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Abstract

This dissertation makes contributions towards the following three closely related, important
problems in machine learning: 1. Semi-supervised classification, 2. Semi-supervised learn-
ing with instance-level constraints, and 3. Semi-supervised domain adaptation of classifiers.
Semi-supervised learning, which has been an active area of research for more than a decade
now, attempts to mitigate the problem of label scarcity or limited supervision in practical ma-
chine learning and statistical modeling tasks, such as classification and clustering, by exploiting
the relative abundance and easy availability of unlabeled data to improve upon model solutions
which would otherwise be based only on the limited data having supervision. Domain adaptation
of classifiers is a relatively recent area of research, where the goal is to leverage the availability of
a large labeled database and/or an existing classifier model to adaptively learn a better classifier
model for a target domain where the underlying distribution of data is different.

In the case of semi-supervised classification, where the partial supervision is in the form of
class labels, we developed a method for improving upon the class posterior probability model
given the feature vector (set of features) for a generative mixture model based classifier. In
particular, based on novel stochastic data generation methods, we allow the class posterior prob-
ability models within the mixture components to be non-trivial functions of the feature vector,
addressing a significant limitation of existing methods which only allow a single class per com-
ponent or a single, feature vector independent probability mass function per component. This
allows for more fine-grained component conditional class modeling, leading to potentially better
classification performance as we demonstrate on synthetic and real data sets in Chapter 2.

In the case of semi-supervised constraint-based learning, where supervision is in the form
of constraints on pairs of data samples indicating whether the sample pairs are from the same
underlying class (a must-link constraint) or from different underlying classes (a cannot-link con-
straint), we developed a method for predicting the grouping of data samples into (unknown)
classes, which not only satisfies a majority of the constraints, but also ensures that the spatial im-
plications of the constraints are consistently enforced in the solution, leading to better grouping
solutions and generalization on unseen data. Most of the prior works addressing this problem
do not provide a serious treatment of this requirement to enforce the spatial implications of the
constraints in the solution. Also, they make a typically unrealistic assumption that the number
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of underlying classes is known and provided as input, while our method does not require this
knowledge, and in fact provides an estimate of the number of classes as a by-product of the
model learning. In Chapter 3, we demonstrate that our method can lead to significant perfor-
mance improvements on a variety of synthetic and real data sets.

In the case of semi-supervised domain adaptation of classifiers, we have a scenario similar
to semi-supervised learning in one of the data domains (called target domain), with scarcity of
labeled data and relative abundance of unlabeled data. However, in addition, there is easy avail-
ability of labeled data from a different domain (called source domain) for which it is possible
that the underlying probability distribution of the data (features and class labels) may be different
from that of the target domain. Under the assumption that the underlying data distributions of
the two domains are not very different, we leverage an existing generative mixture model based
classifier learned solely using the labeled data from the source domain, and adapt its param-
eters using both the labeled and unlabeled data sets from the target domain. The formulation
and solution approach adopted by this method and the semi-supervised constraint based learning
method are similarly motivated by the need to achieve label propagation (or constraint propa-
gation) by imposing space-partitioning in the solution. In chapter 4, using publicly available
Internet packet-flow traffic data from different temporal and spatial domains, we demonstrate
significant classification performance improvements in the setting of semi-supervised domain
adaptation.
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Chapter 1
Introduction

Statistical learning methods attempt to learn functions, models, or rules from finite data collec-

tions in order to automatically make predictions or inference on unobserved data in a reliable

manner. Different practical problems encounter different types of data and also have different

learning goals. But broadly, the goal can be described as one of learning a relation between a

variable (possibly vector valued) of interest (usually referred to as the target) and a number of

other potentially informative variables (usually referred to as features or covariates). When the

target variable takes values from a small set of categories, the learning problem is called classifi-

cation, and when the target variable(s) takes values on the real line the learning problem is called

regression. There are also other types of problems such as time-series prediction, where the goal

is to predict the future values of a time-series based on its current and past values, and cluster-

ing, where is goal is find a grouping of points such that points within a group are more similar

(based on a measure of similarity) to each other than to points in other groups. The work in this

dissertation will focus largely on classification problems, and to a smaller extent on clustering

problems.

Statistical learning problems can also be categorized based on the type and amount of su-

pervision information (usually targets) available in a data set. Two such well-known, commonly

addressed problems are that of supervised learning and unsupervised learning [51]. In the case

of supervised learning, all the samples in a data set have a target value corresponding to the

feature vector. The goal of this learning problem is to learn an accurate model for making target

predictions on the entire feature space. Most of the theory and methods underlying this problem

are well understood and are readily available to be applied to real world applications. In the

problem setting of unsupervised learning, none of the samples in a data set have a target value

(or supervision information) corresponding to the feature vector. The goal in this case is to learn
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about the underlying structure or distribution of the feature vectors in a data set. Problems like

clustering, anomaly detection, density estimation, and dimensionality reduction come under the

category of unsupervised learning [51], and they also have been widely used in real world appli-

cations. It seems natural to consider the intermediate problem setting known as semi-supervised

learning, where only a small fraction of samples in the entire data set have supervision infor-

mation corresponding to their feature vectors, while the rest of the samples do not (they only

have the feature vector). The goal, similar to supervised learning, is to learn a model which can

provide accurate target predictions on unobserved data, but in case of semi-supervised learning

it is of interest to utilize the samples which do not have targets to potentially learn a better model

for target predictions than one that would be solely based on the small number of samples hav-

ing targets (supervision). Typically, classification and clustering are the problems of interest in

semi-supervised learning. This important problem setting is motivated and discussed in more

detail in the sequel.

1.1 Generative and Discriminative learning

Consider a classification problem where the goal is to learn a class prediction function f(x) :

Rd → {1, . . . ,K} from a data set X = {(xi, ci) : i = 1, . . . , N} with N samples, where

xi = [xi1, . . . , xid]
T is the d-dimensional feature vector and ci is the class label (target) for

sample i. From statistical decision theory, it is well known that the optimal Bayes classification

rule [51], [127] which minimizes the misclassification rate (error rate) is given by

fbayes(x) = arg max
c∈{1,...,K}

P (C = c |x). (1.1)

Since the true class posterior probability (given the feature vector) P (C = c |x) for any real

problem would be unknown, classification methods whose objective is to minimize the error rate

try to find a good approximation to the true class posterior.

In the generative learning framework, an approximation to the true class posterior is found

by learning a model P (x, c ; θ) = πc P (x | c ; θ) (with parameter set θ) for the joint probability

distribution of the feature vector and the class 1, where πc is the prior probability of class c and

P (x | c ; θ) is the class-conditional density of the feature vector. Based on this model, the plug-in

1For convenience, we will sometimes use the overloaded notation for probability distributions or density functions,
such as P (x, c) to denote P (X = x,C = c).
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Bayes class posterior

P̂ (C = c |x ; θ) =
πc P (x | c ; θ)

K∑
k=1

πk P (x | k ; θ)

(1.2)

can be calculated and used to make class predictions. The defining feature of generative learning

or modeling is that based on the learned probability model it is possible to generate new data

samples. Also, there is an always an underlying stochastic data generation mechanism under-

lying the model assumptions. This can be useful and provide some insights about addressing

model limitations. The model for the class-conditional density of the feature vector P (x | c ; θ)

is chosen based on the type of values taken by the features, the number of features, and the size

of the data available to estimate the model parameters. Common choices include the multivari-

ate Gaussian density, multivariate student-t density, mixture of multivariate Gaussian densities,

mixture of Bernoulli or Multinomial distributions, and mixture of densities from the Exponential

family [22], [127]. Methods such as linear discriminant analysis, quadratic discriminant analysis,

mixture model based discriminant analysis, and their regularized variants [127] are generative

classification methods obtained by making specific assumptions about the class-conditional den-

sity of the feature vector. Hidden markov models (HMM) are an example of a more complex

generative modeling method [142]. A variant of the EM algorithm known as the Baum-Welch

algorithm is used for parameter estimation of HMMs. Bayesian networks, which are probabilis-

tic graphical models represented by directed acyclic graphs, are another example of generative

models used for classification.

The parameters of the model are usually estimated using methods like maximum likelihood

(ML) estimation and maximum-a-posteriori (MAP) estimation [51], [127]. For many paramet-

ric distributions, these estimation problems have closed form solutions. For mixture models

and also certain multivariate densities (like Student-t), the Expectation-Maximization (EM) al-

gorithm [48], [112], [125] is a computationally efficient, iterative method for ML and MAP

estimation, which has good convergence properties. The ML and MAP estimation may be called

joint learning methods, because they maximize the data log-likelihood based on the joint prob-

ability (of the feature vector and class) model. There is also a different flavor of parameter

estimation called conditional learning, where the conditional distribution of the class given the

feature vector is directly optimized in an estimation objective such as the conditional maximum

likelihood [80]. The motivation here is that, since it is the class posterior distribution which is

finally used for classification, it may be more efficient to work with this distribution directly than

to work with the joint distribution (as done by ML and MAP objectives). While ML and MAP

estimation for problems with latent variables and incomplete data can be handled tractably using



4

the EM algorithm, conditional learning methods usually have to resort to gradient based methods

for maximizing the estimation objective. In [80] a method called the conditional expectation-

maximization (CEM), an extension of the EM algorithm, has been developed to address this

problem.

In the discriminative learning framework, no explicit attempt is made to model the underly-

ing distribution of the features. Instead the entire effort is focused on learning the class posterior

distribution or on learning the classifier mapping between the features and the class variable.

In this sense, it is more consistent with what is called Vapnik’s principle [33], [163] - “When

trying to solve some problem, one should not try to solve a more difficult problem as an inter-

mediate step”. In one class of discriminative classification approaches, instead of approximating

the Bayes class posterior via an intermediate model of P (x, c) (as done in generative learning),

a suitable parametric model is directly chosen for the class posterior P̂ (C = c |x, θ) and the

parameters are learned to minimize an objective such as the empirical error rate on training data,

or more generally an empirical risk function [163]. For example, a linear logistic classification

method uses the following parametric model for the class posterior:

P̂ (C = c |x ; θ) =
ew

T
c x+bc

K∑
k=1

ew
T
k x+bk

, c = 1, . . . ,K .

The multilayer perceptron with suitably chosen activation functions in its output layer can be

trained on labeled training data set to learn a function which approximates the true class pos-

terior. Other examples of discriminative parametric classifiers include radial basis function

networks, conditional random fields (CRFs), Gaussian processes, and maximum entropy dis-

crimination [127], [51]. Instead of learning a model for the class posterior probability, some

classification methods learn discriminant functions Gc(x ; θc), c = 1, . . . ,K, one per class,

which effectively define the classification rule and the boundaries between classes in the feature

space. The classification rule for a feature vector x is Ĉ(x) = arg maxc∈{1,...,K}Gc(x ; θc) and

the boundary between any two classes i and j is defined by Gi(x ; θi) = Gj(x ; θj) . Popular

classification methods which fall under this category include linear and kernel based Fisher dis-

criminant analysis, support vector machines, K-nearest neighbor classifiers, and decision trees

(although the later two are actually non-parametric, rule based classifiers) [127], [51].

An important issue to understand is under what conditions is it suitable to choose one of the

learning approaches (discriminative or generative) versus the other. The principle in support of

discriminative learning is that, by directly modeling the class posterior distribution (or the class

decision boundaries), it avoids having to solve a potentially more complex intermediate prob-
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lem (as generative approaches do by modeling the joint distribution P (x, c)) as a step towards

learning the final classifier. This can lead to a better utilization of the labeled training data in es-

timating the classifier parameters. On the other hand, generative models are attractive for certain

problem domains [79] because they can incorporate some elegant probabilistic concepts such as

latent variables, stochastic data generation, and prior probabilities (in a Bayesian framework).

They can usually handle missing values in the data along with parameter learning in an integrated

manner [127]. Also, the relationship between the feature variables and the class can be made

explicit in generative models and visualized using probabilistic graphical models. In [86], the

issue of discriminative versus generative classifier learning is discussed in a supervised learning

setting, and experimental results on the relative performance of the logistic regression classifier

and a classifier based on naive Bayes, class conditional Gaussian density model are provided.

The experiments suggest that discriminative learning methods tend to have lower asymptotic er-

ror rate (as the number of labeled data increases) compared to generative learning methods [86].

However, generative learning methods tend to converge more quickly to their (higher) asymp-

totic error rate, which implies that they may have better performance when the number of labeled

data is small [86].

It may be noted that there has been some work on hybrid approaches which combines both

the discriminative and generative learning principles into a single method for learning classi-

fiers [77], [70], [71], [96], [56]. A comprehensive discussion on generative and discriminative

learning can be found in chapter 2 of [79].

1.2 Inductive and Transductive inference

Recall that we defined a classification problem as one that learns a function f(x) : Rd →
{1, . . . ,K}, such that the classifier can make predictions on any point x in the feature space.

In this sense, the classifier is learning a function to induce class decisions on the entire feature

space based on a finite training data set. This method of class inference by learning to generalize

on any sample point is commonly referred to as inductive inference. On the other hand, there

may be classification problems where it is only required to make class predictions on a finite

set of feature vector samples X ′ outside the training data set. These samples are also provided

as input to the classification method (without class labels of course), and the objective in this

case is to learn a function which makes class predictions only on the finite set of samples X ′,
i.e., f(x) : X ′ → {1, . . . ,K}. This approach is commonly known as transductive inference,

and in some problem settings it may be simpler or a more natural mode of inference compared

to inductive inference [121], [123]. Chapter 25 of [33] provides an interesting discussion on
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transductive inference in the context of semi-supervised learning.

1.3 Background on semi-supervised learning

Traditionally, supervised classification problems use only labeled data (set of feature vector, class

label pairs) for learning classifiers. However, it is often expensive and time-consuming to obtain

class labels for the entire data set since this may require expertise from human annotators, special

devices, or expensive and slow experiments [185]. To appreciate this, consider a few practical

problems [185]. In speech recognition, the task of transcribing long records of speech data

can be time consuming and requires human expertise. In the problem of spam email filtering,

the availability of labels (spam or not-spam) depends upon the patience and commitment of

individual email users towards provide feedback about spam emails. In video surveillance data,

it may be of interest to locate and identify objects or people of interest in a video, which can

be a time consuming task requiring expertise. On the other hand, unlabeled data consisting of

just a set of feature vectors is comparatively easy to collect and likely to be available in large

quantity. However, unlabeled data have no use in the supervised learning framework. So a

natural question to ask is whether the performance of classification (or other prediction tasks)

can be improved by making use of the readily available unlabeled data. Semi-supervised learning

addresses precisely this question and indeed, when the underlying model assumptions made by a

semi-supervised learning method are valid for a particular data set, unlabeled data can be helpful

in improving prediction performance. From a different standpoint, it may be said that semi-

supervised learning methods try to achieve a similar performance level as supervised learning

methods, but with a smaller number of labeled samples, hence reducing the cost required to label

the data [185].

We next describe two common problem variants in semi-supervised learning, namely semi-

supervised classification and semi-supervised constraint-based learning. The semi-supervised

classification problem consists of a labeled data set Xl = {(xi, ci), i = 1, . . . , L} and an un-

labeled data set Xu = {x′i, i = 1, . . . , U}, where L � U . The goal is the same as that of

supervised classification, i.e., to learn a class posterior or a decision function on the entire fea-

ture space in the case of inductive inference, and only the unlabeled data set Xu in the case of

transductive inference. In the semi-supervised constraint-based learning problem, an unlabeled

data set Xu is augmented with a set of constraints on the samples in Xu. Constraints are usually

in the form of whether pairs of samples in Xu are from the same class (must-link constraints)

or from different classes (cannot-link constraints). Such constraints are also known as pairwise-

sample constraints, and the number of such constraints available in a typical problem will be
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small, i.e., a large number of samples may not be involved in any constraints. The learning ob-

jective of this problem is to find an accurate grouping of the samples into a set of classes such

that all or most of the provided constraints are satisfied. Note that such kind of pairwise-sample

constraints only provide class label information of sample pairs relative to each other. Accord-

ingly, a learning method will only be able to predict the class assignments of samples that are

consistent relative to a labeling convention chosen by the method.

1.3.1 Early work on semi-supervised learning

One of the earliest approaches (around the year 1967) of combining unlabeled data into the

learning of a classifier is the so called self-learning or self-training method [54], [172], [147].

This is an iterative method, where initially a supervised learning method is trained using only

the available labeled data. Based on its decision function, a subset of the unlabeled samples

(usually of small size) which have the most confident class predictions are treated as labeled

samples in subsequent iterations with their predicted class treated as their class label. These

two steps of supervised classifier learning and augmenting the labeled data subset are repeated

until all the unlabeled samples have been assigned class labels and added to the labeled training

set. This method is simple and can be based on any classifier model that can be learned in

a supervised fashion. However, a major limitation of self-learning is that, if there are quite a

few class predictions errors made by the initial classifier model (based only on the small set

of labeled data), then these errors tend to quickly multiply in the subsequent iterations creating

more class prediction errors because of the erroneous labeling, and so forth. This is illustrated

with a propagating 1-nearest neighbor self learning method in [33]. Also, it becomes difficult to

detect when such a cascading effect of erroneous labeling may occur withing self-learning.

A few related semi-supervised learning methods based on modeling the class-conditional

density of the features as a multivariate Gaussian with a shared covariance matrix across the

classes has been explored in some early works (around the period after 1975) such as [72], [114],

and [137]. With this model , the classifier is restricted to learning linear decision boundaries be-

tween the classes. However, the real interest in semi-supervised learning started picking up after

the year 1995 [33]. Initial work in semi-supervised learning has largely focused on generative

modeling because given a model for the distribution of the feature vector, they find direct value

for utilizing unlabeled data in the learning process. In [154], [122], and [135], generative semi-

supervised learning methods based of mixture models have been proposed. All three methods

allow the samples from each class to be modeled with multiple mixture components, however

the methods of [154] and [135] constrains the components/clusters to be class pure, while the

method of [122] allows a probabilistic assignment of classes to components. These methods
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utilize the unlabeled data by including the log-likelihood component of the unlabeled data in the

estimation objective, and the Expectation-Maximization (EM) algorithm is used for parameter

estimation.

The co-training method for semi-supervised learning proposed in [19] and the transduc-

tive support vector machine (TSVM) method proposed in [84] represent some early work in

semi-supervised learning based on the discriminative learning framework 2. In the co-training

method [19], it is assumed that the set of features can be divided into two subsets (called views)

such that they are conditionally independent given the class, and such that each subset of features

by itself has sufficient predictive information about the class variable. Given two such views, the

co-training method iteratively trains two classifiers, one based on each view (subset of features).

Initially each classifier is trained using only the labeled data, and the trained classifier is used to

make class predictions on the unlabeled data (based on their respective views). Then a certain

number k of the most confident predictions of each classifier on the unlabeled data are added to

the labeled data subset of the other classifier and this process of training and augmenting each

other’s labeled data subset is iteratively repeated until all the unlabeled data is exhausted. The

idea behind such an iterative approach is to make the predictions of the two classifiers (based on

different views) agree closely on the unlabeled data 3. The co-training method, like self-training,

is also a wrapper method for semi-supervised learning, meaning that any classifier model which

can assign confidence values to their class predictions is suitable for co-training. Also, note that

the assumptions made by co-training about the two feature subsets are important for it to perform

well in practice. We discuss the TSVM method in the next section after providing some context

for the discussion.

1.3.2 Motivations for semi-supervised learning

We briefly mentioned why it may be more natural to incorporate unlabeled data into the learn-

ing objective of a generative model based classifier. Unlabeled data provide knowledge about

the distribution of the features vector, and since generative classifiers model this distribution

as P (x ; θ) =
K∑
k=1

πk P (x | k ; θ) , it should be evident from plug-in Bayes rule for the class

posterior (1.2) that P (x ; θ), and hence the unlabeled data also affect the learning of the class

posterior model. In other words, the class posterior distribution and the feature vector distri-

bution share parameters. It is believed that this is an important condition to be satisfied by a

semi-supervised learning method, without which there cannot be much value from the unlabeled
2Actually the co-training method can be based on either a discriminative or a generative classifier model.
3There is theory behind the idea of learning multiple classifiers or hypotheses such that they have close agreement

on their predictions [102]
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data [153], [182].

On the other hand, discriminative learning methods completely by-pass the learning or mod-

eling of the feature vector distribution . Therefore, it is not obvious how the unlabeled data

can be utilized for semi-supervised learning of a discriminative classifier. As we next discuss,

discriminative semi-supervised methods establish this connection between the class posterior

distribution and the feature vector distribution by making some assumptions about the problem

(sometimes explicitly and sometimes tacitly) [33], [185].

1.3.3 Categorization and survey of prior work

We discuss some of the common assumptions underlying semi-supervised learning methods

which enable them to take advantage of unlabeled data [33], [182].

Cluster assumption

The cluster assumption for semi-supervised learning [33] is that data points (samples) from

the same cluster are likely to have the same class labels, and hence the prediction function (or

class posterior) of a semi-supervised learning method on points from the same cluster should

be close in value. Formally, a cluster may be defined as a group of points such that any two

points in the group can be connected via a path that passes through a high density region of

points [33]. To see why how the cluster assumption can be useful, consider a simple (but sub-

optimal) classification method which learns in two stages. In the first stage, the method finds a

clustering of all points (both labeled and unlabeled) based on some popular clustering method

such as K-means, hierarchical clustering, or mixture modeling. In the second stage, for each

cluster, the method counts the number of labeled samples from each class and assigns the cluster

to the majority class 4. For this method, the unlabeled samples inform the method about the

cluster structure of the data. Then the method invokes the cluster assumption to assign the same

class label to all samples withing a cluster. Note that the method ignores information about the

diversity of class labels withing a cluster.

Low density separation assumption

The low density separation assumption for semi-supervised learning [33] is that data points from

different classes should have a region of low sample density separating them. In terms of semi-

supervised classifier learning, this would imply that methods should try to learn a solution where

the class boundaries end up in low density regions of the feature space. Semi-supervised learning
4If there are ties, they are broken randomly. If there are no labeled samples within a cluster found by the method,

then it is assigned the class label assignment of the nearest cluster (based on a notion of distance between two
clusters).
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methods can exploit the information provided by unlabeled data about the low and high density

regions of the feature space, so that they can learn a solution that is consistent with this assump-

tion. The low density separation assumption is closely related to the cluster assumption, and in

fact, methods which are consistent with one assumption will also be consistent with the other.

To see this, note that the low-density separation assumption implies that class boundaries (which

are surfaces in a high-dimensional space) should not cut across regions with high sample density,

i.e., they should not cut across a cluster of points. This implies that the low-density separation

assumption would not be consistent with classification solutions where points within a cluster

have different class predictions. This is also the idea behind the cluster assumption.

Manifold assumption

The manifold assumption for semi-supervised learning [33] is based on the idea that real world

data often approximately lie on low dimensional manifolds in the feature space. This is use-

ful when the feature space is high dimensional, because both direct estimation of parameters (in

density models) and the direct calculation of distances (Euclidean) between points in the high di-

mensional feature space is prone to be inaccurate. Also, the number of samples required to make

reliable parameter estimation increases exponentially with the feature dimensionality. These

problems of learning in high dimensions are commonly referred to as the curse of dimensional-

ity [51]. In the case of semi-supervised learning, unlabeled data may be useful in informing the

method about any low dimensional manifold structure, which can be exploited by methods to

handle the high dimensionality problem.

These three learning assumptions are sometimes grouped under the broader idea of the semi-

supervised smoothness assumption [33], where the idea is that points in a high density region

of the feature space are likely to have the same class labels (or targets), and hence a learning

method should make similar class predictions for them.

Generative model assumption

As we discussed earlier, when a semi-supervised learning method assumes that the class condi-

tional density of the feature vector can be modeled well according to a parametric distribution

(or mixture distribution), the unlabeled data are helpful in learning the parameter estimates for

the feature vector distribution and also the class posterior distribution. Some methods based on

generative mixtures model classes as consisting of one or more components (clusters) [135],

[154]. In this case, since points from a cluster will have the same class prediction, it can also be

said that such methods are based on the cluster assumption.

There are a number of methods in literature which are either directly based on one of these
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assumptions or whose learning method is implicitly consistent with one these assumptions.

Literature survey

In [135], a mixture of Multinomial distributions learned using the EM algorithm is used for text

classification. Each component in the mixture is mapped to one of the classes, thus making its

solution consistent with the cluster assumption. They show improvements in text classification

performance by the use of unlabeled data in addition to the labeled data. In [122], a method

called the semi-supervised mixture of experts classifier is proposed. Here also, a generative

classifier based on a mixture model is used, with a component-conditional probability mass

function (pmf) over the classes (one per component) which allows samples from a component

to be probabilistically associated with multiple classes. This may allow more flexibility in the

model compared to [135]. In [120], a novel type of semi-supervised generative mixture was

proposed, wherein unlabeled samples may arise from one of the known (observed) classes or

they may arise from an unknown class. Also, in the mixture model, the fact of label presence

or absence is treated as observed data (and modeled appropriately) in addition to the feature

vector and the class label. These extensions allow the model to handle classification problems

with unlabeled data in a more robust way and also to possibly discover new/unknown classes in

the data. A generalized mixture model for unknown class discovery in semi-supervised learning

based on the work of [120] was also proposed in [55].

Earlier, we discussed the co-training method for semi-supervised learning. In [134], ex-

tensive experiments show that co-training performs well provided the two assumptions on the

feature subsets (views) are satisfied. They also propose some improvements and extensions to

co-training in a method called co-EM. Multiview learning [20], [156] is a learning framework

similar to co-training, where multiple prediction models (like support vector machines, decision

trees) are trained on the labeled data such that there is agreement in their predictions on the

unlabeled data.

In [84], a method for learning a support vector machine from both labeled and unlabeled

data called TSVM was proposed. The goal is to find a linear separating hyperplane (possibly

in a higher dimensional feature space via a kernel mapping) and the class predictions of the

unlabeled data such that the margin is maximized on both the labeled and the unlabeled data.

Since the method only finds class predictions on the unlabeled data set, it is called transductive.

However, its separating hyperplane solution can be used to inductively predict on unseen data

points. Also, the optimization problem of TSVM is non-convex and an NP-hard problem, and a

number of methods have focused on finding efficient locally optimal solutions [84], [32], [34],

[40]. Finally, note that the TSVM method follows the low density separation assumption since
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it places its decision boundary such that the margin relative to both labeled and unlabeled data is

maximized.

An information theoretic regularization framework for semi-supervised learning is proposed

in [161]. Given the feature vector distribution P (x), either based on an estimated model or based

on the empirical distribution of data, the idea is that the class labels should be more homoge-

neous in regions of high sample density (similar to the idea of the semi-supervised smoothness

assumption). The mutual information between the feature vector and the class variable gives a

measure of class homogeneity because, for regions where the class labels are nearly the same the

mutual information will be close to 0, and the mutual information increases as the variety of class

labels increases. By dividing the feature space into multiple overlapping regions, an objective for

minimizing the maximum mutual information over all the regions, subject to a constraint of ac-

curate prediction on the labeled data is proposed. The method provides a framework for linking

the feature vector distribution and the class posterior distribution without making any parametric

model assumptions about the class posterior. This work is further developed in [41], where a

regularization penalty is added to the class posterior log-likelihood in the learning objective in

order to incorporate the ideas of class homogeneity in regions of high sample density. They also

develop the theory behind information regularization in a learning theoretic framework.

In [60], an entropy minimization semi-supervised learning framework for discriminative

classifiers is proposed. Specifically, the learning objective is to maximize the class posterior

log-likelihood of the labeled data regularized by the negative conditional entropy of the class

posterior (given the feature vector) calculated on the unlabeled data. The conditional entropy

regularizer encourages the method to find solutions whose class boundaries lie along low sample

density regions of the feature space (consistent with the low density separation assumption). The

contribution of unlabeled data can be controlled via the constant factor multiplying the entropy

regularization term, but this constant has to be set carefully, for example using cross-validation.

This learning objective is suitable for any parametric discriminative classifier, and in [60] they

experiment with a logistic regression model. In [74], the conditional entropy regularization

framework is used to train a Gaussian mixture model classifier from combined labeled and un-

labeled data. The parameter optimization is solved using a pre-conditioned conjugate gradient

method, since it cannot be iteratively solved using the EM algorithm or its extensions. However,

the component covariance matrices of the Gaussian mixture are not optimized. They experiment

on the task of phonetic classification and compare against the maximum likelihood objective for

learning a Gaussian mixture classification model.

Graph based semi-supervised learning methods represent another important class of meth-

ods which are usually based on the manifold assumption. The combined labeled and unla-
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beled data are represented by the nodes of an undirected graph, and the edges are assigned a

similarity weight calculated from a metric of similarity between the two nodes (in an edge).

For example, the graph could be fully connected with the edge weights decaying according to

the distance between the points represented by the nodes. A commonly used edge weight is

wij = exp(−‖xi − xj‖2 / σ2). Other types of edge weights such as the k-nearest neighbor

graph and the ε-nearest neighbor graph are also possible [185]. The goal is to propagate the

label information from the labeled nodes of the graph to the unlabeled nodes. This is made

possible through the notion of adjacency between nodes based on the edge weights. The key

idea or assumption among graph based methods is that the labels are smooth with respect to

the graph, i.e., two nodes that are connected by a large weight will tend to have the same class

labels (or similar targets) [185]. Also, if the distance between two nodes is calculated as the

shortest distance among all paths connecting the nodes, then this distance may be taken as an

approximation of the geodesic distance between the points on an underlying manifold [10]. This

way graph based methods can capture any underlying low dimensional manifold structure in

the data. These intuitive ideas of smoothness and regularization are made concrete using spec-

tral graph theory [10], [185]. A number of graph based semi-supervised learning methods such

as mincut [17], [18], [168], local and global consistency [180], [61], label propagation [183],

Gaussian fields and harmonic functions [184], and manifold regularization [10], [8], [9] have

been developed. Finally, we note that graph based semi-supervised learning methods are typi-

cally non-parametric and discriminative, and performs transductive inference on the unlabeled

samples.

There are some works which address the theoretical aspects of semi-supervised learning,

such as the value of unlabeled data, and generalization error bounds on classifier learning. In

general, semi-supervised learning does not always help to improve the classification perfor-

mance. This can happen when the assumptions made by a semi-supervised learning method

are not appropriate for a problem. For example, if the samples from the different classes are not

well separated and have significant overlap, then a method based on the low density separation

assumption will not be appropriate for the problem. Likewise, if the feature vector distribution in

samples is not well-modeled by the parametric density assumed by a generative semi-supervised

learning method, it will be mismatched to the problem. In such cases, adding unlabeled data may

in fact lead to degradation of classification performance. This phenomenon has been studied in

the context of generative classifiers by [43], [44], and [38]. The effect of model mis-specification

for semi-supervised classification has been studied in [171]. The value of unlabeled data for clas-

sification problems in general has been studied in [28], [29], and [177]. Some works addressing

the generalization error performance of semi-supervised classification are [2], [3], and [144].
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It is important to mention that the discussion on semi-supervised learning presented here is

based on the comprehensive discussions and literature surveys found in [33], [185], and [182],

which are also valuable resources for an in-depth study of this vast area of research. We have

attempted to provide an overview of the different flavors of semi-supervised learning in order to

connect and relate the large number of methods addressing this problem.

1.4 Background on domain adaptation of classifiers

In this section, we provide background and motivation for the classifier domain adaptation prob-

lem, and review some of the existing work in literature which address this problem. In standard

statistical learning problems, a prediction function or rule is learned based on a training data set

such that it can predict or generalize well on new data samples that are generated according the

same underlying distribution that generated that training data set. This assumption is reasonable

to make in certain problem settings like supervised, semi-supervised, and unsupervised learning.

Classifier domain adaptation addresses problems where such an assumption may not be valid,

i.e., the joint distribution of the feature vector and the class may be different in the training and

test data sets.

We next consider some realistic problem scenarios where domain adaptation may be useful.

(i) Suppose the data collection (or recording) is based on a number of sensors, each of which has

some associated recording noise. If the time instants of recording the training and test data sets

are significantly different, it is likely that the distribution of the test data will be different (from

that of the training data) because of factors such as changes in the sensor noise distributions and

changes in the recording conditions. (ii) Consider the problem of object recognition in images

where the goal is to classify objects in an image into a set of predefined categories. It is quite

possible that images in the training and test data sets get captured under different conditions

such as varying illumination, varying perspectives, varying degrees of occlusion, differences

in the type of camera etc.. Now if regions in the images are represented as feature vectors

with a corresponding object category (class) label, then due to the changes created during the

image capture, we would expect the class-conditional distribution of the feature vector to be

different in the training and test data sets. It is also possible that the proportion of samples from

the different object categories could be different in the training and test data sets thus creating

class prior imbalance. (iii) In some problems domains, the data might consist of a categorical

valued variable (or variables), conditioned on which the joint distribution of the feature vector

and the class changes. For example, the categorical variable could represent some contextual

information such as the race or gender of people in a demographic data set. In this case, if
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the training and the test data sets consist of records of people from different races (or gender),

then the context difference would create a difference between their distributions. (iv) Finally,

consider the problem of personalizing email spam filters specific to the users inbox. In this

problem, the training data for learning a generic spam classifier will be based on an aggregated

(public) collection of emails and their class labels (spam or not-spam) from many users. Since

the goal is to personalize this generic spam classifier to a specific user’s emails, the test data will

consist of emails of the specific user and any partial labeling provided by that user for his own

emails. It is obvious that the distribution of words and word sequences found in the emails of a

specific user are likely to be different from those found in the training data. Also, the specific

user may have somewhat different criteria for classifying an email as spam compared to the

aggregated criteria of multiple users.

Consider a classification problem with d dimensional feature vector X ∈ Rd and a class

variable C ∈ {1, . . . ,K}. Consistent with the terminology commonly used in the domain adap-

tation literature [81], [82], [83], we will refer to the domain on which the classifier is trained as

the source domain and the domain where the classifier will be deployed to make predictions as

the target domain, although sometimes they are also referred to as the training domain and test

domain respectively. Suppose the joint probability distribution of the feature vector and the class

in the source and target domains are denoted by Ps(x, c) and Pt(x, c) respectively. Similarly, we

denote the distribution of the feature vector in the source and target domains by Ps(x) and Pt(x)

respectively 5, and the distribution of the class variable in the two domains by Ps(c) and Pt(c).

Similar notation is used to denote the conditional distributions. In the most general problem of

domain adaptation Ps(x, c) and Pt(x, c) are different. Hence, a classifier trained on labeled data

from the source domain, cannot be expected to make good predictions for data from the target

domain without some adaptation of its parameters. There are many variants of this problem

and also some special problems that have been addressed in earlier work for specific application

areas.

