (120 - 130 °C).  The causes of the convergence at high temperatures of the entropies 
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and enthalpies of unfolding, normalized by the size of the protein, has previously been observed 

and discussed (185, 246, 254, 268-270).  Based on model compound studies, it appears that the 

entropies of unfolding measured for several globular proteins converge at the temperature where 

the entropy associated with transferring a nonpolar compound to water is zero (246, 268).  In 

other words, at the convergence temperature, the only contribution to the entropic component is 

the configurational entropy.  The convergence temperature of the specific enthalpies of unfolding 

have also been argued to be due to the hydrophobic effect.  In other words, the nonpolar 

contribution to the enthalpy of unfolding is equal to zero (268-270). Since the enthalpies of van 

der Waals interactions, polar hydration, and nonpolar hydration change differently for different 

proteins as a function of temperature (254), at the convergence temperature, these terms must 

compensate in such a way that the only contribution to the specific enthalpy of unfolding is 

hydrogen bonding (185, 254).  The observed convergence of ΔV/V for HEWL, RNaseA, Ubq, and 

EgC suggests that high-temperature convergence of this parameter might also be a general 

behavior of naturally occurring proteins.   

To explore the cause of the high temperature convergence of ΔV/V, we need to return to 

the parameters that define the specific volume of a protein, as described in Eq. 7.1.  If the partial 

molar volume is defined as described by Chalikian and Breslauer (261): thydp VVVV +Δ+= int , 

then the change in volume upon unfolding (ΔV/V) can be described as:  

VVVVVVVV thyd //// int Δ+ΔΔ+Δ=Δ      (7.22) 

As mentioned in the introduction Vint describes the void volume due to imperfect packing of the 

native state of the protein.  The native state will provide a positive (i.e. Vint,N > 0) contribution to 

the specific volume of the protein because the internal cavities are not solvent accessible.  Upon 

unfolding, there are no solvent inaccessible voids, so Vint,U ≈ 0.  Therefore, ΔVint /V will have a 

slightly negative (i.e. ΔVint /V < 0) contribution to ΔV/V at lower temperatures.  Because the 
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internal voids will also be present in the native state of proteins at high temperatures, the 

contributions of ΔVint /V should also be negative under these conditions.  The hydrational term, 

ΔVhyd, is defined by the interactions of the polar and nonpolar groups of the protein with the 

solvent.  This effect is likely to be very large at room temperature with a magnitude that probably 

depends on the amount of polar and nonpolar surface area in the protein.  However, the 

expansivity data on single amino acids (179) shows that the high temperature values of α for 

nonpolar and polar amino acids converge at high temperature to a value that is similar to that of 

bulk water.  Therefore, at high temperatures, the contribution of ΔΔVhyd /V to ΔV/V is expected to 

be negligible.  The thermal volume, Vt, is defined by the thermal fluctuations of the side chains, 

which effectively pushes the solvent away from the protein molecule, resulting in an increase in 

the partial specific volume of the protein.  Because the unfolded protein molecule is larger than 

the native state, Vt,U is expected to be larger than Vt,N.  As such, ΔVt /V is expected to have a large 

positive contribution to ΔV/V.  This contribution is expected to be relatively independent of 

temperature.   

 Based on this discussion of the relative contributions of different components of the 

partial volume of proteins to the volumetric changes upon unfolding, the contribution of the 

hydrational term is essentially negligible at the high temperatures (~120-130 °C) where 

convergence of ΔV/V is observed.  Therefore, at these temperatures, the only terms contributing to 

ΔV/V are the intrinsic volume and the thermal volume:  

VVVVVV t /// int Δ+Δ=Δ        (7.23) 

Since ΔVint/V is defined by the volumes of internal cavities, it essentially describes the packing 

density of a protein.  Furthermore, the packing densities of most proteins are very similar, so if 

ΔVint is normalized per residue (as ΔVint /V), then one would also expect ΔVint /V to be similar for 

all proteins.  The normalized contribution of the thermal volume (as ΔVt /V) should also be similar 

for all proteins since the difference in size between the native and unfolded states should be 
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roughly similar for all proteins.  Based on the relative contributions of the intrinsic and thermal 

volumes to ΔV/V, one would expect the volumetric changes upon unfolding to converge at a 

small, positive value, and indeed, this is what is observed (Fig. 7.6, ΔV/Vconv ≈ 0.002 – 0.004). 

The argument that high-temperature convergence of ΔV/V is a general property of all 

proteins is challenged by our measurements of CytC.  The linear fit of ΔV/V(Tm) for CytC has a 

steeper temperature dependence than the other proteins, such that eventually, ΔV/V changes sign.  