1.4.1 Related problem setting

In domain adaptation problems, the target domain is always assumed to have a large unlabeled

data set. When there is no labeled data available in the target domain, the scenario is called un-

supervised domain adaptation, whereas the scenario where the target domain consists of a small

labeled data set is called semi-supervised domain adaptation. Both problem settings have been
5For simplicity, sometimes we denote probability distributions with an overloaded notation such as P (c) instead

of P (C = c), and let the arguments of P (.) distinguish the distributions. When this is not clear, for example the
probability of a specific value k, then we denote it as P (C = k).
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addressed in past works. There are a few closely related problems to domain adaptation, such

as transfer learning, multi-task learning, class imbalance, sample selection bias, and covariance

shift [81]. In transfer learning, the knowledge available from one or more tasks or domains

is utilized in an efficient way to solve related problems in other domains. Multi-task learning

attempts to solve multiple related tasks at the same time using some kind of a shared represen-

tation. This kind of learning often leads to a better model for the different tasks by exploiting

the commonality among the tasks. Class imbalance refers to the situation where it is assumed

or known that Pt(x | c) = Ps(x | c), ∀c ∈ [K] , but Pt(c) 6= Ps(c), ∀c ∈ [K] . That is class

prior distributions may be quite different in the two domains and needs to corrected for during

classifier adaptation. Sample selection bias or sampling bias is said to occur in a data set when

the underlying data generation mechanism is biased in one domain compared to the other, and

certain regions of the feature space are less likely to contain samples than others. Hence, a clas-

sifier or predictor model learned on such a data distribution may not have good performance in

those regions of the feature space. Covariance shift is a problem where it is known or assumed

that Pt(c |x) = Ps(c |x), ∀x , but Pt(x) 6= Ps(x) . That is the class posterior distribution given

a feature vector is the same in the two domains, but the marginal distribution of the feature vector

is different in the two domains. Class imbalance, sample selection bias, and covariance shift are

all special kinds of domain adaptation problems, but these related problems might have simpler

solutions.

1.4.2 Survey of prior work

In [25], [50], [49], labeled data in the source domain is used to learn a parametric model for the

class conditional density function of features (in [50] and [49] specifically a Gaussian mixture

model), and to estimate the class prior probabilities. This classifier model is adapted to the

target domain by maximizing the log-likelihood of features on the target domain data. This is

done using an EM algorithm [48], which is initialized with the parameters of the source domain

classifier and iteratively updated to a reach a local maximum of the log-likelihood. The authors

in [25] use this method in the context of remote sensing image classification for land cover maps,

while [50] and [49] use this method in the context of speaker adaptation. In [23], this method is

extended by the use of a cascade-classifier approach to capture the temporal correlation between

remote sensing images acquired from the same area at different times, where labeled data is

available only at the initial time instant. The joint density of the image feature vectors at two

successive time instants are assumed to be conditionally independent given the class, and a

Bayes class posterior is used to make predictions. The class conditional density of features at

the initial time is estimated using the labeled data. An EM algorithm is used to estimate the class
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conditional density of features in the image at the next time instant, and also the joint probability

mass function of classes in the two images considered.

In [24], a domain adaptation technique for support vector machines called DASVM is pro-

posed. Also, a method for validating the domain adapted classifier, i.e. identifying reliable

solutions for the target domain by using only labeled data from the source domain, is proposed.

The method draws from principles of semi-supervised and transductive SVMs [84], where the

learning algorithm makes use of both labeled and unlabeled data which are assumed to be ob-

tained from the same underlying probability distribution. For the domain adaptation problem

this assumption does not hold. In their method, the labeled samples from the source domain

are used to learn an initial, presumably unreliable SVM solution for the target domain. Then

unlabeled samples from the target domain are used to adjust the decision function iteratively,

obtaining candidate labels in the process. The labeled samples from the source domain are grad-

ually erased, and the final SVM solution is determined only on the basis of the target domain

samples(which obtain proxy labels during the learning).

In [150], a domain adaptation method is proposed which selects a subset of features for

which the deviation between the source and target domains (measured using some metric) is

minimized, while maximizing the likelihood of the source domain data. Instead of actually se-

lecting the feature subset, they use an objective function that penalizes features which have large

deviation between source and target domains, so that less distorted features have more influence

on the solution. Note that the features they define are actually composite feature functions of

the input and labels. In [16], [11], a method called Structural Correspondence Learning (SCL)

is proposed. The key idea is to identify correspondences among features from different domains

by modeling their correlations with what are called pivot features, which behave in the same way

for discriminative learning in the two domains. A model trained on the source domain using this

common feature representation is shown to generalize better to the target domain.

The methods discussed so far are unsupervised domain adaptation methods. We now look

at a few semi-supervised domain adaptation methods. In [37], a Maximum Entropy classifier is

first trained on the source domain data, and the weights of the classifier are used as the mean

value for a Gaussian prior which is used for MAP estimation on the target domain. In [82], an

instance weighting framework is proposed for domain adaptation, where several heuristics are

proposed to remove misleading labeled samples from the source domain, assign more weight to

labeled target domain samples than labeled source domain samples, and augment the training

set with predicted target domain samples. In [121], a transductive approach is used to address

the distributed ensemble classification problem, where the individual classifiers are built using

different training data sets, and possibly use different feature spaces. Also, there is no common
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pool of labeled data for supervised learning of the aggregation function. Maximum likelihood

and information theoretic approaches are developed to account for the mismatch between the

class priors used by individual classifiers and those reflected in the test data. The information

theoretic approach also accounts for missing classes in the test data. In [45], a domain adaptation

technique for maximum entropy classifiers is developed, where the joint probability distribution

of the input features and output is modeled as a mixture of three components, one specific to

the source domain, one specific to the target domain, and one common to both domains. The

conditional expectation maximization (CEM) algorithm is used to solve the problem.

With this we complete our somewhat brief background and literature survey of classifier

domain adaptation. In the next section we review some statistical methods which are relevant to

the methods proposed in this dissertation.

1.5 Maximum likelihood estimation and Expectation-Maximization

As we discussed in section 1.1, ML and MAP estimation are widely used for learning generative

classification models. For a large number of distributions belonging to the exponential family,

the ML and MAP estimates can be directly found as closed form expressions [127]. However,

this is not the case when the data is modeled using mixture distributions such as a mixture of

Gaussians or a mixture of Multinomials. For such distributions, and also in general when there

are missing/latent/hidden variables in the data, the Expectation-Maximization (EM) algorithm

and its variants [48], [111], [145], [125] are widely used to find the ML or MAP parameter

estimates. We next review this approach in the context of ML estimation for a model with latent

variables. Mixture distributions are a special case, where the mixture components of origin of

the samples are the latent variables.

Consider a data set of observed samples X = {x1, . . . , xn}, where xi ∈ X , i ∈ [n] 6 can be

vector valued in general. Let Z = {z1, . . . , zn} be the set of latent/missing values corresponding

to the samples in X such that zi ∈ Z, ∀i ∈ [n]. Suppose it is of interest to model the data

according to a probability distribution P (x | θ), which can also be written as

P (x | θ) =
∑
z∈Z

P (x, z | θ) =
∑
z∈Z

P (z | θ) P (x | z, θ).

For example, in a mixture distribution with K components, the latent variable z ∈ {1, . . . ,K}
is the component of origin of x, and P (z = k | θ) is the prior probability of component k.

Assuming that the samples in X are generated independently according to P (x | θ), the log-

6For notational convenience, we define [m] = {1, . . . ,m} for any positive integer m
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likelihood of the observed data (or incomplete data) X under the model is given by

Linc(θ) = logP (X | θ) =
n∑
i=1

log
∑
zi∈Z

P (zi | θ) P (xi | zi, θ), (1.3)

and the log-likelihood of the complete data Y = {yi = (xi, zi), i ∈ [n]} is given by

Lcom(θ) = logP (Y | θ) =

n∑
i=1

log[P (zi | θ) P (xi | zi, θ)]. (1.4)

In maximum likelihood estimation, the goal is to maximize (1.3) with respect to the model pa-

rameters. This may not have a direct closed-form solution because of the summation term inside

the logarithm in the incomplete data log-likelihood. When the distribution P (xi | zi, θ) is from

the Exponential family, maximizing the complete data log-likelihood (1.4) is straightforward

and has closed-form solutions. However, this is not practical because the complete data log-

likelihood is based on missing data, and cannot be calculated. The Expectation-Maximization

(EM) algorithm [48], [111], [145], [125] provides a tractable iterative approach for solving the

maximum likelihood problem. The EM algorithm and its extensions have some attractive the-

oretical properties and are used to solve a number of problems, especially those with missing

data.

We next show how the EM algorithm is developed for a log-likelihood maximization prob-

lem. Assuming independent generation, consider the posterior distribution of the latent variable

zi given the feature vector xi and parameters θ for any sample i ∈ [n], given by

P (zi |xi, θ) =
P (zi | θ) P (xi | zi, θ)∑

z∈Z
P (z | θ) P (xi | z, θ)

. (1.5)

Also consider an unspecified posterior distribution P (zi |xi) ∈ [0, 1] such that
∑
z∈Z

P (z |xi) =

1. The incomplete data log-likelihood can be re-written as

Linc(θ) =

n∑
i=1

log
∑
z∈Z

P (z | θ) P (xi | z, θ) =

n∑
i=1

∑
zi∈Z

P (zi |xi) log
∑
z∈Z

P (z | θ) P (xi | z, θ)

Using the expression
∑
z∈Z

P (z | θ) P (xi | z, θ) =
P (zi | θ) P (xi | zi, θ)

P (zi |xi, θ)
obtained from (1.5)

inside the logarithm, and then multiplying and dividing by the P (zi |xi), the incomplete data
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log-likelihood can be further rewritten as

Linc(θ) =
n∑
i=1

∑
zi∈Z

P (zi |xi) log[
P (zi | θ) P (xi | zi, θ)

P (zi |xi, θ)
]

=
n∑
i=1

∑
zi∈Z

P (zi |xi) log[
P (zi | θ) P (xi | zi, θ)

P (zi |xi, θ)
P (zi |xi)
P (zi |xi)

]

=

n∑
i=1

∑
zi∈Z

P (zi |xi) log[
P (zi | θ) P (xi | zi, θ)

P (zi |xi)
] +

n∑
i=1

∑
zi∈Z

P (zi |xi) log
P (zi |xi)
P (zi |xi, θ)

In the above decomposition of the log-likelihood, the second term on the right hand side of the

last equation is the Kullback-Leibler (KL) distance [42] between the distributions P (xi | zi, θ)
and P (xi | zi), which has the property that it is always non-negative and is equal to 0 if and only

if the two distributions are equal. This implies that Linc(θ) is always an upper bound of the first

term on the right hand side, with equality if and only if the two distributions are equal.

Starting from initial parameter estimates θ(0), the EM algorithm iteratively updates the pa-

rameter estimates such that the incomplete data log-likelihood increases monotonically. Sup-

pose θ(t) are the parameter estimates at iteration t. By setting θ = θ(t) and P (zi |xi) =

P (zi |xi, θ(t)) in the final expression for the incomplete data log-likelihood, we see that

Linc(θ
(t)) =

n∑
i=1

∑
zi∈Z

P (zi |xi, θ(t)) log[
P (zi | θ(t)) P (xi | zi, θ(t))

P (zi |xi, θ(t))
]

≥
n∑
i=1

∑
zi∈Z

P (zi |xi, θ(t)) log[
P (zi | θ) P (xi | zi, θ)

P (zi |xi, θ(t))
]

, Q(θ, θ(t)). (1.6)

The function Q(θ, θ(t)) is a lower bound of the incomplete data log-likelihood such that Linc(θ
(t))

= Q(θ(t), θ(t)) , and it can be expressed as the sum of two terms,

Q(θ, θ(t)) =
n∑
i=1

∑
zi∈Z

P (zi |xi, θ(t)) log[P (zi | θ) P (xi | zi, θ)]

+
n∑
i=1

∑
zi∈Z

P (zi |xi, θ(t)) log
1

P (zi |xi, θ(t))
. (1.7)

From (1.4) it should be clear that the first term in the above equation is the expectation of the

complete data log-likelihood with respect to the posterior distribution (of the latent variables)

P (z |xi, θ(t)), ∀i ∈ [n], and the second term is the entropy of the posterior distribution. Also,



21

note that the second term is not a function of θ.

As we mentioned earlier, maximizing the complete data log-likelihood has closed form so-

lutions for most parametric distributions from the exponential family because it does not have a

summation term inside the logarithm (unlike Linc(θ
(t))). But the complete data log-likelihood

requires knowledge of the latent variables. On the other hand, the expected complete data log-

likelihood term in Q(θ, θ(t)) is an expected quantity which does not require knowledge of the

latent variables, and it has the same advantages in terms of maximization because of the absence

of the summation term inside the logarithm. Suppose we find updated parameter estimates,

θ(t+1) = arg maxθ Q(θ, θ(t)), the following inequalities are true:

Linc(θ
(t)) = Q(θ(t), θ(t)) ≤ Q(θ(t+1), θ(t)) ≤ Q(θ(t+1), θ(t+1)) = Linc(θ

(t+1)).

This constitutes one iteration of the EM algorithm which monotonically increases the incom-

plete data log-likelihood. Given parameters θ(t), the E-step calculates the posterior distributions

P (zi |xi, θ(t)), ∀zi ∈ Z, ∀i ∈ [n] which makes the lower bound function equal to the incom-

plete data log-likelihood. In the M-step the lower bound Q(θ, θ(t)) is maximized with respect

to the parameters, which also necessarily increases the incomplete data log-likelihood. These

two steps are repeated until a local maximum of Linc(θ) is found. Note that convergence of the

monotonically increasing sequence is guaranteed as long asLinc(θ) has a finite upper bound. The

EM algorithm described above is general and can be applied for maximization or minimization

problems in the presence of missing/latent variables. Note that the method is only guaranteed to

find a local maximum depending on the initialization of the parameters. It is always a good idea

to repeat the EM algorithm from a number of different initializations and choose the largest of

the local maximum solutions.

There are a number of extensions or variants of the EM algorithms to make it applicable

on a larger number of problems. One such is the generalized EM (GEM) [52], [119], [59],

which we have used for solving some of our proposed problems. At iteration t, instead of

performing a single update of all the parameters from θ(t) to θ(t+1) using a maximization step,

GEM allows the parameters to be updated sequentially in smaller subsets. To be precise, suppose

θ = {θ1, . . . , θL} (for some L > 1). Let θ(t+m/L), m = 1, . . . , L denote the partially

updated parameter set in going from θ(t) to θ(t+1), wherem of theL parameter subsets have been

updated., i.e., θ(t+m/L) = {θ(t+1)
1 , . . . , θ

(t+1)
m , θ

(t)
m+1, . . . , θ

(t)
L } . Also let θ(t+L/L) = θ(t+1).

In the M-step of GEM, also known as the generalized M-step, the parameter updates of the

individual subsets are monotonically increasing in the lower bound function such that

Q(θ(t), θ(t)) ≤ Q(θ(t+1/L), θ(t)) ≤ Q(θ(t+2/L), θ(t)) ≤ . . . ≤ Q(θ(t+L/L), θ(t)).
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The individual updates need not perform a maximization but they just need to increase the lower

bound, which can be done using methods such as gradient ascent. There are some other exten-

sions of the EM algorithm [145] such as the Expectation-Conditional maximization (ECM) [118],

[178] and the Alternating ECM (AECM) [116] which are suitable for certain problems and

may help in speeding up convergence. For example, the mixture of factor analyzers (MFA)

model [58], [116] can be solved using the ECM and AECM algorithms to achieve faster conver-

gence and simpler update equations [178], [116].

Finally, we note MAP estimation problems can also be solved using the EM algorithm. The

only difference is that in MAP estimation the objective consists of the log-likelihood term plus

the log-prior term (with prior distribution over the parameters). The log-prior term also gets

added to the lower bound Q(θ, θ(t)) and it only changes the M-step equations.

1.6 Contributions

The main contributions of this dissertation are as follows:

1. Semi-supervised mixture model based classification with fine-grained component condi-
tional class labeling

Typically, semi-supervised classification methods based on the cluster assumption (or the low-

density separation assumption), in particular those based on mixture modeling, assume that the

class labels of samples originating from a particular cluster or component (a region of high sam-

ple density) are likely to be the same, or that they are distributed according to a component spe-

cific, but feature vector independent, probability mass function. When this assumption is not sat-

isfied by the data set used for semi-supervised learning, existing generative model-based meth-

ods may not have the flexibility to learn a suitably complex class posterior model, while existing

discriminative classification methods may not be able to learn accurate class decision bound-

aries for the problem. We address this limitation by proposing generative semi-supervised mix-

ture models whose underlying stochastic data generation mechanisms allow more fine-grained

within-component class label distributions than existing semi-supervised mixture models. The

within-component class posterior distributions are inspired by the K-nearest-neighbor and K-

nearest-prototype classification methods, which achieve accurate classification in the vicinity of

labeled samples.

2. Semi-supervised mixture model based learning from pairwise-sample constraints with
imposed space-partitioning
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In the semi-supervised learning problem, the partial supervision can also be in the form of class-

label constraints on sample pairs (must-links and cannot-links), in which case the objective is

to learn a model that fits well to the unlabeled data while satisfying all or a majority of the

constraints. Many existing methods which address this problem suffer from the limitation that,

while their solutions may closely satisfy the given set of pairwise constraints, they generally do

not achieve propagation of the constraint information to all the samples. This can lead to poor

generalization and also discontinuities in the predicted class posterior of spatially proximate

sample points. We propose a method which effectively addresses this limitation by imposing

space-partitioning in the solution to a constrained mixture model learning objective via a para-

metric mean-field approximation. The proposed method also has the advantage that it does not

require knowledge of the number of underlying classes in the data, while this is a requirement

for most of the existing methods.

3. Semi-supervised domain adaptation of mixture model based classifiers with imposed
space-partitioning

We consider the problem of adapting the parameters of a generative mixture discriminant anal-

ysis classifier that has been learned using labeled data from a source domain, to a related tar-

get domain where the underlying data distribution may have small differences (relative to the

source domain). The target domain consists of a small number of labeled samples and a rela-

tively large number of unlabeled samples available as adaptation data. Motivated by the solution

approach adopted for the pairwise-constraint based semi-supervised learning method, here we

formulate a learning objective and solution approach for the domain adaptation problem that

attempts to make effective utilization of a small number of labeled samples in the target do-

main. Specifically, in the EM algorithm used to minimize the objective function, we constrain

the posterior distribution over latent variables in the E-step to be a smooth parametric function

and optimize over these parameters. This ensures that, during adaptation, the components of the

class-conditional mixture densities actually have to move (in the feature space) in order to mini-

mize the error count on the labeled target domain samples. This in turn ensures that there will be

effective label-propagation from even a few labeled samples to the unlabeled samples in the tar-

get domain classifier solution, as we demonstrate through illustrative examples and experimental

results on real data.

The rest of the dissertation is organized as follows. In chapter 2, we present the semi-

supervised classification method based on mixture models with fine-grained component con-

ditional class labeling. In chapter 3, we present the semi-supervised learning method from

pairwise-sample constraints which imposes space-partitioning in the solution. In chapter 4, we
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present the semi-supervised domain adaptation method for mixture model based classifiers. In

chapter 5, we conclude with a summary of the dissertation and provide future directions for

extending and improving upon this work.



Chapter 2
Semi-supervised mixture model
based classification with
fine-grained component
conditional class labeling

2.1 Introduction

In this chapter, we introduce two related inductive semi-supervised classification methods based

on generative mixture modeling, with more fine-grained class label generation mechanisms com-

pared to previous works. Earlier works on semi-supervised learning based on mixture models

frequently assume that points from a cluster (or mixture component) are likely to have the same

class label. This is consistent with the cluster assumption for semi-supervised learning dis-

cussed in chapter 1. A model with a less restrictive assumption has also been proposed earlier,

which assumes that the probability distribution of the class labels within a component or cluster

can be well represented by a fixed, feature space independent probability mass function. This

model is well-suited for problems which are consistent with the cluster assumption (class-pure

clusters), and also for problems where the underlying clusters are not fully class-pure but have

probabilistic association with two or more classes (perhaps due to cluster overlap). However,

both this model and models which assume class-pure clusters will not be suitable for modeling

data where the within-cluster class distribution is a non-trivial function of the feature vector.

Our fine-grained labeling models address this important limitation by combining the advantages

of semi-supervised mixtures, which achieve label extrapolation over a component, and nearest-
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neighbor (NN)/nearest-prototype (NP) classification, which achieve accurate classification in the

vicinity of labeled samples.

For our first “NN-based” fine-grained model, we propose a novel two-stage stochastic data

generation mechanism, with the feature vectors (and implicitly their mixture components of ori-

gin) of all samples (labeled and unlabeled) first generated independently according to a standard

finite mixture density, and then the class labels of labeled samples jointly generated conditioned

on the feature vectors and their components of origin. This mechanism entails an underlying

Markov random field over the class labels of labeled samples generated by each mixture com-

ponent, given that the feature vectors and the underlying mixture components of all samples

have been observed. As we will see, for this model, the stochastic data generation specifies a

non-parametric component-conditional class posterior, whose complexity is automatically de-

termined by the number and variety of class labels in the labeled data subset. Hence we refer to

this method as NFGL (non-parametric fine-grained labeling). We invoke the pseudo-likelihood

formulation (commonly applied to make MRF based model learning tractable), which forms

the basis for an approximate generalized Expectation-Maximization model learning (parameter

estimation) algorithm. Our second, “NP-based” fine-grained model is a parametric counter-

part of NFGL, which we refer to as PFGL (parametric fine-grained labeling). Importantly, it

overcomes a problem with the NFGL model that sometimes manifests when there are very few

sparsely distributed labeled samples. The PFGL model is motivated by a simpler, independent

stochastic data generation mechanism, which does not entail a Markov random field over the

class labels of the labeled samples. Hence, for PFGL, it is possible to directly maximize the data

log-likelihood in order to estimate its model parameters, unlike NFGL which maximizes the

pseudo-log-likelihood approximation. Also, different from the NFGL model, the complexity of

the within-component class posteriors in the PFGL model are not automatically determined by

the labeled data subset, but they need to be carefully specified using model order selection. Both

our models are advantageous when the distribution of classes is not constant over the feature

space region “owned by” a component or cluster of points.

Recall that there are two common objectives for semi-supervised learning. In the first and

perhaps more common objective, a small labeled training set is augmented with a large set of

unlabeled samples, with the aim of learning a more accurate statistical classifier than that learned

solely using the labeled training set. In the second, less common objective, an unlabeled data set

may be augmented by a small set of labeled samples, with the objective to more accurately cluster

the data or model the data density, i.e., semi-supervised extension of the unsupervised learning

problem. In this work, we primarily focus on the former (statistical classification) objective.

As discussed in chapter 1, semi-supervised learning approaches can be broadly categorized



27

into generative and discriminative learning frameworks. There has been a substantial amount

of work in discriminative semi-supervised learning, such as co-training [19], transductive sup-

port vector machines [84], [32], Gaussian process approaches [100], information regulariza-

tion [161], [41], and a number of graph-based methods [10], [186]. On the other hand, gen-

erative, mixture-based models [122], [135], [154] represent some of the earliest approaches to

semi-supervised learning. There have also been some recent works in this area which propose

different learning objectives to estimate the mixture model parameters [73], [74]. The mixture-

based semi-supervised learning models fundamentally vary in the assumptions they make about

the connection between the mixture components and the classes. For instance, they may as-

sume that samples from each class are well-modeled by one or more mixture components [135],

[73], [74], or they may assume that the samples from each component are probabilistically as-

sociated with more than one class [122]. The methods [122], [135], and [154] maximize data

log-likelihood based learning objectives for parameter estimation, while the methods [73] and

[74] maximize discriminative classification objectives such as the class posterior log-likelihood

of the labeled data regularized by the feature vector marginal log-likelihood of the unlabeled

data [73], or the class posterior log-likelihood of the labeled data regularized by the conditional

entropy of the class given the feature vector [74].

The generative mixture-based semi-supervised learning approaches are suitable only when

the feature data is well-modeled by a finite mixture of the assumed parametric density form. If

the mixture model assumption is not suitable or mis-matched to the data, semi-supervised mix-

tures may degrade the classification performance [43], [44], [38]. However, as we discussed in

chapter 1, all semi-supervised methods make some underlying assumptions about the distribu-

tion of the data, and they may not be suitable when the assumptions are not satisfied by the data.

For example, as noted in the review article [182], co-training requires a (natural) partitioning of

the feature space into two subsets; transductive SVMs and the works in [100] and [35] place the

decision boundary in regions of low data density. However, this may not be the proper choice if

there is significant overlap between the true class-conditional densities. Many graph-based meth-

ods assume the data follows an underlying manifold structure and they also require transductive

inference [182], which may be of high complexity.

Moreover, mixture models, e.g. Gaussian mixtures, are ubiquitous, are appropriate, and

are used very effectively in a variety of application domains –modeling speech [165], [143],

image content [159], [141], in bioinformatics [117], and in modeling many types of scientific

data, e.g. [64], [57]. Mixtures of other distributions, e.g. the multinomial, naturally model text

documents [135]. Accordingly, generative, mixture-based semi-supervised learning is highly

suitable for a large number of real-world application domains. Likewise, improvements to ex-
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isting semi-supervised mixtures should find significant application. Thus, in this work we focus

on generative semi-supervised mixtures and in particular on improving the model for class la-

bel generation within semi-supervised mixtures. Previewing our framework, we will cast model

learning as a maximum likelihood problem, with model parameters treated as deterministic (but

whose values are unknown), rather than as a Bayesian learning/inference problem (which hy-

pothesizes stochastic generation of the parameters as well as the data) [51].

The rest of the chapter is organized as follows. In section 2.2, we review generative semi-

supervised learning methods, focusing particularly on semi-supervised mixture modeling [122],

[135], [154] and on the limitations of these past models. We identify that the class label genera-

tion mechanism in these models is crude and may introduce severe model bias. In previous work

[38], it was demonstrated that, if statistical modeling assumptions are incorrect, semi-supervised

learning may in fact degrade classification performance relative to supervised learning, which

solely makes use of the labeled data. We put forward the crude label generation mechanisms

in[122], [135], and [154] as, at any rate, one of the main sources of modeling error that may

lead to poor performance. We also illustrate that when the goal is data clustering or density

estimation, the use of labeled data in [122], [135], and [154] may bias the learned solution away

from the ground-truth mixture solution. In sections 2.3 and 2.4, we develop our new generative

semi-supervised approaches, which achieve more fine-grained class probability modeling within

each mixture component/cluster than previous works. In section 2.6, we discuss the relation-

ship to previous work. In section 2.7, we present experimental comparisons against alternative

semi-supervised and supervised learning methods. The results will show that our models’ fine-

grained class modeling yields significantly better classification accuracy than the previous semi-

supervised mixtures [122], [135], and [154]. Moreover, when the number of labeled samples is

quite small, our models also achieve overall better classification accuracy than supervised linear

and nonlinear kernel support vector machines.

2.2 Limitations of Previous semi-supervised Mixtures

2.2.1 Notation

Consider a random feature vector X ∈ Rd, a random class label C ∈ C ≡ {1, . . . , Nc}, and

a random component label M ∈ M ≡ {1, . . . , L}. Let {P [M = l] ≡ αl, l = 1, . . . , L},
satisfying 0 ≤ αl ≤ 1 ,

∑L
l=1 αl = 1, be the masses (proportions) for an L-component mixture

model [112] with component densities fX | l(x | θl), l = 1, . . . , L, where θl is the parameter set

for the l-th component density. The mixture density for X is fX(x) =
∑L

l=1 αl fX | l(x | θl). In

semi-supervised mixture modeling, one jointly models the feature vector X and the class label
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C, i.e. one learns the joint density fX,C(x, c) =
∑L

l=1 αl fX,C | l(x, c | θl), based on a pool of

both labeled and unlabeled data samples. For future reference, we denote the unlabeled data

subset by Xu = {x1, x2, . . . , xNu
}, xi ∈ Rd; the labeled subset by Xl = {(xNu+1, cNu+1),

(xNu+2, cNu+2), . . . , (xNu+Nl
, cNu+Nl

)}, xi ∈ Rd, ci ∈ C; the set of class labels considered by

themselves, Cl = {cNu+1, . . . , cNu+Nl
}; the set of all feature vectors considered by themselves

X = {x1, . . . , xNu
, xNu+1, . . . , xNu+Nl

}; and the complete pooled data set by X = {Xu,Xl}.
We also denote the index set of the labeled samples by Il = {Nu + 1, . . . , Nu + Nl}, and the

set of first n positive integers by [n] , {1, 2, . . . , n}.

2.2.2 Hard Versus Soft Class-to-Component Assignments

Early work on semi-supervised mixture modeling includes [122], [135], and [154]. There has

also been a significant amount of followup interest in this area, e.g. [36], [87], [95], [149],

[153], and [155]. There is also related work on semi-supervised clustering [167], [7], and semi-

supervised mixture modeling [155], [97], [179] where rather than labels, the supervision takes

the form of class “must-link” and “cannot-link” constraints. Most of these approaches are similar

to [135] and [154] in that they essentially make a “one-class-per-component” assumption, i.e. all

clusters or mixture components are each assigned to a single class, with all data samples within

the cluster/component assumed to belong to this (assigned) class. The model in [122] differs

from these approaches in not making this assumption. We next first briefly summarize [122] and

how it differs from [135] and [154]. We then identify two fundamental limitations common to all

three of these methods, which will motivate development of our new semi-supervised mixtures

in sections 2.3 and 2.4.

In [122], the following stochastic data generation was assumed for the pooled data X : 1)

Independently, for each xi ∈ Xu:

i) randomly select a mixture component, M = j, according to {αl}; ii) randomly generate xi
according to fX | j(x | θj).

2) Independently, for each (xi, ci) ∈ Xl:
i) randomly select a mixture component, M = j, according to {αl}; ii) randomly generate xi
according to fX | j(x | θj). iii) randomly select the class label ci according to the component-

conditional (multinomial) probability mass function (pmf) {P (C = c |M = j) ≡ βc | j}.
Thus, it was assumed class labels are stochastically generated, conditioned on the sample’s

component of origin (M ) and thatX andC are conditionally independent, givenM . In this case,

the joint density is fX,C(x, c) =
∑L

l=1 αl fX | l(x | θl) βc | l and the associated class a posteriori
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probabilities, used for class decision making, take the “mixture of experts” (MOE) form:

P (C = c |x) =

L∑
l=1

βc | l P (M = l |x) =

L∑
l=1

βc | l
αl fX | l(x | θl)

L∑
m=1

αm fX |m(x | θm)

. (2.1)

The model parameters Θ = {θl, αl, {βc | l, ∀c ∈ C}, ∀l ∈ [L]} were estimated by maximiz-

ing the joint data likelihood over X ,

P (X |Θ) = P (Xu,Xl |Θ) =

(
Nu∏
i=1

L∑
l=1

αl fX | l(xi | θl)

)(
Nu+Nl∏
i=Nu+1

L∑
l=1

αl fX | l(xi | θl) βci | l

)
.(2.2)

This was achieved in a locally optimal fashion via an Expectation-Maximization (EM) algo-

rithm [48], [111], [119] developed in [122].

The methods in [135] and [154] are closely related to [122]. Like [122], [135] learned the

mixture model to maximize the joint data likelihood over X (whereas [154]) maximized the

class-conditional likelihood). Also like [122], [135] developed an EM algorithm for parameter

learning. However, a distinction between [122], and [135], [154] lies in how these methods

hypothesize class label generation. Unlike [122], in [135], [154] it was assumed each mixture

component is exclusively assigned to a single class, i.e. it only generates labeled samples from

this (assigned) class. Thus, in [135] and [154], once the component of origin for a sample is

selected, its class label is also determined. More specifically, let zk | l ∈ {0, 1} be a binary pa-

rameter with zk | l = 1 indicating that component l is assigned to class k. These parameters must

be chosen to satisfy
∑

k∈C zk | l = 1, ∀l (each component is assigned to a single class). It

is also highly desirable to satisfy
∑L

l=1 zk | l ≥ 1 ∀k ∈ C (every class is assigned at least one

component); otherwise, the classifier will completely misclassify unrepresented classes. Clearly,

{zk | l} is a special, restricted case of the multinomial pmf {βk | l}. Accordingly, the joint mix-

ture density fX,C(x, c) =
∑L

l=1 αl fX | l(x | θl) zc | l, the associated class posterior probability

P (C = c |x) =
fX,C(x,c)

fX(x) , the joint data likelihood P (X |Θ), and the associated EM algorithm

from [135] are specializations of [122], achieved by constraining βc | l ∈ {0, 1}1.

Allowing stochastic (soft) label generation, given the mixture component of origin, i.e.

1Actually, in [135] the authors did not re-estimate {zk | l} within their EM algorithm – component assignments
to classes were simply initialized and then left unchanged during the EM optimization. Presumably, optimizing the
{zk | l} should yield more accurate models. One cannot form a batch (in parallel) M-step update of all the {zk | l}
parameters since this will not ensure

∑
l zk | l ≥ 1 ∀k. One can, however, apply a generalized M-step [52], [119],

[59], optimizing {zk | l ∀k} for a given l, consistent with the constraint
∑

m zk |m ≥ 1 ∀k, while holding {zk | l′ ∀k}
fixed for all l′ 6= l. One can in this way cyclically optimize over each component’s class assignments, given all other
assignments held fixed, until there are no further improvements.
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Figure 2.1. A 2-D mixture example with two components, A and B, one of which (A) generates labeled
samples from two different classes. Also shown (dashed contour) is an (incorrect) learned component that
exclusively generates samples from class 2.

βk | l ∈ [0, 1],
∑

k∈C βk | l = 1, as in [122], is advantageous in some cases because the as-

sumption of exclusive component-to-class assignments in [135] and [154] may be too inflexible

to accurately model the given semi-supervised data and capture its underlying cluster structure.

Consider the illustrative example shown in Fig. 2.1. Here, we depict a 2-D semi-supervised

data set with two classes ‘1’ and ‘2’, a few labeled samples, and with the ground-truth compo-

nents A and B indicated by solid ellipses2. It is clear from the figure that while component B

does generate labeled samples exclusively from class 2, component A generates samples from

both classes. The models in [135] and [154] cannot accurately learn the ground-truth mixture in

this case – one of the two learned components must capture all the labeled points from class 2,

and the class 2 “outliers” (those from component A) would degrade parameter estimates for this

learned component. A solution based on [135] is depicted via a dashed ellipse for the learned

component that generates labeled samples from class 2. The model in [122], on the other hand,

will have no difficulty learning the ground-truth mixture components in this example (learned

component 1, corresponding to true component A, will estimate β1 | 1 = β2 | 1 = 1
2 to accurately

2Labeled samples are indicated by the symbols ‘1’ or ‘2’, with the labeled sample’s location indicated by the
symbol’s location in the figure. Unlabeled samples are simply indicated by points.
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reflect the proportion of labeled samples from each class within component 1 (4 labeled samples

from each class)).

In order to understand whether mixture models fit to real world data sets form class-pure

clusters, or whether they have within-component class impurities, we evaluated the following

measure of average class purity 3 over the components of a mixture model. Consider a fully

labeled data set {(xn, cn) : n = 1, . . . , N} with feature vectors xn ∈ Rd and class labels cn ∈
C. Let L denote the number of components (clusters) in a mixture model fit to the data set (in

an unsupervised fashion), and P (Mn = j |xn,Θ), ∀j ∈ [L], ∀n ∈ [N ] denote the component

posterior probabilities of the samples based on the estimated mixture model parameters Θ. To

calculate the average class-purity we utilize the true class labels of all the points in the data

set. The probabilistic count of the number of samples with class labels i that are assigned to

component j is given by

nij =
N∑

n=1:cn=i

P (Mn = j |xn,Θ), ∀i ∈ C, ∀j ∈ [L].

The probabilistic count of the total number of samples assigned to component j is given by

nj =
∑

i∈C nij , ∀j ∈ [L]. The average class purity of the components of a mixture model is

then defined as

P =
L∑
j=1

nj
N

max
i∈C

nij
nj

=
1

N

L∑
j=1

max
i∈C

nij . (2.3)

Intuitively, this class purity measure calculates the weighted sum of the proportion of samples

from the majority-class within each component, where the weight for each component term is

the proportion of the total number of samples (probabilistically) assigned to that component.

Therefore, if the mixture components capture class-pure clusters, then P will have a value close

to 1. We evaluated this class purity measure on three data sets from the UC Irvine machine

learning repository [1], namely (i) Wall-following robot navigation which has 4 classes, (ii)

Balance scale which has 3 classes, and (iii) Iris which has 3 classes. For each of the these

data sets, we estimated Gaussian mixture models with the number of components increased

starting from the number of classes in the data set. For a fixed number of mixture components,

the parameters of the mixture model were initialized using the K-means clustering algorithm,

following which the EM algorithm was applied to find a local maximum of the log-likelihood.

This was repeated from ten random initializations based on K-means clustering, and the solution

with largest data log-likelihood was chosen. Based on the chosen mixture model solution, the
3This measure of class purity is used in the definition of the F-score, which is used as a measure of clustering

performance (e.g., see [155] and [179]).
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average class purity score (2.3) was calculated and plotted as a function of the number of mixture

components. This is shown in Fig. 2.2 for the three UC Irvine data sets. We observe that for two

of the data sets P has values smaller than 0.75, which suggests that the mixture components are

not likely to be class-pure. We would expect that the method of [122], which allows components

Figure 2.2. Plots of the average class purity as a function of the number of components in the mixture
model for three data sets from the UC Irvine machine learning repository.

to generate samples from multiple classes, is more suitable than [135] and [154] for learning the

underlying class structure within components from semi-supervised data sets such as this, where

the underlying clusters in the data may consist of samples from more than one class. However,

while [122] gives more flexible within-component class label generation than [135] and [154],

this degree of flexibility is still insufficient, as we next elaborate by highlighting fundamental

limitations that [122], [135], and [154] all share in seeking to build a statistical classifier based

on semi-supervised data when the “one class per cluster” assumption is violated.

2.2.3 Crude Within-Component Class Labeling

First, again consider the data in Fig. 2.1. Although [122] can accurately capture the ground-

truth mixture components, this model will not be an effective classifier for data originating from

component A – as noted earlier β1 | 1 = β2 | 1 = 1
2 , and thus for x originating from component
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A, [122] will estimate P (C = c |x) = 1
2 , c = 1, 2 even though it would be far better to choose

P (C = 1 |x1, x2 > 1) = 1 and P (C = 2 |x1, x2 < 1) = 1 for x from component A, i.e.

more fine-grained within-component class labeling is needed to give accurate classification in

this example.

There are several ways this can be achieved in principle. First, as suggested in [135], one

can simply introduce more components into the model, splitting components with high class-

impurity into multiple smaller components that do exhibit class purity. This can certainly im-

prove classification accuracy. However, there are two potential problems with this remedy. First,

in the Fig. 2.1 example, there really are two Gaussian components – it is only the class label,

not the feature vector, which requires more complex modeling; i.e., by introducing (many) extra

components, the solution may no longer capture the natural clustering structure present in the

data. Second, this solution may also give sub-optimal classification accuracy, especially if the

within-cluster class structure is complicated. Consider the example in Fig. 2.3. Here, it is some-

what reasonable to split natural cluster A into two class-pure Gaussian components. However,

such a split will still be suboptimal for classification, since the class 2 distribution (eyebrow-

shaped) within cluster A does not well-conform to an elliptical (bivariate Gaussian) shape. The

situation may be even worse in natural cluster B. One can split this cluster into two components,

one assigned to class 1 and the other to class 2. However, the “outlier” labeled sample from class

1 at the top of the cluster must be owned by the (class-pure) class-1 component – this sample will

corrupt parameter estimates for the class-1 component, resulting in a sub-optimal class decision

boundary within cluster B. In our experimental results, we will explore the classification benefit

achieved simply by using a large number of components (larger than the estimated number of

natural clusters) in the model.

A second strategy for improving classification accuracy involves retaining the modeling of

the natural cluster structure in the data, but with fine-grained, “discriminative” class model-

ing within each natural cluster/component. A crude, heuristic method for achieving this fine-

graining, which we dub “within-component NN” (WC-NN), is as follows: 1) perform unsuper-

vised clustering/mixture modeling, ignoring the available class labels; 2) make exclusive (0-1)

assignments of each labeled sample to its best-fitting component; 3) for each component, di-

rectly form a nearest-neighbor classifier [51] based simply on the labeled samples assigned to

that component. An (accurate) classifier obtained in this way is depicted via an illustrative ex-

ample in Fig. 2.4.

In summary, from the above examples, we anticipate that a semi-supervised mixture model

with more fine-grained (“discriminative”) within-component class modeling may give improved

classification accuracy, compared with previous semi-supervised mixtures. Moreover, we em-
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Figure 2.3. An illustrative example with two ground-truth components, each of which generates labeled
samples from two classes. Assuming a two-component model, the method from [135], with exclusive
class-to-component assignments, will fail to learn an accurate classifier on this example. Moreover, split-
ting each natural component into two “class-pure” components will also give suboptimal classification
accuracy in this example.

phasize that while the examples shown in this section (excepting Fig. 2.2) were synthetically

generated and thus merely illustrative, the practical benefits of fine-grained labeling will be

demonstrated on real-world data sets in our experimental results.

In sections 2.3 and 2.4, we will show that fine-grained labeling can be achieved in a much

less heuristic fashion (and, as shown in our experimental results, with better classification accu-

racy) than WC-NN, via new generative semi-supervised mixtures with more involved stochastic

data generation than previous proposals. The model in section 2.3 performs fine-grained class

modeling in a non-parametric fashion, with the resulting model based on Markov random fields

(MRFs) [103], and with the model learning based on maximization of the pseudo-likelihood

function, associated with MRFs [103]. The method in section 2.4, alternatively, takes a paramet-

ric approach to fine-grained class modeling, and is specifically designed to overcome a problem

experienced by the non-parametric method at very low labeled fractions. Moreover, the model

learning maximizes a true likelihood function, rather than the pseudo-likelihood considered in

section 2.3. On the other hand, unlike the method in section 2.3, the parametric approach may

require the integration of a model order selection procedure within the model learning, in order
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Figure 2.4. Nearest neighbor classification applied within each (learned) cluster achieves accurate within-
cluster classification in this 2-D example.

to introduce the “right” level of class modeling complexity, within each mixture component.

Both of our fine-grained approaches model the joint distribution P (X,C) and, in this sense,

strictly speaking, are purely generative. However, since these models give more detailed within-

component class posterior modeling than previously proposed semi-supervised mixtures, one

might also reasonably describe them as hybrid “generative/discriminative”.

In section 2.7, we will demonstrate on a number of real-world UC Irvine data set domains

that both of these new models yield more accurate classifiers than both previous semi-supervised

mixtures and WC-NN. They also give better overall accuracy than supervised classifiers (support

vector machines) when the fraction of labeled training data is sufficiently low.

2.3 A Non-Parametric Fine-Grained Labeling Model (NFGL)

2.3.1 Stochastic Data Generation for the New Model

As in [122], we treat class labels as data and model their stochastic generation, along with the

feature data. Different from previous methods, we hypothesize generation of the data X in

two (wholly distinct) stages. In the first stage, the feature vectors for all samples, both unla-
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beled and labeled (X ), are generated, i.i.d., according to a standard finite mixture model density,

fX(x) =
∑L

l=1 αl fX | l(x | θl). Then, the class labels Cl are generated in a non-independent

fashion from their joint distribution, conditioned on the knowledge of the feature vectors, X ,

and on the knowledge of the component of origin of the feature vectors, V , {Vj | i, ∀j ∈ [L],

∀i ∈ [Nu +Nl]}, where Vj | i ∈ {0, 1} and
∑L

j=1 Vj | i = 1, ∀i.
In our approach, the class labels in Cl are generated according to a non-trivial within-

component class posterior model, P (C = c |Vj | i = 1, x). This is what makes our approach

“fine-grained”. The modeling framework we develop in this section is in principle amenable to

many different choices for this fine-grained posterior. For example, we could model the class

posterior, conditioned on x belonging to a given component, as a logistic function (i.e., a ran-

domized (soft) linear discriminant function), a nonlinear (e.g. kernelized) logistic function (i.e. a

randomized generalized linear discriminant function), or even a complex parametric model such

as a multilayer perceptron (MLP) with the MLP’s outputs (one per class) normalized to produce

a valid posterior (pmf). However, each of these choices entails drawbacks pertaining to finding

the “right” level of description in modeling the class labels. The logistic function may introduce

model bias, e.g. a single linear discriminant function does not have sufficient power to discrim-

inate the three classes present in one cluster in the Fig. 2.4 example. Likewise, a kernelized

logistic function may increase the model variance, giving an overly complex within-component

class model for a component in which a linear decision boundary would suffice (the other clus-

ter in the Fig. 2.4 example). For the MLP, careful model order selection would be required to

customize the number of hidden units used by each within-component class posterior.

Alternatively, in this section, we propose a posterior which automatically sets the complexity

of the class modeling within any given cluster, based simply on the number (and class variety)

of the labeled samples that fall within the cluster. Specifically, we propose to use a randomized

KNN within-component class posterior. To develop this model, let us suppose that the first stage

of data generation has already been applied, generating X and determining a mixture component

of origin for each sample, V . Let Vl denote the set of mixture components of the labeled samples

and Vu denote the set of mixture components of the unlabeled samples, such that Vl ∪ Vu = V .

Further, for the moment, suppose that we have already generated the class labels for Nl − 1 of

the Nl labeled samples, i.e. it is only left to generate the label for the remaining sample, i∗.

Consider the set of labeled samples originating from the same mixture component as i∗, i.e.,

{i ∈ Il\{i∗} : Vj | i = Vj | i∗ , ∀j ∈ [L]}, of size Ni∗(Vl). These labeled samples could be used

to form a hard, within-component, K-nearest-neighbor classifier (with K = Ni∗(Vl)), similar

to the method discussed in section 2.2. Alternatively, we define a randomized version of this
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classifier:

P (Ci∗ = c | {ci : i ∈ Il\{i∗}},X ,Vl)

=

L∏
j=1

[
δ (Mjc(i

∗) > 0) Rj,i∗(c | Cl,X ,Vl) + δ (Mjc(i
∗) = 0) βc | j

]Vj | i∗ , (2.4)

where Rj,i∗(c | Cl,X ,Vl) is the randomized nearest neighbor (RNN) class posterior for compo-

nent j, defined as

Rj,i∗(c | Cl,X ,Vl) =

Nu+Nl∑
i=Nu+1:
ci=c, i 6=i∗

Vj | i e
−aj ‖xi−xi∗‖2

Nu+Nl∑
i=Nu+1:
i 6=i∗

Vj | i e
−aj ‖xi−xi∗‖2

, ∀c ∈ C, (2.5)

Mjc(i
∗) is the number of labeled samples (excluding i∗) generated from component j that have

class label c, δ(a) is the binary indicator which takes a value 1(0) when condition a is satisfied

(not satisfied), and βc | j , ∀c ∈ C, ∀j ∈ [L] are fixed component conditional class probabilities

as defined by the MOE model [122]. Note that Rj,i∗(c | Cl,X ,Vl) is 0 or undefined when there

are very small number of labeled samples generated by a mixture component. For example,

when i∗ is the only labeled sample from component j with class label c, or when there are no

labeled samples from component j with class label c, or worse when there are no labeled samples

at all from component j. In order to handle such degenerate cases, we include the component

conditional class probabilities estimated by the MOE model, which are well defined and sum to

1 even when Mjc(i
∗) = 0. Note that we do not consider βc | j , ∀c ∈ C, ∀j ∈ [L] to be part

of the parameter set of our model, but use their maximum likelihood estimates found using the

EM algorithm in [122]. However, the significant term in (2.4) is the RNN class posterior, which

comes into play most of the time when the number of labeled samples is not very small.

From (2.5) we see thatCi∗ is in fact independent of the class labels of all labeled samples that

do not originate from component j, conditioned on the class labels of all other labeled samples

that do originate from component j. Here, aj is a component-specific scale parameter. As

aj → ∞, Rj,i∗(c | Cl,X ,Vl) → {0, 1}, consistent with a hard K-nearest-neighbor rule applied

within component j (where K = Ni∗(Vl)). Note that the complexity of this within-component

posterior (decision rule) is not determined by how many parameters we (e.g., arbitrarily) decide

to include in the model – it is automatically determined by the number of labeled samples (and

the class variety of same) falling within the component. If there are few labeled samples within a
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component, there is no basis for a complex decision boundary in this component and, consistent

with this, the RNN rule is automatically very simple. If there are many labeled samples in a given

component, the RNN rule will be more complex. This is automatically determined/controlled,

based on the amount of available labeled data, rather than requiring careful model selection

to control the model complexity. Moreover, the posterior (2.4) introduces very few additional

parameters – just one scaling parameter aj for each component. Different soft nearest neighbor

rules, achieved e.g. by replacing the (implicit) kernel choice in (2.4), k(x, y) = e−aj ‖x−y‖
2

by

specialized data-dependent kernels can also be considered, especially when some or all of the

features in the data take on categorical (discrete) values.

As noted above, a key point about (2.4) is that it specifies that the probability for any label

Ci, conditioned on {Cm : m ∈ Il\{i}} equals the probability of Ci conditioned on the labels

for the subset of labeled samples that originate from the same mixture component as i. There

are two implications of this. The first is that the joint label distribution P (Cl | X ,Vl) factorizes

as a product of distributions over mutually exclusive label subsets, one per mixture compo-

nent. Specifically, let C(j)
l denote the subset of labels of samples originating from component

j, such that Cl = ∪Lj=1C
(j)
l and C(j)

l ∩ C
(k)
l = ∅, ∀j, k ∈ [L] . Then we have P (Cl | X ,Vl) =∏L

j=1 P (C(j)
l | X ,Vl). The second implication of (2.4) is that, conditioned on knowledge of the

results from step 1 in the stochastic data generation (X and V), each component’s label subset

C(j)
l forms a Markov random field (MRF) [103], i.e. it forms a conditional Markov random field,

defined over the subset of class labels which occur within the component. For a given com-

ponent’s MRF, the neighborhood for a label Ci belonging to this component is the full subset

of labels associated with samples originating from this same mixture component (excluding Ci
itself), i.e. if Vj | i = 1, the neighborhood for Ci is {Ci′ , i′ ∈ Il\{i} : Vj | i′ = 1}. Moreover,

while it is not obvious in what precise form to express a component’s MRF-based joint label

subset distribution P (C(j)
l | X ,Vl) consistent with the conditional distributions (2.4), such a joint

distribution is guaranteed to exist so long as a strict positivity condition holds on the conditionals

(2.4) [12]. Inspecting (2.4), one can see strict positivity of the conditionals indeed holds for the

subset of class labels belonging to the given component (which is the same as the subset of class

labels over which the component’s MRF is defined). Thus, existence of P (C(j)
l | X ,Vl) is guar-

anteed. Accordingly, so too the joint label distribution P (Cl | X ,Vl) =
∏L
j=1 P (C(j)

l | X ,Vl), is

guaranteed to exist.

Having established this, we can now propose stochastic data generation for X as follows.

Stochastic Data Generation

(i) Generate X (and, in the process V) by independently randomly generating each sample ac-

cording to a standard finite mixture density. Note that the samples in X can be generated in any
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order.

(ii) Given the results from step (i), generate the class labels {cNu+1, . . . , cNu+Nl
} by sampling

from the joint label distribution P (CNu+1, . . . , CNu+Nl
| X ,Vl).

2.3.2 Pseudo-likelihood Function

Ideally, we would like to develop a strict EM algorithm, choosing the model parameters Θ =

{αj , θj , aj | j ∈ [L]} to maximize the joint data likelihood P (X , Cl |Θ) = P (Cl | X ,Θ)

P (X |Θ) 4. However, in the last subsection we showed that, even if we assume knowledge

of the hidden component assignments of the labeled samples Vl, P (Cl | X ,Vl,Θ) is a prod-

uct of joint label subset distributions, associated with component-specific MRFs. It is typically

intractable to work directly with the joint distribution of an MRF, due to the partition func-

tion in its denominator, which sums over all possible joint realizations of class values of the

labeled samples. Our situation is more complicated because although we know that the joint

distribution over class labels factorizes as a product over terms associated with each mixture

component, the joint distributions P (C(j)
l | X ,Vl,Θ), j = 1, . . . , L are unknown – the MRFs

are only defined via the conditional distributions given by (2.4). One standard strategy for han-

dling intractabilities when performing learning or inference involving MRFs is to work with the

pseudo-likelihood function [13], [103], rather than the true joint likelihood. For a collection

of statistically dependent random variables {A1, . . . , AN}, the pseudo-likelihood employs the

approximation P̃ (A1, . . . , AN ) =
N∏
i=1

P (Ai | {Am : m 6= i}). The pseudo-likelihood approxi-

mation applied to our problem gives:

P̃ (Cl | X ,Vl,Θ) =

Nu+Nl∏
i=Nu+1

P (Ci = ci | {cm :m ∈ Il\{i}},X ,Vl,Θ). (2.6)

Note, conveniently, that the required conditional probabilities in (2.6) are precisely those given

in (2.4). In what follows, we develop a generalized EM algorithm [52], [119], [59] to estimate

the model parameters Θ to maximize the data pseudo-log-likelihood. Approaches that employ

maximum pseudo-likelihood for paramater estimation can also be found in [67] and [139].
4We have included Θ in the set of conditioning variables of the joint-probabilities in order make the dependence

on the parameters explicit during the estimation process. This also allows for an extension to MAP estimation, where
the parameters are treated as random variables with a prior probability distribution P (Θ).
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2.3.3 Complete Data Pseudo-Log-Likelihood

Based on our model’s stochastic data generation, it is natural to choose the mixture components

{Vj | i, ∀j ∈ [L], ∀i ∈ [Nu+Nl]} as the hidden (latent) variables within the EM framework [48],

[111]. The complete data likelihood of our model can be written as

P (X , Cl,V |Θ) = P (Cl | X ,V,Θ) P (X ,V |Θ)

= P (Cl | X ,Vl,Θ)

Nu+Nl∏
i=1

L∏
j=1

(αj fX | j(xi | θj))
Vj | i .

Invoking the pseudo-likelihood approximation for P [Cl | X ,Vl,Θ] and taking logarithm, we get

the complete data pseudo-log-likelihood for our model:

log P̃ (X , Cl,V |Θ) =

Nu+Nl∑
i=1

L∑
j=1

Vj | i log[αjfX | j(xi | θj)]

+

Nu+Nl∑
i=Nu+1

logP (Ci = c | {cm : m ∈ Il\{i}},X ,Vl,Θ)

=

Nu+Nl∑
i=1

L∑
j=1

Vj | i log[αjfX | j(xi | θj)] (2.7)

+

Nu+Nl∑
i=Nu+1

L∑
j=1

Vj | i log
[
δ (Mj,ci(i) > 0) Rj,i(ci | Cl,X ,Vl) + δ (Mj,ci(i) = 0) βci | j

]
.

2.3.4 Generalized EM Algorithm

For our model, the joint posterior distribution of the latent variables conditioned on the observed

data is given by 5

P (V |X , Cl,Θ) =
P (Cl | X ,Vl,Θ) P (X ,V |Θ)∑
V
P (Cl | X ,Vl,Θ) P (X ,V |Θ)

.

Even if we apply the pseudo-likelihood approximation to P (Cl | X ,Vl,Θ), the normalization

term in the denominator and the expectations with respect to this distribution will not be tractable

to compute in general (unless the labeled samples are very sparse) because of the non-linear de-

5We use
∑
V

as a shorthand notation for
∑

V 1∈∆

∑
V 2∈∆

· · ·
∑

V
Nu+Nl

∈∆

, where ∆ is the set of all {0, 1}-valued tuples

of size L such that in each tuple exactly one of the values is 1 and the rest are 0, and V i = [V1 | i, . . . , VL | i]
T is the

vector of latent variables of sample i.
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pendence of the RNN terms Rj,i(ci | Cl,X ,Vl) on Vl – the latent variables associated with the

labeled samples. One way to circumvent this problem is to treat the latent variables associated

with the labeled samples Vl as unknown deterministic variables (parameters) rather than as ran-

dom variables. There is precedence for such treatment, both in proposals to maximize a mixture

model’s complete data log-likelihood [85], [14], as well as from K-means clustering, which

also effectively treats data assignments to clusters as binary (0-1) variables to optimize6. In our

case, such treatment greatly assists development of a tractable estimation and class inference

procedure. Based on this assumption, and making use of the fact that the labeled samples are

independent of Vu, the posterior distribution over Vu conditioned on the observed data is given

by

P (Vu | X , Cl,Θ) = P (Vu | Xu,Xl,Θ) =
P (Xu,Vu |Θ)P (Xl |Θ)∑
Vu

P (Xu,Vu |Θ)P (Xl |Θ)
=

P (Xu,Vu |Θ)∑
Vu

P (Xu,Vu |Θ)

=

Nu∏
i=1

L∏
j=1

(αj fX | j(xi | θj))
Vj | i

Nu∏
i=1

∑
V i∈∆

L∏
j=1

(αj fX | j(xi | θj))
Vj | i

=

Nu∏
i=1

L∏
j=1

P [Vj | i = 1 |xi,Θ]Vj | i , (2.8)

where

P [Vj | i = 1 |xi,Θ] =
αj fX | j(xi | θj)
L∑
k=1

αk fX | k(xi | θk)

, ∀j ∈ [L], ∀i ∈ [Nu] (2.9)

is the standard component posterior of a mixture model.

The incomplete data pseudo-log-likelihood of our model, corresponding to the complete data

pseudo-log-likelihood (2.7), is given by

log P̃ (X , Cl |Θ) = log
∑
Vu

P̃ (X , Cl,V |Θ)

= log
∑
Vu

P̃ (Cl | X ,Vl,Θ)

Nu∏
i=1

L∏
j=1

(αjfX | j(xi | θj))
Vj | i

Nu+Nl∏
i=Nu+1

L∏
j=1

(αjfX | j(xi | θj))
vj | i


= log

P̃ (Cl | X ,Vl,Θ)

Nu∏
i=1

∑
V i∈∆

L∏
j=1

(αjfX | j(xi | θj))
Vj | i

Nu+Nl∏
i=Nu+1

L∏
j=1

(αjfX | j(xi | θj))
vj | i


6In fact, it can be shown that, for the squared Euclidean distance measure, the K-means algorithm maximizes

the complete data log-likelihood for a Gaussian mixture model with an isotropic component covariance matrix, σ2I,
shared by all components.
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=

Nu+Nl∑
i=Nu+1

L∑
j=1

vj | i log
[
δ (Mj,ci(i) > 0) Rj,i(ci | Cl,X ,Vl) + δ (Mj,ci(i) = 0) βci | j

]
+

Nu∑
i=1

log
L∑
j=1

αj fX | j(xi | θj) +

Nu+Nl∑
i=Nu+1

L∑
j=1

vj | i log[αj fX | j(xi | θj)]. (2.10)

We observe that this pseudo-log-likelihood function possesses a data exchangeability property,

i.e., it does not depend on the order in which samples are generated – both with respect to the

samples in X and, separately, with respect to the class labels in Cl. The model only requires that

the class labels be generated after first generating X . To find the maximum pseudo-likelihood

estimates of the parameters, we will use the generalized EM (GEM) algorithm, a variant of the

standard EM algorithm [52], [119], [59], which iteratively finds parameter estimates that mono-

tonically ascend in log P̃ (X , Cl |Θ) until a local maximum solution is found. The parameter

updates at each iteration of the GEM algorithm are found by maximizing (or increasing) a lower

bound of the incomplete data pseudo-log-likelihood, which is often easier to maximize. We next

present the E-step and the generalized M-step for our model. Note that since Vl are also unknown

parameters to be estimated, we augment Θ to include Vl.

2.3.4.1 E-step

Suppose Θ(t) are the parameter estimates at iteration t of the EM algorithm, the E-step first

computes the component posteriors for the unlabeled samples given by (2.9) (evaluated at Θ =

Θ(t)), and then finds an auxiliary lower bound of the incomplete data pseudo-log-likelihood

given by

Q(Θ,Θ(t)) = E[log P̃ (X , Cl,V |Θ) | X , Cl,Θ(t)] + H[P (Vu | X , Cl,Θ(t))] (2.11)

=
∑
Vu

P (Vu | X , Cl,Θ(t)) log P̃ (X , Cl,V |Θ)−
∑
Vu

P (Vu | X , Cl,Θ(t)) logP (Vu | X , Cl,Θ(t)),

where the first term is the expectation of the complete data pseudo-log-likelihood with respect

to the distribution P (Vu | X , Cl,Θ(t)), and the second term is the entropy of the distribution

P (Vu | X , Cl,Θ(t)). Since the distribution P (Vu | X , Cl,Θ(t)) has the factorized form (2.8), it is

straightforward to show that the final expression for these two terms is given by

E[log P̃ (X , Cl,V |Θ) | X , Cl,Θ(t)] =

Nu+Nl∑
i=Nu+1

L∑
j=1

vj | i log[αj fX | j(xi | θj)]

+

Nu∑
i=1

L∑
j=1

P [Vj | i = 1 |xi,Θ(t)] log[αj fX | j(xi | θj)]
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+

Nu+Nl∑
i=Nu+1

L∑
j=1

vj | i log
[
δ (Mj,ci(i) > 0) Rj,i(ci | Cl,X ,Vl) + δ (Mj,ci(i) = 0) βci | j

]
,

and

H[P (Vu | X , Cl,Θ(t))] = −
Nu∑
i=1

L∑
j=1

P [Vj | i = 1 |xi,Θ(t)] logP [Vj | i = 1 |xi,Θ(t)].

When evaluated at Θ(t), the lower bound will be exactly equal to the incomplete data pseudo-

log-likelihood, i.e., Q(Θ(t),Θ(t)) = log P̃ (X , Cl |Θ(t)).

2.3.4.2 Generalized M-step

The standard M-step of the EM algorithm at iteration t would involve solving the problem

Θ(t+1) = arg maxΘQ(Θ,Θ(t)). However, finding a joint closed form maximum with respect

to all the parameters is not tractable because of the complex dependence of Q(Θ,Θ(t)) on the

parameters Vl and aj , j ∈ [L]. The GEM algorithm handles this problem using a generalized M-

step instead of the standard M-step. The generalized M-step considers, in turn, different param-

eter subsets, and optimizes these given all other parameters in Θ held fixed. Each such optimiza-

tion, and hence the sequence of such optimizations is non-decreasing in Q(Θ,Θ(t)), and hence

also non-decreasing in its upper bound log P̃ (X , Cl |Θ) [111], [119]. Below, we specify the gen-

eralized M-step for multivariate Gaussian component densities, i.e., fX | j(x | θj) = N (x ;µ
j
,Σj),

which is the model we will use in the experimental evaluation of our method.

Update of {αj} and {θj}:
It is straightforward to derive closed-form M-step updates for the mixture model parameters {αj ,
∀j ∈ [L]} and {θj = (µ

j
,Σj), ∀j ∈ [L]} which globally maximize Q(Θ,Θ(t)), given all other

parameters held fixed. These updates are given by:

α
(t+1)
j =

Nu∑
i=1

P [Vj | i = 1 |xi,Θ(t)] +

Nu+Nl∑
i=Nu+1

v
(t)
j | i

Nu +Nl
, ∀j ∈ [L], (2.12)

µ(t+1)
j

=

Nu∑
i=1

P [Vj | i = 1 |xi,Θ(t)] xi +

Nu+Nl∑
i=Nu+1

v
(t)
j | i xi

(Nu +Nl) α
(t+1)
j

, ∀j ∈ [L], (2.13)
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Σ
(t+1)
j =

Nu∑
i=1

P [Vj | i = 1 |xi,Θ(t)] (xi − µ(t+1)
j

)(xi − µ(t+1)
j

)T

(Nu +Nl) α
(t+1)
j

+

Nu+Nl∑
i=Nu+1

v
(t)
j | i (xi − µ(t+1)

j
)(xi − µ(t+1)

j
)T

(Nu +Nl) α
(t+1)
j

, ∀j ∈ [L]. (2.14)

Update of scale parameters, {aj}:
Next, we need to maximize Q(Θ,Θ(t)) over the {aj} parameters, given all other parameters

fixed at {{α(t+1)
j }, {θ(t+1)

j }, {v(t)
j | i}}. Since it is not possible to find closed form M-step updates

for these parameters, we use gradient ascent to find updated values a(t+1)
j , ∀j ∈ [L] which

increase the function Q(Θ,Θ(t)). Note that the term which depends on the scale parameters

is the same in both Q(Θ,Θ(t)) and the incomplete data pseudo-log-likelihood log P̃ (X , Cl |Θ).

Hence, maximizing one with respect to the scale parameters is equivalent to maximizing the

other.

Update of the {vj | i} variables:

Next, given the fixed set of parameters, {{α(t+1)
j }, {θ(t+1)

j }, {aj(t+1)}}, we maximize the func-

tion Q(Θ,Θ(t)) over the assignments of labeled samples to components, {vj | i, ∀j ∈ [L],

∀i ∈ Il}. Note that for this parameter subset also, maximizing Q(Θ,Θ(t)) is equivalent to

maximizing log P̃ (X , Cl |Θ). If vj | i are treated as binary variables taking values {0, 1}, with

the constraint that
∑L

j=1 vj | i = 1, ∀i ∈ Il, then joint maximization would require a search over

LNl values, which is typically intractable. A tractable approach to solve this problem would be

to maximize Q(Θ,Θ(t)) (or equivalently log P̃ (X , Cl |Θ)) cyclically, visiting one labeled sam-

ple at a step and choosing its optimal component assignment, while the component assignments

of the other labeled samples are held fixed. Each such step requires only a search over L values.

The component assignments of labeled samples are iteratively optimized in this fashion (with

some randomization in the order) until a complete sweep over all the labeled samples leads to

no change of component assignments (i.e., a local maximum of Q(Θ,Θ(t)) is obtained). This

cyclical optimization is akin to discrete optimization approaches previously taken, for example,

in [13] and [59]. Another tractable approach for optimizing these variables is as follows. We can

treat the variables vj | i as probabilities and without loss of representation power parameterize

them using softmax functions [21], [120], i.e., vj | i = ewj,i∑L
k=1 e

wk,i
. We can jointly optimize the

real-valued variables {wj,i, ∀j ∈ [L], ∀i ∈ Il} via gradient ascent on Q(Θ,Θ(t)), again with

all other parameters in Θ held fixed. In our experiments, we only evaluated the former discrete
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optimization approach.

Having fully described the parameter estimation method for our model given a data set with

labeled and unlabeled samples, we next look at class inference based on our model.

2.3.5 Class inference

Denote a new test sample that needs to be classified according to our model as xn, where n =

Nu + Nl + 1 (for notational convenience). To perform inductive inference on xn, we would

like to evaluate the posterior probability P (Cn = cn | X , Cl, xn,Θ), which conditions on all

available information, and choose the class which maximizes this posterior. Typically, there is

a unique maximum a posteriori decision rule. However, for our NFGL model we can derive

two distinct class inference rules. Fundamentally, we derive two different rules because there

are two different subsets of data generated by the NFGL model – the labeled and unlabeled

subsets – with a different stochastic data generation mechanism for each of these types of data.

Accordingly, there is also a different class posterior probability for samples belonging to each

of these two types. Thus, the inference rule depends on whether we interpret a test sample as a

sample belonging to the labeled data subset or to the unlabeled data subset.

Test sample is part of labeled data subset:

First, suppose that the test sample is from the labeled subset, albeit with its class label Cn and

mixture component of origin Vj |n, ∀j unknown (missing). Essentially, in this case, we consider

Cn to be part of the undirected graph (MRF) on C′l = Cl ∪ {Cn}. The exact class posterior,

i.e., the probability of Cn given xn and all other observed data is given by:

P (Cn = cn | X , xn, Cl,Θ) =
P
(
Cl, Cn = cn | X , xn,Θ

)
Nc∑
k=1

P
(
Cl, Cn = k | X , xn,Θ

) . (2.15)

Note that although the mixture components of all the labeled samples, Vl, are not explicit in

the conditioning information of the class posterior, they are available as part of the estimated

parameter set Θ. Since the mixture component for the test sample vj |n, ∀j is not known,

it has to be marginalized out. Defining X ′ = X ∪ {xn} , V ′l = Vl ∪ {vj |n, ∀j ∈ [L]},
and observing that for our stochastic data generation method the mixture component of the test

sample is independent of X , we get

P
(
Cl, Cn = cn | X , xn,Θ

)
=

L∑
j=1

P
(
Cl, Cn = cn | vj |n = 1,X , xn,Θ

)
P (vj |n = 1 | X , xn,Θ)
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=
L∑
j=1

P
(
Cl, Cn = cn | vj |n = 1,X ′,Θ

)
P (vj |n = 1 |xn,Θ),

where P (vj |n = 1 |xn,Θ) is the standard mixture component posterior given by (2.9). Exact

computation of these probabilities is not possible because it involves the joint distribution of the

MRF on C′l . However, we can derive an approximate posterior probability, again based on the

pseudo-likelihood [13], [103], as follows:

P̃
(
Cl, Cn = cn | X , xn,Θ

)
=

L∑
j=1

P (vj |n = 1 |xn,Θ)

Nu+Nl+1∏
i=Nu+1

P (Ci = ci | C′l\{ci},X
′
, vj |n = 1,Θ).

Comparing with (2.4) and reconciling the notational differences, it should be clear that

P (Ci = ci | C′l\{ci},X
′
, vj |n = 1,Θ)

=

L∏
k=1

[
δ (Mk,ci(i) > 0) Rk,i(ci | C′l, X

′
, V ′l) + δ (Mk,ci(i) = 0) βci | k

]vk | i
.

In this case the resulting class posterior and inference is approximate because we are using the

pseudo-likelihood approximation in place of the joint probability of the MRF on C′l .

Test sample is part of unlabeled data subset:

Next, consider the case where we treat the test sample as belonging to the unlabeled data subset

Xu. What this means is that, we are assuming that the test sample is generated in the same way

as any other sample from the unlabeled data subset (i.e., i.i.d., according to the mixture density).

Also, Cn is not a part of the MRF on the class labels of labeled samples. Now, it is of course

true that the NFGL model does not hypothesize class label generation for samples from the

unlabeled subset. However, under the assumption that the class labels for Xu are generated after

Cl, consistent with the conditional MRF rule (2.4), an exact class posterior probability exists for

the unlabeled samples, and is given by

P (Cn = cn | X , xn, Cl,Θ)

=

L∑
j=1

P (Cn = cn | X
′
, Cl, vj |n = 1,Θ)P (vj |n = 1 | X , xn, Cl,Θ)

=
L∑
j=1

P (vj |n = 1 |xn,Θ)P (Cn = cn | X
′
, Cl, vj |n = 1,Θ), (2.16)
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where P (vj |n = 1 |xn,Θ) is given by (2.9) and

P (Cn = cn | X
′
, Cl, vj |n = 1,Θ)

= δ (Mj,cn(n) > 0)

Nu+Nl∑
i=Nu+1:
ci=cn

vj | i e
−aj ‖xi−xn‖2

Nu+Nl∑
i=Nu+1

vj | i e
−aj ‖xi−xn‖2

+ δ (Mj,cn(n) = 0) βcn | j .