One possible explanation for the anomalous behavior of CytC can be found in its structural 

characteristics. Unlike any of the other proteins, CytC has a covalently bound heme group, which 

adds a large, rigid, hydrophobic structure to the globular protein.  In addition to perturbing the 

packing of the protein around the heme group, this rigid structure will have limited expansivity 

relative to the protein itself, and may therefore affect the volumetric changes we are observing.  

In fact, the total volume of internal cavities of CytC is more than an order of magnitude larger 

than the internal cavity volume of the other proteins (Table 7.2), which would suggest that the 

presence the heme group is perturbing the packing of this protein compared to others.  If the 

internal cavities of the protein are indeed the primary determinants of the magnitude of the 

volumetric changes upon unfolding, then it is possible that structures with larger cavity volumes 

will display different ΔV/V behavior than proteins that have smaller internal cavities.  More 

studies on proteins with large numbers or volumes of internal cavities (lower packing densities) 

will be needed to confirm this result. 

 

7.3.3 Cold denaturation can be studied by PPC 

One of the advantages of using a two-state model is that it becomes possible to interpret 

the data from a PPC experiment where the current methods fail due to an inability to define 

appropriate baselines.  When a protein undergoes cold denaturation, the native state baseline can 

no longer be defined as passing through the data points since the fraction of native protein never 
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reaches 100%, even at low temperatures.  As a result, it will be extremely difficult analyze such 

an experiment using a model independent approach.  In order to explore whether our model 

would be able to handle cases like cold denaturation, we studied the unfolding of supercharged 

ubiquitin (Ubq-SC), which undergoes cold denaturation in acidic pH conditions (see Chapter 5). 

Before starting the PPC experiment, we used our two-state model to simulate what cold 

denaturation might look like, and if it would provide a detectable signal in the calorimeter.  The 

simulated curve (thin line, Fig. 7.7) was calculated based on the following assumptions: 1.) The 

native and unfolded state baselines of Ubq-SC would have a similar behavior to those of Ubq-

WT; 2.) ΔV/V for the simulated curve was taken by extrapolating the ΔV/V vs. Tm line for Ubq-

WT to the Tm of Ubq-SC; and 3.) the ΔH and Tm of Ubq-SC were taken from the corresponding 

DSC experiment.  When we saw that we should still get a good signal-to-noise ratio in our 

experiments, we measured the unfolding of Ubq-SC at pH 3.5 by PPC.  From Figure 7.7, it can be 

seen that the transition region of the protein can be successfully predicted from our simulated 

curve.  The difference between the predicted and experimental baselines is most likely explained 

by the large number of mutations between Ubq and Ubq-SC.  It has previously been demonstrated 

that the polar/apolar nature of surface residues is extremely important for defining position and 

temperature dependence of the baselines of αexp(T) (179, 263, 266).  Nevertheless, the two-state 

model can successfully fit the cold denaturation data (thick line Fig 7.8), demonstrating that PPC 

can be used to explore the volumetric changes of proteins over a broad range of thermodynamic 

stabilities. 

 To put the concept of cold denaturation, as measured by PPC, into a more familiar 

context, Figure 7.9 shows simulated αexp(T) (Fig. 7.8A), FU(T) (Fig. 7.8B), and CP(T) (Fig. 7.8C) 

curves for a protein with different stabilities.  The parameters used to calculate these curves are 

given in Table 7.3.  The signature of cold denaturation in a DSC experiment is the observation 

that the CP(T) profile initially decreases, and then increases again with increasing temperature.  
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This is further manifested in the FU(T) curves, where the fraction of unfolded protein never 

reaches zero.  In a PPC experiment, cold denaturation seems to manifest itself as an increase in 

the absolute position of α(T) at the starting temperature and a large increase in the apparent slope 

of the native state baseline.  The unfolded state baselines for both αexp and CP curves are 

independent of whether a protein undergoes cold denaturation, as expected.  Furthermore, as with 

DSC, the position of the peak maximum does not necessarily correlate to the Tm of the protein. 

 

7.4 Implications of Two-State Model for Future PPC Experiments 

This chapter has discussed a novel way of analyzing the data from a PPC experiment.  