In summary, fundamentally there are two natural class inference rules for NFGL because

one can interpret a test sample as being generated either according to the labeled subset or the

unlabeled subset. As will be seen in the sequel, although it may be counter-intuitive, there are

reasons for preferring the latter posterior (2.16) in practice.

2.4 A Parametric Fine-Grained Labeling Model (PFGL)

2.4.1 Problems with NFGL at Very Low Labeled Fractions

The NFGL model proposed in the previous section is a sound fine-grained framework, with

some desirable properties like being non-parametrically capable of varying the complexity of its

class posterior probability within mixture components, based on the number and variety of class

labels (of labeled samples) that are generated (or explained) by the components. However, as we

had foreshadowed earlier in section 2.3.1, when the number of labeled samples is very small the

RNN class posterior (2.5) can take a value 0 or become undefined. We used the fixed component

conditional class probabilities of the MOE model [122] as a “fall-back” to handle such cases.

We now consider, in more detail, such scenarios where the number of labeled samples is very

small, to bring out certain limitations of the NFGL method. Specifically, first, consider the case

where there is a single labeled sample (xi1 , ci1) generated by a given component j. Now, by

inspecting (2.5), recognize that in evaluating the conditional probability for ci1 , the sums in both

the numerator and the denominator on the right hand side necessarily exclude i1. The implication

is thatRj,i1(c | Cl,X ,Vl) evaluates to zero divided by zero, for all classes, including the true class

ci1 . Next consider a related but distinct scenario wherein, within component j, there are only

two labeled samples (xi1 , 1) and (xi2 , 2) from different classes denoted by 1 and 2 here. Again

by inspecting (2.5), we find that Rj,i1(1 | Cl,X ,Vl) = 0 and, likewise, Rj,i2(2 | Cl,X ,Vl) = 0.

In this case, if both x1 and x2 are well explained by component j, then we would expect the

MOE model of [122] to estimate values of β1 | j ≈ 0.5 and β2 | j ≈ 0.5. Although this is a well-
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defined solution for the class probabilities within component j, it is not a fine-grained solution

– one where points from component j in the neighborhood of xi1 have a high probability for

class 1 and points from component j in the neighborhood of xi2 have a high probability for class

2. Moreover, similar results will occur in scenarios where, within a given component, there are

single labeled sample representatives from multiple classes. While it may be argued that these

are extreme cases, this in fact will be a fairly common scenario when the fraction of labeled data

is very small and there are multiple classes in the data. Moreover, such scenarios are the reason

why semi-supervised learning (rather than supervised learning) may be needed in the first place.

Accordingly, in this section we propose an alternative to NFGL’s (non-parametric) RNN

model (2.4) that does not suffer from these limitations when there is labeled sample sparsity.

These limitations are avoided by invoking a parametric within-component posterior. As dis-

cussed in section 2.3.1, there are many possible choices for parametric posterior models. For

concreteness and to make explicit some connection to the NFGL method from the previous sec-

tion, we will focus on a particular posterior model – a randomized nearest prototype (RNP)

posterior:

P (C = c |Vj | i = 1, xi, φj) =

N(j)∑
l=1:

m
(j)
l =c

e−aj ||xi−s
(j)
l ||

2

N(j)∑
l=1

e−aj ||xi−s
(j)
l ||

2

, ∀c ∈ C, ∀j ∈ [L] (2.17)

where N (j) is the number of prototypes and φj is the parameter set of the RNP posterior for

component j. As before, V i = [V1 | i, . . . , VL | i]
T specifies the mixture component of sample xi,

with Vj | i taking a value 1 (0) according to whether to sample xi was generated (not generated)

by component j. The RNP posterior of each component j ∈ [L] has a scale parameter aj > 0,

N (j) prototype vectors s(j)
l ∈ Rd, l = 1, . . . , Nj , and an index mapping of prototype vectors to

classes m(j)
l ∈ C, l = 1, . . . , N (j), where m(j)

l is the class to which the prototype s(j)
l belongs.

Accordingly, the set of adjustable parameters of the RNP posterior for component j is φj =

{aj , {m(j)
l , s

(j)
l | l ∈ [N (j)]}}. Note that as aj → ∞, (2.17) converges to a nearest-prototype

decision rule [91], [157] within component j. Also, note that unlike (2.5), (2.17) is always well-

defined so long as N (j) ≥ 1, and (2.17) will not assign zero probability to a class that possesses

only a single prototype within a given component. However, unlike (2.5), (2.17) generally does

require model order selection to choose the number of prototypes, N (j) in the class posterior for

each component. In section 2.4.5, we will describe a methodology for judiciously selecting the

model order complexity.



50

2.4.2 Stochastic Data Generation

Associated with the component conditional class posterior model (2.17), there is a natural, sim-

ple stochastic data generation mechanism, as follows:

1) Independently, for each unlabeled sample xi ∈ Xu:

i) randomly select a mixture component j (i.e., Vj | i = 1) according to {αk, ∀k ∈ [L]}.
ii) randomly generate xi according to fX | j(x | θj).

2) Independently, for each labeled sample (xi, ci) ∈ Xl:
i) randomly select a mixture component j (i.e., Vj | i = 1) according to {αk, ∀k ∈ [L]}.
ii) randomly generate xi according to fX | j(x | θj).

iii) randomly select the class label ci according to the component-conditional RNP posterior

{P (C = c |Vj | i = 1, xi, φj), ∀c ∈ C} specified in (2.17).

Clearly, this is a fine-grained extension of the stochastic data generation in [122].

2.4.3 Incomplete and Complete Data Log-likelihood

Denote the set of all model parameters by Θ = {αj , θj , φj | j ∈ [L]}. The latent variable

associated with each sample (indexed) i is its mixture component of origin V i. Denote the set

of all latent variables by V}, the set of latent variables associated with unlabeled samples by Vu,

and the set of latent variables associated with labeled samples by Vl. Based on the stochastic

data generation of our model, the incomplete data log-likelihood and the complete data log-

likelihood [48] are given respectively by

logP (Xl,Xu |Θ) = logP (Xu |Θ) + logP (Xl |Θ)

= log

Nu∏
i=1

L∑
j=1

(αj fX | j(xi | θj))

+ log

Nu+Nl∏
i=Nu+1

L∑
j=1

(αj fX | j(xi | θj) P (C = ci |Vj | i = 1, xi, φj))

=

Nu∑
i=1

log

L∑
j=1

(αj fX | j(xi | θj))

+

Nu+Nl∑
i=Nu+1

log

L∑
j=1

(αj fX | j(xi | θj) P (C = ci |Vj | i = 1, xi, φj)) (2.18)

and

logP (Xl,Xu,V |Θ) = logP (Xu,Vu |Θ) + logP (Xl,Vl |Θ)



51

= log

Nu∏
i=1

L∏
j=1

(αj fX | j(xi | θj))
Vj | i

+ log

Nu+Nl∏
i=Nu+1

L∏
j=1

(αj fX | j(xi | θj) P (C = ci |Vj | i = 1, xi, φj))
Vj | i

=

Nu∑
i=1

L∑
j=1

Vj | i log(αj fX | j(xi | θj))

+

Nu+Nl∑
i=Nu+1

L∑
j=1

Vj | i log(αj fX | j(xi | θj) P (C = ci |Vj | i = 1, xi, φj)). (2.19)

Note that this model possesses full sample exchangeability, i.e., data samples can be generated

independently in any order. Given a model of fixed size (number of components and number of

prototypes per component), we seek to estimate its parameters by maximum likelihood estima-

tion. Unlike the NFGL model, where we estimate the parameters by maximizing the incomplete

data pseudo-log-likelihood, here it is possible to estimate the parameters by directly maximizing

the incomplete data log-likelihood (2.18).

2.4.4 Generalized EM Algorithm

In order to maximize the incomplete data log-likelihood, we will apply the GEM algorithm [52],

[119], [59] (as we did for the NFGL model), which iteratively finds parameter estimates that

monotonically ascend in the incomplete data log-likelihood by maximizing (or increasing) an

auxiliary lower bound function, until a local maximum solution is found. Before specifying the

E-step and the generalized M-step for our model, we find a expression for the joint posterior

distribution of the latent variables V conditioned on the data and the parameters. Using (2.18)

and (2.19), it can be shown that

P (V |Xu,Xl,Θ) =
P (Xl,Xu,V |Θ)

P (Xl,Xu |Θ)
=

elogP (Xl,Xu,V |Θ)

elogP (Xl,Xu |Θ)

=

Nu∏
i=1

L∏
j=1

P (Vj | i = 1 |xi,Θ)Vj | i
Nu+Nl∏
i=Nu+1

L∏
j=1

P (Vj | i = 1 |xi, ci,Θ)Vj | i , (2.20)

where ∀j ∈ [L], i = 1, . . . , Nu

P [Vj | i = 1 |xi,Θ] =
αj fX | j(xi | θj)
L∑
k=1

αk fX | k(xi | θk)

(2.21)
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and ∀j ∈ [L], i = Nu + 1, . . . , Nu +Nl

P [Vj | i = 1 |xi, ci,Θ] =
αj fX | j(xi | θj) P (C = ci |Vj | i = 1, xi, φj)

L∑
k=1

αk fX | k(xi | θk) P (C = ci |Vk | i = 1, xi, φk)

. (2.22)

2.4.4.1 E-step

Suppose Θ(t) are the parameter estimates at iteration t of the EM algorithm, the E-step first

computes the component posteriors for the unlabeled and labeled samples given by (2.21) and

(2.22) (evaluated at Θ = Θ(t)), and then finds an auxiliary lower bound of the incomplete data

log-likelihood given by

Q(Θ,Θ(t)) = E[logP (Xl,Xu,V |Θ) | Xl,Xu,Θ(t)] + H[P (V |Xu,Xl,Θ(t))] (2.23)

=
∑
V

P (V |Xu,Xl,Θ(t)) logP (Xl,Xu,V |Θ)−
∑
V

P (V |Xu,Xl,Θ(t)) logP (V |Xu,Xl,Θ(t)),

where the first term is the expectation of the complete data log-likelihood with respect to the dis-

tributionP (V |Xu,Xl,Θ(t)), and the second term is the entropy of the distributionP (V |Xu,Xl,Θ(t)).

Since P (V |Xu,Xl,Θ(t)) has the factorized form (2.20), it is straightforward to show that the fi-

nal expression for these two terms is given by

E[logP (Xl,Xu,V |Θ) | Xl,Xu,Θ(t)] =

Nu∑
i=1

L∑
j=1

P (Vj | i = 1 |xi,Θ(t)) log[αj fX | j(xi | θj)]

+

Nu+Nl∑
i=Nu+1

L∑
j=1

P (Vj | i = 1 |xi, ci,Θ(t)) log(αj fX | j(xi | θj) P (C = ci |Vj | i = 1, xi, φj))

and

H[P (V |Xu,Xl,Θ(t))] = −
Nu∑
i=1

L∑
j=1

P (Vj | i = 1 |xi,Θ(t)) logP (Vj | i = 1 |xi,Θ(t))

−
Nu+Nl∑
i=Nu+1

L∑
j=1

P (Vj | i = 1 |xi, ci,Θ(t)) logP (Vj | i = 1 |xi, ci,Θ(t)).

When evaluated at Θ(t), the lower bound will be exactly equal to the incomplete data log-

likelihood, i.e., Q(Θ(t),Θ(t)) = logP (Xl,Xu |Θ(t)).

2.4.4.1 Generalized M-step
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In the generalized M-step, we update the parameters to Θ(t+1) such that Q(Θ(t+1),Θ(t)) ≥
Q(Θ(t),Θ(t)) = logP (Xl,Xu |Θ(t)). A generalized M-step, rather than a single M-step, is re-

quired because of the complicated dependence of Q(Θ,Θ(t)) on the prototype vectors and scale

parameters. As mentioned earlier, the generalized M-step considers, in turn, different parameter

subsets, and optimizes these given all other parameters in Θ held fixed. Each such optimiza-

tion, and hence the sequence of such optimizations will be non-decreasing in Q(Θ,Θ(t)), and

hence also non-decreasing in logP (Xl,Xu |Θ). Below, we specify the generalized M-step for

Gaussian component densities, i.e., fX | j(x | θj) = N (x ;µ
j
,Σj)

Update of {αj} and {θj}:
It is straightforward to derive closed-form M-step updates for the mixture model parameters {αj ,
∀j ∈ [L]} and {θj = (µ

j
,Σj), ∀j ∈ [L]} which globally maximize Q(Θ,Θ(t)), given all other

parameters held fixed. These updates are given by:

α
(t+1)
j =

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) +

Nu+Nl∑
i=Nu+1

P (Vj | i = 1 |xi, ci,Θ(t))

Nu +Nl
, (2.24)

µ(t+1)
j

=

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) xi +

Nu+Nl∑
i=Nu+1

P (Vj | i = 1 |xi, ci,Θ(t)) xi

(Nu +Nl) α
(t+1)
j

, (2.25)

Σ
(t+1)
j =

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) (xi − µ(t+1)
j

)(xi − µ(t+1)
j

)T

(Nu +Nl) α
(t+1)
j

+

Nu+Nl∑
i=Nu+1

P (Vj | i = 1 |xi, ci,Θ(t)) (xi − µ(t+1)
j

)(xi − µ(t+1)
j

)T

(Nu +Nl) α
(t+1)
j

. (2.26)

Update of prototype vectors and scale parameters:

It is not possible to find a closed form solution for the prototype vectors {s(j)
l , ∀l ∈ [N (j)]},

∀j ∈ [L] which maximizes Q(Θ,Θ(t)). This is also the case for the scale parameters aj , ∀j ∈
[L]. Hence, we optimize these parameters via gradient ascent applied directly on the data log-

likelihood logP (Xl,Xu |Θ). The class affiliations of the prototype vectors m(j)
l , ∀l ∈ [N (j)],
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∀j ∈ [L] are carefully initialized as discussed in section 2.4.5, but we do not perform a discrete

optimization of these parameters in the generalized M-step. First, we optimize the prototype

vectors with all other parameters (including the scale parameters) kept fixed at their current val-

ues, and subsequently optimize the scale parameters with all the other parameters (including the

prototype vectors) fixed at their current values. Although the generalized M-step only requires

that the updates on the parameter subsets be non-decreasing in the auxiliary functionQ(Θ,Θ(t)),

we can also find parameter updates which are non-decreasing in the original data log-likelihood

objective. Such an extension of the EM algorithm, called the Expectation/Conditional Maximi-

sation Either (ECME) algorithm, has been shown to have faster convergence properties [106]. In

order to ensure that the M-step updates of ECME monotonically increase the data log-likelihood,

the only requirement is that the parameter updates which are based on the data log-likelihood

be performed at the end, after all the parameter updates which are based on the auxiliary lower

bound have been performed first [106], [145]. Indeed, the sequence of parameter updates pro-

posed here satisfy this requirement.

2.4.5 Overall Learning Strategy

The GEM algorithm just specified assumes that both the number of prototypes and their class

affiliations have already been chosen. Here, we describe an overall learning framework that

integrates the EM steps specified above with a heuristic strategy for incrementally “growing”

a suitable level of class posterior model complexity (neither too few, nor too many prototypes)

within each mixture component. This framework consists of the following steps:

Step 1: Learn an MOE model for the data

We first learn a standard Gaussian mixture model, using the Bayesian Information Criterion

(BIC) [152] to select the number of components. This is used to initialize the parameters for the

EM algorithm in [122], applied to learn an MOE model.

Step 2: Single prototype per-class assignment

For each mixture component j ∈ [L] we first allocate one prototype for every class k ∈ C
that satisfies βk | j > ε 7, i.e., for every class at least partially represented by one or more labeled

samples within the component. The prototype for class k is initialized with the weighted average

of the feature vectors of all labeled samples with class label k, where the weight of a labeled

sample (xi, ci) is its component posterior P (Vj | i = 1 |xi, ci,Θ) based on the MOE model.

Note that for a class-pure component (βk∗ | j = 1), this reduces to a single prototype being

assigned, with this component essentially modeled according to hard-MOE [135], i.e., m(j)
1 =

7We choose a small positive constant ε � 1 that sets a noise level to determine the value of βk | j below which a
prototype for class k (associated with component j) is not allocated.
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k∗. We then optimize all the (just initialized) prototype vectors via gradient ascent applied to the

incomplete data log-likelihood (2.18), while keeping all other model parameters fixed at their

current values.

Step 3: Sequentially introduce additional prototypes

We would like to introduce additional prototypes where they are needed, within highly class-

heterogeneous components. Accordingly, we propose a sequential model growing algorithm

for adding prototypes and optimizing their locations. At each step, the algorithm considers, as

new candidate (initialized) prototypes, the full set of labeled samples Xl, and couples each such

candidate (xi, ci), i = Nu+ 1, . . . , Nu+Nl with all mixture components “within its vicinity”,

i.e., with all components j ∈ [L] such that P [Vj | i = 1 |xi, ci,Θ] > τ 8. In other words,

we trial-create additional candidate prototypes s
(j)

N(j)+1
= xi, i = Nu + 1, . . . , Nu + Nl ,

where m
(j)

N(j)+1
= ci , for all components j ∈ [L] “in the vicinity” of xi as specified above.

For each candidate index pair (i, j), we evaluate the data log-likelihood (2.18) that results when

the candidate prototype is included in the model, and we identify the best candidate index pair

(i∗, j∗). To best evaluate this pair, we further perform trial-optimization of all the prototypes

within component (j∗) (including this chosen best candidate initialized at the labeled sample),

along with adjustment of the scale parameter aj∗ (which we discuss subsequently). We then

evaluate the resulting candidate new model’s BIC cost [152], which is the sum of the negative

data log-likelihood (2.18) and the codelength (or model description length) required to specify

all free parameters in the model, Θ 9. The trial optimized candidate prototype is only accepted

into the model if the new BIC cost (based on inclusion of the candidate prototype) is lower than

the current model’s BIC cost (without the inclusion of the candidate prototype). We specify the

following codelength (or model description length) for the PFGL model consistent with unique

decodability:

CC(L, {N (j)},Θ) =
(L− 1)

2
log(Nu +Nl) +

1

2

L∑
j=1

Γ(θj) log(Nu +Nl) +
L

2
logNl

+

(
d

2
logNl + log |C|+ logL

) L∑
j=1

N (j) ,

8The value of τ ∈ (0, 1) determines how strongly a labeled sample (xi, ci) has to be associated with a component
j, so that xi may be considered as a candidate prototype initialization for component j (with class affiliation ci).

9BIC can be interpreted using the Minimum Description Length (MDL) principle [63], [5] as a two part code-
length, with the first part being the codelength required to specify the model parameters, and the second part being
the codelength required to specify the data given the model. The codelength required to specify the model parameters
should be efficient and consistent with unique decodability [63]. The codelength for specifying the data given the
model is simply the negative log-likelihood of the data under the model. Similar approaches for specifying the model
complexity can also been found in [59] and [124].
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where the first term is the codelength for the component masses, the second term is the code-

length for the free parameters in the component densities (Γ(θj) is the number of free parameters

in θj 10), and the third term is the codelength for the scale parameters {aj} in the RNP class pos-

terior. In the last term, d2 logNl is the codelength for each prototype vector (of dimension d),

log |C| is the codelength needed to specify the class of the prototype (assuming each class is

equally likely with probability 1/|C|), and logL is the codelength needed to specify the mixture

component with which the prototype is associated (assuming each component is equally likely

with probability 1/L). Note that the codelength of a single continuous valued parameter in the

BIC framework is 1
2 log n, where n = Nl for the parameters of the RNP class posterior which

explain only the labeled data, and n = Nu+Nl for the mixture model parameters which explain

both the labeled and the unlabeled data.

The trial optimization of the prototype vectors {s(j∗)
l , l = 1, . . . , N (j∗) + 1} is done via

gradient ascent applied to the incomplete data log-likelihood (2.18), while keeping all other

model parameters, including aj∗ , held fixed at their current values. Note that fixing aj∗ ensures

non-zero gradients, so that the prototypes can be adjusted to new (locally optimal) locations,

accommodating s(j∗)
Nj∗+1. The motivation for fixing the parameters {αj , θj , ∀j ∈ [L]} during

this step is so that the learned components are not biased by the sequential fashion in which indi-

vidual components acquire enhanced class posterior models. In particular, one can imagine two

neighboring mixture components (A and B), which “own” labeled samples from the same class.

If a prototype for this class is added to component A (before component B), a re-optimization of

component A’s parameters at this juncture might allow component A to “steal” from component

B both labeled samples from this class as well as unlabeled samples in their vicinity, i.e., samples

which should “rightfully” belong to component B). Fixing all the component parameters in this

step prevents this potential source of sequential learning bias.

As mentioned above, we first hold aj∗ fixed while optimizing the prototypes. Subsequently,

we would like to trial “adjust” aj∗ to reflect the current level of uncertainty associated with

the assignment of samples to prototypes within this component. As one reasonable way to

measure this uncertainty, we suggest the following procedure. First, we model all the samples

(probabilistically) associated with component j∗ using an isotropic Gaussian mixture model,

consisting of N (j∗) (sub-)components (assuming N (j∗) has already been incremented by one to

reflect the addition of the candidate prototype), with the prototypes {s(j∗)
l , ∀l ∈ [N j∗ ]} fixed

as the sub-component means, and with unknown shared covariance matrix σ2
j∗I. We apply a

simple EM algorithm on the (weighted) samples belonging to component j∗ in order to estimate
10For a Gaussian mixture model with unrestricted component covariance matrices, Γ(θj) = d+d(d+1)/2, which

is the number of free parameters in the mean vector and the covariance matrix.
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the variance σ2
j∗ , where the sample weights wij∗ are given by the mixture component posteriors

(2.21) and (2.22). Based on this mixture model within component j∗, we can calculate the

weighted entropy of the (Gaussian mixture) sub-component posterior {P j
∗

l | i, ∀l ∈ [N (j∗)], ∀i ∈
[Nu +Nl]}, over all data points, via:

H = −
Nu+Nl∑
i=1

wij∗
N(j∗)∑
l=1

P j
∗

l | i logP j
∗

l | i.

We can also calculate the weighted entropy of the within-component prototype posterior, over

all data points, via:

H(aj∗) = −
Nu+Nl∑
i=1

wij∗
N(j∗)∑
l=1

P̂ j
∗

l | i log P̂ j
∗

l | i,

where

P̂ j
∗

l | i =
e−aj∗ ||xi−s

(j∗)
l ||2

N(j∗)∑
m=1

e−aj∗ ||xi−s
(j)
m ||2

, ∀l ∈ [N (j∗)], ∀i ∈ [Nu +Nl].

Finally, we use Newton’s method to solve for a positive aj∗ such that H(aj∗) = H . Each ad-

justment of the scale parameter aj∗ , following the addition of a new prototype, tends to further

increase aj∗ , which (properly) reflects the reduction in sample-to-prototype association uncer-

tainty, as each new prototype is added to j∗’s class posterior model.

New prototypes are sequentially added, in this fashion, until the best candidate no longer

reduces the BIC cost.

Step 4: Jointly optimize Θ:

Finally, after sequential within-component class posterior model growing is complete, we re-

optimize the entire set of model parameters, Θ, based on the Generalized EM algorithm speci-

fied earlier. As we mentioned earlier, this optimization should (in principle) include a discrete

optimization of the prototype-to-class assignments {m(j)
l , ∀l ∈ [N (j)]}, starting from the initial

assignments specified in Steps 2 and 3. However, we did not perform this discrete optimization

in this work.
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2.4.6 Class inference

Class inference for the PFGL model is very similar to the second inference rule for NFGL, given

in (2.16). Specifically, the class posterior for a new sample xn is:

P (Cn = c |xn,Θ) =
L∑
j=1

P (Vn | j = 1 |xn,Θ) P (Cn = c |Vn | j = 1, xn, φj), (2.27)

where P (Vn | j = 1 |xn,Θ) is the component posterior for the unlabeled samples given by (2.21).

The class value which maximizes P (Cn = c |xn,Θ) is the class prediction for xn.

2.5 Using regularized covariance matrix estimates

When the dimension of the data (number of features) d is large relative to the number of sam-

ples Nu + Nl, the maximum likelihood estimates of the covariance matrices of the component

Gaussian densities may not be well-conditioned (i.e., close to singular) 11. One way to handle

this problem is to introduce weak data-dependent conjugate priors on the component covariance

matrices, and find the maximum-a-posteriori (MAP) estimate of the component covariance ma-

trices [128]. We will see that this effectively regularizes the covariance matrix estimates. For the

covariance matrix of a multivariate Gaussian density, the Inverse Wishart density is a conjugate

prior [136], which makes it analytically tractable to find the posterior distribution and the MAP

estimates. We will only introduce conjugate priors for the component covariance matrices, and

will assume that the other parameters have non-informative prior distributions, which ensure that

the MAP estimates are equal to the maximum likelihood estimates.

Suppose the Inverse Wishart prior distribution for the covariance matrix of component j ∈
[L] is given by

P (Σj ; Sj0, νj0) = κj |Σj |−
1
2

(νj0+d+1) e−
1
2
tr(Sj0 Σ−1

j ), ∀j ∈ [L], (2.28)

where κj is the normalizing constant of the Inverse Wishart density and tr(·) denotes the trace

of a matrix. The hyper-parameter Sj0 is a d×d positive definite matrix, and the hyper-parameter

νj0 ≥ d is usually called the degree of freedom of the Inverse Wishart density. We will discuss

how to choose these hyper-parameters shortly. First, we find an expression for the MAP estimate

of Σj for both the NFGL and the PFGL models. For the NFGL model, the objective function

11We may use a rule of thumb such as d/(Nu + Nl) > 0.1 to say that the dimension of the data is large relative
to the number of samples. But, the problem of singular covariance matrices may also manifest for smaller values of
this ratio.
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for MAP estimation is log P̃ (X , Cl |Θ) +
L∑
j=1

logP (Σj ; Sj0, νj0) , and for the PFGL model

it is logP (Xl,Xu |Θ) +
L∑
j=1

logP (Σj ; Sj0, νj0) . To find the generalized M-step updates, the

objective function is the lower bound Q(Θ,Θ(t)) +

L∑
j=1

logP (Σj ; Sj0, νj0) , where Q(Θ,Θ(t))

for the NFGL and PFGL models are given respectively by (2.11) and (2.23). It can be shown

that the portion of this objective function which depends on Σj , ∀j ∈ [L] can be expressed as

g(Σ1, . . . ,ΣL) = − 1

2

L∑
j=1

log |Σj | (Nj + Nj0) − 1

2

L∑
j=1

tr((S̄j + Sj0) Σ−1
j ), (2.29)

where Nj0 = νj0 + d + 1; Nj is given by the following expressions for the NFGL and PFGL

model respectively

Nj =

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) +

Nu+Nl∑
i=Nu+1

v
(t)
j | i

and

Nj =

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) +

Nu+Nl∑
i=Nu+1

P (Vj | i = 1 |xi, ci,Θ(t)) ;

and S̄j is given by the following expression for the NFGL and PFGL model respectively

S̄j =

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) (xi − µ(t+1)
j

)(xi − µ(t+1)
j

)T

+

Nu+Nl∑
i=Nu+1

v
(t)
j | i (xi − µ(t+1)

j
)(xi − µ(t+1)

j
)T

and

S̄j =

Nu∑
i=1

P (Vj | i = 1 |xi,Θ(t)) (xi − µ(t+1)
j

)(xi − µ(t+1)
j

)T

+

Nu+Nl∑
i=Nu+1

P (Vj | i = 1 |xi, ci,Θ(t)) (xi − µ(t+1)
j

)(xi − µ(t+1)
j

)T .

Here Nj is the probabilistic count of the number of samples belonging to component j, Nj0 can
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be taken to represent the prior count of samples belonging to component j, S̄j is the weighted

scatter matrix of the samples belonging to component j, and Sj0 can be taken to represent the

prior scatter matrix for component j.

By equating the matrix derivative of g(Σ1, . . . ,ΣL) with respect to Σj , j ∈ [L] to 0, we

can find its stationary point, which is also its global maximum. This gives the modified M-step

update for the covariance matrices (at iteration t) as

Σ
(t+1)
j =

S̄j + Sj0
Nj + Nj0

=
Nj

Nj + Nj0
Σ̄j +

Nj0
Nj + Nj0

Σj0

= (1− γj0) Σ̄j + γj0 Σj0 , ∀j ∈ [L]. (2.30)

In the above expression, Σ̄j = 1
Nj

S̄j is exactly equal to the M-step update of the covariance

matrix in the maximum likelihood setting (given by (2.14) for the NFGL model and (2.26) for

the PFGL model), Σj0 = 1
Nj0

Sj0 acts as a prior estimate of the covariance matrix, and γj0
=

Nj0

Nj+Nj0
∈ (0, 1). Thus, we see that Σj0 effectively regularizes the covariance matrix estimate

found by MLE, and the value of γj0 controls the extent or strength of the regularization [128].

Having specified the regularized M-step updates for the component covariances, the next

issue to be addressed is the choice of the hyper-parameters Σj0 and νj0. Instead of specifying

the value of νj0, we can equivalently specify Nj0 or γj0. One approach is to use cross-validation,

choosing the value of γj0 ∈ (0, 1) that maximizes the average data log-likelihood calculated

over the held out test folds. An alternative approach which requires less computation is the

Ledoit-Wolf shrinkage estimation [101], where a closed-form expression for γj0 is found by

minimizing the squared loss function. It is also possible to use Bayesian approaches to set the

hyper-parameters, but we will not discuss these approaches here. For the prior covariance matrix,

it is common to use the data dependent choice Σj0 = diag(Σ
(ml)
j ) [128] (or equivalently Sj0 =

Nj0 diag(Σ
(ml)
j )), where Σ

(ml)
j is the maximum likelihood estimate of Σj . For problems where

d is large relative to Nu +Nl, the MLE itself may be close to singular (which is the reason why

regularization is required in the first place) if the covariance matrix is unrestricted. For the

purpose of choosing Sj0, we can impose some restrictions on Σj , e.g., restrict it to be diagonal

or use a shared (but otherwise unrestricted) covariance matrix for all the components, and then

find the MLE based on just the unlabeled data using a standard EM algorithm for the mixture of

Gaussians.
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2.6 Relationship to Some Previous Methods

Our fine-grained methods “propagate” class label information from labeled to unlabeled samples

for the case where a mixture model distribution assumption for the feature vector is reasonable,

but where it may be unreasonable to assume that the mixture components (clusters) are class-

pure. In the sense of performing label propagation, our methods are loosely related to methods

that perform label propagation on graphs. Early such methods include [161] and [183]. Many

subsequent graph-based semi-supervised learning methods are discussed in [182]. Most of these

methods are particularly motivated by problems where the data points from the individual classes

lie on an underlying low dimensional manifold (which can be well-captured by a global graph

defined on all the data samples). By contrast, the proposed fine-grained modeling methods are

motivated by domains where the data points are well-modeled by a mixture density, and where

the distribution of classes within components can be heterogeneous (a non-trivial function of the

feature vector). The NFGL approach effectively defines an MRF with seperate, fully connected

sub-graphs (cliques) over the class labels of labeled samples that are generated from the same

mixture component. The method in [186] also combines graph-based semi-supervised learning

with mixture modeling. However, their method is quite different from ours. First, their model

is not generative, but rather discriminative – their mixture model is mainly used to reduce the

complexity of class inference on the (global) graph defined on all the data points. Second, they

method defines a global graph, while the NFGL method effectively defines separate sub-graphs

for each component/cluster. Third, while their approach is motivated by (and best suited for)

domains where the data points have an underlying manifold structure, our methods are best

suited for domains well-modeled by mixture distributions. The approach in [179] is also related

to the current work in that the inclusion of must-link and cannot-link constraints into the mixture

modeling entails optimization of a Markov random field potential function. Also, as discussed

in section 2.2, the current work derives motivation from and builds on the limitations of the

previous methods [122], [135], [154], extending them to achieve fine-grained within-component

class labeling.

2.7 Experimental Results

2.7.1 An Illustrative Example for NFGL

Figure 2.5 shows an illustrative two-dimensional example for NFGL, involving two ground-truth

Gaussian components and two classes, but with an XOR-like class structure embedded within

these two components. Note that a two-component mixture solution based on [135] will be
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necessarily poor since this method is restricted to learning class-pure components. The method

in [122] can learn the ground-truth mixture components, but only a crude class proportions

model within each mixture component. Figure 2.5 shows the BIC-selected 2-component NFGL

solution, which accurately captures both the ground-truth component structure and the within-

component class structure present in the data. Labeled samples are denoted by their class (1 or

2), and the shaded part is used to delineate the class decision boundary learned by NFGL.

Figure 2.5. A two-dimensional semisupervised example with two ground-truth Gaussian components
and an XOR-like class structure. Note that the NFGL solution captures both the ground-truth mixture
components and the XOR class structure in the data.

2.7.2 Experimental Protocol

We evaluated the classification accuracies of our nonparametric fine-grained labeling method

(NFGL, section 2.3) and parametric fine-grained labeling method (PFGL, section 2.4), in com-

parison with a number of conventional semi-supervised and supervised learning methods. For

the NFGL method, we have found (unsurprisingly) that the simpler, second class inference rule

(2.16), which treats a test sample as part of the unlabeled data subset, has better classification

performance. A possible reason why the first class inference rule does not have comparable per-

formance is because it uses the pseudo-likelihood approximation to find a tractable expression

for the class posterior. While the pseudo-likelihood is a commonly used framework for param-
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eter estimation, it is not commonly used for inference tasks. Also, the first class inference rule

(2.15) involves a product of terms over all labeled samples, which may lead to probabilities close

to zero at low labeled fractions (as discussed in section 2.4). Accordingly, we have used the class

inference based on (2.16) in all of our experiments.

The methods we have compared with include the following semi-supervised learning meth-

ods: the mixture of experts classifier (MOE) [122], the specialization of MOE with hard component-

to-class assignments (MOE-hard) [135], and within-component nearest neighbor (WC-NN) (sec-

tion 2.2). We also evaluated a variant of MOE-hard, which we call MOE-hard-plus. This method

is essentially the same as the MOE-hard method, but with the number of components increased

until the BIC cost of MOE-hard first exceeds the BIC cost of PFGL 12. Since the PFGL method

has a parametric within-component class posterior which allows it a greater model complexity,

in this way we allow for a roughly fair model complexity comparison between MOE-hard-plus

and PFGL. We also compared with the following purely supervised learning methods: linear and

Gaussian kernel support vector machines (SVMs) and K-nearest-neighber (KNN) classification.

We used eight real-world data sets from the UC Irvine (UCI) machine learning repository

[1], as summarized in Table 3.1. Moreover, the general trends in the results we will present here

(on these eight data sets) are representative of what we have seen in experimentation on a larger

set of data sets from the UC Irvine machine learning repository. For some of the data sets, there

are a few categorical-valued features. We did not use these in the experiments in order to make

the mixture modeling less complicated.

Table 2.1. Summary of the data sets used in experiments.

Data set
Number of
instances

Number of
attributes used

Number of
classes

Yeast 1484 6 10
Waveform database
generator

5000 21 3

Image Segmentation 2310 16 7
Liver Disorders 345 6 2
Pima Indians Diabetes 768 8 2
Ecoli 336 5 8
Breast Cancer
Wisconsin

569 30 2

Page Blocks
Classification

5473 10 5

12For MOE-hard-plus, the codelength needed to specify the model parameters, as part of the BIC cost, includes the
specification of the class to which each component is hard-assigned. This codelength is logNc for each component,
assuming that each class is equally likely.
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We learned the models using a training set and evaluated performance on a separate test set.

Except for the Image Segmentation data set, for which a training-test split is already specified

in its UCI data description, for all the other UCI data sets we performed a random 50% split

into training and test subsets. The same split was used for all the methods. In each experi-

ment with training/test sets fixed, we varied the size of the labeled training subset (Nl) from 2%

(i.e., Nl = 0.02 (Nu + Nl)) up to 24% with 2% steps. For some data sets, where the num-

ber of data instances is small, we chose to start from a 4% labeled training subset size. For a

given labeled training subset size (Nl), we performed ten random selections of labeled/unlabeled

training subsets, with the same labeled/unlabeled training subsets used for all the methods. The

semi-supervised learning methods used all the data (including the unlabeled training and test

samples) for learning, while the supervised learning methods (SVMs and KNN) only used the

labeled training subset for learning. All the methods then made decisions on the test split. Re-

sults were averaged over the ten random “trials”, yielding an average test set classification error

rate for a given labeled training subset size.

Parameter Initialization and implementation details:

We first estimated the parameters of a Gaussian mixture model (GMM) by standard unsuper-

vised (excluding the class labels) maximum likelihood estimation using the EM algorithm. This

EM algorithm is initialized using the hard clustering solution found by the K-means algorithm

(with cluster centroids randomly initialized using points from the training set). The GMM pa-

rameters estimated in this way by the EM algorithm are used to initialize the mixture model

based semi-supervised learning methods. We considered using full covariance matrices for the

Gaussian components. However, on a number of the data sets we observed that the problem

of singular covariances occurred during EM learning. Moreover, we also noticed that, in some

cases, quite low GMM model orders were chosen (model order selection is discussed further in

the sequel) when full covariances were used. In order to avoid these problems, we restricted to

using diagonal covariances, on all the data sets. We acknowledge that overall better accuracy

may be achievable if use of diagonal vs. full covariances is decided separately for each given

data set/domain.

For the NFGL method, the assignment of labeled samples to components {vj | i, ∀j ∈ [L];

i = Nu + 1, . . . , Nu +Nl} are also model parameters. In order to initialize them, we performed

a hard clustering on the labeled sample feature vectors using the initial GMM parameters. If

a labeled sample feature vector xi is assigned to component j, then vj | i is initialized to 1 and

vk | i, ∀k 6= j are initialized to 0. The scale parameters {aj , ∀j ∈ [L]} in NFGL were all

initialized to the reciprocal of the average-squared-distance between all pairs of labeled samples.

For the MOE method, the component-conditional class PMF was initialized as uniform over all
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classes, i.e., βc | j = 1/|C|, ∀c ∈ C, ∀j ∈ [L].

For the NFGL method, an undesirable phenomenon that can occur during unconstrained

cyclical optimization of the {vj | i} parameters is as follows. As discussed in section 2.4.1, when

a mixture component has singleton labeled samples from one or more classes, the randomized

nearest neighbor class posterior (2.5) evaluates to zero probability for those classes. During the

cyclical optimization of the {vj | i} parameters, such components could try to “steal” labeled

samples from other components in order to have non-zero probabilities and increase the pseudo-

log-likelihood. This undesirable phenomenon is avoided by preventing labeled samples from

being assigned to such components during the cyclical optimization. Also, labeled samples

belonging to such components are not allowed to switch to other components. For PFGL, the

constants ε and τ (discussed in steps 2 and 3 of section 2.4.5) were both set to a small value

(0.001) in our experiments. In practice, more generally, one should choose ε in a component-

specific fashion. Specifically, it is reasonable to impose that every class c which is assigned a

prototype within component j should have βc | j M̂j >
1
2 , where M̂j is a probabilistic (soft)

count of the number of labeled samples belonging to component j (based on the mixture model

component posterior of samples) – i.e., at least “half a labeled sample” from class c should

belong to component j if class c is to be allocated a prototype in component j. Regarding τ , we

have observed that, so long as it is chosen sufficiently small that viable (prototype, component)

associations are not rejected, it does not have much impact on the model “growing” process.

We investigated the classification performance of SVMs using both linear and Radial Basis

Function (RBF/Gaussian) kernels. The support vector classification was performed using the

integrated software LIBSVM (Version 3.1) [31]. A linear SVM model has a hyperparameter, C,

that controls the degree of margin slackness. An RBF kernel SVM has both C and a hyperparam-

eter γ, the scale of the Gaussian kernel. For each labeled subset size and training set realization,

we chose these hyperparameters via a cross validation procedure, as detailed next. For the linear

SVM, we varied C over the interval [0.1, 10000] and performed 10-fold cross validation on the

labeled training subset (to be precise the number of folds is min{10, Nl}), selecting the C value

from a piecewise uniform grid of 334 candidate values. According to the suggestions in the

LIBSVM manual [31], the search step size s was set as follows: for 0.1 ≤ C < 1: s = 0.1,

for 1 ≤ C < 10: s = 1, for 10 ≤ C < 100: s = 2, for 100 ≤ C < 1000: s = 10, and for

1000 ≤ C ≤ 10000: s = 50. For the RBF kernel SVM, we performed 10-fold cross validation

via a 2D grid search to select the parameters (C and γ). The range of search for C is the same as

that for a linear SVM. The second parameter γ was given range [0.001, 10] with search step size

sγ set as follows: for 0.001 ≤ γ < 0.01: sγ = 0.002, for 0.01 ≤ γ < 0.1: sγ = 0.02, and for

0.1 ≤ γ ≤ 10: sγ = 0.2. We picked the grid point (C, γ) that gave the highest cross validation
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accuracy and used these hyperparameters within the final SVM training. For data sets that have

more than 2 classes, we applied “one-against-one” multi-class classification as implemented in

the LIBSVM software.

The hyperparameter K in the KNN classifier was chosen using 10-fold cross-validation

(min{10, Nl}, to be precise) applied to the training set. The range of K was set to {2, . . . , 8}
when Nl > 400, and {1, . . . , 5} for smaller values of Nl. The WC-NN classifier was imple-

mented as described in section 2.2.

Model Order Selection:

On a given data set, for all the mixture model based methods (excepting MOE-hard-plus), the

same model order (number of components) was used. We chose this number of components

upfront using the Bayesian Information Criterion (BIC) [152] applied to the initial maximum

likelihood solution of the GMM, which is based on the combined set of training and test data

feature vectors 13. For MOE-hard, however, the number of components cannot be chosen smaller

than the number of classes in the data set (since, otherwise, some classes will not be represented

at all by the model). Therefore, for this method we chose the model order to be either the BIC-

selected order or the number of classes, whichever is larger. Table 2.2 gives the number of com-

ponents selected by BIC, and also the range of the number of components used by the method

MOE-hard-plus for all the data sets. We acknowledge that the model complexities of some of the

mixture-based methods are not precisely the same (as the different methods apply different mod-

els for the within-component class posterior). For example, PFGL uses a more complex class

posterior model than MOE, which in turn uses a more complex class posterior model than MOE-

hard. Furthermore, one must distinguish model complexity from, e.g. computational complexity

of class inference. The NFGL model may form a complex within-component decision boundary

when the labeled fraction is relatively high, yet without any increase in the number of model pa-

rameters. PFGL, on the other hand, must increase model complexity (add prototypes) to achieve

more “fine-grained” class modeling within the components. We are specifically evaluating the

method MOE-hard-plus because this allows a complexity-wise fair comparison between one of

our methods (PFGL) and a conventional method (MOE-hard) 14.
13Note that using the test data feature vectors in this way for selecting the number of components does not pro-

vide any unfair advantage for the semi-supervised mixture model based methods over the other methods used for
comparison.

14Note, though, that MOE-hard-plus has a degree of freedom to optimize (the number of components), which was
not exercised for PFGL.
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Table 2.2. Summary of number of components used for all semisupervised methods

Data set Number of components
Component range for
MOE-hard-plus

Yeast 5 (10 for MOE-hard) 7 - 14
Waveform database 9 11 - 13
Image Segmentation 13 15 - 18
Liver Disorders 4 5 - 6
Pima Indians 6 7 - 10
Ecoli 3 (8 for MOE-hard) 3 - 6
Breast Cancer 10 12 - 14
Page Blocks 10 13 - 18

2.7.3 Classification Accuracy Evaluation

The average test set error rates of our proposed methods methods and the methods compared,

on the UC Irvine data sets (listed in Table 3.1), are shown as a function of the labeled training

subset size (expressed as a percentage of the total number of training samples) in Fig. 2.6 to Fig.

2.13. From the error rate curves, we can make the following observations:

• Although there is some variability in relative performance of methods across the data sets,

PFGL and NFGL both achieve overall performance improvement over MOE, MOE-hard,

and WC-NN classification. Moreover, while KNN performs better on a few data sets, the

PFGL method (which generally outperformed NFGL) performed overall better than KNN.

• NFGL and PFGL performed better than both the supervised linear and RBF SVMs at low

labeled fractions on most data sets. Note that, unlike the SVMs (and KNN), NFGL and

PFGL do not use any hyperparameter tuning focused on improving classification accu-

racy – presumably, their performance could be further improved through such tuning (e.g.,

by selecting the number of components via cross validation). Note also that MOE per-

formance is comparable to PFGL and NFGL at the lowest labeled fraction on some data

sets. This is not surprising if, at this low fraction, there is essentially one labeled sam-

ple per component – in such a case, “fine-grained labeling” and MOE both specialize to

representing a component using a single class.

• The linear SVM gives comparable results to the RBF kernel SVM on these data sets.

• MOE performs overall better than MOE-hard. MOE-hard performance is best on Ecoli,

where it used 8 components (one per class), whereas the other mixture-based methods

(excluding MOE-hard-plus) used only 3. The MOE-hard-plus method overall performs
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better than both MOE and MOE-hard. Moreover, notably on the Waveform data (and for

certain labeled subset sizes on the Page Blocks data), the use of a significant number of

extra components allows it to outperform the fine-grained labeling methods.

Figure 2.6. Average test error rate on the Yeast data set.
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Figure 2.7. Average test error rate on the Waveform database generator data set.

Figure 2.8. Average test error rate on the Image segmentation data set.
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Figure 2.9. Average test error rate on the Liver disorders data set.

Figure 2.10. Average test error rate on the Pima Indians data set.
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Figure 2.11. Average test error rate on the Ecoli data set.

Figure 2.12. Average test error rate on the Breast cancer data set.
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Figure 2.13. Average test error rate on the Page blocks data set.



Chapter 3
Semi-supervised mixture model
based learning from
pairwise-sample constraints with
imposed space-partitioning

In this chapter, we present a new method for semi-supervised learning from pairwise sample

(must-link and cannot-link) constraints. It addresses an important limitation of many existing

methods, whose solutions do not achieve effective propagation of the constraint information to

unconstrained samples. We overcome this limitation by constraining the solution to comport

with a smooth (soft) class partition of the feature space, which necessarily entails constraint

propagation and generalization to unconstrained samples. This is achieved via a parameterized

mean-field (variational) approximation to the posterior distribution over component assignments

(given the data and parameters), with the parametrization chosen to match the representation

power of the chosen generative mixture density family. Unlike many existing methods, our

method flexibly models classes using a variable number of components, which allows it to learn

complex class boundaries. Also, unlike most methods, our method estimates the number of

latent classes present in the data. Experiments on a number of synthetic data and real datasets

show that, overall, our method achieves significant improvements in classification performance

compared to a number of existing methods.
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3.1 Introduction

As discussed in chapter 1, the supervision information in semi-supervised learning may come

either in the form of class labels or instance-level constraints. Pairwise sample constraints are

instance-level constraints, wherein a pair of samples is either known to belong to the same class

(must-links (MLs)), or known not to belong to the same class (cannot-links (CLs)) [167], [90],

[46]. Such constraints do not explicitly specify the class membership of any of the samples. Nor

do they necessarily explicitly determine even the number of classes actually represented in the

data. We assume MLs satisfy transitive closure, i.e., if pairs of points (a, b) and (b, c) are must-

linked, then (a, c) is also must-linked. Applying transitive closure, we can find groups of points,

called chunklets [155], all belonging to the same class. Note that distinct chunklets A and B

could belong to the same class. However, without MLs or CLs between a pair (a, b), a ∈ A and

b ∈ B, the constraints neither ensure nor exclude this. Finally, if there is a CL between points

a ∈ A and b ∈ B, then CLs are entailed between all pairs (a′, b′), a′ ∈ A and b′ ∈ B.

It can be argued that pairwise sample constraints may be more readily available than labels

in practice, since they do not require any prior knowledge of the underlying classes, and since

they may require less expertise to elicit than class labels. In an interactive learning setting, users

can provide feedback on whether a pair of samples should or should not belong to the same

group, without having actual knowledge of the category space [39], [46], [174], [155]. In a

distributed learning scenario, the task of annotating a large database can be divided among a set

of uncoordinated teachers, where each teacher annotates a subset of the database [4]. The class

definitions/label conventions used by different teachers may not be coordinated, which precludes

the subsets from being directly pooled into a single labeled database. However, labels on samples

imply ML and CL constraints on all labeled sample pairs within each subset. This does allow

the subsets to be pooled into a single database with supervision in the form of pairwise sample

constraints.

There are several different practical objectives in learning from a data set that possesses

instance-level constraints:

1) Statistical classification: One may wish to learn a statistical model for the latent groups present

in the dataset, viewing the given data and constraints as a training set. The model can then be

used to classify new (test) samples.

2) Clustering: One may view the problem ostensibly as an unsupervised clustering problem, but

one in which there are additional constraints (side information) available, to guide the search for

clustering structure in the data set.

3) Class and cluster number estimation: Based on the supplied data and constraints, one may

wish to estimate the number of classes present in the data (and, if multiple clusters or components
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are needed to represent each class, the number of clusters present).

The modeling framework developed here is applicable to all of the above objectives, but with

special focus on 1).

3.1.1 Approaches for semi-supervised learning with instance-level constraints

In this section, we briefly review several general frameworks that have been proposed for semi-

supervised learning from instance-level constraints. A more detailed literature survey, focusing

on the relationship between prior works and our proposed work, will be given later in section

3.3. One vein of research modifies hard clustering (e.g., K-means) or “soft clustering” (mixture

modeling) methods to incorporate pairwise sample constraint information. In the case of hard

clustering, this is done, for instance, by modifying the cluster assignment step of the K-means

algorithm [167], or by adding a constraint violation penalty term to the clustering distortion

objective (in some cases also combined with learning a distance metric) [15], [6]. In the case

of mixture modeling, this is done by modifying the stochastic data generation mechanism of

the mixture model (and hence the data log-likelihood objective) by conditioning on the pairwise

constraint information [155], by adding a constraint violation penalty term to the mixture model

negative complete data log-likelihood [179], or by using a prior distribution on the mixture model

component assignment of data points such that the prior penalizes violation of the pairwise

constraints [107]. A weakness of all of these methods (elaborated in detail in the sequel) is

that they generally require many constraints in order for the constraints to affect the clustering

solution, i.e. in order to achieve constraint propagation in the solution. Also, strict constraint

satisfaction [167], [155] may not be desirable because i) the assumed cluster shape may not

allow the satisfaction of all the constraints and ii) constraints may be noisy or inconsistent.

A second commonly applied framework is metric learning [90], [170], [4], wherein a non-

isotropic (“distorted”) distance metric is learned from the pairwise sample constraints, such that

the distances between must-linked points are decreased, and between cannot-linked points are

increased. The learned distance metric is subsequently used by an unsupervised clustering al-

gorithm. In [15] and [6] both the metric learning and the clustering steps are integrated by

minimizing a single objective function. While a majority of these methods focus on learning

a linear Mahalanobis distance metric, some recent methods learn non-linear metrics using fea-

ture transformations and the kernel trick [158], [173], [47]. Metric learning methods also suffer

from some limitations. First, the heuristic two-stage learning procedure (common to most metric

learning methods) does not make use of the unconstrained data samples for learning the metric.

Also, there is no further adaptation of the learned metric in light of the quality of the learned

clusters, i.e., there is no joint optimization of the metric and the clusters. Two-stage learning is
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thus susceptible to finding poor solutions not even locally optimal in a well-defined sense. More-

over, the learned distance metric is typically global. This means that all the clusters are restricted

to have the same shape, which may restrict the flexibility of these methods in well satisfying the

constraints. Learning global non-linear metrics can mitigate this problem to some extent.

There are some methods which cannot be categorized into one of the aforementioned frame-

works. For instance, [108] addresses the problem in a discriminative setting using Gaussian

processes, and [105] learns a kernel matrix by solving a semi-definite programming problem,

followed by the kernel K-means algorithm.

3.1.2 General limitations of prior works

We next elaborate on fundamental limitations common to many prior works.

3.1.2.1 Constraint propagation, solutions smoothness, and generalization

Perhaps the most important limitation of nearly all previous (hard or soft) clustering-based

works is that they do not efficiently “propagate” constraint information over the given feature

space. To be concrete, suppose that there is an ML constraint between a pair of data samples

xa and xb. Consider a third unconstrained point xc that is very close to xb (xc and xb could

even be co-located). An ML constraint between xa and xb means these two samples should be

assigned to the same group (class). Moreover, while there is no constraint provided, we would

certainly expect that if xc is very close to xb or, in the most defining case, if xc = xb, these

samples should all be assigned to the same group. However, in many of the existing instance-

level constraint-based approaches [167], [155], [107], [179], [140], there is neither necessity nor

any surety that these samples will be assigned to the same group. Moreover, this is not due to

the methods finding poor local optima of their proposed training objective functions. Solutions

that do not assign xc to the same group as xa and xb may in fact be globally optimal with

respect to the learning objective functions proposed in these works. In particular, as will be fully

developed in the sequel (cf., section 3.2.2.1), for these methods, the optimal (objective function

minimizing) class posterior probability for unconstrained data point xc has no dependence on

the constraint information IC , i.e., P [C = c |xc, IC ] = P [C = c |xc]. This means that the class

memberships of neighboring or even co-located constrained samples are ignored in assigning

class membership probabilities to xc.

To appreciate the consequences for the learned model solution, consider the 2-dimensional

data set with two classes shown in Fig. 3.1. Eight pairwise constraints (four MLs and four CLs)

and the (latent) true class labels of all samples are shown in Fig. 3.1(a). The group assignments

of samples obtained using the methods in [179] (with a single component per class) and [155]
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(a) Data with true class labels and pairwise constraints (b) Solution of method in [179]

(c) Solution of method in [155] (d) Solution of our space-partitioning method

Figure 3.1. Two class synthetic data set with four ML constraints and four CL constraints, with the group
assignments of samples obtained using the methods in [179] (with single component per class), [155],
and our method shown in Fig .3.1(a) through Fig .3.1(d) respectively. The true class labels of samples are
shown in Fig .3.1(a) with different symbols and colors. The ML constraints are shown with a solid line
and the CL constraints are shown with a dotted line. The samples involved in constraints are shown with
larger symbols for clarity.

are shown in Fig. 3.1(b) and Fig. 3.1(c) respectively. The group assignments obtained using our

space-partitioning method are shown in Fig. 3.1(d). Although the solutions of [179] and [155]

satisfy all the constraints, they are inaccurate (as seen by comparing with 3.1(a)). This is due to

the fact that there is essentially no propagation of constraint information (or generalization) to

the unconstrained samples, which can be observed from the discrepancy in group assignments

between some of the constrained samples and their neighboring unconstrained samples in Fig.

3.1(b) and Fig. 3.1(c). These can also be described as group membership discontinuities at some

of the constrained sample locations. On the other hand, the solution in Fig. 3.1(d) not only

satisfies the constraints, but finds an accurate and smooth class partitioning of the whole data set.

One way to summarize this example is by stating that the solutions in Fig. 3.1(b) and Fig. 3.1(c)
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violate the semi-supervised smoothness assumption [33]1. Another is to say that the solutions in

Fig. 3.1(b) and Fig. 3.1(c) do not generalize from the constraints.

In addition to [179] and [155], other hard clustering and mixture modeling based methods,

such as [167], [107], and [140] also suffer similar failure on the example in Fig. 3.1(a). We

emphasize that the failure of these methods is not due to their finding poor, locally optimal

solutions. The globally optimal solution, with respect to the objective functions proposed in these

works, will not achieve constraint propagation and generalization on this (fundamental) example.

For instance, the solution in Fig. 3.1(b) will have the largest data log-likelihood and the least

number of constraint violations for the method in [179] with a single component per class. Since

the global optimum itself may not achieve constraint propagation, it is the choice of the objective

function that is the source of failure in these methods. This lack of constraint propagation will

be further demonstrated theoretically in section 3.2 and experimentally in section 3.4.3.

There are several potential ways to overcome this limitation and achieve constraint propaga-

tion, including metric learning methods [170], [90], [158], and discriminative semi-supervised

learning [108]. The approach developed here constrains the class (group) posterior on the fea-

ture space using a softmax function [21] applied to a parameterized class discriminant function

of given representation power (e.g., linear, quadratic, nonlinear kernel etc.). Parametrically con-

straining the class memberships ensures that neighboring points will have similar class assign-

ments, and that co-located points will have identical class assignments. We refer to this approach

as imposing a space-partitioning on the solution. The solution in Fig. 3.1(d) was obtained using

this approach. Also, for this approach, solutions with group membership discontinuities (such

as in Fig. 3.1(b)) are precluded.

3.1.2.2 Representation power of classes and number of classes

Many existing methods based on clustering algorithms such as K-means or hierarchical cluster-

ing [167], [90], [6], mixture modeling [155], [107], [98], or metric learning [170], [4], [158],

[47] assume both (i) that the number of classes is known ([90] is an exception which estimates

the number of clusters), and (ii) that each learned cluster is a distinct class. Both of these as-

sumptions are restrictive and potential sources of sub-optimality. In particular, for the clustering

distortion measure or mixture component density function family (e.g., Gaussian) assumed by

a given method, a complicated class (with a multimodal class-conditional density) may only be

well-modeled if represented by multiple clusters (components) [179]. In fact, Fig. 3.1(a) is also

illustrative of this point since, in this example, each of the classes consists of multiple (two)
1This essentially states that points in a small neighborhood, within a high density region of the feature space, are

likely to have “similar” outputs.
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multivariate Gaussian mixture components. Accordingly, in general, more complex class mod-

eling than a “single cluster per class” will be required in order to satisfy the given constraints. In

fact, it is a priori unknown how many (e.g. Gaussian) components may be required in order to

well-model a given class.

A second significant limitation is the assumption that the number of classes represented in

the given data set is known. This is a basic assumption made by nearly all prior works ([179]

is an exception). However, since the partial supervision is in the form of pairwise constraints,

and not class labels, the number of classes will not be known in general, in which case a core

assumption of many prior works does not hold.

3.1.3 Overview of our approach

We cast semi-supervised learning with pairwise sample constraints as a mixture modeling prob-

lem, building on the prior work [179]. Accordingly, we start with the penalized negative com-

plete data log-likelihood (also called the potential), and propose to minimize the expectation

of this potential taken with respect to the posterior distribution of component assignments. In-

voking a mean-field approximation to this posterior distribution (to avoid intractability), and

performing an unconstrained minimization with respect to the distribution factors (as in [179])

can result in a lack of constraint propagation and group membership discontinuities, as illus-

trated in Fig. 3.1(b). To avoid this problem, we use a parameterized mean-field (or variational)

approximation [109], [68] to the posterior distribution, with the parametrization chosen to be a

smooth function of the feature vector having the same representation power as the parametric

density function of the mixture model. The expectation maximization (EM) algorithm is used to

minimize our objective function over the variational parameters of the factorized approximation

in the E-step, and over the parameters of the mixture model in the M-step. By imposing space-

partitioning in the solution, this approach avoids the group membership discontinuity problem

and can achieve constraint propagation from a very limited number of constraints, as discussed

in section 3.2.2.1 and demonstrated by experimental results.

In order to allow modeling of complex class boundaries and automatic estimation of the num-

ber of classes in the data, we introduce binary parameters which jointly indicate the class with

which each mixture component is affiliated. These parameters are estimated along with the mix-

ture model parameters in the M-step. In learning these binary parameters, we achieve allocation

of a variable number of mixture components to each class. Furthermore, given a fixed number of

mixture components, K, and, thus, a maximum class cardinality Lmax ≤ K, the actual number

of classes estimated by the model is the number of unique class indices c ∈ {1, 2, . . . ,K} such

that at least one mixture component is assigned to that class. Clearly, based on this description,
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both the (variable) allocation of mixture components to classes and the number of estimated

classes are functions of K. Thus, effective component allocation and accurate class number

estimation critically hinge on good estimation of the number of mixture components, K. We de-

termine this number by applying a model order estimation “wrapper” around our minimization

problem. The optimal model order is chosen by jointly considering the Bayesian Information

Criterion (BIC) [152] and the degree of constraint satisfaction in the solution.

The rest of the chapter is organized as follows. In the next section, the problem formu-

lation and solution approach of our method are developed. In section 3.1.2, we compare and

contrast some of the prior work in the literature that are related to our proposed work. Detailed

experimental evaluations including comparisons to prior work are given in section 3.4.

3.2 Method formulation and solution approach

Consider a data set X = {x1, x2, . . . , xN}, where each xi ∈ Rd. The must-link constraints

are specified by the set of index pairs of samples Im, such that if (i, j) ∈ Im, then xi and

xj are known to have the same class label. The cannot-link constraints are specified by the

set of index pairs of samples Ic, such that if (i, j) ∈ Ic, then xi and xj are known to have

different class labels. For a positive integer n, we denote the set {1, 2, . . . , n} by [n]. The

index set of samples not involved in any pairwise constraints is defined as Iu = {i ∈ [N ] |
∀j ∈ [N ], (i, j) /∈ Im ∪ Ic and (j, i) /∈ Im ∪ Ic}. We assume that there exists a confidence

(or relative weight) Cij ∈ [0, 1] for every constraint (i, j) ∈ Im ∪ Ic. If these values are not

specified, we set them to a default value Cij = 1, ∀(i, j) ∈ Im ∪ Ic. For convenience, we

define C = {Cij , ∀i, j ∈ [N ]}, where Cij = 0, ∀(i, j) /∈ Im ∪ Ic. Consider a mixture model

with K components and parameter set Θ = {(αk, θk) | k ∈ [K]}, where αk ≥ 0 is the mixing

proportion (or prior probability) of component k satisfying
∑

k αk = 1, and θk is the parameter

set of component k specifying its component-conditional density f(x | θk). For each sample xi,

the unknown mixture component of origin is defined by the vectorM i = [Mi1, . . . ,MiK ], where

Mij ∈ {0, 1} and
∑K

j=1Mij = 1. Define M = {M i | i ∈ [N ]}, the set of latent variables

(mixture component of origin) associated with all the samples, and alsoMu = {M i | i ∈ Iu},
andMc =M\Mu.
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3.2.1 Penalized complete data negative log-likelihood

The complete data log-likelihood [48] for a standard mixture model, which assumes independent

generation of each sample, is given by

logP (X ,M |Θ) =
N∑
i=1

K∑
k=1

Mik log[αk f(xi | θk)].

In our problem, the presence of constraints between certain pairs of samples must be accounted

for. We will do so by adding a penalty term that tallies constraint violations.

In section 3.1.2.2 we discussed having sufficient model representation power to learn com-

plex decision boundaries between classes. Here we allow each class to be flexibly modeled

by multiple mixture components, and also learn the class-to-component associations. This will

allow us to estimate the number of classes present in the data, covering situations where the

number of classes present may be unknown. Assuming that the total number of mixture com-

ponents for accurately modeling the data (K) is known 2, an upper bound on the number of

classes present is Lmax ≤ K, where in the case of equality each component represents a distinct

class. Let V = {Vkl | k ∈ [K], l ∈ [Lmax]} denote the set of binary component assignments to

classes, with Vkl = 1 if component k is assigned to class l; else Vkl = 0. Each component is

assigned to only one of the classes, i.e.,
∑

l Vkl = 1, ∀k ∈ [K]. The number of components

assigned to class l is given by
∑

k Vkl. As will be seen later, solutions for our method may have

some classes for which this sum is 0, in which case the estimated number of classes is given by

L = |{l ∈ [Lmax] |
∑

k Vkl ≥ 1}|. We treat the class assignments to components as model

parameters to be estimated, as in some past works [122], [135], [120]. Accordingly, we extend

Θ to include V , i.e., Θ = {(αk, θk, {Vkl, | l ∈ [Lmax] }) | k ∈ [K]}.
In order to discourage or penalize solutions in which component assignments of samples are

not consistent with the given ML and CL constraints, we add a penalty term to the complete data

negative log-likelihood. This penalized complete data negative log-likelihood, also referred to

as the potential [179], is defined as:

U(M,Θ) = − logP (X ,M |Θ) + β h(Mc,V, C), (3.1)

where

h(Mc,V, C) =
∑

(i,j)∈Im

Cij

(
1−

Lmax∑
l=1

WilWjl

)
+

∑
(i,j)∈Ic

Cij

Lmax∑
l=1

WilWjl

2We address estimation of K in the sequel.
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Here the class memberships of samples are defined by Wil =
∑

kMik Vkl, ∀i ∈ [N ], l ∈
[Lmax], h(·) is the constraint violation penalty, and β is a positive constant which controls the

possible tradeoff between modeling the data density well and meeting the constraints. Consider

the first term of h(Mc,V, C). If a must-linked pair (i, j) is such that xi and xj have different

class memberships, i.e., Wil 6= Wjl, ∀l ∈ [Lmax], then there is a positive contribution Cij to

the penalty term. Consider the second term of h(Mc,V, C). If a cannot-linked pair (i, j) is such

that xi and xj have the same class membership, i.e., Wil = Wjl, ∀l ∈ [Lmax], then there is a

positive contribution Cij to the penalty term. The distinction between classes and components

(clusters) should be clear - components are involved in data modeling (the complete data log-

likelihood term), while classes, which consist of (possibly) multiple components, are involved

in the constraint penalty term. Two samples satisfy an ML constraint even if they belong to

different components, so long as both the components belong to the same class, and they satisfy

a CL constraint only if they belong to components from different classes.

Note that the constraint penalty h(Mc,V, C) ≥ 0, with equality only if all the constraints

are satisfied. This form of the penalty is an improvement over the formulation in [179], where

both CL and ML constraint violations have the same contribution Cij
∑

lWilWjl, but with

Cij positive for CL constraints and negative for ML constraints. To appreciate this distinction,

consider a simple scenario with one ML and one CL constraint. Suppose the ML constraint

is satisfied, but the CL constraint is not satisfied for solutions minimizing (3.1), over a range

of values of β. For the approach in [179], the term involving the ML constraint has a greater

negative contribution to the potential as β is increased (although the ML constraint was satisfied

in the solution for a smaller values of β itself). Thus, a smaller value of potential (obtained

by increasing β) will not, in this case, reflect greater constraint satisfaction. By contrast, the

potential proposed in (3.1) can only decrease for increasing β if more constraints are satisfied.

We also note that a “single component per class” is a special case of (3.1) where Lmax = K

and Vkk = 1, ∀k ∈ [K]. Both “single component per class” and “multiple components per

class” variants will be experimentally evaluated in the sequel.
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3.2.2 Objective function and optimization method

Our learning objective function is the Helmholtz free energy [175], [130], [146] associated with

the potential (3.1), given by 3

F (Θ) = − log
∑
M

e−U(M,Θ). (3.2)

To motivate this, consider the free energy corresponding to the potential (3.1) when the constraint

penalty term is absent, i.e., U(M,Θ) = − lnP (X ,M|Θ). In this case, the free energy is the

incomplete data negative log-likelihood [48], i.e.,

− logP (X |Θ) = − log
∑
M

P (X ,M |Θ) = − log
∑
M

e−U(M,Θ).

We add the term h(Mc,V, C) to dissuade latent variable assignments (Mc) which violate the

given ML and CL constraints. Consider the joint posterior distribution of the latent variables

conditioned on the data and parameters, which has the form of a Gibbs distribution, i.e.,

P (M|X ,Θ) =
P (X ,M|Θ)

P (X |Θ)
=

e−U(M,Θ)∑
M

e−U(M,Θ)
. (3.3)

Also, consider another freely chosen probability distribution, P 0(M|X ). The free energy (3.2)

can be rewritten as

F (Θ) =
∑
M

P 0(M|X ) log

[
P (M|X ,Θ)

e−U(M,Θ)

]
=

∑
M

P 0(M|X ) log

[
P (M|X ,Θ)

e−U(M,Θ)

P 0(M|X )

P 0(M|X )

]
=

∑
M

P 0(M|X ) U(M,Θ) +
∑
M

P 0(M|X ) log
[
P 0(M|X )

]
−

∑
M

P 0(M|X ) log

[
P 0(M|X )

P (M|X ,Θ)

]
= EP 0 [U(M,Θ)] − H

[
P 0
]
− DKL[P 0, P ], (3.4)

3We use
∑
M

as a shorthand notation for
∑

M1∈∆

∑
M2∈∆

· · ·
∑

M
N
∈∆

, where ∆ is the set of all {0, 1}-valued tuples of

size K such that in each tuple exactly one of the values is 1 and the rest are 0.
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where H
[
P 0
]

is the entropy of the distribution P 0(M|X ), and DKL[P 0, P ] is the Kullback-

Leibler (KL) distance [42] between the distributions. Defining

F̃ (Θ, P 0) = EP 0 [U(M,Θ)] − H
[
P 0
]
, (3.5)

and observing that the KL distance is always non-negative, we have

F̃ (Θ, P 0) = F (Θ) + DKL[P 0, P ] ≥ F (Θ).

The upper bound quantity F̃ (Θ, P 0) is called the variational free energy [109], and it is equal

to F (Θ) when P 0(M|X ) = P (M|X ,Θ). The free energy F (Θ) can, at least in principle, be

minimized using the EM algorithm, with the E-step minimizing the upper bound over all valid

distributions P 0(M|X ) for fixed Θ (by choosing P 0 = P , which achieves F̃ (Θ, P 0) = F (Θ)),

and the M-step minimizing the upper bound over Θ for fixed P 0(M|X ) [130], [175]. These

two steps are iterated, with each iteration descending in F (Θ) until a local minimum is reached.

However, in some problems, it may not be tractable to analytically compute the summation

(or integration) involved in the normalization term of the posterior distribution (3.3) and also in

the expectations taken with respect to the posterior distribution. One approach to handle this in-

tractability is called variational approximation [109], [78], [129], wherein the distribution P (0)

is restricted to have a simpler form relative to the true posterior distribution, and the E-step op-

timization is performed over the restricted space of distributions. For example, P (0) can be a

factorized product of simpler distributions over disjoint subsets of the full set of random vari-

ablesM, and the E-step performs an optimization over the factors of the posterior distribution.

This approach is commonly known as the mean-field approximation [68], [138]. Sometimes

the distribution P (0) or its component factors are chosen to be parametric functions such that

the summations (or integrations) become tractable to compute analytically. Then the E-step

performs an optimization over the parameters of P (0), which are also referred to as variational

parameters.