The main advantage of using a two-state model of unfolding to calculate the volumetric changes 

upon unfolding is that placing the results in this context allows one to understand volumetric 

changes when baselines are not easily defined.  The possible existence of the convergence of the 

volumetric changes at high temperatures was discussed.  CytC challenges this notion because its 

volumetric changes as a function of temperature do not converge with the other proteins.  It is 

possible that this is due to the decreased packing density as a result of the presence of a heme 

group, which will increase the amount of internal void volume, relative to the other proteins.  In 

order to test this hypothesis, we can examine the volumetric changes of other proteins with low 

packing densities.  In particular, we have already characterized the thermal denaturation of 

several ubiquitin and eglinC variants which have cavity creating substitutions in the protein core 

(8, 17, 163), and should therefore have lower packing densities than wild-type ubiquitn and 

eglinC, respectively.  By characterizing the pressure-induced denaturation of these variants under 

similar conditions as described here, it will be possible to determine whether the decreased 

packing density of CytC, relative to the other proteins, is the source of its anomalous behavior. 
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In the future, it will also be interesting to extend the use of PPC to examine the role of 

solvent in protein unfolding.  Since α(T) seems to be sensitive to solvent conditions, especially at 

low T, PPC provides a sensitive method for determining the extent to which substitutions on the 

protein surface affect interactions with bulk solvent.  In our computational design approach, we 

typically only make a small number of substitutions, so α(T) would not expected to be 

significantly different between the wild-type and designed variants.  However, PPC could prove 

to be particularly useful in the context of supercharging proteins to increase solubility without 

sacrificing stability (see Chapter 6).  It is possible that choosing substitutions such that we strike a 

balance between a high net charge, but an α(T) profile that is similar to the wild-type protein, 

indicating that the solvent/protein interactions have not been significantly altered, then we will be 

able to develop a better understanding of how intramolecular interactions contribute differently to 

stability and solubility. 
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Table 7.1 Comparison of fitted parameters for ubiquitin PPC data 
 
 

pH Tm (°C) 
DSC 

Tm (°C) 
PPC fit 

ΔH(Tm) 
(kJ/mol) 

DSC 

ΔH(Tm)  
(kJ/mol) 
PPC fit 

ΔV/V 
DSC 

ΔH & Tm 

ΔV/V 
Fitted 

ΔH & Tm 

ΔV/V 
% 

difference 

2.4 61.5 60.2 231 245 -9.85x10-3 -9.06 x10-3 -8.73% 

2.6 63.1 61.8 244 240 -9.49x10-3 -1.01 x10-2 5.84% 

2.8 66.2 64.5 261 247 -7.88 x10-3 -9.31 x10-3 15.36% 

3.0 71.1 70.3 266 252 -8.07E x10-3 -8.87 x10-3 8.97% 

3.2 73.2 72.1 277 239 -8.07E x10-3 -1.08 x10-2 25.29% 
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Table 7.2 Total cavity volumes (Vcav) of five model proteins studied by PPC 
 
 

Protein Name Vcav (Å3) a 

Lysozyme 1.16 
RNaseA 2.92 
Ubiquitin 21.75 

EglinC 16.10 
Cytochrome C 159.70 

 
a The cavity volumes were calculated with the VOIDOO software package (271, 272) using a 
probe size of 1.4 Å. 
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Table 7.3 Parameters used to simulate α(T), FU(T), and CP(T)  
 

Curve IDa Tm
 

(°C) 
ΔH(Tm) 
(kJ/mol) 

CP,N,ref
b 

(kJ/mol K) 
αN,ref

c 
(deg-1) 