3.2.2.1 Lack of constraint propagation in the optimal posterior distribution

From (3.3) and (3.1), the optimizing distribution in the E-step can be written as

P (M|X ,Θ) =
elogP (X ,M|Θ) e−β h(Mc,V,C)∑
M

elogP (X ,M|Θ) e−β h(Mc,V,C)
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=

∏
i∈Iu

K∏
k=1

(αk f(xi | θk))Mik

∑
Mu

∏
i∈Iu

K∏
k=1

(αk f(xi | θk))Mik

e−β h(Mc,V,C)
∏

i∈[N ]\Iu

K∏
k=1

(αk f(xi | θk))Mik

∑
Mc

e−β h(Mc,V,C)
∏

i∈[N ]\Iu

K∏
k=1

(αk f(xi | θk))Mik

(3.6)

The normalization term overMu can be simplified as

∑
Mu

∏
i∈Iu

K∏
k=1

(αk f(xi | θk))Mik =
∏
i∈Iu

∑
M i

K∏
k=1

(αk f(xi | θk))Mik =
∏
i∈Iu

K∑
k=1

αk f(xi | θk).

However, the normalization term

B(Θ) =
∑
Mc

e−β h(Mc,V,C)
∏

i∈[N ]\Iu

K∏
k=1

(αk f(xi | θk))Mik

cannot be simplified in this way (as a product of summations over the component assignments of

individual samples M i) because the term e−β h(Mc,V,C) involves products of component assign-

ments over pairs of must-linked and cannot-linked samples. Hence, B(Θ) will be intractable

to compute in practice. From (3.6), it should be evident that Mu and Mc are conditionally

independent given X and Θ, and the posterior distribution over latent variables can be written as

P (M|X ,Θ) = P (Mu | X ,Θ) P (Mc | X ,Θ), where

P (Mu | X ,Θ) =
∏
i∈Iu

∏
k∈[K]

(
αk f(xi|θk)∑

k′∈[K]

αk′ f(xi|θk′)
)Mik

,
∏
i∈Iu

∏
k∈[K]

P (Mik = 1 |xi,Θ)Mik , (3.7)

and

P (Mc | X ,Θ) =
e−β h(Mc,V,C)

B(Θ)

∏
i∈[N ]\Iu

∏
k∈[K]

[αk f(xi|θk)]Mik , (3.8)

We will now argue that even if exact computation of this distribution were possible, such

a solution is in fact not desirable from the standpoint of constraint propagation. Consider the

marginal component posterior of an unconstrained sample xi given by P (Mik = 1 |xi,Θ) in

(3.7). This has no dependence on the constraint penalty term. But for a constrained sample xj ,

the marginal component posteriorP (Mjk = 1 | X ,Θ) (obtained by marginalizingP (Mc | X ,Θ))

depends on the constraint penalty term and on β. To appreciate that this solution in general

achieves no propagation of constraint information even to neighboring points in the feature
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space, consider the following stark example. Suppose that 1) xi = xj , i.e., they are co-located,

2) P (Mil = 1 |xi,Θ) ≈ 1, i.e., xi strongly belongs to component l based on the current mix-

ture model parameters, and 3) suppose that xk is a data sample that is must-linked with xj ,

but which, if based solely on its feature vector, would strongly belong to a different component

m 6= l, i.e., αm f(xk|θm)∑
n∈[K] αn f(xk|θn) ≈ 1, with components l and m affiliated to different classes.

When P (Mc | X ,Θ) has the unconstrained form (3.8), one can make β sufficiently large such

that the penalty term e−β h(Mc,V,C) dominates the data likelihood term. For the example at

hand, this means that P (Mkl = 1 | X ,Θ) = P (Mjl = 1 | X ,Θ) ≈ 1 can be achieved without

any adjustment of the mixture component parameters. This scenario precisely corresponds to

the example in Fig. 3.1(b), with xk playing the role of a constrained sample whose class (and

component) membership based on (3.8) is a “hole” discontinuity relative to the unconstrained

samples in its neighborhood. On the other hand, it is also possible that, based on (3.8) both xj
and xk will be strongly associated with component m. In this case, the co-located points xi and

xj will have different class (and component) memberships. Both solutions are poor.

Clearly, from this example, we conclude that (3.7) and (3.8) provide no real mechanism for

constraint propagation – for the given example, we would expect that the only way to satisfy the

constraints and at the same time fit the data well should be by adjusting the mixture component

parameters, i.e., by moving the components in the feature space and/or changing their class

affiliations. We next propose an effective way of doing so.

3.2.2.2 Constrained mean field approximation through parametrization

There are two objectives in our choice of approximate E-step: 1) to make the E-step tractable;

2) unlike the methods in [167], [155], [107], [179], [140], to achieve constraint propagation via

the E-step. To make the E-step tractable, we invoke a factorized mean field approximation [109],

[68], i.e.,

P 0(M|X ) =
N∏
i=1

K∏
k=1

q(k |xi)Mik .

If the factors are unconstrained (other than the requirement that they be valid PMFs) as proposed

in [179], the preceding argument for the joint posterior distribution should also convince the

reader that no constraint propagation and generalization will be achieved with the factorized,

unconstrained mean field approximation. To overcome this deficiency, we propose to constrain

all the factors in the mean field approximation to be smooth functions (i.e., functions having

continuous higher order derivatives) of the feature vector. In particular, we choose the factors to
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be

q(k |xi) =
eψk(xi)∑

m∈[K]

eψm(xi)
, ∀k ∈ [K], ∀i ∈ [N ] (3.9)

where ψk(x), k ∈ [K] are smooth functions, to be optimized in the E-step. In (3.9) we are

effectively invoking parameterized discriminant functions ψk(x), one per mixture component,

and then “softmaxing” these functions [21] to create a probabilistic space-partitioning of the

feature space. Note that, while for tractability, only P (Mc | X ,Θ) needs to be approximated by

a factorized distribution (which could even be unconstrained), the lack of constraint propagation

can be avoided only if we impose that all the factors (both for constrained and unconstrained

samples) have the same form q(k |x) specified in (3.9). Since the mixture component posterior is

now exclusively a parameterized function of the feature vector, the only way to achieve constraint

satisfaction in the previous example (and in the example in Fig. 3.1) will be by adjusting the

discriminant function parameters and the component to class assignments. Moreover, regardless

of the choice of these parameter values, they induce a smooth component (and class) posterior,

without discontinuities. We next propose two different approaches for choosing and optimizing

ψk(x), k ∈ [K], in the E-step.

One approach is to constrain the functions ψk(x), k ∈ [K] to belong to a smooth parametric

family, i.e., a set of functions which have the same dependence on x, but different parameters.

In this case, ψk(x) = ψ(x ;φk), k ∈ [K], where φk is the set of adjustable parameters for

component k, and Φ = {φ1, · · · , φK}. For a particular component density, we can choose

ψ(x ;φk) to have the same dependence on x as the function log[αk f(x | θk)]. For example, for

a Gaussian mixture model (GMM), log[αk f(x | θk)] is a quadratic function of x. So, we can

choose ψ(x ;φk) = xTWk x + xT vk + bk, where φk = {Wk, vk, bk} with Wk ∈ Rd×d and

symmetric, vk ∈ Rd, and bk ∈ R. The motivation for this choice is that, in the absence of any

constraint information, if ψ(x ;φk) = log[αk f(x | θk)], then q(k |x,Φ) 4 in (3.9) “specializes”

to the standard mixture component posterior (for i.i.d. data generation). Also, this choice is

consistent with our inductive bias that the data is well modeled by the mixture density family.

The parameters Φ are also referred to as variational parameters. In this case, the minimization

problem in the E-step is given by minΦ F̃ (Θ,Φ) 5, subject to constraints on the members of Φ,

if any.

To illustrate the generality of our space-partitioning approach, we note that another valid

choice is to restrict the functions ψk(x), k ∈ [K] to the Reproducing Kernel Hilbert Space

4q(k |xi) is rewritten as q(k |xi,Φ) in order to bring out its dependence on parameters Φ.
5F̃ (Θ, P 0) in (3.5) is rewritten as F̃ (Θ,Φ) in order to bring out its dependence on Φ.
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(RKHS) H of a kernel g(· , ·) : Rd ×Rd → R [164], [69]. The smoothness (regularity) of the

functions can be controlled by adding a kernel based regularizer to the variational free energy

F̃ (Θ, ψ1, . . . , ψK) 6 defined in (3.5). In this case, the functional minimization problem in the

E-step is

min
{ψk∈H, k∈[K]}

F̃ (Θ, ψ1, . . . , ψK) + λ
K∑
k=1

‖ψk‖2H, (3.10)

where λ is a positive regularization coefficient. This seemingly difficult problem can be simpli-

fied by invoking the Representer theorem [164], which states that the solution of (3.10) allows a

representation of the form

ψk(x) =

N∑
i=1

aki g(x, xi), ∀k ∈ [K],

i.e., the solution lies in the finite dimensional subspace HX = span{g(· , x1), . . . , g(· , xN )}
of the RKHS H. Therefore, (3.10) reduces to a nonlinear optimization problem over the NK

variables Φ = {ak = (ak1, . . . , akN )T ∈ RN | k ∈ [K]}, which are the variational parameters

for this solution approach. Note that λ is a hyperparameter, which has to be set to a sufficiently

large value to ensure that the functions ψk(x) are smooth.

While the kernel based parametrization allows more flexibility in the choice of discriminant

functions than the parametric approach, it also requires more computation in the E-step because

the hyperparameter λ, which controls the smoothness of the functions ψk(x), has to be set to

a sufficiently large value by searching over some candidate values and using some objective

criterion. Also, the need for computing and storing the N × N Gram matrix of the kernel,

and optimizing over NK variables will make it less suitable for datasets with a large number of

samplesN . Therefore, we will focus on the parametric approach in this work, and indeed choose

the parametrization to give the same representation power as a standard mixture component

posterior. Although the form of this parametrization is fixed, allowing a variable number of

components per class (as we do) provides additional flexibility in the modeling.

3.2.2.3 EM Algorithm

We have discussed how the parameterized mean field (or variational) approximation can be used

both to find a tractable approximation to the optimal posterior distribution, and to impose space-

partitioning (smoothness) in the solution. The variational free energy, given by F̃ (Θ,Φ) =

EP 0 [U(M,Θ)] −H
[
P 0
]
, is straightforward to compute since the distribution P 0 has a factor-

6F̃ (Θ, P 0) is rewritten as F̃ (Θ, ψ1, . . . , ψK) in order to bring out its dependence on the functions ψk(x), k ∈
[K].



89

ized form. The expectation of the potential with respect to P 0 is given by

EP 0 [U(M,Θ)] = EP 0 [− logP (X ,M|Θ)] + β EP 0 [h(Mc,V, C)] (3.11)

= −
N∑
i=1

K∑
k=1

q(k |xi,Φ) log[αk f(xi | θk)] + β
∑

(i,j)∈Ic

Cij Aij + β
∑

(i,j)∈Im

Cij (1−Aij),

where

Aij =

K∑
k=1

K∑
k′=1

q(k |xi,Φ) q(k′ |xj ,Φ)

Lmax∑
l=1

Vkl Vk′l.

The entropy of the distribution P 0(M|X ,Φ) is given by

H
[
P 0
]

= −
N∑
i=1

K∑
k=1

q(k |xi,Φ) log q(k |xi,Φ). (3.12)

As before, the objective is to minimize F̃ (Θ,Φ) with respect to both the model parameters Θ

and the variational parameters Φ, which can be done via an EM algorithm as follows. Given

fixed model parameters Θ(t), at iteration t the E-step solves Φ(t) = arg minΦ F̃ (Θ(t),Φ), thus

finding the best parameterized mean field approximation to the distribution P (M|X ,Θ(t)).

Given fixed variational parameters Φ(t), at iteration t the M-step solves Θ(t+1) = arg minΘ

F̃ (Θ,Φ(t)). These two steps are iterated until a local minimum of F̃ (Θ,Φ) is found. Note that

this EM algorithm does not find a local minimum of the free energy F (Θ) (3.2) because of our

use of a factorized, parameterized approximation of P (M|X ,Θ). However, this is by design,

because the optimal distribution P (M|X ,Θ) (or a factorized, but unconstrained approximation

of it) will not achieve the desired space-partitioning and constraint propagation. We next present

the details of the E-step and M-step for a mixture of Gaussian densities, but the ideas also apply

more generally to distributions from the exponential family.

E-step

The minimization of F̃ (Θ(t),Φ) with respect to Φ = {(Wk, vk, bk) | k ∈ [K]} does not have a

closed form solution. We applied the gradient descent method on the vector of parameters in Φ

to convergence to find Φ(t), a local minimum of F̃ (Θ(t),Φ).

M-step

The global minimum of F̃ (Θ,Φ(t)) with respect to the component masses, component means,

and component covariances (αk, µk, Σk), k ∈ [K] can be found analytically. These M-step
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equations at iteration t are given by

α
(t+1)
k =

1

N

N∑
i=1

q(k |xi,Φ(t)), (3.13)

µ(t+1)
k

=
1

N α
(t+1)
k

N∑
i=1

q(k |xi,Φ(t)) xi, (3.14)

and

Σ
(t+1)
k =

1

N α
(t+1)
k

N∑
i=1

q(k |xi,Φ(t)) (xi − µ(t+1)
k

)(xi − µ(t+1)
k

)T . (3.15)

The class assignments to components V are binary variables, which satisfy
∑

l Vkl = 1 ∀k ∈
[K]. Jointly optimizing these variables requires an exhaustive search over LK possible states,

which is computationally prohibitive. Alternatively, we use the iterated conditional modes algo-

rithm [59], which optimizes the class assignments to components sequentially, one component

at a time. This cycle is repeated until the class assignment does not change for any of the com-

ponents, which means a local minimum configuration has been reached. If the number of classes

L is known, we ensure that at least one component is assigned to each of the classes during the

optimization.

3.2.3 Overall learning algorithm

In section 3.2.2, we presented our learning objective and solution approach for a fixed value of

β and fixed number of mixture components K. We now discuss a principled approach to select

these model hyper-parameters, which is important from the standpoint of applying our method

to real data sets.

3.2.3.1 Setting hyperparameter β

Consider again the variational free energy objective

F̃ (Θ,Φ) = EP 0 [− lnP (X ,M|Θ)] − H
[
P 0
]

+ β EP 0 [h(Mc,V, C)] ,

where the individual terms are given by (3.11) and (3.12). For a fixed value of β, the EM algo-

rithm discussed in section 3.2.2.3 is applied to minimize F̃ (Θ,Φ). If the learning is repeated for

increasing values of β, starting from the same initial Θ and Φ in each case, in theory (excepting

local minima of the EM optimization), the value of the constraint penalty EP 0 [h(Mc,V, C)] in

the solution should be non-increasing. In this work, our primary objective is to utilize the pair-
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wise constraints to learn a solution with accurate class boundaries, rather than one which best

models the data density at the expense of not satisfying some constraints. Hence, we choose β

as follows. Starting from a small value, β is increased in predetermined steps until the constraint

penalty does not decrease significantly with further increase in β. Let hi, i = 1, . . . , N (s)

denote the final constraint penalty values7 in the solutions corresponding to different candidate

β values βi, i = 1, . . . , N (s). Let h∗ = mini∈[N(s)] hi. First, we find a smaller set of candidate

solutions whose constraint penalties are not significantly different from the minimum, according

to the criterion hi − h∗ < δ, where 0 < δ � 1 (a small value such as 0.01). Among these

candidate solutions, we select the one which has the smallest value for the data log-likelihood

component of the variational free energy, EP 0 [− lnP (X ,M|Θ)] −H
[
P 0
]
. This is done in

order to potentially avoid choosing a solution corresponding to a large β value, which may have

good constraint satisfaction, but a poor likelihood fit to the data.

3.2.3.2 Estimating the number of classes and the number of components

A novel feature of our method is that the number of classes can be directly inferred from the

class assignments to components, V . The solution of the EM algorithm may have some class

values which are not assigned to any components, i.e., l ∈ [Lmax] for which
∑

k Vkl = 0.

Such classes are effectively unused. Accordingly, the number of estimated classes is given by

L = |{l ∈ [Lmax] |
∑

k Vkl ≥ 1}|. This class number estimate will be experimentally

evaluated in section 3.4.6.

Class number estimation depends on component number estimation. The number of compo-

nents K is chosen as follows. The number of components is increased sequentially starting from

an initial number K0. If the number of classes in the data is unknown, we set K0 = 2. If the

number of classes in the data is known to beM , we setK0 = M . For each model order, the opti-

mization problem is solved for a range of β values, and a single β is selected using the approach

discussed in section 3.2.3.1. For the solution corresponding to this selected β, the BIC/MDL

model selection criterion [152], [63] is calculated. For our model with K mixture components,

the BIC is given by

BIC(Θ,K) = CC(Θ,K) −
N∑
i=1

log
K∑
j=1

(αj f(xi | θj)), (3.16)

where the codelength (description length) of the model, assuming Gaussian component densities
7The constraint penalty is normalized to be in the interval [0, 1] for convenience. This is done by dividing by the

maximum possible constraint penalty
∑

(i,j)∈Ic∪Im

Cij .
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with unrestricted covariance matrix, is given by

CC(Θ,K) =
1

2
(K − 1 + dK +

d (d+ 1)

2
K) logN + K logL .

The term K logL is the codelength required to specify the discrete class assignments to com-

ponents V , assuming that each of their LK configurations of values are equally likely. We stop

increasing the number of components at the order Kceil at which the BIC attains a minimum

value (before increasing monotonically). If the primary objective is to utilize the pairwise con-

straints to learn an accurate mixture model for the data, then choosing the solution with minimum

BIC would be suitable. However, since we are more interested in learning an accurate grouping

of the data points which satisfies most of the constraints, we select, from among the solutions

with K ≤ Kceil, the one with the least constraint penalty as the final solution.

3.2.3.3 Parameter initialization and component splitting procedure

In this section, we discuss details like parameter initialization and addition of new mixture com-

ponents, with focus on a mixture of Gaussian densities. For the starting number of components

(model order), K0, maximum likelihood estimation (MLE) is first used to learn a mixture model

for the data without using the pairwise constraints. A certain number of trial initializations are

then created by adding small perturbations to the mean vectors of the component Gaussian den-

sities. For each such trial initialization, the constraint penalty term is calculated, and the trial

initialization with the smallest constraint penalty is selected. Given the initial model parameters

Θ, the variational parameters Φ are initialized by equating the quadratic, linear, and constant

terms in the equation xTWk x + xT vk + bk = ln[αk f(x|θk)]. When the number of classes

in the data is not known, we set Lmax = K0, and the parameters V are initialized by randomly

assigning half of the components to one class, and the rest to a second class 8. When the number

of classes in the data is known to be M , we set K0 = Lmax = M , and the parameters of V are

initialized by assigning one component to each of the classes.

For subsequent (increasing) model orders, instead of initializing the parameters indepen-

dently at random, we take the solution of the previous model order, and create a new component

by “splitting” one of its existing components into two. The parameters of the remaining com-

ponents (including their class assignments) are retained in the initialization for the next model

order. For a mixture of Gaussians, in order to split a particular component, we first find the eigen-

decomposition of its covariance matrix, and then choose one of the eigenvectors as the direction
8Although the maximum number of classes will in general be greater than two, the optimization of V will assign

additional classes only if required in order to satisfy the constraints. Starting, in this way, from below the true number
of classes present can potentially avoid overestimating the number of classes.
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to split. The mean vectors of the two split components are obtained by adding to the original

component mean vector, a positive and a negative perturbation along the chosen eigenvector di-

rection. The covariance matrices of the split components are each obtained by decreasing the

corresponding eigenvalue of the original covariance matrix by a factor of 4, leaving the other

eigenvalues unchanged. The mixing proportions of the split components are each chosen to be

half the mixing proportion of the component before splitting. The initial class assignment of the

two split components are selected in order to have the best constraint satisfaction. In order to go

from K components to K + 1 components, we split each of the K components along the direc-

tion of each of the d eigenvectors of its covariance matrix. For each such split, the initial class

assignments of the two split components are varied to create a set of candidate initializations.

The constraint penalty and data log-likelihood of the candidate initializations are calculated, and

among the candidates whose penalties are close to the minimum penalty (using a small δ as

before), the one with the largest log-likelihood is chosen as the initialization for the model with

K + 1 components.

3.2.3.4 Class prediction

In our model, since the class (group) assignment is independent of the feature vector given the

component assignment, the class posterior for a sample x is given by

P (C = c |x,Θ,Φ) =

K∑
k=1

Vkc q(k |x,Φ), ∀c ∈ [Lmax]. (3.17)

The class prediction for x is then the class with the maximum class posterior.

3.3 Related Work

Our method is closely related to that of [179], which also allows variable number of mixture com-

ponents per class, and automatic class number estimation. However, this method has very limited

ability to achieve constraint propagation and generalization as discussed in section 3.2.2.1, and

demonstrated by the experimental results.

The problem of constraint propagation has been recognized and addressed in prior works

such as [90], [98], [108], and [105]. We briefly discuss these approaches. In [90], constraint

propagation is addressed using complete-linkage hierarchical agglomerative clustering. Their

method is a type of metric learning, where the pairwise sample distance matrix is adjusted to

be consistent with the constraints and their spatial implications. Complete-linkage clustering

enables the constraint information to be propagated to unconstrained points. However, their
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approach is not very robust because even a single constraint can dramatically change the dis-

tance matrix entries. In [98] (for a detailed technical report see [99]), the objective function

is a weighted linear combination of the posterior likelihood over constraints and the data log-

likelihood under a mixture model. By assigning more weight to the constraint posterior term,

more emphasis can be given to learning the class boundaries consistent with the constraint in-

formation. This method requires significant user input that may be unavailable in practice. It

assumes the number of classes is known and models each class with a single mixture compo-

nent. Also, the method is developed only for must-links in [98]. In [108], the Gaussian process

classifier is extended to handle pairwise constraints instead of class labels, and unconstrained

samples are introduced into the learning through the covariance function of the Gaussian pro-

cess prior, using data-dependent semi-supervised kernels. Since the method learns the class

boundaries discriminatively, the solution has a smooth class posterior and achieves constraint

propagation. One limitation of their method is the heuristic approximation of the expectation

of a function involving products as a product of expectations. Although their method can be

extended to multi-class problems, the formulation and experimentation only address two class

problems. In [105], a constrained optimization problem is formulated in order to find a smooth

non-linear transformation such that all the samples map to the surface of a unit hypersphere, sam-

ples involved in ML constraints map to the same point, and samples involved in CL constraints

map to orthogonal points in the transformed feature space. Although their method can achieve

constraint propagation by virtue of minimizing the smoothness objective, it has some fundamen-

tal limitations. First, their method learns a kernel matrix on the training data support, and hence

cannot be applied to unobserved data. Second, their method requires hard constraint satisfaction

because of the equality constraints in the optimization problem. The optimized kernel matrix is

used in a kernel K-means clustering algorithm, which gives a hard clustering solution. Also, a

common limitation shared by all the methods discussed here is that the number of classes needs

to be specified.

3.4 Experiments

3.4.1 Performance measures

We evaluated the performance of the constraint-based semi-supervised learning methods in our

experiments using two metrics: F-score [155], [179], [15] and Normalized mutual information

(NMI) [166], [6], [105]. F-score, a combined measure of purity P and accuracy A, is defined

as F = 2P A
P+A . To define P and A, suppose that there are M true classes in the data, and that

a method finds L groups (estimated classes) in the solution. Let nij be the number of samples
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belonging to true class i that are predicted to belong to group j, where i = 1, . . . ,M and

j = 1, . . . , L. Also, let ni =
∑L

j=1 nij be the number of samples in class i, n̂j =
∑M

i=1 nij be

the number of samples in group j, and n be the total number of samples. Purity and accuracy

are then defined as

P =

L∑
j=1

n̂j
n

max
i∈[M ]

nij
n̂j

=
1

n

L∑
j=1

max
i∈[M ]

nij . (3.18)

A =
M∑
i=1

ni
n

max
j∈[L]

nij
ni

=
1

n

M∑
i=1

max
j∈[L]

nij . (3.19)

The normalized mutual information between the true class random variable C and the predicted

class (group) random variable Ĉ is defined as

NMI(C, Ĉ) =
I(C, Ĉ)√

H(C) H(Ĉ)
, (3.20)

where I(·, ·) denotes the mutual information between two random variables, and H(·) denotes

the Shannon entropy of a random variable. We calculate both these metrics only over the uncon-

strained samples (defined by index set Iu).

3.4.2 Methods used for comparison

We compared the performance of our method with the mixture model based methods of [155]

(referred to as SCGMM) and [179] (referred to as MCGMM), the constrained K-means cluster-

ing method of [167] (referred to as COP kmeans), the pairwise constraint propagation method

(referred to as PCP) using semi-definite programming (SDP) of [105], and the non-linear metric

learning method (referred to as NLML) of [158]. We implemented the multiple component per

class version of [179], with the model order (number of components) selection and parameter

initialization done the same way as for our method. The implementations for the methods in

[155] and [167] by their respective authors were obtained from the Web 9. For [167], learning

was repeated for 10 random initializations, and the average values of the performance metrics

are reported.

We implemented the methods PCP and NLML based on their algorithm descriptions given

in [105] and [158]. We evaluated only the nonlinear version of NLML, which requires speci-

fying the regularization parameter α, the reduced dimensionality d′, and the window parameter
9Code for [155] was obtained from http://www.openu.ac.il/home/shental/, and code for

[167] was obtained from http://www.cs.ucdavis.edu/˜davidson/constrained-clustering/
CAREER/CAREER.html
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w. In [158], the authors suggest a heuristic choice of values for these hyperparameters which

does not require any search. However, in our experiments, this choice typically resulted in poor

performance for NLML compared to the other methods. In an attempt to evaluate the “best” case

performance for NLML, we repeated the learning for different values of the three hyperparame-

ters10 and report the best performance, obtained by choosing the hyperparameters corresponding

to the largest normalized mutual information value. For PCP, the open source SDP solver CSDP

6.0.1 11 was used in the implementation. For this method, the authors suggest a range of values

from which to choose the hyperparameter σ, but they do give an objective criterion for choosing

σ. Therefore, we varied σ in the suggested range, and again report the best performance of this

method by choosing σ corresponding to the largest normalized mutual information value. For

both [105] and [158], the K-means (or kernel K-means) clustering was repeated from 20 ran-

dom initializations, and the average performance measures are reported. Note that this method

of choosing hyperparameters for NLML and PCP would not be possible in a realistic scenario

where test set class labels are not known. However, this essentially gives an upper bound on the

performance of these methods.

For our method, we evaluate both the single component per class (referred to as SCP (single

component parameterized)) and the multiple components per class (referred to as MCP (multiple

components parameterized)) models. This will be useful to illustrate that in some cases, just by

imposing space-partitioning, even when the classes are not flexibly modeled with multiple com-

ponents, one can obtain better solutions compared to methods which do not achieve constraint

propagation. Whereas the other methods all require specification of the number of classes in the

dataset, MCP and MCGMM can automatically estimate the number of classes. However, for fair

comparison, we also provide the number of classes as input to MCP and MCGMM. We sepa-

rately evaluate the accuracy of class number estimation for our method in section 3.4.6. For the

mixture model based methods, the type of component covariance matrix (full or diagonal), and

whether all components use distinct covariance matrices or tied ones (across all components)

are decided based on (i) the number of samples and feature dimension of the data and (ii) the

covariance type that leads to the solution with minimum BIC when MLE is performed on the

data without any constraints.

In all experiments, the set of constraints is created by randomly selecting pairs of points,

without replacement, from the entire dataset, and using the true class labels to determine whether

it is an ML or a CL constraint 12. Note that while this method can lead to more CL constraints
10We used a search set of nine values in (0.001, 0.8) for α, a search set of nine values in {1, 2, . . . ,M} (where M

is the number of samples involved in ML constraints) for d′, and a search set of nine values in (d̄/16, 5 d̄) (where d̄
is the average pairwise distance between the data samples) for w.

11https://projects.coin-or.org/Csdp/
12The class labels are used only for the purpose of generating the constraints and calculating the performance
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5

Figure 3.2. Plots of synthetically generated data used in experiments. Points from different classes are
denoted by different colors and symbols.

than ML constraints for multi-class datasets, it is also a realistic way of creating constraint sets.

From a given set of constraints, the larger set of entailed ML and CL constraints was then de-

termined. In our experiments, the same entailed constraint set is provided as input to all the

methods, and the F-score and NMI are reported as a function of the number of constraints used

(number of constraint pairs divided by N ). For each constraint set size, 10 randomly selected

constraint sets are created, and the F-score and NMI values are averaged over these constraint

sets.

3.4.3 Experiments on synthetic data

We first studied the performance of the methods on five synthetically generated 2D datasets,

whose plots are shown in Fig. 3.2 (The dataset in Fig. 3.2(a) was also used in the illustrative

measure.
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(a) Solution learned by the MCP method (b) Solution learned by the MCGMM method

Figure 3.3. Solutions learned by the MCP and MCGMM methods on the dataset in Fig. 3.2(e), for a
particular set of constraints. The shaded regions show the learned class boundaries, and the samples are
shown with their true class labels using different colors and symbols. For MCGMM, the class membership
discontinuities at the location of the constrained samples are not shown.

example in Fig. 3.1). The average F-score and average NMI, as a function of the constraint set

size are shown in Fig. 3.4. Among the methods which use a single component (cluster) per class

– COP kmeans, SCGMM, and SCP, the first two learn poor or suboptimal solutions on all the five

datasets. The method SCP, however, learns better solutions on datasets 1, 2, 3, and 5 (Fig. 3.4(a),

3.4(b), 3.4(c), and 3.4(e)). The methods MCGMM and MCP, both allow flexible modeling of

classes with multiple components, but MCGMM does not achieve constraint propagation in its

solution. This limitation can be clearly observed on datasets 4 and 5 (Fig. 3.4(d) and 3.4(e)),

especially for dataset 5, where MCGMM models the data well but satisfies many constraints

by simply introducing class membership discontinuities. The solutions learned by MCP and

MCGMM on dataset 5, for one of the constraint sets is shown in Fig. 3.3. In Fig. 3.3(b), we

observe that a majority of the samples from the red (plus) and green (star) classes are grouped

incorrectly. Overall, on these synthetically generated datasets our method MCP has a significant

performance improvement compared to the other methods, including the non-parametric kernel

based method PCP, and the nonlinear metric learning method NLML.

3.4.4 Experiments on real data

In this section, we evaluate the performance of the methods on ten datasets from the UC Irvine

machine learning repository [1] and a real image segmentation dataset. A summary of the UCI

datasets is given in Table 3.1. We applied principal components analysis (PCA) as a preprocess-
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5

Figure 3.4. Average F-score and average NMI vs. number of constraints for all methods on the syntheti-
cally generated datasets shown in Fig. 3.2.
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ing step, retaining only the dimensions which account for 99.5% of the total variance 13. This

was done in order to allow the mixture model based methods to learn better parameter estimates,

and also to avoid the possibility of rank deficient covariance matrices. On the datasets for which

PCA does not result in any dimension reduction, we used the original set of features. The av-

Table 3.1. Summary of the data sets used in experiments. N – number of samples, d′ – original number
of features, d – number of features after applying PCA, L∗ – number of classes

Dataset N d′ d L∗

Balance Scale 625 4 4 3

Breast Cancer (diagnostic) 569 30 7 2

Cardiotocography 2126 21 7 3

Image Segmentation 2098 19 6 7

Ionosphere 351 34 24 2

Pen-based Recognition 5499 16 14 10

Pima Indians 733 8 6 2

Vehicle Silhouettes 846 18 8 4

Wall Following Robot 5456 4 4 4

Waveform Database 5000 21 21 3

erage F-score and average NMI curves for the different methods, as a function of the constraint

set size, are shown in Fig. 3.6. For the PCP method, we were unable to obtain results for the

datasets Pen-based recognition, Wall following robot, and Waveform database (which have more

than 5000 samples), because of its very long execution time (more than 24 hours for solving the

SDP problem for a single σ value).

The methods MCP and SCP have a large performance improvement over others on the

datasets Balance scale (Fig. 3.5(a)), Cardiotocography (Fig. 3.5(c)), and Wall following robot

(Fig. 3.5(e)), and a relatively smaller improvement on Image segmentation (Fig. 3.5(b)). It

is interesting to note that on the Cardiotocography dataset, the MCP solution does not satisfy

about 10% of the constraints, but still has good generalization performance compared to other

methods, which either impose hard constraint satisfaction (SCGMM, COP kmeans, PCP, and

NLML) or satisfy most of the constraints (MCGMM). Both MCP and MCGMM, which allow

multiple components per class, have a large performance improvement on the Pen-based recog-

nition dataset (Fig. 3.6(b)). On the Ionosphere dataset (Fig. 3.5(d)), the method PCP performs

a lot better than the rest of the methods. But note that we are reporting the best performance
13Despite this conservatively large threshold, we found that the dimensionality could be significantly reduced on

some of the datasets.
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(a) Balance scale (b) Image segmentation

(c) Cardiotocography (d) Ionosphere

(e) Wall following robot (f) Vehicle silhouettes

Figure 3.5. Average F-score and average NMI vs. number of constraints for all methods on the UC Irvine
datasets.
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of PCP, using the hyperparameter σ that gives the largest NMI value. Also, on this dataset, we

observed that the large F-score and NMI values of PCP were not obtained for any other σ value

in the candidate set. The performance of NLML is only comparable and in some cases worse

than the other methods used for comparison, even with its hyperparameter tuning.

Additionally, we evaluated the methods on a texture image segmentation task from the USC-

SIPI image database 14. Similar to the approach in [107], we chose four Brodatz texture images

to represent four underlying classes. The data samples were created by dividing the images into

16 x 16 blocks, and rearranging them into 256 dimensional feature vectors, following which

PCA was applied to reduce the dimensionality to 16. ML and CL constraint sets of different

sizes were created as described in section 3.4.2, and the average performance of the methods as

a function of the number of constraints is shown in Fig. 3.6(e). The F-score and NMI of MCP,

SCP, and MCGMM are all similar, and better compared to the other methods, but there is not

much improvement as the number of constraints is increased.

3.4.5 Discussion of results

3.4.5.1 When is space-partitioning useful?

It is interesting to note that when the data patterns from each class form distinctive clusters

which can be well modeled by the assumed parametric mixture model, the solutions found by

the mixture model based methods which do not impose space-partitioning are usually accurate.

For example, the solution learned by MCGMM on synthetic datasets 1 and 2 (see Fig. 3.4(a)

and 3.4(b)). In these solutions, space-partitioning is obtained as a result of the cluster structure

in the data – it is not explicitly imposed by the method in order to satisfy the constraints. Hence,

the constraints are mainly informative only about which clusters belong to the same class, and

which ones do not. This idea is also supported on the Waveform dataset from the UC Irvine

machine learning repository. From the performance plot in Fig. 3.6(c), we see that the methods

MCGMM, SCGMM, and MCP have almost no improvement in F-score as the number of con-

straints is increased. This suggests that the constraints are not very informative on this dataset.

Indeed, we found that unsupervised (without the constraints) MLE learning of a GMM, with

each component modeling a class, gets nearly the same average F-score and NMI as the other

methods. On the other hand, consider synthetic dataset 5 (Fig. 3.2(e)). Here, a method which

models the data well, but only satisfies the constraints locally (without propagating them to the

unconstrained samples) does not learn an accurate solution. From this standpoint, the constraints

are more informative on this dataset, and imposing space-partitioning is beneficial. Such a sce-
14This dataset was downloaded from http://sipi.usc.edu/database/.
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(a) Breast cancer (b) Pen-based recognition

(c) Waveform database (d) Pima indians

(e) Texture image segmentation

Figure 3.6. Average F-score and average NMI vs. number of constraints for all methods on the UC Irvine
and the texture image segmentation datasets.
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(a) Dataset with true class labels and
pairwise constraints

(b) Class boundaries learned by the
MCP method

(c) Class boundaries learned by the
MCGMM method

Figure 3.7. Example illustrating the effect of class overlap on the solutions learned by the MCP and
MCGMM methods on a dataset with three classes, randomly generated from a Gaussian mixture. The
true class labels of samples (markers with different symbols and colors), must-links (solid lines), and
cannot-links (disconnected lines) are shown in Fig. 3.7(a). The class boundaries learned by MCP and
MCGMM are shown in Fig. 3.7(b) and Fig. 3.7(c) respectively.

nario appears to play out on real datasets too, as evidenced by the performance plots in Fig.

3.5(e), Fig. 3.5(c), and 3.5(a).

3.4.5.2 Class overlap and inadequate number of constraints

While space-partitioning is a desirable property in the solution, in some situations where the

classes have significant overlap, and/or when the number of constraints is very small, impos-

ing space partitioning can actually mis-specify the class boundaries. The methods which do

not impose space-partitioning, however, will not be affected much in such a scenario because

they satisfy the constraints sample-wise. We studied the performance of the methods MCP and

MCGMM under such a scenario by creating datasets by sampling from randomly generated

Gaussian mixtures, with varying amounts of class overlap and a small number of constraints.

One such illustrative example is shown in Fig. 3.7. The dataset has three classes. The true class

labels of all samples, and the pairwise constraints are shown in Fig. 3.7(a). The class boundaries

learned by MCP and MCGMM are shown in Fig. 3.7(b) and Fig. 3.7(c) respectively. The three

CL constraints pointed out with arrows fall in regions where there is class overlap, and hence

these constraints mislead the MCP method to learn incorrect class boundaries as shown in Fig.

3.7(b). On the other hand the solution of the MCGMM method in Fig. 3.7(c) satisfies these

constraints and still has many CL pairs contained in regions that belongs to the same predicted

class (group). Though the MCP method may learn suboptimal decision boundaries in such sce-

narios, it should be noted that the learned boundaries are completely consistent with the provided
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constraint information. When the underlying class conditional distributions of the data can be

captured by the model assumptions of the MCP method, it should be able to approximate the

true class boundaries as more informative constraints are provided.

3.4.6 Evaluating the class number estimate

Here, we evaluate how close our class number estimate is to the true number of classes on three

multi-class datasets from the UC Irvine repository: Image segmentation, Pen-based recognition,

and Wall following robot. The constraint set size is varied over a small (2%), intermediate (6%),

and large value (12%), and for each constraint set size, the average and standard deviation of L

over ten randomly chosen constraint sets is calculated. The results are summarized in Table 3.2.

We observe that the estimated number of classes is close to the true number of classes.

Table 3.2. Average class number estimate and its standard deviation (in paranthesis) for the MCP method
on multi-class UC Irvine datasets.

Dataset L∗
L

2% 6% 12%

Image Segmentation 7 8 (0.89) 6.9 (0.7) 6.8 (0.6)

Pen-based recognition 10 8.9 (0.7) 10.3 (0.46) 10.6 (0.49)

Wall following robot 4 4.2 (0.6) 3.8 (0.4) 3.8 (0.6)

3.4.7 Evaluating the choice of number of components

Our method of selecting the number of components was described in section 3.2.3.2. Fig. 3.8

shows the average F-score and average NMI of the MCP method as a function of the number

of components on three UCI data sets (Ionosphere, Vehicle silhouettes, and Pen-based recogni-

tion), for a fixed constraint set size of 10%. The values are averaged over 10 randomly selected

constraint sets. For a given number of components, β is chosen as described in section 3.2.3.1.

Also, the average number of components chosen by our method, and the average number of

components at the BIC minimum are indicated in the figure as K1 and K2 respectively. We ob-

serve that K1 and K2 are not very different on these datasets. Also, the F-score and NMI values

of the MCP method do not have a lot of variance once the number of components is larger than

a certain value. Similar results were observed on other UCI datasets. Accordingly, our model

selection approach is reasonably supported by the classification results.
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Figure 3.8. Plot of the average F-score and average NMI of the MCP method as a function of the
number of mixture components for the UCI datasets (i) Ionosphere, (ii) Vehicle silhouettes, and (iii) Pen-
based recognition (from left to right) for a constraint set size 10%. The average number of components
selected by the method described in section 3.2.3.2 K1, and the average number of components at the
BIC minimum K2 are also shown.

3.4.8 Run-time analysis of our method

The asymptotic run-time complexity of our method is given by O((Kf − Ki)Nβ NEMCEM),

where

CEM = Tmax

(
N Kf d

2 + (|Ic|+ |Im|)K2
f Lmax d

2
)
. (3.21)

In the above expression, [Ki,Kf ] specifies the range of the number of components, Nβ is the

number of β values, NEM is a bound on the number of EM cycles, CEM (given by (3.21)) is a

bound on the number of computations in each EM step, and Tmax is a bound on the number of

gradient descent steps in each E-step optimization. The average running times of the methods

MCP, MCGMM, PCP, SCGMM, and NLML (with hyperparameter search) on three UCI datasets

for a constraint set size 10% are reported in Table 3.3. All the methods were run on a computer

with a 3.0 GHZ Intel Xeon 3160 Dual core processor and 8 GB memory. The methods MCP

and PCP have relatively large running times compared to the other methods. In the case of our

method MCP, this is caused by the nontrivial E-step, and the search over hyperparameter β and

the number of components. Note that MCP achieves significantly better results than PCP on

most data sets, and thus better exploits its computational cycles. Also, our method is amenable

to parallelization since the learning for different β values and different number of components

are independent of each other. Since the number of model parameters and the running time of
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our method have squared dependence on the number of features d, for high dimensional data

these can be reduced by using flexible models such as mixture of factor analysis [58].

Table 3.3. Average run-times (in seconds) of the methods on some UCI datasets for a constraint set size
10%

Dataset
Average run-time (seconds)

MCP MCGMM PCP SCGMM NLML

Cardiotocography 7805 86 22066 5 4882

Balance scale 813 38 1514 4 246

Vehicle silhouettes 2151 85 3237 6 210



Chapter 4
Semi-supervised domain
adaptation of mixture model based
classifiers with imposed
space-partitioning

4.1 Introduction

In the previous chapter, we presented a method for semi-supervised learning from pairwise-

sample constraints which imposes space-partitioning and smoothness in the solution, thus en-

suring that there is propagation of constraint information to all the samples. Here, we apply the

solution approach developed there to the problem of semi-supervised domain adaptation of a

mixture model based classifier. As discussed in Chapter 1, the semi-supervised domain adapta-

tion problem [45], [16], [24], [25], [82] considers a scenario where the target domain of interest

has a small labeled data set and a relatively large unlabeled data set, while a related source do-

main has a fully labeled data set available - one that is large enough to reliably learn a supervised

classifier. In order to learn a classifier specific to the target domain data, it may not be reliable to

directly utilize the labeled data set from the source domain since the underlying joint distribution

of the feature vector X and the class C may be different in the two domains. However, in order

to leverage the existing trained classifier and/or the fully labeled data set in the source domain in

a useful way and in fact, to also avoid possible degradation in performance of the target domain

classifier during adaptation, one would have to assume that the joint distributions of X and C

are not very different in the source and target domains. Under such an assumption, we consider
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the problem of adapting the parameters of a mixture model based classifier from the source to

the target domain using the combined labeled and unlabeled target domain data sets.

Recall that in section 1.4 of chapter 1, we discussed some plausible realistic problem sce-

narios where classifier domain adaptation will be useful. One such scenario is when there is a

contextual difference in the way the data is generated/recorded in the two domains. For example,

the data in the source and target domains may be obtained at different times, or at different loca-

tions. Also, there could be situations where the class-conditional distribution of the features may

change conditioned on the value of a latent variable (which “signifies” the domain). For exam-

ple, in a computer networking scenario, the demand profile for a certain application (packet-flow)

could be different at two sites, such that the training data was captured when the demand (total

bytes or packets) was low and the test data was captured when the demand was high. Such a sce-

nario also commonly occurs in the problem of automatic speech recognition [50], [49], where the

speech models (usually continuous density hidden Markov models) learned using training data

from a given set of speakers may not be directly suitable for recognizing speech from a different

set of speakers, especially when there are differences like native versus non-native speakers of a

language.

In this work, we focus on adaptation of a generative classifier, where the conditional distribu-

tion of the feature vector given each class is modeled using a mixture of parametric distributions

(typically Gaussian), and the maximum a posteriori (MAP) rule is applied to the plug-in Bayes

class posterior (using the estimated model) to make class predictions. This approach, also known

as mixture discriminant analysis (MDA) [65], [53], [62], is capable of learning complex decision

boundaries given sufficient labeled training data and with suitably chosen model complexity. We

assume that the target domain has a small set of labeled samples, and a relatively large number

of unlabeled samples just like in semi-supervised learning [33], [182], but here we additionally

exploit the classifier model trained using the labeled source domain data. Specifically, starting

from the source domain classifier model, our method maximizes the likelihood of target domain

data, while constraining the solution to agree as closely as possible with the available class label

information in the target domain. This is achieved via an expectation maximization (EM) algo-

rithm, where the joint posterior distribution of the latent variables given the data is constrained

using a smooth parametric mean-field (variational) approximation in the E-step, in order to en-

sure that space-partitioning implications are gleaned from the labeled target domain samples.

The motivation for using a parametric mean-field approximation in the E-step is similar to that

of the method developed in chapter 3, with the difference being that, here we attempt to achieve

label propagation to neighboring unlabeled samples, whereas the method in chapter 3 achieves

constraint propagation in the solution.
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The rest of the chapter is organized as follows. In the next section, we formulate our problem,

discuss two different solution approaches, and motivate through an example why one approach

is preferred over the other. In section 4.3, we discuss the overall model learning strategy, and

also propose a validation score used to eliminate potentially poor solutions (in terms of target

domain classification performance) from the set of candidate solutions. A discussion of related

domain adaptation approaches in the literature is given in section 4.4. Finally, in section 4.5,

we discuss the methods used for performance comparison, and present experimental results both

on synthetically generated data sets (with changes introduced in the distributions generating the

source and target domain data), and on publicly available Internet packet-flow traffic data from

different temporal and spatial domains.

4.2 Method formulation

Consider a labeled source domain data set X (s)
l = {(x(s)

i , c
(s)
i ), i = 1, . . . , N

(s)
l }, where x(s)

i ∈
Rd is the feature vector and c(s)

i ∈ C ≡ {1, . . . ,K} is the class label, from a set K classes.

We will develop the method for continuous-valued features, and outline ideas for extending the

method to mixed continuous and categorical valued features in chapter 5. The target domain

data consists of a labeled subset X (t)
l = {(x(t)

i , c
(t)
i ), i = 1, . . . , N

(t)
l }, and an unlabeled subset

X (t)
u = {x(t)

i , i = N
(t)
l +1, . . . , N

(t)
l +N

(t)
u }, where x(t)

i ∈Rd. It is useful to define the following:

the index set of target domain labeled samples I(t)
l = {1, 2, . . . , N (t)

l }, the index set of all target

domain samples I(t) = {1, 2, . . . , N (t)
l +N

(t)
u }, and the set of all feature vectors in the target

domain data set X (t) = {x(t)
i ∀i ∈ I(t)}. It is assumed that the features in the source and target

domain are measured in the same way, and have the same semantic meaning. It is also assumed

the same set of classes are present in the two domains, albeit perhaps with very different class

prior probabilities on the two domains 1.

4.2.1 Classification model

An MDA classifier for the source domain is learned by modeling the conditional density of the

feature vector X given the class C as a finite mixture of Gaussian densities, i.e.,

fX |C(x | c, ωc) =
∑
l∈Mc

αcl N (x ;µ
cl
,Σcl), ∀c ∈ C,

1Although classes may be missing at random in the target domain labeled subset, in this work we do not consider
“new class discovery” [179] in the target domain.
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where N (x ;µ,Σ) is the multivariate Gaussian density with mean vector µ and covariance ma-

trix Σ, Mc is the index set of components in the mixture model for class c, and ωc = {(αcl, µcl,
Σcl), l ∈ Mc} is the set of parameters of the mixture model for class c. Here αcl is the prior

probability of component l given class c which has to satisfy the non-negativity and sum-to-one

(over l ∈ Mc) probability constraint, µ
cl

is the component mean vector, and Σcl is the compo-

nent covariance matrix which has to satisfy the symmetry and positive definiteness constraint.

Let πc, ∀c ∈ C denote the class prior probabilities which are non-negative and sum to 1 over

all the classes. The set of all parameters, Θ = {Θc = (πc, ωc), ∀c ∈ C}, can be estimated

using maximum-likelihood (ML) or maximum-a-posterior (MAP) estimation (in a Bayesian set-

ting with conjugate prior distributions) on the labeled source domain data. This is essentially

a straightforward application of the EM algorithm [48], [111]. The complexity of the mixture

model for each class increases with increase in the number of components, and also with the

choice of the covariance matrix (unrestricted or diagonal, distinct or shared across the compo-

nents). In order to make these choices, we use the Bayesian information criterion (BIC) [152]

which is a theoretically grounded criterion to select the complexity of the model. For a fixed

model size chosen by the BIC, suppose the set of parameters estimated based on the labeled

source domain data is denoted by Θ(s), then the plug-in Bayes classification rule is given by

Ĉ(x) = arg max
c∈C

P (C = c |x,Θ(s)) = arg max
c∈C

π(s)
c fX |C(x | c, ω(s)

c ). (4.1)

The goal of this problem is to adapt the classifier parameters Θ(s) using the combined labeled and

unlabeled data samples in the target domain, such that the MDA classifier based on the adapted

parameters has improved classification performance for the target domain data, ideally, better

than that of a classifier that is based purely on supervised or semi-supervised learning from the

target domain data.

4.2.2 Review of variational approximation

In order to set the tone for our learning objective and optimization approach, we first review

the method of variational approximation applied to the E-step of the Expectation-Maximization

(EM) algorithm. Consider the (incomplete data) log-likelihood [48] of the set of all feature

vectors in the target domain data (X (t))

L(Θ) = logP (X (t) |Θ) =
∑
i∈I(t)

log

∑
c∈C

∑
l∈Mc

πc αcl N (x
(t)
i ;µ

cl
,Σcl)

 .
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We identify the set of binary, latent random variables Z = {Zicl, ∀i ∈ I(t), ∀c ∈ C, ∀l ∈Mc},
where Zicl = 1 if the (possibly unknown) class label of sample x(t)

i is c and if x(t)
i is generated

from the conditional density of component l ∈ Mc; else Zicl = 0. The complete data log-

likelihood is then given by

Lc(Θ) = logP (X (t),Z |Θ) =
∑
i∈I(t)

∑
c∈C

∑
l∈Mc

Zicl log
[
πc αcl N (x

(t)
i ;µ

cl
,Σcl)

]
. (4.2)

Let q(c, l |xi) ≡ P (C = c,Mc = l |xi) denote an arbitrary probability mass function (pmf)

on the class C and mixture component Mc (for class c) given feature vector xi, satisfying∑
c∈C
∑

l∈Mc
q(c, l |xi) = 1. Consider the joint-posterior distribution of the latent variables

Z given X (t) that has the factorized form

P (0)
(
Z |X (t)

)
=

∏
i∈I(t)

∏
c∈C

∏
l∈Mc

q(c, l |x(t)
i ) Zicl . (4.3)

Observing that EP (0) [Zicl] = q(c, l |x(t)
i ), the expectation of the complete data log-likelihood

with respect to the distribution P (0)(Z |X (t)) is given by 2

EP (0)

[
logP (X (t),Z |Θ)

]
=
∑
Z
P (0)(Z |X (t)) logP (X (t),Z |Θ)

=
∑
i∈I(t)

∑
c∈C

∑
l∈Mc

q(c, l |x(t)
i ) log

[
πc αcl N

(
x

(t)
i ;µ

cl
,Σcl

)]
. (4.4)

Also, the entropy of the distribution P (0)(Z |X (t)) is given by

H
[
P (0)(Z |X (t))

]
= −

∑
Z

P (0)(Z |X (t)) logP (0)(Z |X (t))

= −
∑
i∈I(t)

∑
c∈C

∑
l∈Mc

q(c, l |x(t)
i ) log q(c, l |x(t)

i ). (4.5)

Suppose the true posterior distribution over the latent variables conditioned on the data and

parameters is given by

P (Z |X (t),Θ) =
P (X (t),Z |Θ)∑
Z
P (X (t),Z |Θ)

, (4.6)

2We use
∑
Z

as a shorthand notation for
∑

Z1∈∆

∑
Z2∈∆

· · ·
∑

Z
Nu+Nl

∈∆

, where Zi is a vector consisting of the latent

variables Zicl, ∀c ∈ C, ∀l ∈ Mc, and ∆ is the set of all {0, 1}-valued tuples of size
∑

c∈C |Mc| such that in each
tuple exactly one of the values is 1 and the rest are 0.
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then we can derive a lower bound on the incomplete data log-likelihood as follows:

L(Θ) = logP (X (t) |Θ) =
∑
i∈I(t)

log
∑
Z
P (X (t),Z |Θ)

=
∑
i∈I(t)

∑
Z
P (0)(Z |X (t)) log

P (X (t),Z |Θ)

P (Z |X (t),Θ)

=
∑
i∈I(t)

∑
Z
P (0)(Z |X (t)) log

[
P (X (t),Z |Θ) P (0)(Z |X (t))

P (Z |X (t),Θ) P (0)(Z |X (t))

]
=

∑
i∈I(t)

∑
Z
P (0)(Z |X (t)) logP (X (t),Z |Θ) −

∑
i∈I(t)

∑
Z
P (0)(Z |X (t)) logP (0)(Z |X (t))

+
∑
i∈I(t)

∑
Z
P (0)(Z |X (t)) log

P (0)(Z |X (t))

P (Z |X (t),Θ)
.

= EP (0)

[
logP (X (t),Z |Θ)

]
+ H

[
P (0)(Z |X (t))

]
+ DKL(P (0), P ) (4.7)

where DKL(P (0), P ) is the Kullback-Leibler distance between the probability distributions

P (0)(Z |X (t)) and P (Z |X (t),Θ), which is always non-negative and takes a value 0 if and only

if P (0)(Z |X (t)) = P (Z |X (t),Θ). Therefore, we have a lower bound on the log-likelihood

given by

Q(Θ, P (0)) = EP (0)

[
logP (X (t),Z |Θ)

]
+H

[
P (0)(Z |X (t))

]
≤ L(Θ). (4.8)

The above formulation lends an alternate view of the EM algorithm, as an iterative alternating

maximization over the (latent variable) posterior distribution and the parameters [130]. Given

fixed parameters Θ, in the E-step the lower bound Q(Θ, P (0)) is maximized over the space of

all probability distributions. The formulation conveniently gives the solution to this problem

as P (0)(Z |X (t)) = P (Z |X (t),Θ). This makes the lower bound equal to the incomplete data

log-likelihood in the E-step. In the M-step, given the fixed distribution P (0), the lower bound

Q(Θ, P (0)) is maximized over the parameters Θ. These two steps are iterated, with each itera-

tion ascending monotonically in both Q(Θ, P (0)) and L(Θ), until a local maximum of L(Θ) is

reached.

As we discussed in Chapter 3, when computation of the posterior distribution (over latent

variables given the data) and the expectations relative to this distribution in the E-step are not

analytically tractable, it is common to use a factorized mean-field approximation or a variational

approximation [109], [78], [68], [138]. In the case of mean-field approximation, the E-step

optimization is directly performed over the factors of the approximating distribution, while con-

straining them to be valid probability mass functions. In the case of variational approximation,
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the factors of the approximating distribution are constrained to be smooth (not necessary in gen-

eral), parametric functions, and the E-step optimization is performed over the parameters of the

factors, which are referred to as variational parameters.

4.2.3 Optimization problem for classifier adaptation

For the semi-supervised setting in the target domain, our learning objective will be to maximize

the lower boundQ(Θ, P (0)) (or equivalently minimize its negative) subject to a constraint on the

expected error-rate on the labeled target domain samples (where the expectation is with respect

to the distribution P (0)), i.e.,

min
Θ, {q(c,l|x(t)

i )}
−EP (0)

[
logP (X (t),Z |Θ)

]
− H

[
P (0)(Z |X (t))

]
such that

1

N
(t)
l

∑
i∈I(t)

l

∑
c∈C
c6=c(t)i

∑
l∈Mc

q(c, l |x(t)
i ) ≤ ρ, (4.9)

where the expected complete data log-likelihood is given by (4.4) and the entropy is given by

(4.5). Note that the constraint term can be expressed as

1

N
(t)
l

∑
i∈I(t)

l

∑
c∈C
c 6=c(t)i

∑
l∈Mc

q(c, l |x(t)
i ) = EP (0) [

1

N
(t)
l

∑
i∈I(t)

l

∑
c∈C
c 6=c(t)i

∑
l∈Mc

Zicl ]. (4.10)

Intuitively, the constraint term is a soft count of the assignments of labeled target domain sam-

ples to components that are not affiliated with the class label, and thus tries to discourage such

assignments. The Lagrangian for the constrained optimization problem (4.9) (not explicitly in-

cluding the term which would ensure that q(c, l |xi) is a valid probability mass function) is given

by

F(Θ, {q(c, l|x(t)
i )}) = −EP (0)

[
logP (X (t),Z |Θ)

]
− H

[
P (0)(Z |X (t))

]
+ β

∑
i∈I(t)

l

∑
c∈C
c 6=c(t)i

∑
l∈Mc

q(c, l |x(t)
i ),

= −EP (0) [ logP (X (t),Z |Θ) − β
∑
i∈I(t)

l

∑
c∈C
c 6=c(t)i

∑
l∈Mc

Zicl ] − H
[
P (0)(Z |X (t))

]
(4.11)

where β ≥ 0 is the Lagrange multiplier which has absorbed the constant factor N (t)
l . Different

values of β in the Lagrangian correspond to different values of ρ in (4.9), and larger values of β
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will constrain the error rate on the labeled target domain samples to be smaller. This optimization

problem can also be solved using the framework of the EM algorithm that we just discussed in

section 4.2.2. However, in this case, the optimal posterior distribution (over the latent variables)

which minimizes (4.11) over all valid distributions (not just those that have the factorized form

(4.3)) in the E-step is given, in its un-normalized form, by

P (Z |X (t),Θ) ∝ exp[ logP (X (t),Z |Θ) − β
∑
i∈I(t)

l

∑
c∈C
c 6=c(t)i

∑
l∈Mc

Zicl ]

= exp[
∑
i∈I(t)

∑
c∈C

∑
l∈Mc

Zicl (log[πc αcl N (x
(t)
i ;µ

cl
,Σcl)] − β δ(c 6= c

(t)
i ) δ(i ∈ I(t)

l )) ]

=
∏
i∈I(t)

∏
c∈C

∏
l∈Mc

(
πc αcl N (x

(t)
i ;µ

cl
,Σcl) exp[−β δ(c 6= c

(t)
i ) δ(i ∈ I(t)

l )]
)Zicl

, (4.12)

where we have made use of (4.2) in going from the first to the second step, and δ(·) is a binary

indicator which takes a value 1 (0) if the condition in its argument is satisfied (not satisfied).

Since each term in the product (4.12) depends only on the latent variable of a single sample Zicl,

the normalization term is tractable to compute analytically, and given by

∏
i∈I(t)

∑
c∈C

∑
l∈Mc

πc αcl N (x
(t)
i ;µ

cl
,Σcl) exp[−β δ(c 6= c

(t)
i ) δ(i ∈ I(t)

l )]. (4.13)

From (4.12) and (4.13), the normalized form of the posterior distribution over the latent variables

is given by

P (Z |X (t),Θ) = (4.14)

∏
i∈I(t)

∏
c∈C

∏
l∈Mc

 πc αcl N (x
(t)
i ;µ

cl
,Σcl) exp[−β δ(c 6= c

(t)
i ) δ(i ∈ I(t)

l )]∑
k∈C

∑
m∈Mc

πk αkm N (x
(t)
i ;µ

km
,Σkm) exp[−β δ(k 6= c

(t)
i ) δ(i ∈ I(t)

l )]


Zicl

.

Note that this is different from the scenario in chapter 3, where the normalization term in the opti-

mal posterior distribution over latent variables, (3.6), was not tractable to compute, and hence the

factorized mean-field approximation had to be invoked. However, in this case, P (Z |X (t),Θ) is

tractable to compute, and has the factorized form (4.14). In the sequel, we will show that using

this optimal posterior distribution in the E-step of the EM algorithm is not desirable from the

standpoint of achieving space-partitioning and smoothness in the solution, which are essential in

order to achieve label propagation.

The goal of the classifier adaptation problem is to minimize the objective function (4.11). In
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order to utilize the model solution learned on the labeled source domain data, we can initialize

the EM algorithm with the parameters Θ = Θ(s). Depending on the difference between the

underlying joint distributions which generated the source and target domain data, this initializa-

tion for the classifier parameters may or may not be the best choice. One way to handle this

problem is to create a set of random initializations based on small perturbations to the source

domain parameters Θ(s). In the case of Gaussian mixtures, we will apply small, random pertur-

bations to the component mean vectors and create a set of random initializations. This is further

discussed in section 4.3. We note that another valid approach to control the extent to which

the initialization (based on the source domain parameters) affects the classifier adaptation is to

impose a Bayesian prior on the parameters, and add a log-prior term to the objective function

(4.11). For example, we can use the Normal-Inverse-Wishart (NIW) distribution [136], given

by NIW(µ
cl
,Σcl ; m

(0)
cl , k

(0)
cl , S

(0)
cl , ν

(0)
cl ) = N (µ

cl
; m

(0)
cl ,

1

k
(0)
cl

Σcl) IW(Σcl ; S
(0)
cl , ν

(0)
cl ) , as a

joint conjugate prior on the mean vector µ
cl

and covariance matrix Σcl of component l of class

c. Based on the estimated source domain classifier parameters, we can set two of the hyper-

parameters as m(0)
cl = µ

(s)
cl and S

(0)
cl = M

(s)
cl Σ

(s)
cl , where M (s)

cl is a probabilistic count of the

number of labeled source domain samples belonging to component l of class c in the source

domain classifier solution. The other two hyperparameters k(0)
cl ≥ 1 and ν

(0)
cl ≥ d control the

strength of the prior distribution (sometimes referred to as the degrees of freedom of the NIW

distribution). When they are set to a small value, the effect of the prior distribution on the pos-

terior distribution and the MAP estimates is weak, and as they are set to larger values the prior

distribution has a stronger effect. We can set ν(0)
cl + d+ 1 = M

(s)
cl , ∀c ∈ C, ∀l ∈ Mc

3, and in

order to create random initializations, the hyperparameter controlling the mean vector k(0)
cl = k,

∀c ∈ C, ∀l ∈ Mc can be varied. In this work, we will focus only on the former approach for

creating multiple classifier adaptation solutions, and leave evaluation of the Bayesian approach

as future work.

4.2.3.1 Optimal nonparametric E-Step

Since the posterior distribution of the latent variables given the data, (4.14), already has a factor-

ized form that is tractable to compute, it is not necessary to invoke the mean-field approximation,

as we did for the method in chapter 3. From (4.14), the factors of this distribution for the labeled

3For the Inverse Wishart distribution ν
(0)
cl + d+ 1 is the effective number of samples corresponding to the prior

scatter matrix hyperparameter S(0)
cl .
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and unlabeled samples are respectively given by

q(c, l |x(t)
i ) =

πc αcl N (x
(t)
i ;µ

cl
,Σcl) e

−β δ[c 6=c(t)i ]∑
k∈C

∑
m∈Mk

πk αkm N (x
(t)
i ;µ

km
,Σkm) e−β δ[k 6=c

(t)
i ]
,

∀c ∈ C
∀l ∈ Mc

∀i ∈ I(t)
l

(4.15)

and

q(c, l |x(t)
i ) =

πc αcl N (x
(t)
i |µcl,Σcl)∑

k∈C

∑
m∈Mk

πk αkm N (x
(t)
i ;µ

km
,Σkm)

,
∀c ∈ C
∀l ∈ Mc

∀i ∈ I(t)\I(t)
l

(4.16)

For the unlabeled samples, q(c, l |x(t)
i ) is simply the standard Gaussian mixture posterior, while

for the labeled sample q(c, l |x(t)
i ) has an additional factor e−β multiplying terms in the nu-

merator and denominator for which the class is not equal to the class label. We will show in the

sequel that a solution based on this E-step is not desirable because, though it may achieve a small

error rate on the given target domain labeled samples (for a sufficiently large β), it may do so

without actually achieving any propagation of the label information to the neighboring unlabeled

samples, by simply introducing discontinuities in q(c, l |x(t)
i ).

4.2.3.2 Parametric E-Step

In this approach, we will constrain the factors corresponding to all the samples in the posterior

distribution (4.3) to be a parametric function consistent with the type of component conditional

distribution used in the mixture model for each class (in this case multivariate Gaussian). As

discussed in section 4.2.2, this approach is also commonly known as the variational approxima-

tion. When the class conditional densities are modeled by mixtures of Gaussians, we constrain

the factors to have the parametric form

q(c, l |x,Φ) =
exp

[
xTWclx+ xTwcl + bcl

]∑
k∈C

∑
m∈Mc

exp
[
xTWkmx+ xTwkm + bkm

] , ∀c ∈ C
∀l ∈ Mc

∀i ∈ I(t)
(4.17)

where the d × d symmetric matrices Wcl, ∀c ∈ C, ∀l ∈ Mc, the d dimensional vectors wcl,

∀c ∈ C, ∀l ∈ Mc, and the real valued scalars bcl, ∀c ∈ C, ∀l ∈ Mc are called the varia-

tional parameters. Similar to the solution approach in chapter 3, we constrain all the factors

(corresponding to both the labeled and unlabeled samples) to have the same parametric form

in order to ensure that space-partitioning implications can be gleaned from a limited number of

target domain labeled samples. The E-Step now involves minimizing F (given by (4.11)) over

the variational parameters Φ = {(Wcl, wcl, bcl), ∀c ∈ C, ∀l ∈ Mc}. Since this optimization
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does not have a closed form solution, we apply the gradient descent method on the vector of all

parameters in Φ in order to find a local minimum of the objective function F .

4.2.3.3 Weakness of the nonparametric E-Step

In the nonparametric posterior distribution (4.15), by making β sufficiently large, one can ensure

that a labeled sample from the target domain (x
(t)
i , c

(t)
i ) will have high probability of association

with the subset of components affiliated to class c(t)
i , even if these components are not the nearest

ones (spatially) to x(t)
i . An unlabeled sample from the target domain x(t)

j , highly proximal to x(t)
i ,

has no β-dependence in q(c, l |x(t)
j ), and thus will end up with strong association to its nearest

components, regardless of the class affiliation of the component, i.e., x(t)
i and x(t)

j may have very

different (class, component) associations. In other words, this approach takes the “easy way out”,

satisfying constraints (on the target domain labeled samples) sample-wise, without there being

any space-partitioning implications [90]. On the other hand, in the parametric E-step, since

q(c, l |x,Φ) is a smooth function of x, it must be the case that q(c, l |x(t)
i ,Φ) and q(c, l |x(t)

j ,Φ)

are close in value when x(t)
i and x(t)

i are highly proximal in the feature space. In this case,

the only way to satisfy the constraints on the labeled samples is by moving the components,

ensuring that the neighboring unlabeled samples also have similar class-component associations

as the labeled samples. Thus the solution will have the desired space-partitioning implications.

We illustrate this idea in Fig.4.1 using a synthetic data set with two features and two classes

(distinguished by the colors red and green). Data in the source domain (not shown in the figure)

was generated from a Gaussian mixture distribution with four components, whose means and

covariance matrices were suitable chosen. Data points that were generated by two particular

components were assigned a class label “red”, while data points that were generated from the

other two components were assigned a class label “green”. The parameters of this four com-

ponent mixture model (used to generate the source domain data) are directly used to specify

an optimal MDA classifier for the source domain data. The target domain data was generated

using a Gaussian mixture distribution whose parameters are the same as that of the source do-

main Gaussian mixture, but with the class affiliation of two of the components interchanged

(swapped). The target domain data samples are shown both in Fig.4.1(a) and Fig.4.1(b). There

are only two labeled samples, one from each class, at the locations specified by the symbols “R”

(corresponding to the class red) and “G” (corresponding to the class green). The rest of samples

shown with the small symbols are unlabeled, but whose unknown class labels are revealed by

the symbol colors (red or green). It is obvious that the MDA classifier for the source domain will

make many classification errors on the target domain data, unless its parameters are adapted such

that two of its components are actually “moved” in the feature space (by adapting the component
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(a) Target domain data and the solution based on the non-parametric E-
Step

(b) Target domain data and the solution based on the parametric E-Step

Figure 4.1. A synthetic data example illustrating the domain adapted classifier solution found by using
(i)the nonparametric E-step and (ii)the parametric E-step.

means).

Two MDA classifier solutions for the target domain were obtained by applying the EM based

adaptation method presented in section 4.2, one based on the nonparametric E-step, and the

other based on the parametric E-step. These adapted MDA classifiers are illustrated by the

constant density contours of their Gaussian components, with the contour color specifying the

class affiliation of the components (red or green). The solution in Fig.4.1(a) corresponds to the

nonparametric E-step and the solution in Fig.4.1(b) corresponds to the parametric E-step. The

non-parametric E-step based method simply drives the error based penalty close to zero without

actually moving the components, which results in a poor classification solution as evident from

Fig.4.1(a). On the other hand, the parametric E-step based method can only drive the error

based penalty close to zero by actually moving the required components, which results in a good

classification solution (that also imposes a smooth partition of the feature space into two classes)

as evident from Fig.4.1(b). This example highlights the need for using the parametric E-step,

despite its greater computational requirement compared to the nonparametric E-step.

4.3 Overall learning strategy

For a fixed value of β, the objective function F is minimized by alternating the E and M steps

to convergence. At iteration n, suppose the model parameters are Θ(n), then the parametric E-
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step finds Φ(n), a local minimum of F(Θ(n),Φ), using gradient descent. The M-step finds the

model parameter updates Θ(n+1) which minimize F(Θ,Φ(n)). These parameter updates can be

computed in closed form according to following equations:

π(n+1)
c =

∑
x∈X (t)

∑
l∈Mc

q(c, l |x,Φ(n))

Nu +Nl
, ∀c ∈ C,

α
(n+1)
cl =

∑
x∈X (t)

q(c, l |x,Φ(n))

∑
x∈X (t)

∑
l∈Mc

q(c, l |x,Φ(n))
, ∀c ∈ C, ∀l ∈Mc,

µ(n+1)
cl

=

∑
x∈X (t)

q(c, l |x,Φ(n)) x

∑
x∈X (t)

q(c, l |x,Φ(n))
, ∀c ∈ C, ∀l ∈Mc,

Σ
(n+1)
cl =

∑
x∈X (t)

q(c, l |x,Φ(n)) (x− µ(n+1)
cl

)(x− µ(n+1)
cl

)T

∑
x∈X (t)

q(c, l |x,Φ(n))
, ∀c ∈ C, ∀l ∈Mc.