αU,ref
c 

(deg-1) ΔV/Vd 

1 
(solid) 19 0 11.9 6.9x10-4 1.0x10-3 -0.0177 

2 
(long dash) 49.5 114 11.9 6.9x10-4 1.0x10-3 -0.0126 

3 
(medium dash) 61.5 231 11.9 6.9x10-4 1.0x10-3 -0.00929 

4 
(short dash) 63.1 244 11.9 6.9x10-4 1.0x10-3 -0.00921 

5 
(dotted) 66.2 261 11.9 6.9x10-4 1.0x10-3 -0.00825 

6 
(dash-dot) 71.1 266 11.9 6.9x10-4 1.0x10-3 -0.00804 

7 
(dash-dot-dot) 73.2 277 11.9 6.9x10-4 1.0x10-3 -0.00739 

 
(a) The parenthesis correspond to the line patterns in Fig. 7.8. 
(b) ΔCP for all curves was 3.46 kJ/mol K.   
(c) The baselines for αexp(T) take the form given in Eq. 7.1 and 7.2, where BN = BU = -1.5x10-5,  
CN = CU = 7.1x10-8, and DN = DU = 0 for all curves. 
(d) The ΔV/V values for curves 1 and 2 are calculated based on extrapolation of the ubiquitin 
ΔV/V(Tm) curve shown in Fig. 7.6 
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Figure 7.1 Comparison of thermal denaturation curves obtained from DSC and PPC experiments 
for A. Ubiquitin in 50mM Glycine buffer, pH 3.0 and B. Cytochrome C in 50mM Glycine buffer, 
pH 3.0.  In both panels, the symbols represent the experimental data (○ – DSC data, shown every 
5 ºC for clarity; □ – PPC data).  The solid lines represent the fit of the experimental data to a two-
state model of unfolding. 
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Figure 7.2 Example of PPC data fit to a two-state model of unfolding.  In all parts of the figure, 
the symbols represent the experimental data.  A. Native (αN(T)) and unfolded (αU(T)) baselines. 
B. Definition of the αprogress(T).  C. Relationship between the αexcess(T) and ΔV/V.  D. The fit of the 
experimental data to the two-state model of unfolding described here. 
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Figure 7.3 Temperature-dependent behaviors of native and unfolded state baselines for PPC 
experiments.  The unfolded state baselines, based on amino acid composition, were determined 
from the temperature-dependent α profiles for individual amino acids studied in (179).  The 
symbols represent the baselines for different proteins: ● – RNaseA, ○ – Ubq,  – Lysozyme,  – 
CytC, ■ – Ubq-SC, □ EglinC.  The solid lines represent the fit of the data to a cubic function.  
For comparison the native and unfolded state baselines were also experimentally measured for 
Ubq-WT-CNBr (○) and Ubq at pH 3.0 (●). 
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Figure 7.4 Concentration dependence of RNaseA on PPC data.  All experiments were performed 
in 10mM glycine buffer, pH3.2.  ○ – 1.249 mg/mL (ΔV/V = 4.8x10-3), □ – 1.642 mg/mL (ΔV/V = 
4.9x10-3), ◊ – 3.962 mg/mL (ΔV/V = 4.6x10-3),  – 4.781 mg/mL (ΔV/V = 4.4x10-3).  The 
experimental data for all protein concentrations overlay, indicating that in the concentration range 
of 1-5mg/mL, PPC results are independent of protein concentration.  Furthermore, the fitted 
volumetric changes are the same within 10%, which is within the accepted error of previous 
experiments (179, 264). 
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Figure 7.5 pH-dependence of αexp(T) for five model proteins.  The solid lines in each part of the 
figure represent the fits of the data to a two-state model of unfolding.  The symbols represent the 
experimental data for:  A. Lysozyme – pH 2.2 (○), pH 2.5 ( ), pH2.8 (□), pH 3.1 (◊), pH 3.4 ( ).  
B. RNaseA – pH 2.4 (○), pH 2.6 ( ), pH 2.8 (□), pH 3.0 (◊), pH 3.2 ( ) , pH 3.45 ( ).  C. 
Ubiquitin – pH 2.4 (○), pH 2.6 ( ), pH 2.8 (□), pH 3.0 (◊), pH 3.2 ( ).  D. Cytochrome c – pH 
2.4 (●), pH 2.6 (○), pH 2.8 ( ), pH 3.0 ( ), pH 3.2 (■), pH 3.4 (□), pH 3.6 (♦).  E. EglinC – pH 
2.5 (○), pH 2.75 ( ), pH 3.0 (□), pH 3.25 (◊), pH 3.5 ( ). 
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Figure 7.6 Temperature dependence of ΔV/V.  RNaseA (●), HEWL (○), Ubq ( ), CytC (■), and 
EgC (□).  The symbols represent the average of fitted ΔV/V using several different representations 
of the unfolded state.  The error bars are the standard deviation of the averaged ΔV/V values at 
each point.  The solid lines represent the linear regressions of the data.  For all proteins, except 
CytC, the ΔV/V functions appear to converge in the temperature range of 110-130 °C.   
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Figure 7.7 Cold denaturation of Ubq-SC measured by PPC.  The symbols represent the 
experimental data.  The thin line is the simulated cold denaturation curve, which was simulated 
using the parameters in Table 7.3, Curve 1. 
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Figure 7.8 Simulated curves to show the relationship between A. αexp, B. Funf, and C. CP.  The 
curves were calculated using the parameters listed in Table 7.3.  In terms of αexp, cold 
denaturation is distinguished by a shift in the starting position and slope of the αexp(T) profile 
(solid and long dashed lines), relative to the conditions under which no cold denaturation is 
observed. 
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