Suppose the EM algorithm is initialized with model parameters Θ(0), then the initial variational

parameters Φ(0) are found by equating the quadratic, linear, and constant terms in the equation

xTW
(0)
cl x + xTw

(0)
cl + b

(0)
cl = ln[π

(0)
c α

(0)
cl N (x | µ(0)

cl ,Σ
(0)
cl ) ]. This equation is obtained from

a comparison of (4.16) and (4.17). Also, we denote the model parameters and the variational

parameters upon convergence of the EM algorithm by Θ(t) and Φ(t).

The penalty coefficient β is a hyper-parameter which controls the possible trade-off in the

solution between achieving a small error rate on the target domain labeled samples and finding a

good mixture model fit to the marginal density of the feature vector in the target domain. Starting

from a small value, β is increased in steps, and for each value of β the EM algorithm is used

to find the adapted classifier parameters, starting from the same initialization Θ(0). The value

of the constraint penalty term (or soft error count on the labeled target domain samples), given

by
∑
i∈I(t)

l

∑
c∈C
c 6=c(t)i

∑
l∈Mc

q(c, l |x(t)
i ,Φ

(t)), is observed upon convergence of the EM algorithm for

successive increasing values of β. If the difference between successive values of the penalty

term falls below a threshold, we stop increasing β.
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From experiments, we have observed that sometimes initializing exactly at the source do-

main classifier parameter values can lead to solutions which do not have a sufficiently small

error rate on the target domain labeled samples. This may be due to the adaptation finding local

minima and/or due to significant difference between the underlying distributions which generate

the source and target domain data. In order to mitigate this problem, we create a set of candidate

initializations based on small perturbations to the source domain classifier parameters Θ(s) (as

discussed in section 4.2.3). In the case of a Gaussian mixture based MDA classifier, we create a

set of random initializations by uniformly sampling the mean vector of each component l ∈Mc

of each class c ∈ C from the interval (µ
(s)
cl − 2 diag(Σ

(s)
cl ), µ

(s)
cl + 2 diag(Σ

(s)
cl )), where diag(·)

refers to the column vector of diagonal elements of a matrix. All the other model parameters are

set equal to their corresponding values in the source domain classifier.

4.3.1 Choosing a solution using a novel validation criterion

To select between different solutions (from random restarts, and different β values), we define

a validation criterion called transformed source domain accuracy. In order to do so, we first

learn the parameters of two Gaussian mixture models to approximate the marginal density of the

feature vector (X) separately on the source and target domain feature vector data (i.e., excluding

the class labels) by maximum likelihood estimation using the EM algorithm. Suppose these

estimated models are given, for the source and target domain respectively, by

Ps(x) =
∑

i∈M(s)

γ
(s)
i N (x ;m

(s)
i ,V

(s)
i )

and

Pt(x) =
∑

i∈M(t)

γ
(t)
i N (x ;m

(t)
i ,V

(t)
i )

where M(s) and M(t) are the index sets of components in the source and target domain re-

spectively, and the rest of the parameters are the usual component priors, mean vectors, and

covariance matrices of a Gaussian mixture (superscript s and t are used to denote the source and

target domains). The number of components in the mixture models are selected according to the

BIC criterion [152] applied to the maximum likelihood solution.

Each source domain component is then mapped to a particular target domain component

such that the overall cost of mapping given by

G({vij}) =
∑

i∈M(s)

∑
j∈M(t)

vij cij (4.18)
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is minimized, where vij ∈ {0, 1} takes a value 1 (0) if component i is mapped (not mapped)

to component j, and cij > 0 is the cost of mapping component i to component j. We chose

cij = ‖m(s)
i − m

(t)
j ‖2, the Euclidean distance between the component Gaussian densities 4.

Minimization of (4.18) is the well known Linear Assignment problem, which can be solved

using the Hungarian algorithm [26]. If the number of components in the source domain mixture

(|M(s)|) is smaller than the number of components in the target domain mixture (|M(t)|), then

some of the target domain components will be left unmapped. On the other hand, if |M(s)| >
|M(t)|, then we find a mapping of only |M(t)| components of the source domain mixture, and

the rest of them are left unmapped. The unmapped source domain components i ∈ M(s) in the

solution will have
∑

j∈M(t) vij = 0.

Once we have the mapping from source to target domain components (i.e., from M(s) to

M(t)), for Gaussian component densities, we can find the unique affine transformation Tij(x)

that takes a feature vector x belonging to source component i to target component j. This is given

by Tij(x) = A
(t)
j (A

(s)
i )−1 (x −m(s)

i ) + m
(t)
j , where A

(s)
i and A

(t)
j are the factors obtained

by Cholesky decomposition of V
(s)
i and V

(t)
j respectively. Also, let Ti(x) =

∑
j∈M(t)

vij Tij(x),

∀i ∈M(s). Based on these component conditional transformation of points from the source do-

main to the target domain, we define a measure called the transformed source domain accuracy,

which is the classification accuracy of the labeled source domain data, transformed according

to the component conditional affine transformations, under the adapted target domain classifier.

We define the transformed source domain accuracy as

1

N
(s)
l

∑
(x,c)∈X (s)

l

π
(t)
c

π
(s)
c

∑
i∈M(s)

(
∑

j∈M(t)

vij)
γ

(s)
i N (x ;m

(s)
i ,V

(s)
i )∑

j∈M(s)

γ
(s)
j N (x ;m

(s)
j ,V

(s)
j )

δ
(
Ĉt(Ti(x)) = c

)
,

(4.19)

where Ĉt(y) is the MAP rule of the target domain classifier based on the parametric class poste-

rior obtained upon convergence of the EM algorithm for adaptation. Specifically,

Ĉt(y) = arg max
c∈C

∑
l∈Mc

q(c, l | y,Φ(t)) . (4.20)

Note that, in (4.19) when |M(s)| > |M(t)|, only the components for which
∑

j∈M(t) vij = 1

will contribute to the transformed source domain accuracy. Also, the ratio π
(t)
c

π
(s)
c

is an importance

4We evaluated other types of costs cij such as the symmetrized Kullback-Leibler distance, Hellinger distance, and
Bhattacharya distance [30] between the Gaussian densities of components i and j on some synthetically generated
data sets. Surprisingly, from these experiments we found the simple Euclidean distance between the component
means to be more suitable for mapping two sets of Gaussian components.
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sampling factor to account for the difference in class priors between the source and target do-

mains. In this way, the classification performance of an adapted classifier for the target domain

can be evaluated using the available labeled data from source domain. However, this can be a

reliable measure only if the component conditional affine transformations (found based on the

mapping of components) reasonably capture the actual (unknown) underlying transformation

that relates the source and target domain feature vector distributions. Otherwise the transformed

source domain accuracy values can be misleading.

We have to choose a solution from the set of candidate solutions obtained from different

random initialization of parameters and from different values of β. We will use the transformed

source domain accuracy (4.19) and the error rate on the labeled target domain samples (4.10)

jointly as criteria to eliminate potentially poor solutions (for target domain classification) as

follows. Based on a histogram of the transformed source domain accuracies (from all the can-

didate solutions), we choose a value η ∈ (0, 1) close to the maximum where the density of

solutions is relatively high. Similarly, based on a histogram of the error rate on the labeled tar-

get domain samples, we choose a value ε ∈ (0, 1) close to the minimum where the density of

solutions is relatively high. We choose among all the candidate solutions, the ones which have

transformed source domain accuracy greater than η and error rate on the target domain labeled

samples smaller than ε. From the solutions satisfying the above criteria, we choose the one with

the smallest value of the objective function F(Θ(t),Φ(t)) (at convergence) as the final classifier

solution for the target domain. We acknowledge that this is not a fully objective way of choos-

ing a unique solution. However, an alternative for choosing a solution from the candidates such

as cross-validation on the labeled target domain samples would be computationally intensive.

Moreover, cross-validation may not be reliable if there are very few labeled samples in the target

domain. In our approach, we address this problem by leveraging the available labeled data from

the source domain.

4.4 Related work

There is prior work on domain adaptation for discriminative and generative classifier models,

both in the unsupervised and the semi-supervised setting. Our work falls under “generative and

semi-supervised” domain adaptation. Early work, in a speech recognition context, is [50] and

[49]. In [50], parameters of Gaussian mixture models used to model the state conditional obser-

vation densities of a Hidden Markov model are adapted in a constrained fashion to maximize the

likelihood of a limited amount of adaptation data from a new speaker. This method is extended

in [49] to handle large amounts of adaptation data in a better way using Bayesian techniques. In
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[25], an unsupervised domain adaptation method for generative classifiers was proposed. Specif-

ically, labeled data in the source domain is used to learn a mixture-based generative classifier,

which serves as the initialization for a model trained in a purely unsupervised fashion via EM

to maximize the log-likelihood of the target domain data. To overcome these difficulties, we

propose a semi-supervised extension in section 4.5.1, which avoids poor local maxima problems

through the use of random restarts, coupled with a novel model validation strategy. We first

review some work on discriminative classifier models. In [82], an instance weighting framework

for semi-supervised domain adaptation is developed, where several strategies are proposed to

remove misleading labeled samples from the source domain, to assign more weight to labeled

target domain samples than labeled source domain samples, and to augment the training set with

predicted target domain samples. In [24], an unsupervised domain adaptation method for support

vector machines called DASVM is proposed. Also, a circular validation strategy for identifying

reliable solutions in the target domain, using only the labeled source domain data, is proposed.

In [16] and [11], Structural Correspondence Learning (SCL) for domain adaptation is proposed.

The key idea is to identify correspondences among features from the different domains by mod-

eling their correlations with what are called pivot features, which behave in the same way for

discriminative learning in the two domains. A detailed literature survey of domain adaptation

methods can be found in [81].

4.5 Experimental Results

In this section, we evaluate the classification performance of the proposed semi-supervised do-

main adaptation method.

4.5.1 Methods used for performance comparison

For performance comparison, we use three baseline methods. One is a direct porting of the

source domain classifier (without adapting its parameters) to make predictions on the target do-

main data. The second is the Mixture of Experts (MOE) semi-supervised learning method [122]

based solely on the target domain data. As a third method, we compare with the following

semi-supervised extension of the unsupervised domain adaptation method of [25]. In order to

condition on the available labeled data in the target domain, we modify their log-likelihood ob-

jective, which is based only on unlabeled data, to include the log-likelihood of the labeled data.
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The modified objective function is given by

P(X (t)
u ,X (t)

l |Θ) =
∑

(x,c)∈X (t)
l

log
∑
l∈Mc

[πc αcl N (x ;µ
cl
,Σcl)]

+
∑
x∈X (t)

u

log
∑
c∈C

∑
l∈Mc

[πc αcl N (x ;µ
cl
,Σcl)].

There is a closed form EM algorithm for maximizing this objective, and the algorithm is re-

peated from different random initializations of the parameters as we do for our method. Also,

as described in section 4.3.1, the transformed source domain accuracy and the error rate on the

labeled target domain samples are used to find a reduced set of candidate solutions, from which

the one having the largest data log-likelihood is selected. In order to have an upper bound on the

classification performance (of an MDA classifier) on the target domain, we learn an MDA clas-

sifier with Gaussian mixtures in a supervised setting, i.e., with class labels provided for all the

target domain samples (including the unlabeled samples). Specifically, we calculate and report

the ten-fold average cross validation accuracy of the classifier using all the target domain data

with class labels.

4.5.2 Results on Internet traffic classification datasets

We evaluated the performance of the methods on the problem of Internet traffic (packet-flow)

classification [133], [126]. We used four publicly available network packet traces recorded at

the University of Cambridge, UK [27]. These data sets were collected over a period of four

years at two different sites called Site A and Site B. From Site A, three data sets called Day1,

Day2, and Day3, and from Site B one data set (called Site-B) are made available. Detailed

information about the data sets, the features, and application classes can be found in [104].

Also, in [104] and [187] it was demonstrated that there is a drop in classification performance

when a classifier trained on one of these data sets is directly ported to make predictions on a

different one. In our experiments, we selected the following three (out of the six) continuous

valued features which have good discriminative capability: min seg size clnt, avg seg size serv,

and IP bytes med clnt, whose descriptions are given in Table 3 of [104]. We focused on four

application classes WWW, MAIL, BULK, and P2P, which have a sufficient number of samples

in all the data sets. Since the data sets are very large (around 200000 to 400000 samples), for

computational reasons, we randomly sampled 10% from whole data set while preserving the

class proportions present in the original data set.

In Table 4.1, the average 10 fold cross validation performance of an MDA classifier (rep-

resenting an upper bound on performance of domain adaptation) on the four data sets is given.
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Table 4.1. Ten fold cross-validation performance (in percentage) of an MDA classifier. Class: A - WWW,
B - MAIL, C - BULK, D - P2P

Data Accuracy
Recall Precision

A B C D A B C D
Day1 94.28 95.27 90.44 91.53 31.59 99.16 96.53 46.33 42.08
Day2 93.75 97.18 77.87 78.24 73.89 98.69 87.69 64.71 60.47
Day3 97.45 98.51 70.52 72.97 97.71 99.27 53.35 71.08 99.01
Site-B 96.23 99.09 81.15 64.67 72.40 97.89 87.22 59.13 82.12

Since these data sets have a skewed class prior (large proportion of the samples are from the

WWW class), we also report the precision and recall measures of the classifier for each class.

We performed three domain adaptation experiments: (i) Day3 as the source and Site-B as the

target, (ii) Day1 as the source and Day3 as the target, and (iii) Day2 as the source and Site-B

as the target. In all cases, the target domain labeled subset was created by random sampling,

and the size was varied from 10, in steps of 5, up to 25. The results for all the methods were

averaged over three different labeled subsets (size varied from 10 to 25 in each case), with the

same labeled and unlabeled subsets used for all the methods. We used 10 random restarts for our

method, and 100 random restarts for the semi-supervised extension of [25] (because this method

is less computationally intensive).

The results for the domain adaptation experiments from Day3 to Site-B, Day1 to Day3, and

Day2 to Site-B are given in Table 4.2, Table 4.3, and Table 4.4 respectively. The tables compare

the average classification performance of the methods (in terms of overall accuracy, and precision

and recall for each class) for different number of target domain labeled samples. We observe that

the proposed method (I) outperforms (or is at least as good as) the other methods in all cases, and

from comparison with Table 4.1, that the accuracy (in some cases), also the precision and recall

of our method with only a few labeled samples approaches that of supervised learning on the

target domain. We also evaluated the effectiveness of the transformed source domain accuracy

in retaining solutions which have good classification performance on the target domain. We

found it to be quite effective on these data sets, perhaps suggesting that the distribution of the

feature vector is not very different on these data domains. For instance, for the Day1 to Day3

experiment with 20 labeled target-domain samples, the average target domain accuracy of the

solutions eliminated based on the transformed source domain accuracy is 94.90%, while that of

the retained solutions is 97.25%.
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Table 4.2. Domain adaptation from Day3 to Site-B. Average classification performance (in percentage)
on the target domain for different labeled subset sizes. Method: I - Proposed method, II - Extension of
[25], III - Semisupervised learning [122], IV - Direct porting of the source domain classifier. Entry *
denotes an undefined value.

N
(t)
l

Method Accuracy
Recall Precision

WWW MAIL BULK P2P WWW MAIL BULK P2P

10

I 94.46 98.97 80.30 75.76 50.06 97.01 78.62 25.99 87.63

II 89.81 98.07 74.25 67.88 1.61 95.65 42.41 16.38 11.48

III 84.68 90.94 60.07 60.61 25.84 97.66 * 4.31 *

15

I 94.51 98.88 70.27 75.15 57.92 96.91 72.27 24.52 89.08

II 89.87 98.12 74.66 70.30 1.59 95.77 51.93 9.70 15.03

III 87.45 93.41 32.04 43.03 51.53 97.53 * 16.84 *

20

I 95.88 99.13 85.20 74.54 64.25 97.49 81.42 31.73 89.44

II 90.05 98.15 78.04 67.88 1.61 95.80 53.01 12.51 11.51

III 90.15 96.68 30.72 29.09 50.45 97.10 * 3.17 *

25

I 95.08 99.02 80.28 75.15 57.80 96.87 80.76 29.50 89.45

II 90.73 98.70 78.00 73.33 4.06 96.08 56.67 12.47 33.52

III 89.44 95.82 31.73 29.09 50.46 97.16 45.94 3.17 *

N/A IV 91.62 99.50 88.42 76.79 0.28 92.48 84.46 37.07 8.20

Table 4.3. Domain adaptation from Day1 to Day3. Average classification performance (in percentage) on
the target domain for different labeled subset sizes. Method: I - Proposed method, II - Extension of [25],
III - Semisupervised learning [122], IV - Direct porting of the source domain classifier. Entry * denotes
an undefined value.

N
(t)
l

Method Accuracy
Recall Precision

WWW MAIL BULK P2P WWW MAIL BULK P2P

10

I 96.88 98.02 54.96 77.87 97.80 99.44 61.57 46.98 97.66

II 88.12 97.98 52.69 78.68 0 99.43 65.72 13.31 *

III 86.41 92.88 16.50 59.36 41.96 98.48 * 31.98 *

15

I 97.30 98.49 55.56 77.35 97.83 99.45 62.15 53.56 97.25

II 90.54 97.42 52.69 78.85 32.58 99.44 65.69 19.35 *

III 83.83 91.31 16.71 42.60 32.24 98.37 * 29.56 *

20

I 97.28 98.47 55.01 77.53 97.81 99.44 61.64 53.81 97.09

II 90.54 97.41 52.65 78.84 32.58 99.44 65.65 19.34 *

III 83.88 91.28 16.71 47.82 31.95 98.29 * 20.47 *

25

I 97.29 98.50 55.01 77.21 97.81 99.43 61.58 54.17 97.09

II 95.35 96.29 52.65 78.65 97.72 99.43 65.65 31.31 99.51

III 92.36 98.20 0 42.63 63.45 98.24 * 29.56 56.09

N/A IV 88.23 98.06 55.02 78.17 0.18 91.43 59.84 37.78 3.92
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Table 4.4. Domain adaptation from Day2 to Site-B. Average classification performance (in percentage)
on the target domain for different labeled subset sizes. Method: I - Proposed method, II - Extension of
[25], III - Semisupervised learning [122], IV - Direct porting of the source domain classifier. Entry *
denotes an undefined value.

N
(t)
l

Method Accuracy
Recall Precision

WWW MAIL BULK P2P WWW MAIL BULK P2P

10

I 93.77 98.29 87.66 72.73 44.31 95.73 85.30 14.43 85.33

II 91.92 96.53 85.03 49.09 42.52 95.84 79.19 09.76 57.46

III 84.68 90.94 60.07 60.61 25.84 97.66 * 04.30 *

15

I 93.82 98.14 87.54 72.73 46.98 95.95 85.36 13.96 84.47

II 92.58 96.92 83.70 49.09 47.80 96.18 78.97 11.81 61.78

III 87.45 93.41 32.04 43.03 51.53 97.52 * 16.84 *

20

I 93.91 98.19 85.90 72.12 48.54 96.09 85.10 11.97 84.81

II 92.77 96.91 86.76 71.51 47.75 96.26 79.27 15.14 64.78

III 90.15 96.67 30.72 29.09 50.45 97.10 * 03.17 *

25

I 93.80 98.02 85.74 73.33 49.06 96.08 85.75 13.03 82.11

II 92.63 97.10 82.30 55.76 46.82 96.45 73.27 10.15 65.35

III 89.44 95.82 31.73 29.09 50.46 97.16 45.94 03.17 *

N/A IV 89.03 96.60 83.55 28.57 04.25 92.58 83.09 02.03 60.32



Chapter 5
Conclusions and future directions

5.1 Summary of contributions

In chapter 2, we developed novel semi-supervised mixture model based classification methods

that introduce fine-grained within-component class modeling, within statistically sound genera-

tive modeling frameworks. One of our methods (NFGL) uses non-parametric within-component

class modeling, which is seen to entail an underlying Markov random field on the class labels of

labeled samples within each mixture component. Our second method (PFGL) uses a paramet-

ric within-component class posterior model that is motivated by randomized nearest prototype

classification, and which also addresses a limitation of NFGL that manifests at very low labeled

fractions. While NFGL automatically specifies the right level of intra-component class model-

ing complexity based on the labeled data, PFGL requires optimization and careful model order

selection in order to set a suitable level of intra-component class modeling complexity. Both the

methods were demonstrated to outperform previous semi-supervised mixture model based clas-

sifiers, and also supervised classifiers such as K-nearest neighbors, within-component nearest

neighbor, and at low labeled fractions linear and nonlinear kernel based SVMs on a number of

data sets from the UC Irvine machine learning repository.

In chapter 3, we developed a semi-supervised learning method based on pairwise sample

constraints which can effectively achieve constraint propagation and generalization to uncon-

strained samples from a small number of constraints. Our approach imposes a smooth space-

partitioning on the solution via a parametric mean-field approximation of the posterior distribu-

tion over component assignments in the E-step of the EM algorithm (which minimizes a vari-

ational free energy objective). This precludes both the possibility and tendency (exhibited by

many existing methods) to satisfy constraints trivially by introducing class membership discon-
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tinuities. Another feature of the method is that it allows classes to be flexibly modeled with

multiple mixture components, thus capturing both the class and sub-class (cluster) structure in

the data. This also allows the method to estimate the number of latent classes present in the

data – a novel feature compared to most methods which require the number of classes to be

specified. Experiments on synthetic datasets, UC Irvine datasets, and a real texture based im-

age segmentation dataset demonstrate that our method can utilize pairwise sample constraints to

learn (overall) significantly better classification solutions compared to existing methods.

In chapter 4, we developed a semi-supervised domain adaptation method for mixture model-

based classifiers, which formulates the problem as a data log-likelihood maximization subject to

a constraint on the (probabilistic) error count measured on the labeled target domain samples. In

the EM algorithm based solution to the optimization problem, instead of performing a standard

E-step by computing the true posterior distribution over the latent variables, the method uses a

modified E-step by constraining the factors of the posterior distribution over the latent variables

to be smooth parametric functions. Similar to the observations made in chapter 3, this allows

the method to ensure that, in the adapted classifier solution, space-partitioning implications are

gleaned from a limited number of target domain labeled samples. We also proposed a validation

criterion called the transformed source domain accuracy, which is used to eliminate potentially

poor classifier solutions (for the target domain) from a number of candidate adapted classifier

solutions. Experiments on Internet packet-flow traffic data from different temporal and spatial

domains demonstrate the validity and usefulness of the domain adaptation method.

5.2 Directions for future research

We next identify some directions for extending the scope and applicability of the methods de-

veloped, some of which have already been highlighted in the chapters. Some of the ideas which

are common to all the methods are discussed upfront, and then the ideas specific to each method

are discussed.

High dimensional feature spaces

Since the methods presented in chapters 3, 4, and 5 are all based on generative, joint modeling

of the feature vector and the class label using finite mixture models, there is a need to address

issues of modeling data with high feature dimensionality. These include model bias and insuffi-

cient number of data samples for reliable estimation of the model parameters and probabilities,

well known as the curse of dimensionality [51] in pattern recognition literature. Since generative

methods model the joint distribution of the features and the class P (X,C), the curse of dimen-
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sionality problem directly affects them. Note that the problem of high feature dimensionality

can also affect discriminative learning methods because pairwise distances (based on metrics in

the Euclidean space) between points tend to become more similar and hence less discriminative

for the purpose of classification.

A number of methods have been proposed in the literature for addressing the issue of density

modeling and clustering in high dimensional feature spaces [59], [66], [101], [115], [116], [148],

[151]. A method for regularizing the component covariance matrix estimates of a Gaussian

mixture based on Ledoit-Wolf shrinkage estimation [101] was given in section 2.5. While this

method ensures that the covariance matrix estimates are well-conditioned, it does not reduce the

number of parameters to estimate (which is still O
(
d2
)

for a d dimensional vector). A widely

used method for addressing this issue is the mixture of factor analyzers (MFA) [116], [66], which

allows flexibility in the number of free parameters of the component covariance matrices. By

modeling the generation of the feature vector X ∈ Rd in terms of a latent mixture component

M ∈ {1, . . . ,K} and a latent factor Z ∈ Rq, where q � d, MFA models the density of X as

the mixture

P (x) =
K∑
j=1

αj N (x ;µ
j
,Bj BT

j + Dj),

where Bj ∈ Rd×q is called the factor loading matrix, and Dj is a d × d diagonal matrix. The

factor loading matrix of each component has only qd free parameters compared to d (d+1)/2 in

the case of unrestricted covariance matrices in a standard Gaussian mixture. Note that a related

dimensionality reduction method, mixture of probabilistic principal component analyzers [162]

is actually a specialization (restriction) of the MFA model, with Dj = dj I, ∀j.
The methods presented in chapters 3, 4, and 5 are all amenable to modeling using MFA

instead of a standard Gaussian mixture, which would make them more suitable for modeling

high dimensional data. For the methods in chapters 3 and 4, the choice of parametrization

for the factors of the approximating distribution in the E-step also changes according to the

density model of MFA. This reduces the number of variational parameters, making the E-step

optimization more tractable for high dimensional data.

Mixed continuous and categorical valued features

In certain practical applications like modeling text documents in natural language processing,

all the features are categorical (or discrete) valued. For such data sets, generative modeling ap-

proaches usually employ models like a mixture of Multinomial distributions (also known as the

“bag of words” model) [110], with conditional independence assumed between the features given

the component of origin. The methods in chapter 3 and chapter 4 can certainly be applied with
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such models, by choosing an appropriate parametric function (based on e.g., the Multinomial

distribution) for the factors of the approximating distribution in the E-step. For the fine-grained

classification models in chapter 2, the distance metric used in the within component RNN and

RNP class posterior (given by (2.5) and (2.17)) needs to be modified from the Euclidean dis-

tance to a distance metric more appropriate for a categorical valued feature vector, such as the

Hamming distance, Jaccard index, or simple matching distance.

It is also common for data sets collected from clinical analysis and social sciences to have

a mixture of continuous and categorical valued features. A number of works in the past have

addressed the modeling of mixed feature data such as [92], [93], [75], [132], [131], [76]. While

the most straightforward mixture modeling approaches assume that the categorical features are

conditionally independent of each other and conditionally independent of the continuous valued

features given the component of origin, methods like the location modeling approach allow for

some dependence between these two sets of features [92], [131], [113]. Recently, an extension

of the mixture of factor analysis method for mixed continuous and categorical valued features in

high dimensions has been developed based on the variational approximation method [88], [89].

Extending or generalizing the methods developed in this dissertation to handle mixed continuous

and categorical valued features based on some of the aforementioned works is a direction for

future research.

Future directions for the domain adaptation work

We can identify several extensions for the semi-supervised domain adaptation method developed

in chapter 4. One of them is handling high dimensional feature spaces and mixed continuous and

categorical valued features, which we have already discussed.

Before applying the domain adaptation method, it is useful to test whether there is any sig-

nificant difference (deviation) between the data distributions in the source and target domains.

Since the distribution P (X,C) is unknown in the target domain, this test will have to be based

either on comparing the joint distribution of all features P (X), or the marginal distribution of

the individual features P (Xj), ∀j ∈ [d] in the source and target domains. The distance be-

tween the distributions in the two domains can be quantified using statistical measures such as

the Kullback-Leibler distance, Total variation distance, or Hellinger distance [30]. Also, the two

sample Kolmogorov-Smirnov (K-S) test [160] can be used to test whether there is a statistically

significant difference between two empirical cumulative distribution functions in one dimension

(such as the marginal distribution of individual features). In practical domain adaptation settings,

we may find that only a subset of all features have statistically significant difference based on

the K-S test. In such a scenario, it may be a good idea to only adapt those parameters that are
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specific to these features, and “freeze” the remaining parameters to their values in the source

domain classifier. Note that this test can only detect the presence of covariate-shift, but as we

discussed in chapter 1, there could still be class prior imbalance (mismatch) between the source

and target domain data. This is another possible direction for future work.

In section 4.3.1 of chapter 4, we proposed a measure called the transformed source domain

accuracy in order to filter out candidate domain adapted solutions which may not have good clas-

sification performance on the target domain. This measure is reliable only if the joint distribution

of the features, P (X), in the target domain can be well-approximated by applying controlled,

locally affine transformations to the source domain feature vector. Secondly, there is a possibil-

ity of mismatch between (i) the number of components in the mixtures modeling P (X) in the

source and target domains and (ii) the mapping between the components found using the Hun-

garian algorithm. If this is the case, then the set of affine transformations may not capture the

actual underlying transformation that relates the joint distribution of features in the two domains.

Future work can try to address these challenges in order to come up with a more reliable method

for validating the domain adapted classifier solutions.

The method in chapter 4 assumes that the same set of classes are present in the source and

target domain data. However, in real world problems, it is possible that some classes present in

the source domain data may not be present in the target domain data and vice-verse. Some exist-

ing works [120], [179] have addressed the problem of new class discovery for semi-supervised

learning. Addressing new class discovery and handling missing classes in the domain adaptation

problem is a valid direction for future research.

For the method in chapter 4, the parameters of the source domain classifier were utilized

to create a set of random parameter initializations for the EM algorithm based classifier adap-

tation. We also discussed an alternative Bayesian approach where the parameters of the source

domain classifier are utilized to define a prior distribution on the parameters of the target domain

classifier, and certain hyper-parameters of the prior distribution are varied in order to create mul-

tiple adapted classifier solutions for the target domain. The effectiveness of this approach can

be compared to the non-bayesian approach that we evaluated in chapter 4. In both cases, the

method finds multiple candidate domain adapted solutions (for different constant β values and

different random parameter initializations). Instead of selecting one solution from the candidates

based on the method described in section 4.3.1, it may be useful to create an ensemble classifier

solution for the target domain by selectively combining the candidate adapted classifiers based

on an aggregation method such as voting or boosting [176], [94], [181], [169].
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background knowledge. In Proc. of the Eighteenth International Conference on Machine
Learning, pages 577–584, 2001.

[168] J. Wang, T. Jebara, and S.-F. Chang. Semi-supervised learning using greedy max-cut. The
Journal of Machine Learning Research, 14(1):771–800, 2013.

[169] J. Wang and S.-W. Luo. Exploiting ensemble method in semi-supervised learning. In
Machine Learning and Cybernetics, 2006 International Conference on, pages 1104–1107.
IEEE, 2006.

[170] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application
to clustering with side-information. Advances in Neural Information Processing Systems,
15:505–512, 2002.

[171] T. Yang and C. E. Priebe. The effect of model misspecification on semi-supervised classi-
fication. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(10):2093–
2103, 2011.

[172] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd annual meeting on Association for Computational Linguistics,
pages 189–196. Association for Computational Linguistics, 1995.

[173] D.-Y. Yeung and H. Chang. A kernel approach for semisupervised metric learning. Neural
Networks, IEEE Transactions on, 18(1):141–149, 2007.

[174] S. Yu and J. Shi. Segmentation given partial grouping constraints. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(2):173–183, 2004.

[175] A. Yuille, P. Stolorz, and J. Utans. Statistical physics, mixtures of distributions, and the
EM algorithm. Neural Computation, 6(2):334–340, 1994.

[176] M. Zanda and G. Brown. A study of semi-supervised generative ensembles. In Multiple
Classifier Systems, pages 242–251. Springer, 2009.

[177] T. Zhang and F. Oles. The value of unlabeled data for classification problems. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning,(Langley, P.,
ed.), pages 1191–1198. Citeseer, 2000.



146

[178] J.-H. Zhao and P. L. Yu. Fast ml estimation for the mixture of factor analyzers via an ecm
algorithm. Neural Networks, IEEE Transactions on, 19(11):1956–1961, 2008.

[179] Q. Zhao and D. Miller. Mixture modeling with pairwise, instance-level class constraints.
Neural Computation, 17(11):2482–2507, 2005.

[180] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency. Advances in neural information processing systems, 16(16):321–328,
2004.

[181] Z.-H. Zhou. When semi-supervised learning meets ensemble learning. Frontiers of Elec-
trical and Electronic Engineering in China, 6(1):6–16, 2011.

[182] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530.

[183] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label prop-
agation. Technical report, Technical Report CMU-CALD-02-107, Carnegie Mellon Uni-
versity, 2002.

[184] X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using Gaussian fields
and harmonic functions. In ICML, volume 3, pages 912–919, 2003.

[185] X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning, 3(1):1–130, 2009.

[186] X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based
methods for inductive and scalable semi-supervised learning. In Proceedings of the 22nd
international conference on Machine learning, pages 1052–1059. ACM, 2005.

[187] G. Zou, G. Kesidis, and D. Miller. A flow classifier with tamper-resistant features and an
evaluation of its portability to new domains. Selected Areas in Communications, IEEE
Journal on, 29(7):1449–1460, 2011.



Vita

Jayaram Raghuram

Education:

• 2008 – 2014: The Pennsylvania State University, Electrical Engineering
PhD, supervised by Prof. David J. Miller and Prof. George Kesidis

• 2004 – 2008: Anna University, Electronics and Communications Eng., Chennai, India
B.E, senior project supervised by Prof. Nelson Iruthayanathan

Publications:

• Raghuram, J., Miller, D.J., Kesidis, G., “Instance-Level Constraint Based Semi-supervised
Learning With Imposed Space-Partitioning”, IEEE Transactions in Neural Networks and
Learning Systems, Vol 25(8), 2014. DOI: 10.1109/TNNLS.2013.2294459.

• Raghuram, J., Miller, D.J., Kesidis, G., “Unsupervised, low latency anomaly detection of
algorithmically generated domain names by generative probabilistic modeling”, Journal
of Advanced Research, Vol 5(4), pp. 423–433, 2014. DOI: 10.1016/j.jare.2014.01.001.

• Raghuram, J., Kesidis, G., Miller, D.J., Levitt, K., Rowe, J., Scaglione, A., “Generation
bidding game with flexible demand”, 9th International workshop on feedback computing,
2014.

• Raghuram, J., Miller, D.J., Kesidis, G., “Semisupervised domain adaptation for mixture
model based classifiers”, Proceedings of the 46th annual Conference on Information Sci-
ence and Systems (CISS), 2012. DOI: 10.1109/CISS.2012.6310708.

• Miller, D.J., Raghuram, J., Kesidis, G., and Collins, C.M., “Improved generative semisu-
pervised learning based on finely grained component-conditional class labeling”, Neural
Computation, Vol 24(7), 1926–1966, 2012. DOI: 10.1162/NECO a 00284.

• Celik, Z.B., Raghuram, J., Kesidis, G., and Miller, D.J., “Salting public traces with at-
tack traffic to test flow classifiers”, Proceedings of the 4th conference on Cyber Security
Experimentation and Test (CSET), 2011.

• Chen, Li, et.al., “Comparative analysis of methods for detecting interacting loci”, BMC
Genomics, Vol 12(1), 2011. DOI: 10.1186/1471-2164-12-344.


